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Abstract
In this chapter the key concepts of artificial intelligence and machine learn-
ing are introduced. The importance of first identifying and defining the right
problem is emphasised. A review is provided of different types of machine
learning model, and pointers are provided about how to design and train a
model to meet the requirements of the chosen problem. Important consider-
ations regarding validating the trained model are also discussed. A review is
provided of the context of AI and machine learning in cardiology, i.e. what
imaging and non-imaging data sources are typically available for such models
and what information can they provide? Within each of these data sources,
some of the important applications and contributions of AI are highlighted.
A practical tutorial is provided to introduce the reader to Jupyter notebooks
and Python.

Keywords:

artificial intelligence, machine learning, data descriptors, data standardiza-
tion, validation, echocardiography, magnetic resonance, computed tomog-
raphy, positron emission tomography, electrocardiogram, electronic health
records

Learning Objectives:

At the end of this chapter you should be able to:
O2.A Clearly define the right problem and justify why machine learn-

ing is needed to solve it
O2.B Describe the different classes of machine learning model and

in what types of situation they can be applied in
O2.C Outline a design for a machine learning model to address a

given problem in a given medical scenario
O2.D Describe how machine learning models can be fairly and quan-

titatively validated
O2.E Describe the main sources of data for machine learning models

in cardiology
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Introduction
In this chapter we will delve into the world of AI and machine learning in a
bit more detail. We will look at what issues we need to consider and what
decisions we should make when looking to develop a machine learning model
to address a specific problem. We focus on machine learning in general,
but everything that we write is also applicable to the specific field of deep
learning11. The chapter closes with some exercises intended to reinforce what
has been learnt, as well as the first of our practical tutorials, which is a
chance for you to “get your hands dirty” by starting to do some simple
programming using Python and Jupyter. This tutorial acts a groundwork
for the more specific tutorials on different topics that will be presented in
future chapters.

Defining the Problem
As well as curating a database for training our AI model, it is important
to think about and clearly define which problem we want to address. For
example, our problem could be the diagnosis of a disease, the characterization
of the function of an organ, or simply the anatomical alignment of two or
more medical images. Identifying and clearly defining the problem is an
essential step - as we discussed in the previous chapter, the details of which
annotations (if any) we add to our data depends upon our problem. The way
in which we define our problem also impacts upon which AI model(s) can be
used to address it, as we will see in the next section.

Key considerations in defining the problem are the role of the AI model in
the clinical workflow, as well as the potential risks involved in incorporating
it. For example, if we want our model to diagnose a disease that is normally
diagnosed by a radiologist, do we want to replace the radiologist or assist the
radiologist by automating ‘obvious’ diagnoses whilst flagging up ‘difficult’
ones for manual review? If we aim to identify potential disease at an earlier
stage, what would happen to patients who are identified in this way? Do
effective treatments exist? How invasive are they and does their benefit

11We introduce the technical aspects of deep learning in Chapter 3.
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outweigh their risk? Such considerations are often overlooked when proposing
AI models in medicine, and we revisit this important topic in Chapter 9.

Types of Model
Once the problem has been clearly defined and we are sure that there is
a beneficial role for AI to play, we can start to think about which model
to employ. Focusing now specifically on machine learning techniques, it is
normal to break down types of model into two main classes:

• Supervised models: The aim of a supervised model is to predict an out-
put given an input. To train a supervised model it must be provided
with a database of input/output pairs, and typically the outputs are
produced by annotating the database. For example, to revisit our dis-
ease diagnosis problem, in this case the inputs would be medical images
such as MR or CT scans, and the outputs would be binary labels (i.e.
disease/no disease).

• Unsupervised models: With unsupervised models no output label is
used. The aim of the machine learning model is to analyse the input
data (e.g. images) and try to uncover patterns that might be useful
for subsequent processing. These patterns can be as simple as iden-
tifying ‘clusters’ of similar inputs, or they can be more sophisticated
representations of relations between inputs, as we will see below. The
reason for not using labels could be that they are not available, that
they are insufficiently trusted (e.g. distinguishing normal and reduced
ejection fraction may be too reductive against the spectrum of heart
failure [193]) or that supervised formulations showed their limits [100].

Because annotation can be a time-consuming process, we are often in the sit-
uation where we only have annotations for a subset of the training database.
In such cases, rather than using supervised learning on the smaller subset, a
class of techniques known as semi-supervised learning [78] can be employed.
These techniques are able to exploit both the annotated and unannotated
data to produce a model with better performance.

A third class of machine learning models, which has been less widely used in
medicine so far, is reinforcement learning. Reinforcement learning techniques
are neither supervised nor unsupervised. To understand the way in which
reinforcement learning works, consider a toy problem of a mouse trying to
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Figure 2.1: Reinforcement learning. An agent continually chooses an action
which results in a reward as well as a new state in the environment.

navigate a maze to find a piece of cheese (see Figure 2.1). An AI agent is
defined, which always has a current state in the environment. For example,
the mouse agent will always have a location in the maze. To train the mouse,
it will choose an action (a direction in the maze) which will result in a new
state (location) as well as a reward. Good actions (i.e. those which result
in eventually getting the cheese) are rewarded and bad actions are punished.
The idea is that, by trying to solve the problem enough times and being
rewarded/punished for its actions, the agent will learn to choose good actions.
Although seemingly an abstract concept, applications in medicine have been
proposed, for example in learning sampling strategies in MR [309], operator
guidance in ultrasound imaging [267] and personalising computational models
[279].

