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The collapse dynamics and runout of columns of elongated grains in two dimensions are
numerically investigated in dry and immersed conditions, by means of an unresolved finite
elements/discrete elements model. The elongated grains are modeled as rigid aggregates
of disks. The column aspect ratio is systematically varied from 0.125 to 16 in order
to span short and tall columns. To analyze the effect of the initial grain orientation,
columns with an initial grain orientation that is either random or aligned with a given
direction are both considered. Collapse dynamics, both in dry and immersed cases, are
found analogous to that previously observed for circular grain columns, particularly with
respect to the power law dependency for the runout as a function of the column aspect
ratio. The effect of the fluid mainly results in a decrease of the runout distance. Inter-
estingly, the collapse dynamics and runout are not significantly affected by the initial
orientation of the grains, except maybe in the extreme case where the grains are all
horizontally oriented, which geometrically prevents the collapse. Finally, a scaling based
on the front propagation energy is proposed allowing one to unify the runout of short to
tall and dry to immersed columns in a single description, regardless of the initial grain
orientation.

DOI: 10.1103/PhysRevFluids.8.094303

I. INTRODUCTION

Granular materials behave at the boundary between fluids and solids. Ambient fluids can sig-
nificantly impact their behavior, leading to hydrodynamic forces that compete with grain inertia
[1–3]. As such, these materials play a governing role in geophysical flows [4,5], food processing
silos [6], and chemical reactors [7], among others. Further adding to their complexity, there is a
wide range of grain shapes that modify their collective shear strength by rate-dependent fabric
and contact anisotropies [8–12]. Grain shapes can vary from concave and elongated grains to
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convex grains, where interlocking and clustering is rapidly formed [10]. More specifically, elongated
grains have been shown to align with the shear direction [13,14] and form growing clusters of
aligned grains [15]. Given these complexities, the modeling of granular materials has attracted much
interest from a wide range of disciplines [16,17]. Nevertheless, these approaches share a common
simplification, focusing, to a greater extent, on the study of spherical and nearly-spherical materials
[18].

An example of these approaches is the collapse of a granular column [19,20], recognized as a
benchmark case for studying granular flows in dry, saturated, and immersed conditions [21–23]. In
this configuration, a column of initial height H0 and width L0 is released and collapses under self-
weight over a horizontal surface. After release, part of the column’s potential energy is converted
into kinetic energy and then dissipated until the column comes to rest and forms a deposit. The
deposit runout L f follows a piecewise power law as a function of the column aspect ratio H0/L0,
allowing a differentiation between short and tall columns [19,20]. The fraction of dissipated energy
increases with H0/L0 and is independent of surface or material parameters, like the grain size or
the grain size distribution [19,20,24,25]. In addition, granular flows are strongly affected by the
dilatant or contractant behavior defined by the system packing fraction, setting a clear distinction
between initially dense and initially loose granular systems [26–28]. This dependency is unified in a
simple scaling, requiring only the fluid-grain density ratio, proportional to the packing fraction, and
the front kinetic energy for describing the system runout [27]. However, grain shapes that depart
from spheres may modify, to some extent, the dependency on H0/L0 and on the initial density ratio
[29–32]. For example, elongated grains show orientational features associated with a collective
entanglement, or interlocking, that might prevent the column from collapsing [31,33] and yet form
relatively loose granular systems or lead to the formation of ordered structures of aligned grains in
the deposit that result in dense granular systems [33–35]. Nonetheless, for aspect ratios that are not
sufficiently large to prevent the collapse, the influence of the grain shape on the collapse dynamics
has been found to be small [33,36], except for particles with high blockiness (i.e., sharp edges that
make them closer to polyhedra than to spheres) which have a reduced runout [18]. In the immersed
case, most studies on elongated grains concentrate on colloidal suspensions of rods, which have
similarities to polymer solutions and exhibit shear thinning due to orientational ordering [37,38]. For
larger grains, the features specific to elongated grains are further amplified when surrounded by a
fluid [35], but the extent to which they affect the mobility of granular flows is yet poorly understood,
especially in the immersed case. The latter is, for example, of great interest in understanding the
jamming of driftwood debris [39–41] or in the stability of layered cliffs which can result from
debris or pyroclastic flows [42,43], where the collective orientation of its constituent grains plays a
dominant role in the process.

In this work, we study the behavior of dry and immersed granular materials made of elongated
grains, comparing initially disordered (i.e., a random initial grain orientation) and initially ordered
(i.e., an initial grain orientation aligned with a given direction) systems. To that end, we explore
the two-dimensional column collapse of elongated grains, employing a hybrid multiscale FEM-
DEM framework (see Sec. II). Although constraining the degrees of freedom of the grains, the
two-dimensional approach allows one to significantly reduce both the number of parameters to be
studied and the computational cost. The objective is to describe the collapse dynamics of both dry
and immersed columns of elongated grains that are far from interrupting the column collapse [31],
with a particular focus on the orientation of the grains, its evolution, and its influence on the collapse.
The two-dimensional approach reduces the grain orientation to a single scalar θ , helping to isolate
its associated effects.

