
HAL Id: hal-04212050
https://hal.science/hal-04212050

Submitted on 25 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Machine Learning to Deep Learning
Pierre-Marc Jodoin, Nicolas Duchateau, Christian Desrosiers

To cite this version:
Pierre-Marc Jodoin, Nicolas Duchateau, Christian Desrosiers. From Machine Learning to Deep Learn-
ing. AI and Big Data in Cardiology, Springer International Publishing, pp.35-56, 2023, �10.1007/978-
3-031-05071-8_3�. �hal-04212050�

https://hal.science/hal-04212050
https://hal.archives-ouvertes.fr

3 FromMachine Learning to Deep Learning

Prof Pierre-Marc Jodoina,b,*

Dr Nicolas Duchateauc,d

Prof Christian Desrosierse

a Université de Sherbrooke, Canada.
b Imeka Solutions Inc., Sherbrooke, Canada.
c Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS,
Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France.
d Institut Universitaire de France (IUF), France.
e École de Technologie Supérieure, Montréal, Canada.
* Corresponding author.

Authors’ contribution:

• Main chapter: PJ, CD.
• Tutorial: ND, CD, PJ.

51

Nicolas Duchateau
This is a pre-print version. The final document will be available at springerlink.com
DOI = https://doi.org/10.1007/978-3-031-05071-8_3

Abstract
This chapter provides a thorough grounding in the fundamental mathemat-
ical concepts of deep learning. It is first shown how a simple linear classifier
can be defined based on the equation for a straight line. A more general
scheme for optimization of the parameters of classifiers is introduced, based
on gradient descent and its variants. We then see how the basic classifier
model can be extended to produce simple artificial neural networks such as
the perceptron and logistic regression. Next, these models are taken further
to show how multiclass classification problems and nonlinearly separable data
can be handled. Finally, the idea of a convolutional neural network is intro-
duced and we see how this leads to the idea of deep learning. A practical
tutorial is provided to give the reader some practical experience of developing
classification models using Python.

Keywords:

deep learning, machine learning, classification, training, neuron, neural net-
work, gradient descent, perceptron, sigmoid function, softmax, logistic re-
gression, convolutional neural networks

Learning Objectives:

At the end of this chapter you should be able to:
O3.A Explain how the equation for a straight line leads naturally to

the formulation of a simple binary classifier
O3.B Describe the differences between the main gradient descent op-

timization algorithms
O3.C Explain the operation of simple artificial neural networks such

as the perceptron and the logistic regression
O3.D Decide which approach to use to extend a machine learning

model to classify data which are not linearly separable
O3.E Explain the basic principles of convolutional neural networks

(CNNs), and summarize their relevance to analyse medical im-
ages and signals

52

Introduction
As mentioned in the previous chapter, a very active area of AI is machine
learning, which accounts for mathematical models whose behaviour adapts
to the data they are faced with. This adaptation process is called learning,
an obscure term that we ought first to disambiguate.

In this chapter, we lay the mathematical foundations of supervised machine
learning through a simple medical example. This example will soon lead to
the notions of classification function, training, neuron, neural network, and
deep neural networks as well as fundamental concepts associated to these
notions.

The example goes as follows: for a few days, patients are showing up at a
clinic to adjust their medication. Based on their symptoms, some patients
need to extend their treatment while others, who had a successful reaction to
the medication, are now healthy and may stop their treatment. This example
includes two (and only two) classes of patients: the ones which are sick and
those that are healthy. In this example, we assume that the status of a
patient can be determined by the inspection of two characteristics: the body
temperature in degrees Celsius and the heart rate in cycles/minute.

In a retrospective analysis, N patients were analysed and their informa-
tion stored in a dataset that we shall call D. These characteristics can
be visualized for the whole population using a scatter plot as shown in
Figure 3.1a, in which each patient is represented by a point in a 2-D fea-
ture space. In mathematical terms, this translates into a dataset D =
{(x1, t1), (x2, t2), . . . , (xN , tN)} where xi ∈ R2 is a vector containing the
body temperature and the heart rate of patient i while ti ∈ {healthy, sick}
stands for the patient’s status.

Technical Note
In the equations of this chapter, standard letters like i or t designate
scalar variables. A bold letter in lower case, such as x or w, stands
for a vector, while a bold variable in upper case, such as W , stands
for a matrix. Also, a variable with a subscript indicates that it is a

53

single element of a set (e.g. xi and ti are variables of the ith patient).

As one can see from Figure 3.1a, the sick patients are those with a fever
and/or a high heart rate and so stand away from the healthy ones in the
plot.