The choice of which class of machine learning model to employ depends upon
what type of problem we have. If our problem can be clearly defined in terms
of inputs and known and trusted output labels, then supervised learning can
be employed. If a larger amount of extra unannotated inputs are available,
semi-supervised learning can be considered. If no output labels are available
or they are not sufficiently trusted, and the aim is simply to learn about the
structure and patterns in the input data, then unsupervised learning should
be used. Finally, if the problem can be formulated in terms of actions, states
and rewards, then reinforcement learning can be investigated.

After the problem has been analysed and an appropriate class of technique
has been identified, a specific machine learning model must be chosen. There
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Figure 2.2: Examples of machine learning models broken down by class.

has been a wide range of models proposed over the years for supervised
and unsupervised learning. In Figure 2.2 we summarize some of the more
commonly used ones. For a more detailed review and specific references we
recommend [322].

We can see that supervised learning models can be broken down further into
classification and regression methods. The distinction here lies simply in
what type of output we want to estimate. If the output type is categorical
or ranked (see Figure 2.3), then a classification model must be used. If the
output type is discrete or continuous then a regression model must be used.
For example, in our disease diagnosis example the output label (disease/no
disease) is binary and categorical, so a classification model would be appropri-
ate. Similarly, the segmentation of anatomical structures involves assigning a
category to each pixel of an image, and can be seen as a (pixelwise) classifica-
tion problem. On the other hand, estimating a numerical biomarker directly
from an image or set of images, such as left ventricular ejection fraction (EF)
in cardiac imaging, would require a regression model.

Unsupervised models can be broken down into clustering and dimensionality
reduction methods. With clustering the aim is to identify a limited number
of groups of inputs that are similar in some way, i.e. they represent clusters
in the distribution of inputs. In dimensionality reduction, the input data
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Figure 2.3: A summary of statistical types of data.

are mapped, or transformed to a new coordinate system, in which further
analysis can take place. Standard techniques for this include the use of
linear (principal component analysis - PCA) or nonlinear (manifold learning)
transformations.

Model Design
Having considered the type of machine learning model we can employ, we
now move on to a range of other design considerations, mostly related to the
data used to train and evaluate the model.

Data Descriptors

As for clinical observations and standard statistical analyses, choosing ade-
quate inputs is key for effectively training a machine learning model. A data
descriptor, also referred to as a feature, summarizes the information available
in each of the studied samples. The traditional machine learning paradigm
generally dissociates the feature selection and problem solving tasks. This
means that the machine learning developer relies on prior knowledge of the
application area to select one or several features, which are then used as in-
puts to the model during training and evaluation. This process is known as
hand-crafting of features or descriptors. In contrast, in deep learning a feature
representation (based on ‘raw’ inputs provided by the user) that is optimized
for the problem being addressed is learnt from the data and used to solve the
problem. It therefore stands as a powerful tool for new discoveries from the
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data, although this often comes with the cost of reduced interpretability12

and control that a hand-crafted feature set could provide.

The simplest type of feature consists of single values, also called scalar mea-
surements. These can be previously extracted from images such as cardiac
chamber dimensions or EF, or correspond to more advanced image charac-
teristics at the pixel level, such as radiomics features [137]. They can also
be measured by other means (such as pressures or brain natriuretic pep-
tide (BNP) levels) or even correspond to patient characteristics or external
factors.

In the case of scalar input features, machine learning stands as a way to model
more complex associations between the input features (and output labels, if
any) than standard statistical approaches. However, inputs can also consist
of more complex data structures such as signals or images, or even descrip-
tors extracted at each location of these signals or images. The complexity
of such descriptors is quantified by their dimensionality13. Nonetheless, the
intrinsic dimensionality of these descriptors is generally much lower than the
dimensionality of the data: the intrinsic dimensionality is the actual number
of degrees of freedom that govern the observed data. Dimensionality reduc-
tion techniques from the field of representation learning [49, 423] provide an
approximation of this intrinsic dimensionality, and a simplified representa-
tion of the data that can be used as a new input for the machine learning
model. Figure 2.4 illustrates these considerations for the study of myocardial
deformation from cardiac imaging data, using a single scalar value at each
American Heart Association (AHA) segment or more complex descriptors at
each point of the left ventricular myocardium.

Using several input descriptors is rather straightforward for scalar measure-
ments, which can be considered as elements of a higher-dimensional vec-
tor that concatenates them (after they have been normalized). In contrast,
combining several high-dimensional descriptors of potentially heterogeneous
types is an ongoing field of research, addressed both with machine learning

12Interpretability refers to the ability of humans (e.g. end-users or model developers)
to understand the process by which a machine learning model arrived at its output based
on the input data. We deal with model interpretability in more detail in Chapter 8 (page
205) and Chapter 9 (page 227).