The studied collapses shed light on the distinct orientational features, at the scale of the grains,
that are influenced by the ambient fluid, like grain clustering or grain reorientation, and that could
modify the collapse sequence and thus its runout (see Secs. III and IV). The effect of grain
orientation is then generalized in the description of the mobility of granular flows, suggesting the
addition of a viscouslike term to the simplified scaling proposed by [27] (see Sec. V). Finally,
conclusions and further effects of grain orientation are discussed in Sec. VI.

094303-2



COLLAPSE DYNAMICS OF TWO-DIMENSIONAL DRY AND …

FIG. 1. Schematic of the interaction of two elongated grains, both consisting of a line cluster of disks. At
the contact point (b = 0) the local frame of reference (n, t) and the relative contact velocity U are computed.

II. NUMERICAL METHOD

We use a hybrid multiscale finite element method coupled with a discrete element method
(FEM-DEM framework) to simulate the coupled motion of fluid and grains during the column
collapse. The open-source software MIGFLOW combines the insights from the grain physics with an
affordable computational cost for solving the fluid phase [44]. Further details on the FEM-DEM
framework can be found in [45]. The fluid phase is solved on a coarser scale with the volume-
averaged Navier-Stokes equations [46], while the granular phase is solved on a finer scale with
the nonsmooth contact dynamics [47,48]. The two scales are coupled through an interaction force
between the fluid and granular phases. For the sake of computational convenience, both solvers are
explicitly coupled. Hence the fluid solver evaluates the interaction force through a semi-implicit
scheme [49], increasing the stability of the coupling.

The fluid fields are averaged within a control volume as a function of the granular medium poros-
ity φ = 1 − Vg/VT , where Vg and VT are the grains’ volume and total control volume, respectively.
This averaging allows the resolution of the fluid phase at a larger scale. Herein, the considered
control volume corresponds to a mesh element. Hence the Navier-Stokes equations at this element
become [46]

∂φ

∂t
+ ∇ · v = 0, (1)

∂ρ f v
∂t

+ ∇ · ρ f vv
φ

= ∇ ·
[
2ηφd

( v
φ

)
− pI

]
+ f + φρ f g, (2)

where v is the volume-averaged fluid velocity, ρ f and η are the fluid density and viscosity,
respectively, d is the deformation rate tensor, p is the fluid pressure, I is the identity tensor, f is
the resultant of the fluid-grain interaction force tensor, and g is the acceleration due to gravity.

The granular material is solved with a nonsmooth contact dynamics (NSCD) approach [47,50].
The elongated grains are modeled as rigid clusters of disks. This implies that the bonds between
the disks cannot be broken and are infinitely rigid, as the disks only serve a purely geometrical
purpose in terms of contact detection and contact geometry. The mass, center of mass, and moment
of inertia of a grain are computed according to the positions of its constituting disks. The positions
and velocities of the grains are tracked through time and the contacts are solved based on momentum
balances. This implicit approach allows for larger time steps and prevents grain interpenetration,
which is useful for avoiding null porosities in the fluid elements. The NSCD approach starts with
computing the grains’ free velocities, ignoring the contacts between them, by means of Newton’s
second law and external forces such as the one due to g. When a contact is detected, a local
frame of reference and a relative velocity U are defined (see Fig. 1). Then, the contact is solved
based on a local frictional contact law. This law follows the Signorini condition combined with a
perfectly inelastic shock law in the normal direction and the Coulomb friction law in the tangent
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FIG. 2. Fluid forces exerted on disks in a shear flow and the resulting net force f and torque C on the
corresponding elongated grain. The elongated grain has an orientation θ with respect to the horizontal. The
transparent drawing indicates the consequent motion of the grain. The blue arrows represent the fluid velocity.

direction:

If b � 0 : (3)

U +
n = 0, Rn � 0, U +

n Rn = 0,

|Rt | � μRn, |U +
t | �= 0 ⇒ Rt = −μRn

U +
t

|U +
t | , (4)

where the + superscript indicates the value just after contact, μ the friction coefficient, b the
distance between the two grains, and Rn and Rt the contact force normal and tangent components,
respectively. Once Rn and Rt are determined, the grains’ linear and angular velocities are adapted. At
each time step, all contacts are to be solved at once. Since the resolution of one contact can influence
other contacts in which any of the two grains are implied, the FEM-DEM framework uses a queue
for iterating over the contacts until a convergence criterion is met. This criterion corresponds to the
change in the velocity correction from the contact resolution between two iterations of the contact
solver, multiplied by the time step [51]. In the present work, its value was set to 10−6.

The fluid and grains interactions account for the pressure gradient and the drag. These interac-
tions have been empirically adapted to take the Reynolds number and the porosity into account,
so that they are valid for the fluid volume fractions and flowing regimes encountered in this work
[52–54]. More details on the fluid-grain interaction force are presented in the Appendix.