The goal of supervised learning is to learn a function f : R2 → {healthy, sick}
which can correctly identify the status from the characteristics according to
the data contained in D, i.e.

f(xi) = ti, ∀i ∈ {1, . . . , N}. (3.1)

Put another way, for any given patient, the machine learning function f
must be capable of converting a vector of characteristics x (in our example,
temperature and heart rate) into a class label (in our example, sick or healthy).
As such, the function f(x) is called a classification function.

Technical Note
The notation f : R2 → {healthy, sick} means that we define a
function f that maps from (→) a vector of 2 real values (R2) to a
single label which can take either of the values {healthy, sick}. We
call R2 the domain of the function and {healthy, sick} the range.
The ∀i ∈ {1, . . . , N} in Eq. (3.1) means that this mapping should
be correct for all (∀) values of i between 1 and N .

Machine Learning and Neural Networks
If the distribution of the sick and healthy patients was known a priori18,
it would be easy for a programmer to write a deterministic algorithm that
would satisfy Eq. (3.1). All one would have to do is determine which side of
the line a patient lies in the feature space shown in Figure 3.1a to determine
the status of that patient. However, for the sake of our example, we will

18i.e. before looking at the data

54

(a) (b)

Figure 3.1: (a) 2-D scatter plot of linearly separable healthy and sick patients.
(b) Implicit equation of a line with its normal vector N , and examples of
the line equation for three points.

assume that we do not know a priori that sick patients are those with a high
body temperature and a high heart rate and the healthy patients are the other
ones. Instead, we will implement a system for discovering automatically how
to separate these patients by adjusting its parameters based on the content of
D via a training procedure. Since D is at the core of the training procedure,
it is usual to call it the training set (see Chapter 2, Model Validation, page
34).

But before we dive into the specifics of the training procedure, let us first
consider what f(xi) looks like mathematically.

Two-Class Prediction

Different machine learning approaches may lead to different types of classi-
fication function f(x). However, one of the simplest and most widely used
function is the linear classifier. In Figure 3.1a, we see that the sick and
healthy patients can be separated by a straight line. That line is a symbolic
representation of a linear classifier. To understand the mathematics behind
a linear classifier, we shall go back to its very roots, i.e. the definition of a
line.

One may recall from high school years that the equation of a line is given
by

55

y = mx+ b (3.2)

where x and y are the horizontal and vertical coordinates of a 2-D point, m is
the slope and b the intercept (i.e. the distance to the origin). This equation
is known as the explicit formulation of a line (explicit because one variable
is expressed in relation to the other).

One may also recall that the slope is given by a ratio: m = ∆y
∆x

. If we
replace m by this ratio in Eq. (3.2) and then rearrange the terms, we get the
following implicit formulation of a line,

0 = ∆y · x−∆x · y + ∆x · b. (3.3)

This formulation stipulates that each point (i.e. each pair of patient charac-
teristics) located on the line satisfies this equation.

By renaming some variables, namely ∆y → w1,−∆x→ w2, and ∆xb→ w0,
we get a less convoluted implicit formulation,

0 = w1x+ w2y + w0. (3.4)

While x and y is a convenient naming convention for a two-dimensional space,
it is far less convenient in a higher dimensional space. To illustrate this,
another experiment could require more than two characteristics like cardiac
EF, age, body mass index, blood sugar level, cholesterol level, etc. In that
case, more characteristics would lead to more dimensions and more variables
to name. As such, it is usual to rename x, y to x1, x2 where xj stands for
the j-th characteristic (in our case, x1 is the body temperature and x2 is the
heart rate).

The resulting implicit line equation is as follows:

0 = w1x1 + w2x2 + w0. (3.5)

56

While different from y = mx+ b, this equation is still the equation of a line.
To convince ourselves, let us consider Figure 3.1b where the line parameters
are (w0, w1, w2)T = (4, 1,−2)T . If we take a point that falls on the line, say
(2, 3) and plug it into Eq. (3.5), we get 1×2−2×3+4 which, indeed, equals
zero.

Technical Note
The implicit equation of a line can be represented by the dot prod-
uct between two vectors: the parameter vector w = (w0, w1, w2)T

and the augmented characteristic vector x′ = (1, x1, x2)T where 1
is added to x to account for the bias. Assuming the column vector
notation, the implicit line equation can be represented as

0 = wT x′ (3.6)

where .T is the transpose operator. Please note that for the rest of
this chapter, we will drop the prime and refer to x as an augmented
vector.

Furthermore, one can prove that the vector N = (w1, w2)T is the
normal of the line. Any point lying in the direction of the normal
is said to be in front of the line while the other ones are said to be
behind the line. As for w0, it is the so-called bias, which is zero when
the line crosses the origin.