13Dimensionality of data refers to the number of degrees of freedom they have, for
example 104 for a two-dimensional (2-D) image made of 100× 100 pixels.
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Figure 2.4: Different choices of data descriptor for myocardial deformation
(strain) on a three-dimensional mesh of the heart’s left ventricle and their
associated dimensionality.

or deep learning algorithms [230] and will be further discussed in Chapter
8.

Data Constraints

Working with medical data requires specific care to preserve the properties
of the data descriptors, and guarantee the soundness of observations.

A first example from cardiac imaging may help for understanding: let us
consider again the analysis of myocardial deformation using strain data. In
one dimension, strain is a scalar that represents the relative change in length
of an object with respect to a reference state, typically between end-diastole
and end-systole (Lagrangian strain). In three dimensions, strain quantifies
the deformation of a three-dimensional (3-D) object (e.g. a cube representing
a small portion of the myocardium at a given location), and is represented
by a 3 × 3 tensor (a symmetric matrix that belongs to a specific family
of matrices). This means that strain is no longer represented by a single
scalar value but by 6 matrix coefficients (because the matrix is symmetric).
It also means that standard operations such as addition, multiplication and
averaging across a population may not preserve the tensor properties of the
strain descriptor, and may result in physiologically implausible results.

A second example, also from cardiac imaging, complements this view on the
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allowed operations on such descriptors. Consider a dataset of segmented
acute myocardial infarcts, from the same coronary territory. Estimating a
representative infarct pattern across a subgroup of subjects may be highly
informative. Nonetheless, computing the linear average of several binary
infarct patterns (previously aligned to a common reference, see the next
section) results in a non-binary pattern with intermediate values that no
longer resembles a plausible infarct. In this case, the machine learning model
needs to consider the nonlinear structure of the space of infarct patterns so
that the analysis always corresponds to plausible infarct patterns (Figure
2.5). In general, when choosing data descriptors for use by machine learning
models, one should be aware of these limitations and decide the level of
approximation that can be tolerated on the computations and results, and
adapt the learning algorithms accordingly.

To return to our myocardial strain example, this means that one can decide
to work with (see Figure 2.4):

• A single scalar value that summarizes myocardial deformation, such
as strain in a given direction, at a given instant and averaged over
the myocardium (e.g. peak global longitudinal strain). Here, standard
comparisons between values are allowed.

• A high-dimensional object that encodes strain in a given direction, but
for several instants in the cardiac cycle and/or several locations across
the myocardium. Here, the model may consider each temporal instant
or spatial location independently from the others, or find metrics or
data representations that take into account the spatiotemporal consis-
tency of these patterns, such as dimensionality reduction techniques.

• A strain tensor at several instants in the cardiac cycle and/or several
locations across the myocardium. Here, the model should also preserve
the properties of such tensors, often addressed with specific metrics and
nonlinear operations [302].

Naturally, these choices are conditioned by the complexity of the question
to be addressed, the amount of samples available (as more complex descrip-
tors/questions/models require larger populations) and the risk associated to
the approximations made.
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Figure 2.5: Linear and nonlinear average of two synthetic binary infarct pat-
terns. As the space of infarct patterns is nonlinear, the average of two cases
lies out of this space and does not correspond to a plausible infarct pat-
tern (if the pixel labels for myocardium and infarct respectively correspond
to 0 and 1, intermediate values of 0.5 are observed around the infarct zone
shared between the two cases, as pointed out by the blue arrows). Machine
learning models that handle this type of data should also consider potential
nonlinearities in the data space to prevent bias in the analysis.

Data Standardization

If descriptors of heterogeneous types are used as inputs for learning, standard-
ization of their values may be required to prevent imbalanced contributions
due to incompatible units or scaling.

As noted earlier, several scalar descriptors can be concatenated to form a
new one of higher dimensionality, but it is important to remember that they
should be preprocessed so that their minimum/maximum values or their
average/variance values match. Specific algorithms may require binarizing
or categorizing the descriptors, or more advanced schemes such as one hot
encoding14. A detailed list of normalization operations can be found in many
standard machine learning libraries15.

For high-dimensional descriptors of heterogeneous types, preprocessing may
consist of finding a new representation of the data where more standard
average/variance normalization can be achieved, using dimensionality reduc-
tion techniques such as linear PCA or nonlinear manifold learning. Among

14One hot encoding refers to the binarization of categorical data, resulting in a sequence
of binary values, one for each category, in which only one value is equal to 1.

15https://scikit-learn.org/stable/modules/classes.html#module-sklearn.
preprocessing
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nonlinear techniques, one interesting standardization approach consists of re-
placing the input descriptors by affinity matrices that encode the similarities
between pairs of samples, generally achieved by (Gaussian) kernel functions
[90].

