
HAL Id: hal-04211867
https://hal.science/hal-04211867

Submitted on 20 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Coordinate Descent for SLOPE
Johan Larsson, Quentin Klopfenstein, Mathurin Massias, Jonas Wallin

To cite this version:
Johan Larsson, Quentin Klopfenstein, Mathurin Massias, Jonas Wallin. Coordinate Descent for
SLOPE. 26th International Conference on Artificial Intelligence and Statistics - AISTATS 2023, Apr
2023, Valencia, Spain. �hal-04211867�

https://hal.science/hal-04211867
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Coordinate Descent for SLOPE

Johan Larsson Quentin Klopfenstein
Department of Statistics
Lund University, Sweden

johan.larsson@stat.lu.se

Luxembourg Centre for Systems Biomedicine
University of Luxembourg, Luxembourg

quentin.klopfenstein@uni.lu

Mathurin Massias Jonas Wallin
Univ. Lyon, Inria, CNRS, ENS de Lyon,
UCB Lyon 1, LIP UMR 5668, F-69342

Lyon, France
mathurin.massias@inria.fr

Department of Statistics
Lund University, Sweden

jonas.wallin@stat.lu.se

Abstract

The lasso is the most famous sparse regression
and feature selection method. One reason for
its popularity is the speed at which the un-
derlying optimization problem can be solved.
Sorted L-One Penalized Estimation (SLOPE)
is a generalization of the lasso with appeal-
ing statistical properties. In spite of this,
the method has not yet reached widespread
interest. A major reason for this is that cur-
rent software packages that fit SLOPE rely
on algorithms that perform poorly in high
dimensions. To tackle this issue, we propose
a new fast algorithm to solve the SLOPE op-
timization problem, which combines proximal
gradient descent and proximal coordinate de-
scent steps. We provide new results on the
directional derivative of the SLOPE penalty
and its related SLOPE thresholding operator,
as well as provide convergence guarantees for
our proposed solver. In extensive benchmarks
on simulated and real data, we demonstrate
our method’s performance against a long list
of competing algorithms.

1 INTRODUCTION

In this paper we present a novel numerical algorithm for
Sorted L-One Penalized Estimation (SLOPE, Bogdan

Proceedings of the 26th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2023, Valencia,
Spain. PMLR: Volume 206. Copyright 2023 by the au-
thor(s).

et al., 2013; Bogdan et al., 2015; Zeng and Figueiredo,
2014), which, for a design matrix X ∈ Rn×p and re-
sponse vector y ∈ Rn, is defined as

β∗ ∈ arg min
β∈Rp

P (β) = 1
2‖y −Xβ‖

2 + J(β) (1)

where

J(β) =
p∑
j=1

λj |β(j)| (2)

is the sorted `1 norm, defined through

|β(1)| ≥ |β(2)| ≥ · · · ≥ |β(p)| , (3)

with λ being a fixed non-increasing and non-negative
sequence.

The sorted `1 norm is a sparsity-enforcing penalty that
has become increasingly popular due to several ap-
pealing properties, such as its ability to control false
discovery rate (Bogdan et al., 2015; Kos and Bogdan,
2020), cluster coefficients (Figueiredo and Nowak, 2016;
Schneider and Tardivel, 2020), and recover sparsity and
ordering patterns in the solution (Bogdan et al., 2022).
Contrary to other coefficient clustering approaches such
as the fused Lasso (Tibshirani et al., 2005), it is indepen-
dent of feature order, and in addition does not require
prior knowledge of the number of clusters. Finally,
unlike other competing sparse regularization methods
such as MCP (Zhang, 2010) and SCAD (Fan and Li,
2001), SLOPE has the advantage of being a convex
problem (Bogdan et al., 2015).