Linear separation of a feature space: Things get interesting when we
feed Eq. (3.5) with points that do not lay on the line. For example, if we take
the point (1, 6), located above the line in Figure 3.1b, we get 1×1−2×6+4 =
−7, i.e. a negative value. For the point (4, 1), located below the line, we get
1× 4− 2× 1 + 4 = 6, a positive value.

This little experiment underlines an important fact. By its very nature, the
implicit equation of a line separates the space into two regions: the region
for which the line equation produces a positive value and the one for which
it is negative.

57

Since our goal is to classify patients as being healthy or sick, we need a binary
classifier. As such, we can use the following sign function,

sign(t) =
{

+1 if t > 0
−1 otherwise (3.7)

to convert the negative values into the −1 label and the positive scores into
the +1 label (i.e. healthy = +1 and sick = -1 in our case). This leads to the
following binary classification function:

f(x) = sign(wT x). (3.8)

Training an AI model: At this point, the reader may contemplate the
fact that a binary linear classification is no more than a dot product between
a vector of parameters w and an augmented vector of characteristics x. If the
vector w has the right values (as in Figure 3.1a) the system can successfully
separate the sick and the healthy patients by predicting the right positive
and negative values.

In the context of our simple medical example, the process by which the
parameter vector w is adjusted to the content of the dataset D (and thus
fulfill the requirement of Eq. (3.1)) is called the training operation. The
dataset D contains a series of pairs (xi, ti) and the goal of the classification
function is to predict the right label ti for a given feature vector xi.

In this section, we describe how w can be estimated from training data and
how this process generalizes to more complex models such as the perceptron
and logistic regression.

Training a model can only be done with the support of a function that
can measure how good a set of parameters is at discriminating, for example
between healthy and sick patients. This function is called the loss function
and its value is typically proportional to the error rate of the model. As
such, the goal of the training procedure is to estimate the parameter vector
w which produces the lowest possible loss L(w). One way of illustrating this
is through the plot of a ‘loss landscape’ as shown in Figure 3.2. This plot

58

shows the loss value (the vertical axis) for different values of parameters w1
and w2. The best pair of parameters is at the bottom of the trough in the
blue area.

The training objective can thus be formulated as follows:

ŵ = arg min
w
L(w) (3.9)

which can be translated as: “out of every possible parameter vector w,
find one that minimizes the loss function L(w) and thus best classifies the
data.”

Technical Note
The goal of any machine learning algorithm is to find the parameter
vector w that minimizes the loss L(w). The scientific field oriented
towards the development of such algorithms is called mathematical
optimization. While mathematical optimization is a broad field, we
will focus on a specific optimization algorithm that is widely used to
train neural networks: gradient descent.

A vector w minimizes the loss L(w) when its derivative with respect to its
dimensions is zero:

∇wL(w) = 0 (3.10)

The left-hand side of this equation is the gradient of the loss with respect to
the parameter vector w. Since we have two characteristics in our example
(again, body temperature and heart rate), ∇wL(w) is a vector containing two
values and the previous equation can be reformulated as

(
∂L/∂w1

∂L/∂w2

)
=
(

0
0

)
. (3.11)

59

Figure 3.2: Illustration of a loss landscape of a space defined by two param-
eters w1 and w2. The black dots are the parameter values at 4 iterations of
a gradient descent optimization. The arrows illustrate the opposite direction
to the gradient.

Gradient descent is an iterative algorithm that minimizes the loss function
by successively updating w in the opposite direction to the gradient. This is
illustrated by the black dots in Fig 3.2 which iteratively go from a high loss
down to a lower loss.

Since computing the exact gradient requires an infinite amount of pairs (x, t),
one approach is to use the (entire) training dataset D to compute it, i.e.

∇wL(w) ≈ ∇wL(w;D) = 1
N

∑

(xi,ti)∈D

∇wL(w, (xi, ti)) (3.12)

where N is the total number of patients in D, and ∑(xi,ti)∈D is a summation
operation over every training data pair. Note that the notation (w;D) is used
to indicate that this version of the loss function is solely defined by the data
contained in the training set, D. Using this gradient approximation based
on the entire training set leads to the batch gradient descent algorithm (see
Algorithm 1). In this case, we say that the parameter vector w is updated
once every epoch.

60

Technical Note
In machine learning, the term epoch refers to the optimization al-
gorithm seeing all data in the training set once. An iteration is
one update of the learning parameters, and an iteration considers a
mini-batch of the training data (which has a batch size). Therefore,
the size of the training set is equal to the batch size multiplied by
the number of iterations in an epoch. In batch gradient descent, the
batch size is the entire training set, so there is one iteration in an
epoch.