Finally, prior standardization of the descriptors may be required to lower the
effect of anatomical and timing differences between subjects. These tech-
niques belong to the field of computational anatomy [265, 266] and statistical
atlases [429], which is under active research. Nonetheless, well established
techniques already provide acceptable reference systems of coordinates to
which each subject’s data can be transported. Popular methods consist of
Procrustes alignment [144], registration, or parameterization techniques to
estimate inter-subject correspondences and a reference anatomy, followed by
interpolation or parallel transport of the subject-specific data to this refer-
ence. Temporal alignment may consist of interpolation based on physiological
events [306], dynamic time warping [337] or temporal registration.

Model Validation
Training a machine learning model means that the model parameters are
optimized to solve the targeted problem on a given dataset (the training set).
However, the actual challenge of machine learning is to guarantee enough
model performance on new samples not used for training, also referred to
as the generalization ability of the model. Otherwise, the model would be
overfitted to the training data and therefore be of less practical use.

In the example introduced above of diagnosing a disease from a medical im-
age, which can be seen as a supervised classification problem, the training set
samples consist of pairs of images and diagnosis labels that serve as ground
truth to guide the optimization process. During training, the optimization
process determines the model parameters (e.g. the logistic regression coef-
ficients, or the neuron weights) that lead to the best classification on the
training set (potentially balanced by some regularization that we will discuss
later on). Then, the optimized model is applied to new images not necessar-
ily from the same study, from the same institution and/or acquired with the
same device, etc. This new set of samples is referred to as the testing set,
and the model is expected to show a comparable classification performance
on this new dataset, which would validate its relevance.
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In general, the machine learning developer should prepare three different
datasets:

• The training set, which is used for optimizing the model parameters.
• The validation set, which is used to evaluate the performance of the

trained model on new samples not used for optimizing the model pa-
rameters16.

• The testing set, which consists of the actual data to analyze with a
previously validated model.

The validation set is different from the training set, and therefore is not used
to optimize the model parameters. However, it may be used for selection
of optimal hyperparameters of the model (external values that control the
model behavior, which are fixed during training). This can be seen as a
complementary training of the model.

The validation set may consist of samples from another study, and in this
case the validation procedure is referred to as external validation. However,
in practice, internal validation is generally performed: the validation set
consists of a subset of the training set. A more robust evaluation is obtained
by repeating this procedure several times and averaging the performance
results. A typical scheme for this consists in partitioning the training set
into blocks, and each time perform the validation on a different block. This
procedure is known as k-fold cross validation when validation is repeated on
k different blocks, or leave-one-out cross validation when a single sample is
left out for validation (the remaining samples being used for training), the
process being repeated to cover all samples.

The validation of supervised learning models provides two types of measures:
the model performance on the training set, also called bias, and its perfor-
mance on the validation set, also called variance. A non-optimized or wrong
model would result in a large error on both datasets and would underfit the
data, resulting in a high bias. Conversely, a model may overfit the train-
ing data and therefore perform poorly on the validation data, resulting in a
low bias but a high variance. A validated model should therefore propose
a trade-off between bias and variance, so that it generalizes well to the new

16But in some cases they can be used during training, e.g. for deciding when to terminate
an iterative optimization process such as that used in training artificial neural networks,
see Chapter 3.

34



-2 -1 0 1 2 0 42 6

(c) log σ = 0.25

High bias

High variance

(b) log σ = -0.5

Low bias

Low variance

(a) log σ = -1.25

Low bias

High variance(a) (b) (c)

Training samples

Testing samples

Estimated regression

0

0.2

0.4

0.6

0.8

-1

0

1

Interpolation smoothness (log σ)

(bias + variance) / 2

variance

bias

R
o
o
t 
m

e
a
n
 s

q
u
a
re

 e
rr

o
r

Figure 2.6: Determining the optimal model through bias and variance curves.
Example on a nonlinear regression model with a hyperparameter σ that con-
trols the smoothness of the regression, namely the simplicity of the fit to the
training data.

samples from the testing set (see Figure 2.6).

Standard metrics for assessing the performance of supervised models consist
of error measurements that are problem-specific:

• For segmentation, the Dice coefficient (overlap between segmentation
and ground truth) or the Hausdorff distance (maximal distance between
segmentation and ground truth boundaries), etc.

• For classification, measures derived from the amount of well predicted
(true positive and true negative) and mispredicted (false positive and
false negative) samples, such as sensitivity and specificity, or precision
and recall, the area under the ROC curve17, etc.

• For regression, errors on the predicted values such as the sum-of-squared
differences or the root mean square error, etc.

The validation of unsupervised learning models is more challenging as la-
bels are not available or used, and the user should find alternative ways of
justifying the generalization of the model:

17The receiver operating characteristic (ROC) curve is used when assessing perfor-
mance in situations where we have predicted and ground truth binary labels (e.g. dis-
ease classification). The ROC curve plots sensitivity against one-minus-specificity, for
different predictor threshold values. The area under the receiver operating character-
istic curve (AUC) is another measure of performance and is equal to the area under
the ROC curve. AUC values range between 0 and 1 with 1 indicating perfect perfor-
mance. See https://en.wikipedia.org/wiki/Receiver_operating_characteristic
for further details.
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• For clustering, the separability of the estimated clusters, their consis-
tency across different datasets or different parameters, etc.