Elongated grains are simulated as a single-line cluster of disks, as in [33], computing the fluid-
grain interaction forces at the disk level. Hence the fluid forces acting on each disk are added into
the resulting net force and torque on the elongated grain (see Fig. 2). This approach is similar to the
one used by [55], in the simulation of fluidized beds of elongated grains. Note that these simplified
two-dimensional hydrodynamic interactions on an elongated grain are inevitably different than those
for three-dimensional rods. Nevertheless, we assume that they are still relevant for capturing the
interplay between grains orientation and fluid kinematics.

We tested the current implementation of a line cluster of disks with the experimental observations
of the free-fall kinematics of a single rod immersed in a fluid and within a planar setup [35].
Remarkably, the fluid-rod-like interactions, like fluttering and settling, are notably recovered by
the fluid-grain system. Further improvements can be achieved by adding multiline clusters and by
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correcting the surface of the grain so that it matches the one of the rod. However, in a large collection
of grains such a surface correction could lead to a null porosity in a fluid element. For this reason,
and for computational convenience, the simplest representation of a single line of disks was adopted
for the study of grains orientation in a granular flow.

Simulation strategy

Taking inspiration from [35], the elongated grains are made of disks with a diameter d =
2.15 mm, with a density ρ = 1840 kg/m3, and have a variable length l . Hence two collections of
elongated grains are employed in this work, clustering three or four disks with the aim of obtaining
an overall mean grain aspect ratio of d/l = 3.21. Moreover, a slight polydispersity of 1.05d on
each grain was introduced for preventing crystallization. The friction coefficients were calibrated to
μw = 0.3 between the grains and the wall and μg = 0.9 between grains, matching the results from
[35] in terms of runout and deposit shape. In the immersed scenarios, the surrounding fluid is water
with ρ f = 1000 kg/m3 and η = 10−3 Pa s. For computational reasons, the mesh was finer near the
initial column position and coarser at the other end of the domain. The most refined elements were
≈4.7 times the size of an elongated grain.

The samples were generated by depositing artificial disks under gravity and within a rectangular
container. The artificial disks have diameters that correspond to the elongated grains’ lengths. When
the deposit comes to rest, the disks are replaced by the elongated grains with a desired orientation
θ with respect to the horizontal. Their rotation is frozen and the grains settle. Then, their rotation is
freed and the grains settle again, forming a two-dimensional axisymmetric column. To avoid grain
size effects, the column’s initial width is set to L0 = 0.29 m, which is slightly larger than 75 times
the grains’ length [24]. The column is released by removing one of the container’s lateral walls. For
the sake of statistical significance, every configuration was simulated three times, resulting in 144
simulations. The maximum number of grains in a simulation was 89 000. The studied dry column
collapses are in the free-fall regime and the immersed columns are in the inertial regime according
to [1]. Therefore, the grains inertia are expected to control the flow.

The simulations are divided into two groups. The first group of simulations focuses on the
general dynamics of a column collapse of initially disordered elongated grains (i.e., grains
randomly oriented) in dry and immersed conditions. The initial disordered column is set as
a random distribution of elongated grains with initial orientation within a full rotation (0◦ �
θ � 360◦). The initial porosity for this stage is uniform across the column, with φ = 0.237 ±
0.014. The column aspect ratio was increased from H0/L0 = 0.125 to H0/L0 = 16, exploring
the transition from short to tall columns. In the second group of simulations, a short and a
tall column are studied (H0/L0 ∈ [0.5; 8]), exploring the effect of ordered grains (i.e., columns
having all grains preferentially oriented in a given direction) with the main initial orientations
θ∗

0 ∈ [−90◦; −60◦; −45◦; −30◦; 0◦; 30◦; 45◦; 60◦; 90◦]. Note that columns with a main orientation
of θ∗

0 < 0◦ have a tendency to lean on the left wall. In this stage, the resulting porosity range is
φ = 0.207 ± 0.017. Therefore, it can be argued that dense columns are studied in both stages.

III. COLUMN COLLAPSE OF RANDOMLY ORIENTED ELONGATED GRAINS

The column collapse of elongated grains shows a similar sequence as that of collapses involving
spherical or nearly spherical grains [21–23]. This sequence initiates with an accelerating phase
where the grains free fall or move laterally [see Figs. 3(c) and 3(d)], then transition to a predominant
side-propagation phase [see Figs. 3(e) and 3(f)], and finally a decelerating phase until forming a
deposit [see Figs. 3(g) and 3(h)]. Here, the collapse sequence duration is normalized by a reference
dimensionless time τ = √

2H0/g∗, accounting for the relative free-fall time of a grain from the
initial height of the column H0 and with g∗ = gρ−ρ f

ρ
as the effective gravity correcting for buoyancy

[56,57]. Movies of the column collapses presented in this work are available as Supplemental
Material [58].
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FIG. 3. Snapshots of a dry [(a),(c),(e),(g)] and immersed [(b),(d),(f),(h)] column collapse with initial aspect
ratio H0/L0 = 8 and random initial grain orientation. The grains and fluid elements are colored with their
instantaneous velocity u and v, respectively. The insets correspond to zooms on the column region marked
with the same border pattern.