In spite of the availability of predictor screening
rules (Larsson, Bogdan, and Wallin, 2020; Elvira and
Herzet, 2021), which help speed up SLOPE in the high-
dimensional regime, current state-of-the-art algorithms

mailto:johan.larsson@stat.lu.se
johan.larsson@stat.lu.se
mailto:quentin.klopfenstein@uni.lu
quentin.klopfenstein@uni.lu
mailto:mathurin.massias@inria.fr
mathurin.massias@inria.fr
mailto:jonas.wallin@stat.lu.se
jonas.wallin@stat.lu.se

Coordinate Descent for SLOPE

for SLOPE perform poorly in comparison to those of
more established penalization methods such as the lasso
(`1 norm regularization) and ridge regression (`2 norm
regularization). As a small illustration of this issue,
we compared the speed at which the SLOPE (Larsson
et al., 2022) and glmnet (Friedman et al., 2022) pack-
ages solve a SLOPE and lasso problem, respectively,
for the bcTCGA data set. SLOPE takes 43 seconds to
reach convergence, whilst glmnet requires only 0.14
seconds1. This lackluster performance has hampered
the applicability of SLOPE to many real-world appli-
cations. In this paper, we present a remedy for this
issue: an algorithm that reaches convergence in only
2.9 seconds on the same problem2.

A major reason for why algorithms for solving `1-,
MCP-, or SCAD-regularized problems enjoy better per-
formance is that they use coordinate descent (Tseng,
2001; Friedman, Hastie, and Tibshirani, 2010; Breheny
and Huang, 2011). Current SLOPE solvers, on the
other hand, rely on proximal gradient descent algo-
rithms such as FISTA (Beck and Teboulle, 2009) and
the alternating direction method of multipliers method
(ADMM, Boyd et al., 2010), which have proven to be
less efficient than coordinate descent in empirical bench-
marks on related problems, such as the lasso (Moreau
et al., 2022). In addition to FISTA and ADMM, there
has also been research into Newton-based augmented
Lagrangian methods to solve SLOPE (Luo et al., 2019).
But this method is adapted only to the p� n regime
and, as we show in our paper, is outperformed by our
method even in this scenario. Applying coordinate
descent to SLOPE is not, however, straightforward
since convergence guarantees for coordinate descent
require the non-smooth part of the objective to be
coordinate-wise separable, which is not the case for
SLOPE. As a result, naive coordinate descent schemes
can get stuck (Figure 1).

In this article, we address this problem by introducing
a new, highly effective algorithm for SLOPE based
on a hybrid proximal gradient and coordinate descent
scheme. Our method features convergence guarantees
and reduces the time required to fit SLOPE by orders
of magnitude in our empirical experiments.

Notation Let (i)− be the inverse of (i) such that(
(i)−

)− = (i); see Table 1 for an example of this
operator for a particular β. This means that

J(β) =
p∑
j=1

λj |β(j)| =
p∑
j=1

λ(j)− |βj | .

1See Appendix B.1 for details on this experiment.
2Note that we do not use any screening rule in the current

implementation of our algorithm, unlike the SLOPE package,
which uses the strong screening rule for SLOPE (Larsson,
Bogdan, and Wallin, 2020).

0.0 0.2 0.4
β1

0.0

0.1

0.2

0.3

0.4

β
2

0.30
0.35

P
(β

)

0.30 0.35
P (β)

Figure 1: An example of standard coordinate descent
getting stuck on a two-dimensional SLOPE problem.
The main plot shows level curves for the primal objec-
tive (1), with the minimizer β∗ = [0, 0]T indicated by
the orange cross. The marginal plots display objective
values at β1 = 0.2 when optimizing over β2 and vice
versa. At β = [0.2, 0.2]T , standard coordinate descent
can only move in the directions indicated by the dashed
lines—neither of which are descent directions for the
objective. As a result, the algorithm is stuck at a sub-
optimal point.

Sorted `1 norm penalization leads to solution vectors
with clustered coefficients in which the absolute values
of several coefficients are set to exactly the same value.
To this end, for a fixed β such that |βj | takes m distinct
values, we introduce C1, C2, . . . , Cm and c1, c2, . . . , cm
for the indices and coefficients respectively of the m
clusters of β, such that Ci = {j : |βj | = ci} and
c1 > c2 > · · · > cm ≥ 0. For a set C, let C̄ denote
its complement. Furthermore, let (ei)i∈[d] denote the
canonical basis of Rd, with [d] = {1, 2, . . . , d}. Let Xi:
and X:i denote the i-th row and column, respectively,
of the matrix X. Finally, let sign(x) = x/|x| (with
the convention 0/0 = 1) be the scalar sign, that acts
entrywise on vectors.