• For dimensionality reduction, the proportion of dimensions that explain
most of the data (the model compactness), the realism/relevance of
samples generated from the low-dimensional representation (the model
specificity), etc.

For the sake of fairness, these metrics should differ from the measures that
are minimized during the model optimization.

One can easily appreciate that better generalizability of the model can be
achieved from the data perspective by increasing diversity in the training
set, and from the model perspective by improving the model while balancing
the adherence to the training samples, so that the validation samples are
also well modelled. This last process is achieved by adding regularization
constraints to the model, for example ensuring that the regression trend or
the classification border are smooth, or that the segmented structures have
smooth boundaries.

We encourage the reader to carefully consider these aspects, which are key
for deploying a model on new cohorts and having a fair estimation of its
relevance. Testing state-of-the-art algorithms on different datasets or ap-
plications is a good start: the more variety in the data, the higher will be
the clinical trust in the model generalizability. Starting with simple mod-
els is highly recommended, as they may have lower performance compared
to more sophisticated models but they can often generalize better to new
samples.

Machine Learning is not a Panacea!
We would like to remind both starting and experienced developers that ma-
chine learning tools are actually models applied to data. By the principle of
Occam’s razor, a model should be as simple as possible whilst still enabling
the problem to be addressed satisfactorily. Model complexity is related to
the number of parameters in the model (e.g. for deep learning methods: the
neurons’ weights and the hyperparameters that govern the global behavior of
the model). One should therefore start by carefully looking at the available
data, using simple descriptors and simple models (including standard sta-
tistical methods), carefully test state-of-the-art methods on their own data,
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and then decide whether the complexity of the question and the amount/-
diversity of samples warrant investigation of more advanced models or data
descriptors. In short: start simple!

But naturally, the model performance is only as good as the data. One may
not expect stunning results on testing data that differ significantly from the
training data, or with different data quality and/or confidence in the labels.
Data are produced and curated by humans, so machine learning models are
subject to the same biases and prejudices as humans. Furthermore, some
machine learning models (e.g. deep learning) work best when trained with a
lot of data, and such datasets can often be difficult to curate. In this context,
recent research on model interpretability [276] (see Chapter 8, page 205) and
uncertainty [133] (see Chapter 5, page 128) are certainly promising areas to
explore to complement model validation in the near future.

Sources of Data for Machine Learning in Cardiology
We have referred several times already to the importance of data, both in
terms of data (and annotation) quality and the amount of data available.
In this section, we review the data sources that are commonly available for
training and validating machine learning models in cardiology.

Care of patients in cardiology relies heavily on data. During initial assessment
as well as follow-up, detailed descriptions of data related to the patient’s dis-
ease is recorded in health records. This includes a description of a patient’s
history, the symptoms he/she experienced, findings during physical exam-
ination, biophysical measures (heart rate, blood pressure etc.), additional
testing results (electrocardiograms, biochemistry, imaging etc.) and finally
treatments that have been administered. In principle, all of these data can
be exploited by machine learning models, although the extent to which these
possibilities have been explored varies.

In the last decade, most hospitals have implemented electronic health record
(EHR) systems, allowing patient data to be stored in a systematic way. Raw
image data from imaging exams are usually not stored in the EHR itself.
Because of their size, the imaging exams are usually stored in separate, ded-
icated image storage systems (PACS: picture archiving and communication
systems). The medical data stored in EHR and PACS systems forms a valu-
able resource for large data-driven studies in cardiology and other fields in
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medicine. Below, we will review the most widely used imaging and non-
imaging data sources in cardiology, and briefly discuss their technical back-
ground, practical use and place within clinical care. Brief summaries of ma-
chine learning models based upon these data sources will be provided.

Imaging Sources

(a) (b)

(c) (d)

Figure 2.7: Examples of cardiac imaging modalities: (a) echocardiography
(with blood flow velocity measured using Doppler imaging shown as a colour
overlay), (b) a frame from a cine CMR acquisition, (c) coronary CT an-
giograph, and (d) myocardial perfusion SPECT. Cine CMR image adapted
by permission from Springer Nature from [287]. Coronary CT angiography
image adapted by permission from Springer Nature from [67]. Myocardial
perfusion SPECT image adapted by permission from Springer Nature from
[109].

Echocardiography
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Echocardiography is the cornerstone of imaging in cardiology. It is fast, rel-
atively cheap and can be performed at the bedside, although most scans are
prospectively planned and performed in dedicated echocardiography depart-
ments.

Echocardiography was first developed in 1955. Using a time-motion display
of the ultrasound wave along a single line of the ultrasound beam, called
M-mode imaging, it allowed a simple visualization of the contractile mo-
tion of the myocardium. Echocardiography has since developed significantly.
Nowadays, a typical exam includes 2-D and even 3-D cine imaging of the
heart chambers, interrogation of blood flow using pulsed or continuous wave
Doppler signals, and myocardial wall motion velocities and strain using tis-
sue Doppler and speckle tracking technology. Figure 2.7a shows a typical
2-D echocardiography scan with blood flow velocity measured using Doppler
imaging shown as a colour overlay. The duration of a typical echo exam is
approximately 15-20 minutes.