Interestingly, a clear distinction between dry and immersed column collapses is observed on
the released volume at the initiation phase and the velocity at which it propagates. In dry columns
almost all moving grains are in motion after initiation, while in immersed columns only a thin
vertical layer, next to the release face, starts moving and propagates inwards during collapse. This
localised mobilization is not surprising, being observed in the collapse of dense columns [27,28]
and attributed to the competing action of the grains tendency to dilate and the fluid infiltration.
This pore pressure effect [59] is well captured by the current numerical model, as the pressure
is lower inside the grains when the columns start to collapse. As a result of the corresponding
fluid motion, the observed contact forces between the grains are more important in the immersed
case with respect to the apparent gravity. Moreover, in immersed columns, the grains near the free
surface form fingerlike structures perpendicular to the moving mass [see Figs. 3(d) and 3(f)]. As
these structures accelerate, they cross each other and recirculate with the so-induced vortices in
the fluid. This dynamic is similar to the one of interacting Stokes clouds [45]. As they reach the
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FIG. 4. Dimensionless deposit profiles for different column aspect ratios H0/L0. The red and blue colors
indicate dry and immersed collapses. The insets show snapshots of the corresponding profiles. The light blue
backgrounds indicate the immersed cases.

bottom surface, they accumulate and form a concave surface behind the flow front. The concave
surface deflects the flow upwards, similar to a hydraulic ski jump [60], and sets the grains to deposit
halfway from L0. At the deceleration phase, the flow limits to a region near the free surface. Tall
columns form a concave deposit shape in dry collapses and a roughly triangular shape in immersed
collapses, as a result of the smoothing induced by the remaining vortices in the fluid (see Fig. 4).

Note that some bumps due to the hydraulic ski jump behavior can appear in the final deposit
shape for immersed collapses. The differences between dry and immersed collapses vanish for short
columns, as in that case the motion only takes place in a wedge in the upper right corner of the
column.

The collapse sequence can be captured by following the released mass front position L (see Fig. 5,
left). It should be noted that avalanches are transient in nature and that a steady state in the side-
propagation phase does not really occur, but rather an inflexion from acceleration to deceleration
[61]. Nevertheless, the average velocity U f r of the front position L can be defined as a characteristic
of the side-propagation phase, averaging the slope of the curve in Fig. 5 between the times at which
30% and 70% of the final runout are reached. From this, the front kinetic energy can also be defined
as E f r

k = MU f r 2
/2, with M as the column total mass. Moreover, in the presence of a fluid, multiple

collapse phases can be observed, as in [62] for saturated columns, but their reproducibility between
the simulations is low.

The runout time tr and the final collapse time t f are defined as the elapsed time until L = L f and
as the elapsed time until the grains come to rest, respectively (see Fig. 5, left). Both tr and t f are
found to vary with the ambient fluid and with the column initial aspect ratio H0/L0, leading to longer
collapses in the immersed cases (see Fig. 5, right). In dry columns, tr/τ is nearly constant, indicating
a free-fall regime independent of H0/L0. The value of t f /τ first increases as more grains are available
to flow on the free surface of the deposit without increasing the runout. After a maximum at H0/L0 =
1, indicating a transition from short to tall columns, t f /τ gets closer to tr/τ as the motion localizes
in a shallow flowing layer at the front. In the immersed case, both tr/τ and t f /τ increase with H0/L0

as the grain motion is hindered by the fluid phase. The difference between them also increases as
the fluid motion is more important and is able to sustain grain motion at the free surface of the
deposit for a longer time. As the columns get taller, the fingerlike structures start to appear. These
clusters of grains can have a larger settling velocity than isolated grains [63], which could explain
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FIG. 5. Left: temporal evolution of the normalized front position during the collapse for a column of
aspect ratio H0/L0 = 8. The dotted lines indicate the dimensionless runout tr/τ and final t f /τ times relative
to the normalized runout (Lf − L0)/L0. Right: dimensionless runout tr/τ (empty symbols) and final t f /τ

(solid symbols) times as a function of H0/L0. The red circles and the blue squares indicate dry and immersed
collapses, respectively.

the associated decrease of both tr/τ and t f /τ . This time, the difference between them decreases, as
the fluid motion is even more important and is able to push the grains forward.

As mentioned above, a characteristic of the column collapse is the distinction between short
and tall columns. These collapse types follow a piecewise power law for the normalized runout
(L f − L0)/L0, increasing with H0/L0 and being steeper for the case of short columns. Here, the
distinction between short and tall columns is also observed (Fig. 6, left), which is independent of
the employed grain shape ratios (d/l ≈ 3). The transition between short and tall columns is not
exactly identified but occurs for H0/L0 somewhere between 2 and 4 for the dry case and between 1
and 2 for the immersed case. Moreover, the normalized deposit final height Hf /H0 also follows a
piecewise power law (see Fig. 6, right). The transition occurs at H0/L0 = 1 in both cases, resulting
in a lower slope for the immersed case. This is due to the fluid preventing the grains from sliding
too far and hence, by mass conservation, leading to higher final heights.