Unfortunately, for various technical reasons, batch gradient descent is pro-
hibitively slow and memory intensive. An alternative strategy, known as
stochastic gradient descent, (see Algorithm 2) is to approximate the gradient
and update the parameters w for each training sample, i. Thus, there are N
iterations per epoch for a stochastic gradient descent (where N is the training
set size). Another slight variant use bundles of data pairs (mini-matches) to
approximate the gradient. This would give rise to a mini-batch stochastic
gradient descent algorithm.

In all cases, the change to the model parameters is weighted by a learning
rate η, which is a predefined constant, typically between 0 and 1. η is a
famous hyperparameter that one must determine, for example through a
cross validation procedure19.

Algorithm 1: Batch gradient descent algorithm
input : Training set D, learning rate η
output: Trained weights w

Init w with [small] random values;
for epoch = 1 to epochMAX do

w ← w − η∇wL(w, D) ;
end

The first machine learning model - the perceptron:
19Recall our discussion of the terms ‘hyperparameter’ and ‘cross validation’ in Chapter

2, Model Validation, page 34.

61

Algorithm 2: Stochastic gradient descent algorithm
input : Training set D, learning rate η
output: Trained weights w

Init w with [small] random values;
for epoch = 1 to epochMAX do

for (xi, ti) ∈ D do
w ← w − η∇wL(w, (xi, ti)) ;

end
end

The perceptron is often cited as the oldest machine learning model [333]. It
is a binary classifier that implements the classification function of Eq. (3.8).
The perceptron is typically illustrated by a graph such as the one shown in
Figure 3.3a. In this illustration, each grey circle on the left embodies an input
variable. Since our example has two characteristics (body temperature and
heart rate) the perceptron has two input variables and a 1 for the bias.

Each input variable has a connecting arrow showing the direction of the flow
of information, and each arrow has an associated weight value wj ∈ R. These
arrows connect to a red circle, which embodies two crucial operations:

1. The dot product between the input vector x and the weights w. As
mentioned before, this operation is the implicit formulation of a linear
function (e.g. a line in 2-D or a plane in 3-D) which, by its very nature,
linearly separates the feature space into two regions.

2. The sign function, which converts the result of the dot product to
one of the two values {−1, 1}, as mentioned before. This non-linear
function is referred to as an activation function.

Technical Note
The red circle in Figure 3.3a is a so-called artificial neuron. Such
an artificial neuron is thus nothing more than a dot product followed
by a non-linear activation function. This gives rise to the concept
of an artificial neural network, which is a network of such artificial
neurons.

62

Like any machine learning model, the perceptron has a loss function which
is based on two properties of the implicit line equation (i.e. the dot product
wT x). First, considering that the target t can be either +1 or −1 (in our
example : sick : +1 and healthy : −1), the dot product of a misclassified
point has an opposite sign to its associated target value. In other words,
a sick patient with target t = +1 is misclassified when wT x < 0. Second,
the more misclassified a point is, the larger will be the magnitude of its dot
product. This is explained by the fact that the distance between a point and
the line is related to the magnitude of the dot product.

(a) (b)

Figure 3.3: Graphical representation of (a) the perceptron, and (b) logistic
regression. These are the simplest types of neural network and both are
constructed using a single artificial neuron. On the left are the input variables
(and 1 for the bias). The red circles represent artificial neurons that compute
a dot product followed by an activation function (sign for the perceptron and
σ for logistic regression).

With these two properties in mind, the perceptron loss is as follows,

L(w, D) = 1
M

∑

(xi,ti)∈M
−tiwT xi (3.13)

where M is the set of misclassified samples, of size M . Note that the
perceptron loss increases with the amount of misclassified samples. On the
other hand, the perceptron loss reaches zero when every point (xi, ti) ∈ D is
correctly classified and henceM is empty.

63

Technical Note
The perceptron loss being linear with respect to w, its batch gradient
is given by

∇wL(w, D) = 1
M

∑

(xi,ti)∈M
−tixi (3.14)

and its gradient for one misclassified sample (xi, ti) is given by

∇wL(w, (xi, ti)) = −tixi. (3.15)

One can therefore plug these two equations into Algorithms 1 and 2
to train the network.

Logistic regression: Like the perceptron, the logistic regression is a linear
classifier. As shown in Figure 3.3b, it can be viewed as a simple artificial
neural network with a dot product between the parameters w and the input
vector x. However, the logistic regression network has a different activation
function called a sigmoid. The sigmoid σ : R → [0, 1] is a mathematical
function defined as follows:

σ(t) = 1
1 + e−t

(3.16)

where σ(t = 0) = 0.5, σ(t � 0) → 1 and σ(t � 0) → 0.20 A plot of the
sigmoid function is shown in Figure 3.4.