Due to its speed, mobility and costs, echocardiography is often the first
imaging technique used to investigate cardiac function in patients with (sus-
pected) heart disease. It allows a screening of ventricular size, assessment
of contractile (systolic) and relaxation (diastolic) function, and interrogation
of the anatomy and function of the heart valves. Except for 3-D imaging,
most images are reconstructed from the sound wave reflections in real time,
resulting in a sharp contrast between blood (black) and tissue (grey-white) at
frame rates ranging from 40-120 frames per second depending, for example,
on the width, depth and sample line density of the ultrasound beam. This
fast imaging with sharp blood-tissue contrast and the presence of consistent
speckle patterns makes echocardiography suitable for assessing fast cardiac
events, and in particular the motion of the myocardium and heart valves, as
well as flow acceleration and regurgitation through the diseased heart valves
or stenotic regions of blood vessels.

Several limitations of echocardiography may strongly impact the use of ma-
chine learning techniques on these image sequences. Firstly, the ultrasound
beam is hindered by the bony structures of the chest wall and air in the
lungs. As a result, imaging planes are limited and the quality of the images
can vary significantly between patients. This impedes accurate, reproducible
measurements of cavity volumes to calculate EF, as well as impeding assess-
ment of certain structures, notoriously atria and the right ventricle (RV),
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from trans-thoracic echocardiography. Trans-oesophageal echocardiography
reduces some of these disadvantages but is invasive. The second disadvantage
is that echocardiography does not allow characterization of myocardial tis-
sue structure and also provides no information about myocardial perfusion,
which is an important factor in coronary artery disease, the most common
disease in cardiology.

Despite these limitations, machine learning has started to be applied to
the analysis of echocardiography images [25]. For example, machine learn-
ing models have been developed for automatically classifying standard view
planes [251], quantification of cardiac function [134] and disease detection
[435].

Cardiac MR

Cardiac magnetic resonance (CMR) is a more recently developed technique
for imaging of the heart. In CMR, the spin speed and direction of hydro-
gen atoms is manipulated using magnetic gradients. Echoes of changes in
electromagnetic charge are received by the scanner and utilized to construct
images of the anatomical structures. In comparison with echocardiography,
CMR allows imaging of the heart and all other structures in the chest, with-
out being restricted by imaging windows or depth of the imaging beam. As
a result, it allows for more reliable quantification of cardiac volumes and
function. Moreover, as the signals are based on the quantity of hydrogen
molecules in tissues, it also allows for characterization of the composition of
the myocardium. This way, it can be used to detect fibrotic tissue (scars
of previous ischemic events) or the presence of inflammation or molecular
deposits in the tissue.

A typical CMR exam currently takes about 30-40 minutes. Multiple different
image sequences are acquired to obtain all relevant information: cine imaging
is used to acquire dynamic cardiac images and myocardial motion informa-
tion, late gadolinium enhancement (LGE) imaging is used for scar detection
and T1 and T2 maps are used for characterization of deposits and inflam-
mation. CMR images are typically reconstructed using information obtained
over multiple heartbeats. Therefore, breath-holds or breathing navigators
are needed to ensure a similar position of the heart during acquisition. A
sample frame from a cine CMR acquisition is shown in Figure 2.7b.

The main disadvantage of CMR is that MR machines are bulky and expen-
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sive. Moreover, metal implants, such as internal defibrillators or pacemakers,
cause distortions to the images and the narrow bore of the machine is chal-
lenging for patients experiencing claustrophobia.

In clinical practice, CMR exams are not currently used in the initial screen-
ing for heart diseases in patients. They are typically requested in patients
with established heart disease in whom investigation of the underlying cause
(using tissue characterization and scar detection) or reliable quantification
of right and left ventricular volumes is needed to inform further treatment
decisions.

The role of CMR in cardiology is still growing. The ever faster and higher
quality of CMR images, as well as increased presence in clinical guidelines,
is resulting in more patients being referred for CMR to investigate causes of
heart failure or monitor treatments.

Because of the generally better image quality of CMR compared to echocar-
diography and the availability of large annotated databases, machine learning
models for CMR analysis are more mature [226]. For example, robust models
have been proposed for image reconstruction [152], segmentation [76] and au-
tomatic biomarker estimation with quality control [335]. Of relevance to such
models is the fact that CMR images are typically acquired “slice-by-slice”,
and image resolution is normally good within-plane, but is less good through-
plane. This has consequences for subsequent algorithms for image analysis,
introducing extra uncertainty into measurements made in the through-plane
direction. Furthermore, the 3-D nature of many CMR images also introduces
extra computational cost if fully 3-D processing is attempted, and so many
models instead limit themselves to 2-D slice-by-slice analysis. Processing 2-D
slices also offers more images to train machine learning algorithms, but may
raise spatial consistency issues that are currently under active research.