Table 1: Example of the permutation operator (i) and
its inverse (i)− for β = [0.5,−5, 4]T

i βi (i) (i)−

1 0.5 2 3
2 −5 3 1
3 4 1 2

Johan Larsson, Quentin Klopfenstein, Mathurin Massias, Jonas Wallin

2 COORDINATE DESCENT FOR
SLOPE

Proximal coordinate descent cannot be applied to Prob-
lem (1) because the non-smooth term is not separable.
If the clusters C∗1 , . . . , C∗m∗ and signs of the solution β∗
were known, however, then the values c∗1, . . . , c∗m∗ taken
by the clusters of β∗ could be computed by solving

min
z∈Rm∗

(
1
2

∥∥∥y −X m∗∑
i=1

∑
j∈C∗

i

zi sign(β∗j)ej
∥∥∥2

+
m∗∑
i=1
|zi|

∑
j∈C∗

i

λj

)
.

(4)

Conditionally on the knowledge of the clusters and the
signs of the coefficients, the penalty becomes separa-
ble (Dupuis and Tardivel, 2022), which means that
coordinate descent could be used.

Based on this idea, we derive a coordinate descent
update for minimizing the SLOPE problem (1) with re-
spect to the coefficients of a single cluster at a time (Sec-
tion 2.1). Because this update is limited to updating
and, possibly, merging clusters, we intertwine it with
proximal gradient descent in order to correctly identify
the clusters (Section 2.2). In Section 2.3, we present
this hybrid strategy and show that is guaranteed to
converge. In Section 3, we show empirically that our
algorithm outperforms competing alternatives for a
wide range of problems.

2.1 Coordinate Descent Update

In the sequel, let β be fixed with m clusters C1, . . . , Cm
corresponding to values c1, . . . , cm. In addition, let
k ∈ [m] be fixed and sk = sign βCk . We are interested
in updating β by changing only the value taken on the
k-th cluster. To this end, we define β(z) ∈ Rp by:

βi(z) =
{

sign(βi)z , if i ∈ Ck ,
βi , otherwise .

(5)

Minimizing the objective in this direction amounts to
solving the following one-dimensional problem:

min
z∈R

(
G(z) = P (β(z)) = 1

2‖y −Xβ(z)‖2 +H(z)
)
,

(6)
where

H(z) = |z|
∑
j∈Ck

λ(j)−z +
∑
j /∈Ck
|βj |λ(j)−z (7)

is the partial sorted `1 norm with respect to the k-th
cluster and where we write λ(j)−z to indicate that the

inverse sorting permutation (j)−z is defined with respect
to β(z). The optimality condition for Problem (6) is

∀δ ∈ {−1, 1}, G′(z; δ) ≥ 0,

where G′(z; δ) is the directional derivative of G in the
direction δ. Since the first part of the objective is
differentiable, we have

G′(z; δ) = δ
∑
j∈Ck

X>:j (Xβ(z)− y) +H ′(z; δ) ,

where H ′(z; δ) is the directional derivative of H.

Throughout the rest of this section, we derive the solu-
tion to (6). To do so, we will introduce the directional
derivative for the sorted `1 norm with respect to the
coefficient of the k-th cluster. First, as illustrated in
Figure 2, note that H is piecewise affine, with break-
points at 0 and all ±ci’s for which i 6= k. Hence, the
partial derivative is piecewise constant, with jumps at
these points; in addition, H ′(·; 1) = H ′(·,−1) except
at these points.

−3 −c2 −c3 0 c3 c2 3−c2 −c3 c2c3

0.8

1.0

1.2

1.4

H
(z

)

Figure 2: Graph of the partial sorted `1 norm with
β = [−3, 1, 3, 2]T , k = 1, and so c1, c2, c3 = (3, 2, 1).