The grain orientation is tracked during the collapse, focusing on the main orientation and
corresponding anisotropy of the moving grains. Let sn = [cos(θn), sin(θn)] be the orientation vector
of the grain n parallel to its longest dimension, with θn as the corresponding angle with respect to
the horizontal. Since keeping track of the orientation of each grain is too complex and demanding,
the focus is set on the probability density function P(θ ) = Nθ /δθ , such as Nθ is the number of grains
with orientation between [θ − δθ/2; θ + δθ/2] and θ ∈ [−90◦; 90◦]. This periodic distribution can
be approximated with the first two terms of its Fourier series expansion [64]:

P(θ ) = 1

2π
{1 + a cos[2(θ − θ∗)]}, (5)

where θ∗ is the main orientation and a describes the anisotropy of the distribution. Furthermore, the
values θ∗ and a are computed from a so-called fabric tensor [9,65]:

Si j = 1

N

∑
n

si
ns j

n, (6)
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FIG. 6. Normalized runout (left panel) and normalized final height (right panel) for columns with randomly
oriented grains as a function of the column aspect ratio H0/L0. The red circles and the blue squares indicate
dry and immersed collapses, respectively. Error bars correspond to one standard deviation. Note that some of
the error bars are sufficiently small so that they cannot be distinguished.

with N as the total number of grains. The anisotropy a can then be obtained as 2(S1 − S2), with S1

and S2 the principal values of S and the main orientation θ∗ as the orientation of the first principal
direction of L. For consistency, these quantities focus on the moving grains, excluding all grains
that moved less than a distance d between t ∈ [0 : t f ].

The time evolution of θ∗ and a of a typical column collapse sequence is shown in Fig. 7. Here,
the initial random orientation is slightly anisotropic and aligned along the horizontal, which comes
from the sample generation process driven by gravity deposition [66]. After the collapse starts, the

FIG. 7. Temporal evolution of the main orientation θ∗ (solid) and anisotropy a (dashed) of the orientation
distribution for a random initial orientation and H0/L0 = 8. The red and blue colors indicate dry and immersed
collapses. The insets are polar plots of the orientation distribution showing the relative frequency of a given
orientation.
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FIG. 8. Dimensionless deposit profiles for different initial grain main orientations θ∗
0 in the dry (left, in red)

and immersed (right, in blue) cases. The columns have an aspect ratio H0/L0 = 8.

grains align with the granular flow direction, changing from nearly −10◦ in dry flows and −20◦
in immersed flows to then nearly horizontal orientations (instants II and III in Fig. 7). Overall, the
moving grains’ anisotropy increases with time, having a steeper increase in dry collapses. In dry
columns, the orientation of the grains stagnates halfway to the end of the flow, while in immersed
columns, the grains’ orientation changes during the whole collapse duration. This is because in dry
flows the grains’ motion localizes more rapidly into a shallow flowing layer, while in immersed
flows the fluid vortices keep interacting with the grains even after the formation of the shallow
flowing layer. Note that the final values of θ∗ and a are similar for both cases, reaching a state often
referred to as a nematic configuration [34,35].

IV. COLUMNS WITH AN INITIAL GRAIN ORIENTATION

This section focuses on exploring the effect of the initial main grain orientation (θ∗
0 ∈ [−90◦ :

90◦]) in short and tall columns (H0/L0 = [0.5, 8]), respectively. The collapse dynamics, the runout,
and the evolution of θ∗ are compared to the random case that was explored in the previous section.

Overall, when a column collapse takes place (θ∗
0 �= 0◦), the initial grain orientation does not

modify the collapse sequence described in Sec. III. However, for the metastable case of θ∗
0 = 0◦,

i.e., a “brick-wall” configuration, only a few grains are released from the column, forming a steplike
deposit (see the dotted profiles in Fig. 8). In addition to this, in immersed tall column collapses,
with θ∗

0 �= 0◦, the bumps can be more important (see Fig. 8). Moreover, columns with main grain
orientations (θ∗

0 �= [0◦; 90◦]) tend to slide in stacked clusters of grains, reaching a longer runout
when the main grain orientation favors the slide at release (θ∗

0 < 0).
The collapse duration is also modified by θ∗

0 , both when reaching the runout distance tr and final
deposit t f (see Fig. 9). However, the effect of grain orientation is different in short and tall columns,
leading to longer collapse durations in short columns when θ∗

0 �= [0◦; 90◦], and the opposite in tall
columns, where collapses consistently last longer than in columns with an initially random grain
orientation. The longer collapse times in tall columns is asymmetric, leading to longer collapses for
θ∗

0 = −30◦. This behavior is linked to the change in collapse dynamics mentioned above, with the
release of stacks of grains sliding on each other. Overall, the variance of the data within collapse
repetitions is large, indicating a strong dependency on the initial fabric tensor prior to collapse.
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FIG. 9. Dimensionless runout times tr (empty circles) and final times t f (solid circles) as a function of the
initial main grain orientation θ∗

0 . Left: short columns (H0/L0 = 0.5). Right: tall columns (H0/L0 = 8). The
hatched areas present the range of tr and the uniform shaded areas indicate the range of t f for the random initial
orientations presented in Fig. 5, with their widths corresponding to two standard deviations. The red circles
and blue squares indicate dry and immersed collapses, respectively.