Cardiac CT

Computed tomography (CT) imaging utilizes X-ray radiation to create an
image of the internal organs of the body. In cardiology, it is often used for
static imaging of the structural anatomy of the heart and the structures re-
lated to it, such as the coronary arteries and great vessels. This use reflects
the main benefit of CT: its high spatial resolution and good contrast between
myocardium, blood and more calcified structures. The main application of
cardiac CT is for qualitative and quantitative assessment of atherosclerotic
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decompositions and stenosis in the coronary arteries. For example, a sample
coronary angiograph is shown in Figure 2.7c. CT is also frequently used to in-
vestigate atrial anatomy prior to procedures that involve ablation or isolation
of electrical foci of atrial fibrillation, or to assess structural abnormalities of
the cardiac and vascular anatomy in patients with congenital heart disease.
Dynamic imaging of the heart during contraction is possible using CT, but
the significant radiation dosages involved currently make it less attractive
than CMR. However, in patients with metal implants or claustrophobia, 4-D
cardiac CT can be an option.

Machine learning models have been proposed for applications including re-
constructing CT images from incomplete X-ray projection data [108], seg-
mentation [76] and assessment of coronary artery disease [153].

Other Imaging Modalities

Single photon emission computed tomography (SPECT) and positron emis-
sion tomography (PET) are nuclear imaging techniques that can be used
to quantify myocardial perfusion (see Figure 2.7d). Myocardial perfusion
defects, originating from occlusive coronary artery or microvascular disease
can be detected and quantified using these scans, similar to CMR perfusion
imaging.

Radioisotopes are injected that emit gamma rays, which are detected by
gamma cameras. By obtaining recordings at rest and during physical or
pharmacological stress (which increases blood flow to the myocardium) my-
ocardial perfusion defects can be detected. SPECT or PET are currently
the standard option for myocardial perfusion assessment in many hospitals.
However, the newer CMR perfusion exams have started to replace these tech-
niques in some hospitals.

PET scans can also be used to investigate metabolic active tissues other
than the myocardium, such as cardiac tumours or infections of endocardial
structures (endocarditis).

Examples of the use of machine learning in these modalities include PET
reconstruction [326] and prediction of coronary artery disease from SPECT
[52].
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Non-imaging Sources

Electrocardiogram

The electrocardiogram (ECG) is one of the earliest technologies developed
to investigate the function of the heart. In 1903, Willem van Einthoven
published his invention for use of the electrocardiogram and introduced the
standard leads that allow investigation of the heart’s electrical activity.

Myocytes are negatively charged with respect to their outside surroundings at
rest. Contraction of the myocytes is activated by a rapid shift of electrolytes
(most predominantly calcium ions) that results in depolarization of the cells.
Consequently, relaxation of the heart is the result of myocyte repolarization
due to a rapid reserve shift of calcium ions. The sum of changes in myocyte
polarization in the heart can be detected using ECG. Moreover, the sequential
activation of the cardiac structures (sinus node – atria – atrioventricular node
– ventricles) results in a change in size and direction of the electrical field,
and can be identified from the ECG traces. ECG signals are affected by
size of the cardiac structures, myocardial muscle mass, muscle oxygenation
and the speed of the activation wave front through the ventricles. An ECG
is obtained using a small, mobile and cheap device and can be performed
within a minute.

Due to its sensitivity for changes in cardiac structure or function and its ease
of use, ECG recordings are one of the most used tests in cardiology. The
ECG is the main diagnostic tool to identify arrhythmias (disturbances in
the sequence of activation in the heart) and diagnose acute coronary artery
disease (acute hypoxia and necrosis of myocytes). For patients with chronic
cardiac disease ECG recordings are used to monitor changes in electrical
activation that suggest disease progression.

Recently, some papers on machine learning based analysis of ECGs have
started to emerge. One notable example is [323], who demonstrated how a
convolutional neural network could predict 1-year all-cause mortality from
12-lead ECG signals. Other notable examples come from the PhysioNet and
Computing in Cardiology communities, who organize public data challenges
on ECG processing and diagnosis on a yearly basis. The 2020 challenge was
extremely popular and involved more than 200 teams using machine learning
algorithms to diagnose 12-lead ECG signals from several large databases
totalling 66,000+ recordings [22].
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Machine learning also offers relevant solutions for the modeling and analysis
of electrophysiological data, including 3-D mappings acquired from catheter
recordings [63] and personalized computational cardiac simulations [242].
These applications are discussed further in Chapter 10.