The sigmoid is an appealing activation function when considered in conjunc-
tion with the properties of the implicit line equation, i.e. the dot product of

20The right arrows (→) here mean that the output of the sigmoid function approaches 1
when t is very positive and 0 when it is very negative. Note that this is not the same use
of → that we saw earlier when defining the domain and range of functions (see Technical
Note, page 54).

64

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.4: Plot of a sigmoid activation function. This function returns a
value between 0 and 1 and a value of 0.5 at the origin t = 0.

Eq. (3.6). As mentioned before, while the dot product of a point lying on
the line is zero, the same dot product of a point located in front of the line
is positive and for a point behind the line it is negative. Thus, for a logistic
regression, a point lying on the line will have a score of 0.5 whereas a point
in front of the line will have a score larger than 0.5 and behind the line a
score lower than 0.5. Moreover, a point located far in front of the line will
have a score ≈ 1 while a point far behind the line will have a score ≈ 0.

Technical Note
While the use of a sigmoid activation function does not seem to
bring much, it has nonetheless tremendous consequences. In fact, it
turns the neural network into a machine capable of predicting the
conditional probability of class C1: P (C1|x). This conditional prob-
ability can be translated into English as: “the probability of being
in class C1 (the class sick in our example) given the input vector x”.
Put another way, when properly trained, a logistic regression neural
network has the sole property of predicting the probability of being
in class C1 (and by default class C0 since P (C0|x) + P (C1|x) = 1)
given the input vector x it receives as input.

In this way, a point lying in front of the line will have a large probability
of being in class C1, a point behind the line will have a low probability of

65

being in class C1 (and thus a high probability of being in class C0) and a
point on the line will have a 50% chance of being in class C1. This is why
the sigmoid activation function (as well as the softmax function that we will
soon introduce) is widely used at the end of classification and segmentation
neural networks.

The loss function of the logistic regression network is the well-known cross
entropy loss:

L(w, D) = − 1
N

∑

(xi,ti)∈D

ti ln(yw(xi)) + (1− ti) ln(1− yw(xi)) (3.17)

where N is the total number of patients in the training dataset D and ti =
{0, 1} (instead of {−1,+1} for the perceptron). According to this function,
the loss is minimum when the output of the network yw(xi) = ti. In other
words, the cross entropy loss is close to zero when the network correctly
classifies the samples, meaning a conditional probability close to 1 when
ti = 1 and close to 0 when ti = 0.

Technical Note
Considering that yw(x) = σ(wT x), one can prove that the batch
gradient of the loss with respect to w is

∇wL(w, D) = 1
N

∑

(xi,ti)∈D

(yw(xi)− ti)xi (3.18)

and the gradient for one data pair (xi, ti) is

∇wL(w, (xi, ti)) = (yw(xi)− ti)xi. (3.19)

Again, Algorithms 1 and 2 can be used with these gradient equations
to train the logistic regression neural network.

66

K-Class Prediction
So far, we have studied a two-class example whose goal was to separate the
sick patients from the healthy ones. Obviously, one can imagine classification
problems with more than two classes, such as for example: influenza, cold,
and healthy.

(a) (b)

Figure 3.5: (a) Three-class linear neural network. (b) Scatter plots of patients
associated with three classes: Healthy, Cold, Influenza. The dotted lines are
the linear functions of each class. Note that the activation function h will
vary depending on the nature of the loss. The point (38.0, 195.7) contains
the body temperature and heart rate of a patient suffering from Influenza.
Note that the values reported in this plot are for illustrative purposes only.

Fortunately, neural networks naturally scale to the number of classes. When
the number of classes is larger than 2, one can can simply use K output
neurons (the red neurons in Figure 3.5a), where K is the number of classes.
This gives rise to the multi-class perceptron and multi-class logistic regression
networks.

Like the neurons we have seen before, these output neurons perform a dot
product on the input vector x. Like any dot product, these neurons linearly
separate the feature space.

67

Technical Note
The output of a three-class neural network is thus a vector of three
dot products that can be expressed as a matrix-vector product:




w1T
x

w2T
x

w3T
x


 =




w1T

w2T

w3T


x =



w1

0 w1
1 w1

2
w2

0 w2
1 w2

2
w3

0 w3
1 w3

2


x = W x (3.20)

As can be seen, the ith row of matrix W contains the parameters of
the ith classifier.