Contrary to the collapse duration, the column runout is slightly affected by θ∗
0 , with a marked

difference when θ∗
0 = 0◦ and showing a similar trend for both short and tall columns. (See Fig. 10.)

As expected, the observed trend is asymmetric, leading to longer runouts in initially unstable
configurations (θ∗

0 < 0◦) for both dry and immersed collapses. In these configurations the stacked
release of grains favors hydrodynamic interactions, propelling the grains further away. Note that for

FIG. 10. Effect of initial main grain orientation θ∗
0 in the column runout. Left: short columns (H0/L0 =

0.5). Right: tall columns (H0/L0 = 8). The shaded areas indicate the mean runout observed in columns with
random initial orientations and their widths correspond to two standard deviations. The markers are grains
aligned with the prescribed grain orientation. The red and blue colors indicate dry and immersed collapses.
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FIG. 11. Left: temporal evolution of the main orientation θ∗ (solid) and anisotropy a (dashed) of the
orientation distribution for a column with H0/L0 = 8 and initial grain orientation θ∗

0 = −60◦. The insets are
polar plots of the orientation distribution showing the relative frequency of a given orientation. Right: final a as
a function of θ∗

0 . Full symbols indicate tall columns and empty ones short columns. The hatched areas indicate
the mean value of a for random initial orientations and their widths correspond to two standard deviations. The
red circles and blue squares indicate dry and immersed collapses and the gray band corresponds to the mean
initial value of a ± a standard deviation.

columns consisting of an arrangement of nearly vertically oriented grains (θ∗
0 ≈ 90◦) the runout

distance is almost that of columns with initially randomly oriented grains. This is found to be
associated to rapid changes in the grains’ orientation, transitioning to a more uniform distribution
and without forming grain stacks.

Tall and short columns share a similar trend in the variation of main grain orientation θ∗ and
anisotropy a during collapse. In these collapses, θ∗

0 and the initial column anisotropy a0 transition
towards a main horizontal orientation and a more uniform fabric. This transition occurs earlier in
the collapse in dry columns than in immersed columns, but the final distribution is nearly the same
(see instants 0.5t f and t f in Fig. 11, left). Contrary to randomly oriented immersed columns, the
grain main orientation saturates before t f , reaching a nearly nematic configuration in most cases.
The variation of a with θ∗

0 shows a peak at θ∗
0 = 0◦ and then decays in a nearly symmetrical function

and towards the fabric anisotropies observed in the initially random collapses (see Fig. 11, right).
The peak at θ∗

0 = 0◦ is expected, since only very few grains collapse, while the attraction to the
common value a ∈ [0.54 : 0.62] indicates a behavior independent of θ∗

0 .
In summary, the initial main grain orientation θ∗

0 does not have a significant influence on the
collapse sequence, the final deposit shape, or the runout distance, but it slightly increases the
collapse duration in tall columns. Only orientations close to the horizontal change the general
behavior of the column, because of their collective stability. This can be seen in the runout but
also in the runout and final times, as well as in the deposit shape.

V. ENERGY CONSIDERATIONS

Previous works have used an energy approach for describing the column collapse sequence and
link it with the common features of granular flows [27,33,67–71]. In a column collapse a part of the
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initial potential energy Ep transforms into kinetic energy Ek . These can be computed as

Ep =
N∑

n=0

mng∗yn, (7)

Ek =

Ekx︷ ︸︸ ︷
1

2

N∑
n=0

mnu2
nx + 1

2

N∑
n=0

mnu2
ny

︸ ︷︷ ︸
Eky

+

Ekr︷ ︸︸ ︷
1

2

N∑
n=0

Inω
2
n, (8)

where yn is the height of grain n, mn and In are its mass and inertia, respectively, and un and ωn are
its translational and angular velocities, respectively. It is important to note that the rotational kinetic
energy Ekr is negligible when compared to the translational components Ekx and Eky, as observed
in [72] for spherical particles. Therefore, Ekr is discarded. Moreover, in immersed cases, the fluid
phase also gains kinetic energy Ek f in the form

Ek f = 1

2
ρ f

Nn∑
n=0

v2
nVnφn, (9)

where vn and φn are the fluid velocity and porosity at node n, respectively, Vn is the volume associ-
ated to node n, and Nn is the total number of nodes. This kinetic energy is gradually either dissipated
through friction and inelastic collisions in the granular phase or through viscous dissipation in the
fluid phase. Then, the total dissipated energy Ed is computed as

Ed = Ep(t = 0) − Ep − Ek − Ek f , (10)

assuming that the change in the potential energy of the fluid phase is negligible. These quantities
are computed for all columns and traced during collapse.