Electronic health records

In EHRs, doctors record all patient-related information in a systematic fash-
ion. A typical daily report of a patient includes a medical history, details
verbally given by the patient about his or her complaints, findings found dur-
ing physical examination, a brief description of test results (e.g. important
biochemical abnormalities or imaging findings), a conclusion and a treatment
plan. Cardiologists use these detailed reports, made during every visit for
an outpatient clinic or daily during in-hospital stays, to evidence their care,
hand over between different professionals in the medical team and evaluate
and register treatment effects. Apart from the reports written by doctors,
the EHR also contains separate modules that display biochemistry lab re-
sults, ECG recordings, imaging exam result reports (such as a report of the
analysed echo exam or CMR scan) and structured lists of contact moments
(such as outpatient visits or admissions), previous diagnosis and current and
previously prescribed medication. PACS systems are similar to the EHR, ex-
cept that these are dedicated solutions for archiving of the acquired medical
images and do not contain other information apart from those relevant to
the images, such as patient identifiers.

The use of machine learning with EHRs has focused on two different appli-
cations: (i) automated generation of EHRs from imaging data [263], and (ii)
machine learning based analysis of EHR data [270]. We review each of these
fields in more detail in Chapter 10.

Closing Remarks
We hope that this chapter has provided the reader with a grounding in the
fundamental concepts of traditional machine learning models, as well as an
awareness of some of the potential pitfalls and difficulties developers might
face and the data sources that such models typically exploit in cardiology.
Next, we provide several exercises to let you self-test and reinforce your
knowledge, followed by our first hands-on tutorial that we hope will help
you to get started in your explorations of machine learning model develop-
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ment.

However, as we saw in Chapter 1, much of the recent success of, and interest
in, machine learning comes not from the types of traditional model that we
have discussed in this chapter, but rather from models based upon artificial
neural networks, or deep learning. In the next chapter, we introduce the
fundamental theory behind such models, and also provide a tutorial to help
you to develop your own neural network model.
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Exercises

Exercise 1.
In what situations might an unsupervised machine learning model be an
appropriate choice?

Exercise 2.
What imaging and non-imaging data are typically popular for the develop-
ment of machine learning algorithms in cardiology? Are some more challeng-
ing than others and why?

Exercise 3.
A machine learning model has been developed for automated diagnosis of
some types of cardiovascular disease based on CT images. To train the
model, the developers have used a training set of 100 CT images and asso-
ciated diagnoses. They have implemented a number of different supervised
machine learning models, each with different hyperparameter settings. The
best-performing model on a test set of 50 CT images and diagnoses has been
chosen for deployment.

What concerns do you have about the validation strategy adopted by the
developers? Would you expect the chosen model to perform as well when
deployed on real clinical data?

Exercise 4.
A company is developing an automated tool to segment the aorta from CMR
images, with a view to using the segmentations to derive functional biomark-
ers. The company plans to train a supervised segmentation model using an-
notations produced by manual contouring. However, the manual contouring
process is very laborious and time-consuming. What alternative approach
would you recommend?

Exercise 5.
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An implantable cardioverter-defibrillator (ICD) is a small battery-powered
device that is implanted in the chest to monitor heart rhythm and detect
irregular heartbeats. An ICD can deliver electric shocks via one or more
wires connected to the heart to fix abnormal heart rhythms. A research
team is investigating more targeted use of ICDs to avoid unnecessary inter-
ventions. They would like to use machine learning to exploit routine clinical
data in order to more accurately predict which patients are likely to suffer
life-threatening arrythmias in the future.

Explain how you would go about designing a machine learning solution for
this problem.

Exercise 6.
A clinical study is investigating whether automated measurements of global
longitudinal left ventricular strain made from echocardiography can be a use-
ful predictor of major adverse cardiac events (MACE - a composite endpoint
that combines nonfatal stroke, nonfatal myocardial infarction and cardiovas-
cular death). The team would like to use machine learning techniques in
their study.

Suggest some ways in which machine learning could help in the study. What
type(s) of model would be appropriate and how could they be validated?
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Tutorial - Introduction to Python and Jupyter Note-
books

Tutorial 1.

As for the other notebooks, the contents of this notebook are accessible as
Electronic Supplementary Material.

Overview

In this first hands-on tutorial, you will go through the basics of the Python
language and objects. We will use a Jupyter Notebook, which is a very
convenient didactic and interactive tool that can mix written explanations
and sections of code. Our notebooks are tailored for a specific problem related
to the chapter preceding each notebook. You will be asked to run existing
sections of code, examine the outputs, and fill in missing code or adapt it to
test different behaviours of an algorithm.

The figure below shows an example of an interactive Jupyter Notebook cell
to be run in this notebook:
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Objectives

• Become familiar with the basics of Python and Jupyter Notebooks.
• Understand the main objects (variables, functions, operators, etc.)

that will be handled in the subsequent hands-on tutorials.
• Gain practice on simple illustrative exercises.

Computing Requirements

Each notebook starts with a brief “System setting” section, which imports
the necessary packages, installs the potentially missing ones, and imports
our own modules.

You will need Python installed on your computer and a software tool to
run the notebooks (we recommend for example the free software JupyterLab
(https://jupyter.org/). We assume that you have already installed very
common packages such as Numpy, Matplotlib, and scikit-learn. In case you
are missing these packages, or another one, we recommend you to run the
following command (here illustrated for one of these packages):
pip i n s t a l l s c i k i t −l e a rn

We hope you’ll enjoy these contents!
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