For the neural network shown in Figure 3.5a, the linear functions of the
three output neurons are illustrated by the dotted lines in Figure 3.5b. For
the multi-class perceptron, the output neurons have no activation function
(thus h in Figure 3.5a is an identity function). Instead, the class predicted
by the model is the one with the largest score. To illustrate this, let us
consider the three-class example of Figure 3.5b. Here, we have a feature point
x = (38, 195.7)T which corresponds to a patient whose body temperature is
38 degrees Celsius and heart rate is 195.7 beats per minute. This point lies in
the green section of the space, i.e. the area associated with class 3: Influenza.
If we use the nine parameters of the system to form matrix W and multiply
this by the augmented vector x we get




1057.5 −31 0.5
−213 21 −3
−831.0 9 2.5







1
38

195.7


 =



−22.7
−2.1
0.25


 (3.21)

i.e. a negative value for classes 1 and 2 because x is located behind the blue
and red dotted lines and a positive value for class 3 because it is located in
front of the 3rd separation line.

The multi-class perceptron loss is given by,

68

L(W , D) = 1
M

∑

(xi,ti)∈M
(wjT

xi −wtT
i xi) (3.22)

where j is the wrongly predicted class index and ti the target class index.
Here again, the loss reaches zero when every training sample is well classi-
fied.

Technical Note
The stochastic gradient of the multi-class perceptron loss for a pair
of misclassified samples (xi, ti) ∈M is given by

∇wL(w, (xi, ti)) :





∂L
∂wj = xi

∂L
∂wti

= −xi

(3.23)

and the batch gradient is obtained by averaging these partial deriva-
tives acrossM.

The multi-class logistic network is very similar to the multi-class perceptron
in the sense that the output neurons embed a dot product. However, in place
of the sigmoid activation function, the output layer is followed by a softmax
operation which is a normalized exponential function. If we call fi the output
of the ith neuron (in Eq. (3.21), f1 = −22.7, f2 = −2.1, f3 = 0.25) the output
of the softmax function for that neuron is,

Si = efi

∑K
k=1 e

fk
. (3.24)

If we apply the softmax operation to the output values of Eq. (3.21), we get
S = (0.0, 0.087, 0.913)T .

As for the two-class logistic network, this output can be seen as the condi-
tional probability P (Ci|x). Put another way, according to the output S, data

69

x has 91.3% chance of belonging to class 3 and a 8.3% chance of belonging
to class 2.

The loss of the multi-class logistic network is also a cross entropy,

L(W,D) = − 1
N

∑

(xi,ti)∈D

lnSti
. (3.25)

where Sti
is the probability (or the softmax) of the correct class.

Technical Note
The batch gradient of the cross entropy loss with respect to the
weights W is given by,

∇WL(W,D) = 1
N

∑

(xi,ti)∈D

(Si − ti)xT
i . (3.26)

Handling Non-linearly Separable Data
Linear decision functions such as those we have seen so far work well for well
separated subgroups. However, it often happens that subgroups cannot be
separated by a linear function, as illustrated in Figure 3.6a. These problems
require more sophisticated and complex solutions.

To tackle the problem of non-linearly separable data, three approaches are
available:

1. Using a non-linear decision function.

2. Gathering more information.

3. Transforming the data.

While the first solution goes beyond the scope of this chapter, we will focus
on the latter two solutions and underline how they fit within the scope of
neural networks.

70

(a) (b) (c)

Figure 3.6: (a) Example of non-linearly separable 2-D data, and (b) its aug-
mented version with a third dimension (age) with a 3-D plane separating the
two groups of patients. (c) A 3-D plane can be mathematically represented
by a neural network with four input variables.

Gather more information: In the context of our example, non-linearly
separable data means that body temperature and heart rate measurements
are not discriminative enough to separate the two classes with a linear clas-
sifier. As a solution, one might acquire a third measurement such as, for
example the age. By doing so, x ∈ R3 becomes a point in a 3-D space (see
Figure 3.6b) and the classification function becomes a plane defined in this
3-D space. Interestingly, the implicit equation of a plane is a generalization
of the equation of a line with a third dimension x3,

0 = w1x1 + w2x2 + w3x3 + w0 (3.27)

where w0 is still the bias. As for the implicit equation of a line, this equation
can be represented by a dot product 0 = wT x where w,x ∈ R4.

Without much surprise, we can further generalize the formulation to q mea-
surements. In that case, a patient would become a point in a q-dimensional
space where the sick and the healthy patients can be separated by a hyper-
plane. This hyperplane is again represented by a dot product 0 = wx where
w,x ∈ Rq+1. As for the implicit line equation, the implicit hyperplane equa-
tion has the sole property of splitting the feature space between a positive
region located in front of the hyperplane and a negative region behind the
hyperplane.