The temporal evolution of the kinetic energy components and the dissipated energy show a
complementary view of the collapse sequence (see Fig. 12). This evolution is similar for initially
disordered and ordered columns. Short columns dissipate a smaller fraction of their initial potential
energy, as the mobilized material is limited only to a lateral wedge. Also, for short columns, the
energy dissipation mainly occurs when the wedge collides with the base. On the contrary, tall
columns dissipate a much larger part of their initial potential energy, initiating with a rapid increase
in Eky, in line with a predominant free-fall motion, and then transitioning to Ekx rising when the
grains enter the side-propagation phase. The proportion of dissipated energy is similar to the one
for spherical grains [68]. In the immersed case, the energy evolution is less smooth, indicating a
nonintuitive coupling between the grains and the fluid. In immersed collapses, the particles fall
and transfer an equivalent quantity of energy to the fluid. Part of this energy is dissipated through
viscous effects, maintaining the collective motion of grains (e.g., fingerlike structures) and delaying
the column motion, in comparison to its dry counterpart. This is because the fluid keeps the kinetic
energy for much longer than the grains through a slower viscous dissipation, e.g., Ek f > 0 at t = t f .

Based on similar observations with the energy approach, the column runout is suggested
to depend on its ability to transform the initial potential energy into horizontal kinetic energy
[67,68,70,73]. Recent findings on polydisperse column collapses of disks indicate that the runout
might be simply controlled by just the front kinetic energy E f r

k . In order to highlight the influence
of E f r

k on the column runout, a simple model simplifying the column as a rigid block with mass
M and initial horizontal velocity U f r is proposed [27]. Note that E f r

k is much higher than Ekx and
Eky, as in this simplification the whole column is assumed to move with the front velocity U f r (see
Sec. III). The block is subjected to a resistive force −kẋ, with k a constant representing the effective
viscosity of the granular material. Solving the block’s equation of motion Mẍ = −kẋ for an infinite
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FIG. 12. Temporal evolution of the different forms of energy for initially disordered columns. Top row: for
a short (H0/L0 = 0.5) column in the dry (left) and immersed (right) cases. Bottom row: for a tall (H0/L0 =
8) column in the dry (left) and immersed (right) cases. The red and blue colors indicate dry and immersed
collapses, with cyan corresponding to the fluid phase. The insets show the grain velocity at times t1 and t2. The
inset color bars are the same as in Fig. 3.

time leads to

L f − L0

L0
=

√
2

kL0

√
M∗

√
ρ

ρ − ρ f

√
E f r

k , (11)

where M∗ = M(ρ − ρ f )/ρ is the column effective mass. From Eq. (11), the following dependence
for the runout is suggested [27]:

L f − L0

L0
∝

(
1

L0

)α

M∗β

(
ρ

ρ − ρ f

)γ

E f r
k

δ
, (12)

with (α, β, γ , δ) the exponents controlling the influence of each factor. By a proper fitting of
these exponents, they observed a collapse of all data on a single trend, regardless of the level of
polydispersity, the column aspect ratio, and the fluid (see the black circles in Fig. 13). The fitted
values are α = 1 (from the nondimensionalization of the runout), β = 0 (neglecting the column
mass), γ = 1 (indicating a stronger influence of the fluid), and δ = 0.5.

The data for elongated grains collapses on a single trend for both dry and immersed cases,
whatever the column aspect ratio or the initial main grain orientation when the exponents from [27]
are used (see the colored symbols in Fig. 13). This trend has a slope close to one (the best fitting line
has a slope of 0.995), which is the same as for polydisperse disks. This could indicate that the effect
of grain shape on the runout is limited to the prefactor of a power law and not its exponent. Note
that with these exponents, Eq. (12) is not dimensionless. The main interest of Eq. (12) is to highlight
that this scaling collapses the data with a slope of 1. Nonetheless, it could be made dimensionless
by adding a multiplying factor with dimensions of the square root of a typical mass—for example,
the one of a single grain. A downward vertical shift with respect to the data for disks corresponding
to dividing the data for elongated grains by a constant is observed. This further indicates that the
effect of grain shape is on the prefactor of the power law. In other words, for an equal quantity of
energy in the column, the runout is reduced for elongated grains. Since the proportion of dissipated
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FIG. 13. Runout of the columns scaled with the kinematics of Eq. (12). Data points for short columns with
θ∗

0 = 0◦ were removed as their runout was not relevant. The red and blue colors indicate dry and immersed
collapses. Black circles correspond to the data from [27] for polydisperse disks. The dashed line is a guide to
the eye with a slope of 1 and a nonzero intercept. The inset illustrates the computation of U f r used to obtain
E f r

k for a dry column with H0/L0 = 8.