Let C(z) be the function that returns the cluster of
β(z) corresponding to |z|, that is

C(z) = {j : |β(z)j | = |z|} . (8)

Remark 2.1. Note that if z is equal to some ci, then
C(z) = Ci ∪ Ck, and otherwise C(z) = Ck. Related
to the piecewise affineness of H is the fact that the
permutation3 corresponding to β(z) is
Ck, Cm, . . . , C1 if z ∈ (0, cm) ,

Cm, . . . , Ci, Ck, Ci−1, . . . , C1
if z ∈ (ci, ci−1)
and i ∈ J2,mK ,

Cm, . . . C1, Ck if z ∈ (c1,+∞) ,

and that this permutation also reorders β(z ± h) for
z 6= ci (i 6= k) and h small enough. The only change
in permutation happens when z = 0 or z = ci (i 6= k).
Finally, the permutations differ between β(z + h) and
β(z−h) for arbitrarily small h if and only if z = ci 6= 0.

3the permutation is in fact not unique, without impact
on our results. This is discussed when needed in the proofs.

Coordinate Descent for SLOPE

We can now state the directional derivative of H.
Theorem 2.2. Let c\k be the set containing
all elements of c except the k-th one: c\k =
{c1, . . . ck−1, ck+1, . . . , cm}. Let εc > 0 such that

εc <
∣∣ci − cj∣∣, ∀ i 6= j and εc < cm if cm 6= 0 . (9)

The directional derivative of the partial sorted `1 norm
with respect to the k-th cluster, H, in the direction δ is

H ′(z; δ) =



∑
j∈C(εc)

λ(j)−εc
if z = 0 ,

sign(z)δ
∑

j∈C(z+εcδ)

λ(j)−
z+εcδ

if |z| ∈ c\k \ {0},

sign(z)δ
∑

j∈C(z)

λ(j)−z otherwise .

The proof is in Appendix A.1; in Figure 3, we show an
example of the directional derivative and the objective
function.

12

13

14

G
(z

)

−2 −1 0 1 2
z

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

G
′ (z

)

δ

1
−1

Figure 3: The function G and its directional derivative
G′(·; δ) for an example with β = [−3, 1, 3, 2]T , k =
1, and consequently c\k = {1, 2}. The solution of
Problem (6) is the value of z for which G′(z; δ) ≥ 0 for
δ ∈ {−1, 1}, which holds only at z = 2, which must
therefore be the solution.

Using the directional derivative, we can now introduce
the SLOPE thresholding operator.

Theorem 2.3 (The SLOPE Thresholding Operator).
Define S(x) =

∑
j∈C(x) λ(j)−x and let

T (γ;ω, c, λ) =

0 if |γ| ≤ S(εc),
sign(γ)ci if ωci + S(ci − εc)

≤ |γ| ≤
ωci + S(ci + εc),

sign(γ)
ω

(
|γ| − S(ci + εc)

)
if ωci + S(ci + εc)
< |γ| <
ωci−1 + S(ci−1 − εc),

sign(γ)
ω

(
|γ| − S(c1 + εc)

)
if |γ| ≥
ωc1 + S(c1 + εc).

with εc defined as in (9). Let x̃ = XCk sign(βCk) and
r = y −Xβ. Then

T
(
ck‖x̃‖2 + x̃T r; ‖x‖2, c\k, λ

)
= arg min

z∈R
G(z) . (10)

An illustration of this operator is given in Figure 4.
Remark 2.4. The minimizer is unique because G is the
sum of a quadratic function in one variable and a norm.
Remark 2.5. In the lasso case where the λi’s are all
equal, the SLOPE thresholding operator reduces to the
soft thresholding operator.

In practice, it is rarely necessary to compute all sums in
Theorem 2.3. Instead, we first check in which direction
we need to search relative to the current order for
the cluster and then search in that direction until we
find the solution. The complexity of this operation
depends on how far we need to search and the size
of the current cluster and other clusters we need to
consider. In practice, the cost is typically larger at
the start of optimization and becomes marginal as
the algorithm approaches convergence and the cluster
permutation stabilizes.