71

As shown in Figure 3.6c, the use of 3 input variables (and 1 for the bias)
does not change the nature of the perceptron nor the logistic regression neural
network as it only increases the size of the input layer.

Transform the data: Another well known solution to address the non-
linearity issue is to project x into a new feature space where the data are
linearly separable. The functions that perform this mapping are called basis
functions, φ(x) : Rq → Rp. Once the data are projected to the new feature
space, a linear classifier can be used to separate the classes.

Technical Note
The use of a basis function also gave rise to the kernel methods (and
the iconic kernel SVM [210]) which arguably were the most widely-
used machine learning methods before the deep learning wave struck
the scientific community [204].

One important limitation of basis functions is that not every function φ(.)
(or its associated kernel k(.) [210]) can successfully disambiguate two classes.
As such, one often has to manually adjust φ(.) (or k(.)) to make it fit the
training data distribution.

One great advantage of neural networks is their ability to simultaneously
learn the basis function φ(.) as well as its associated classification function.
This can be done by increasing the number of neurons. Figure 3.7 shows one
such neural network organized into 4 layers, namely, the input layer (which
corresponds to the grey circles on the left), the hidden layers (the yellow
neurons in the middle) and the output layer (the red neurons). As before,
the neurons encode a dot product between the output of the previous layer
and an associated weight vector. This architecture is called a multi-layer
perceptron (MLP).. The more hidden layers a MLP has, the more complex
the overall neural network will be, i.e. the better it will be at estimating
complex relationships between input samples x and target values ti.

As before, the output layer of the MLP can be neurons without an activation
function in which case the loss would the multi-class perceptron loss of Eq.
(3.22). One could also add a softmax operation at the end of the network and
get the cross entropy loss of Eq. (3.25). Note that the gradient of the loss

72

Figure 3.7: Multi-layer neural network made of an input layer (the four grey
circles on the left) followed by two hidden layers (the yellow neurons) and an
output layer (the red neurons). Mathematically, the purpose of the hidden
layers is to act as a basis function φ(x) that projects the input data (here
points in a 3-D space) into a linearly separable space.

with respect to the parameters of a multi-layer perceptron is done though
an operation called back propagation. For more details on back propagation,
please refer to [54].

The use of multiple layers of neurons leads to so-called deep neural networks
and deep learning. There you have it! The more layers a neural network has,
the deeper it gets.

Technical Note
As shown in Figure 3.7, a multi-layer neural network can be seen as
a three-part machine:

1. An input vector x.

2. A series of hidden layers, which act as a basis function φ(x)
whose goal is to project x into a space where the data are
linearly separable.

3. An output layer which is a linear classifier.

Since the weights W of the network are learned all together, we say

73

that deep neural networks are end-to-end trainable since φ(x) and
the classification function are learned at the same time.

Convolutional Neural Networks
Multi-layer neural networks are not without their limitations. One of the
most important limitations comes from the substantial increase in parameters
when the size of the input vector increases. For example, if the input signal
is a greyscale image containing 28× 28 pixels (as for images from the iconic
MNIST dataset [224]) each neuron of the first layer will be connected to
a total of 28 × 28 + 1 input neurons (1 is for the bias). Therefore, if the
first hidden layer has 100 neurons, the network will have 78, 500 parameters
only in the first layer ((28× 28 + 1)× 100). Even worse, if the input is, for
example, a 3-D 256× 256× 256 MR brain volume, the first layer will contain
more than 16 million parameters. Without much surprise, very large neural
networks pose important memory and computing challenges. Furthermore,
it is empirically known that very large multi-layer networks are difficult to
train, and often converge towards sub-optimal solutions.

The answer to this problem is to reduce the number of connections between
two consecutive layers. While this is fundamentally difficult for an arbitrary
input signal, there is an appealing solution when the input signal is tempo-
rally and/or spatially structured such as for an audio signal (1-D), a greyscale
or color image (2-D) or a 3-D or 4-D medical image volume. In these cases,
one can connect a neuron to a subset of neighboring neurons in the previous
layer. This is illustrated in Figure 3.8 where each neuron in the first layer
is connected to 3 × 3 grid of input nodes (here representing pixels). In this
way, each neuron has a total of 9 weights instead of the very large number
we would have with a fully-connected layer. The set of 3 × 3 weights that
connects a neuron to the previous layer is called a filter. Furthermore, the
“images” in the middle and on the right illustrate the output of each neu-
ron of the first and second hidden layers. These “images” are called feature
maps. As usual, these artificial neurons perform a dot product followed by
an activation function.