energy is equivalent, we suggest that a part of the available energy is consumed by a change in the
microstructure of the column, i.e., the orientational rearrangement of the grains. This rearrangement
leads to a similar final state for all columns, regardless of the initial main orientation (see Sec. IV).
Therefore, the importance of this process should be directly linked to grain properties like grain
shape and elongation, although only a weak dependence of the runout on the grain elongation was
reported [33]. With this in mind, the factor 1

k from Eq. (11), that was discarded in Eq. (12), should
be taken into account. The scaling for the runout becomes

L f − L0

L0
∝ 1

kL0

ρ

ρ − ρ f

√
E f

k . (13)

The parameter k in the model is linked to the ability of the granular material to flow and reorganize
its microstructure. We expect its value to depend on the grain shape, i.e., be more important for
grains that have a larger inertia or a better ability to interlock. In that sense, it would be interesting
to vary the aspect ratio of the elongated grains or to use other grain shapes. The influence of grain
inertia is expected to be easier to determine than the one of their ability to interlock.

VI. CONCLUSIONS

The column collapse of two-dimensional elongated grains was simulated with an unresolved
FEM-DEM model both in dry and immersed conditions. The elongated grains were modeled as
clusters of disks, facilitating the computation of the fluid-grain interactions in the immersed case.
The focus was set on the effect of the column aspect ratio and the initial grain orientation on
the collapse dynamics and runout, distinguishing columns with an initial grain orientation that is
random or aligned with a given direction.

For randomly oriented grains, the collapse dynamics are found to be analogous to the ones for
circular (spherical) grains. Classical power laws were recovered for the runout and final height, with
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the fluid phase reducing the runout. The grains align with the flow direction during the collapse,
ending up in a nematic configuration.

Concerning columns with a given initial grain orientation, both short (with H0/L0 = 0.5) and tall
(with H0/L0 = 8) columns were considered. In general, the collapse dynamics and the evolution of
the grain orientation distribution are merely unaffected by the initial grain orientation (unless for the
extreme cases where the grains are horizontally oriented). The runout is slightly affected, exhibiting
an asymmetric increase that is more important for columns with a negative initial grain orientation.
Only the collapse duration is increased compared to the case where grains are randomly oriented.
The grain orientation transitions to the same nematic state as for columns with randomly oriented
grains.

Finally, the evolution of the different forms of energy during the collapse was described and
found similar to the one for circular (spherical) grains, with an equivalent proportion of dissipated
energy. A scaling of the runout based on the front kinetic energy was used. It collapses the data well
on a single line regardless of the column size and initial orientation or the presence of an ambient
fluid. When comparing with the data for disks, the runout for a given energy was found smaller for
elongated grains. From this, the inclusion of an additional factor in the scaling was suggested in the
form of a viscouslike parameter that should account for the grain properties.

Future work should concentrate on identifying the relationship between the additional factor
of the front kinetic energy scaling and grain properties. Due to the importance of hydrodynamic
interactions with the fluid phase, further efforts could be put into improving their modeling,
notably by considering real rodlike grains. Lastly, an extension of the model to three-dimensional
configurations should also be interesting.
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APPENDIX: FLUID SOLVER

The FEM solver uses P1-P1 elements for the sake of computational convenience. Although less
accurate, this choice is relevant because the fluid phase is solved on a coarser scale than the granular
one. To tackle the unstability which is inherent to P1-P1 elements, a pressure stabilizing/Petrov-
Galerkin (PSPG) term and a streamline upwind/Petrov-Galerkin term are added. Finally, a least
square on incompressibility constraint term is used for balancing the loss of incompressibility from
the PSPG term. More details about the implementation of this method in MIGFLOW can be found in
[49].

As said in Sec. II, the fluid-grain interactions are modeled at the disk level and the resulting net
torques and forces on the elongated grains are then computed. The interaction with a single disk
is modeled as a force which takes into account the drag and pressure gradient contributions. The
expression for the drag force on a disk i results from the one for an isolated disk multiplied by a
function of the porosity:

fd,i = g(φ)C
πd2

4

∥∥∥∥ui − v
φ

∣∣∣∣
xi

∥∥∥∥
(

ui − v
φ

∣∣∣∣
xi

)
, (A1)

with xi and ui its position and velocity. Dallavalle [52] gives an expression of the drag coefficient
suitable for the whole practical range of disk Reynolds numbers Red :

C =
(

0.63 + 4.8√
Red

)2

, (A2)
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Red = dρ f φ|xi

η

∥∥∥∥ui − v
φ

∣∣∣∣
xi

∥∥∥∥. (A3)

The function of the porosity by which to multiply this drag force is of the following form:

g(φ) = φ−β. (A4)

The value of β = 1.8 proposed by Wen and Yu [54], suitable for low and high Reynolds regimes, is
used in MIGFLOW [45]. The final expression for the fluid-disk interaction force is the following:

fi = −
pressure gradient︷ ︸︸ ︷

Vd∇p|xd − fd,i︸︷︷︸
drag

, (A5)

with Vd the surface of the disk.
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