2.2 Proximal Gradient Descent Update

The coordinate descent update outlined in the previous
section updates the coefficients of each cluster in uni-
son, which allows clusters to merge—but not to split.
This means that the coordinate descent updates are
not guaranteed to identify the clusters of the solution
on their own, and thus are not guaranteed to con-
verge to a solution of (1). To circumvent this issue, we
combine these coordinate descent steps with a full prox-
imal gradient step (Bogdan et al., 2015). This enables
the algorithm to identify the cluster structure (Liang,
Fadili, and Peyré, 2014) due to the partial smoothness
property of the sorted `1 norm that we prove in Ap-
pendix A.4. A similar idea has previously been used in

Johan Larsson, Quentin Klopfenstein, Mathurin Massias, Jonas Wallin

−ω
c
\k 1
−
S

(c
\k 1

+
ε c

)
−ω
c
\k 1
−
S

(c
\k 1
−
ε c

)
−ω
c
\k 2
−
S

(c
\k 2

+
ε c

)
−ω
c
\k 2
−
S

(c
\k 2
−
ε c

)
-S

(0
)

S
(0

)

ω
c
\k 2

+
S

(c
\k 2
−
ε c

)
ω
c
\k 2

+
S

(c
\k 2

+
ε c

)
ω
c
\k 1

+
S

(c
\k 1
−
ε c

)
ω
c
\k 1

+
S

(c
\k 1

+
ε c

)

−c\k1

−c\k2

c
\k
2

c
\k
1

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
γ

−0.5

0.0

0.5

T
(γ
,ω

;c
,λ

)

Figure 4: An example of the SLOPE thresholding operator for β = [0.5,−0.5, 0.3, 0.7]T , c = (0.7, 0.5, 0.3) with an
update for the second cluster (k = 2), such that c\k = (0.5, 0.3). Across regions where the function is constant,
the operator sets the result to be either exactly 0 or to the value of one of the elements of ±c\k.

Bareilles, Iutzeler, and Malick (2022), wherein Newton
steps are taken on the problem structure identified after
a proximal gradient descent step.

2.3 Hybrid Strategy

We now present the proposed solver in Algorithm 1.
For the first and every v-th iteration4, we perform a
proximal gradient descent update. For the remaining
iterations, we take coordinate descent steps.

The combination of the proximal gradient steps and
proximal coordinate descent allows us to overcome the
problem of vanilla proximal coordinate descent getting
stuck because of non-separability and allows us to enjoy
the speed-up provided by making local updates on each
cluster, as we illustrate in Figure 5.

We now state that our proposed hybrid algorithm con-
verges to a solution of Problem (1).
Lemma 2.6. Let β(t) be an iterate generated by Algo-
rithm 1. Then

lim
t→∞

(
P (β(t))− P (β∗)

)
= 0.

Computional Complexity We examine the com-
plexity of the proximal gradient step and the coordinate

4Our experiments suggest that v has little impact on
performance as long as it is at least 3 (Appendix B.2). We
have therefore set it to 5 in our experiments.

Algorithm 1 Hybrid coordinate descent and proximal
gradient descent algorithm for SLOPE
input: X ∈ Rn×p, y ∈ Rn, λ ∈ {Rp : λ1 ≥ λ2 ≥ · · · >

0}, v ∈ N, β ∈ Rp
1 for t← 0, 1, . . . do
2 if t mod v = 0 then
3 β ← proxJ/‖X‖2

2

(
β − 1

‖X‖2
2
XT (Xβ − y)

)
4 Update c, C
5 else
6 k ← 1
7 while k ≤ |C| do
8 x̃k ← XCk sign(βCk)
9 z ← T (ck‖x̃‖2 − x̃T (Xβ − y); ‖x‖2, c\k, λ)

10 βCk ← z sign(βCk)
11 Update c, C
12 k ← k + 1
13 return β

descent separately. For the proximal gradient step, the
complexity is O

(
np+ p log(p)