One may reduce even more the number of parameters by forcing every filter
of a layer to share the same set of weights. By doing so, the two hidden
layers in Figure 3.8 would have a total of just 9 weights each. Even more

74

Figure 3.8: Illustration of two convolutional layers. On the left is the input
layer containing a CT scan of a knee. In the middle and on the right are
the ‘feature maps’ of the first and second hidden layers. Each element of
these feature maps is an artificial neuron which embodies a dot product and
a non-linear activation function. In this illustration, the feature maps show
the neuron outputs. Each neuron is connected to a 3× 3 grid of neurons in
the previous layer and hence has 9 weights.

75

interesting, by doing so the number of weights is constant with respect to
the size of the input signal.

Technical Note
By connecting the neurons as in Figure 3.8 and sharing the weights
across a layer, the dot product computed for each neuron of a hidden
layer is mathematically identical to that of a convolution, hence why
we call these network layers convolution layers. These types of neural
networks are called convolutional neural networks or CNNs for short.

Like the multi-layer neural networks that we have seen before, a CNN may
have an arbitrary number of layers. Furthermore, K > 1 filters can be used
at each layer which would produce K feature maps (Figure 3.8 shows one
filter and one feature map per layer). Furthermore, like any other neural
network, the number of neurons in the last layer corresponds to the number
of classes (or variables in case of a regression) it should predict. CNNs are
also trained with the same gradient descent and loss functions as any other
neural network.

CNNs are the cornerstone of the machine learning revolution in medical imag-
ing. Applications such as medical image reconstruction, denoising, disease
recognition, tumor localization, and tissue segmentation to name a few are
all intimately tied to CNNs. Further details on specific types of CNN are
provided in Chapter 4.

Closing Remarks
In this chapter we have introduced the fundamental concepts of artificial
neural networks, and seen how much of the formulation of such networks
is based upon a simple linear algebra operation, i.e. the dot product. We
have seen how neural networks can vary from the very simple (perceptron
and logistic regression) to the more complex deep neural networks that are so
widespread in cardiology and other fields of medicine today. Next, we include
a set of self-assessment exercises to help you reinforce your knowledge of these
fundamentals. Having built up our knowledge of the key concepts of machine
and deep learning, the subsequent chapters provide more focused reviews of

76

specific topics in cardiology and the ways in which AI has, and will, impact
these fields.

77

Exercises

Exercise 1.
Explain the meanings of the terms ‘iteration’ and ‘epoch’ in the content of
machine learning optimization. How does the choice of batch size affect the
relationship between epochs and iterations?

Exercise 2.
What are the main differences between the batch gradient descent, stochas-
tic gradient descent and mini-batch stochastic gradient descent optimization
algorithms? What is the main disadvantage of batch gradient descent?

Exercise 3.
What are the similarities and most fundamental difference between the per-
ceptron and logistic regression artificial neural networks?

Exercise 4.
Describe three ways in which machine learning models can be extended from
classifying linearly separable data to non-linearly separable data.

Exercise 5.
You have been asked to design a machine learning solution for analysing 3-D
medical images and producing automated diagnoses. It is likely that the
mapping from images to diagnoses is highly complex, but a large amount
of training data are available to learn this mapping. Suggest which type of
machine learning model might be appropriate for this application and justify
your answer.

78

Tutorial - Classification From Linear to Non-linear Mod-
els

Tutorial 2.

As for the other notebooks, the contents of this notebook are accessible as
Electronic Supplementary Material.

Overview

In this hands-on tutorial, you will test some of the concepts introduced in
Chapter 3, in particular simple classifiers such as the perceptron, logistic
regression and multi-layer perceptron. You will examine the performance
of different classifiers and the effects of hyperparameters on two synthetic
datasets, which are either linearly or non-linearly separable.

The figure below shows the output of three simple classifiers on non-linearly
separable data, to be tested in this notebook:

Objectives

• Become more familiar with Python and the essential tools for ma-
chine learning such as scikit-learn.

• Conduct a simple classification problem by testing progressively the
contents described in Chapter 3.

79

Computing Requirements

As for the other hands-on tutorials, this notebook starts with a brief “System
setting” section, which imports the necessary packages, installs the poten-
tially missing ones, and imports our own modules.

80

Acknowledgements
ND was supported by the French ANR (LABEX PRIMES of Univ. Lyon
[ANR-11-LABX-0063] within the program “Investissements d’Avenir” [ANR-
11-IDEX-0007], and the JCJC project “MIC-MAC” [ANR-19-CE45-0005]).

81