)
, where np comes from

the matrix-vector multiplication and p log(p) from the
computation of the proximal operator of the sorted
`1 norm (Zeng and Figueiredo, 2014). For the co-
ordinate descent step, the worst case complexity is
O
(
np+m(m+ n)

)
. As we will see in Section 3, how-

ever, the cost of the coordinate descent step turns out
to be much lower in practice. The reason for this is

Coordinate Descent for SLOPE

−0.5 0.0
β1

0.0

0.2

0.4

β
2

CD

−0.5 0.0
β1

Hybrid

−0.5 0.0
β1

PGD

Figure 5: Illustration of the proposed solver. The figures show progress until convergence for the coordinate
descent (CD) solver that we use as part of the hybrid method, our hybrid method, and proximal gradient descent
(PGD). The orange cross marks the optimum. Dotted lines indicate where the coefficients are equal in absolute
value. The dashed lines indicate PGD steps and solid lines CD steps. Each dot marks a complete epoch, which
may correspond to only a single coefficient update for the CD and hybrid solvers if the coefficients flip order. Each
solver was run until the duality gap was smaller than 10−10. Note that the CD algorithm cannot split clusters
and is therefore stuck after the third epoch. The hybrid and PGD algorithms, meanwhile, reach convergence after
67 and 156 epochs respectively.

that the order of the clusters becomes increasingly sta-
ble during optimization. If, for instance, the order of
the clusters is unchanged with respect to the previous
step, then the complexity, in our implementation of
Algorithm 1, reduces to O(np+mn).

Alternative Datafits So far we have only consid-
ered sorted `1-penalized least squares regression. In
Appendix C, we consider possible extensions to alter-
native datafits.

3 EXPERIMENTS

To investigate the performance of our algorithm, we
performed an extensive benchmark against the follow-
ing competitors:

• Alternating direction method of multipliers (ADMM,
Boyd et al., 2010). We considered several alter-
native for the choice of the augmented Lagragian
parameter: an adaptive method to update the
parameter throughout the algorithm (Boyd et al.,
2010, Sec. 3.4.1) and fixed values. In the follow-
ing sections, we only kept the ADMM solver with a
fixed value of 100 for the augmented Lagrangian
parameter. We present in Appendix B.3 a more
detailed benchmarks for ADMM solvers with different
values of this parameter and the adaptive setting.
Choosing this parameter is not straightforward
and the best value changes across datasets and
regularization strengths.

• Anderson acceleration for proximal gradient de-
scent (Anderson PGD, Zhang, O’Donoghue, and
Boyd, 2020)

• Proximal gradient descent (PGD, Combettes and
Wajs, 2005)

• Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA, Beck and Teboulle, 2009)

• Semismooth Newton-Based Augmented La-
grangian (Newt-ALM, Luo et al., 2019)

• The hybrid (our) solver (see Algorithm 1) combines
proximal gradient descent and coordinate descent
to overcome the non-separability of the SLOPE
problem. We perform a coordinate descent step
every fifth iteration (v = 5) in the algorithm. (See
Section 2.3.)

• The oracle solver (oracle CD) solves Problem (4)
with coordinate descent, using the clusters ob-
tained via another solver. Note that it cannot be
used in practice as it requires knowledge of the
solution’s clusters.

We used Benchopt (Moreau et al., 2022) to obtain the
convergence curves for the different solvers. Benchopt is
a collaborative framework that allows reproducible and
automatic benchmarks. The repository to reproduce
the benchmark is available at github.com/klopfe/be
nchmark_slope.

Unless we note otherwise, we used the Benjamini–
Hochberg method to compute the λ sequence (Bogdan
et al., 2015), which sets λj = η−1(1− q × j/(2p)) for
j = 1, 2, . . . , p where η−1 is the probit function. For the
rest of the experiments section, the parameter q of this
sequence has been set to 0.1 if not stated otherwise.5
We let λmax be the λ sequence such that β∗ = 0, but for

5We initially experimented with various settings for q
but found that they made little difference to the relative
performance of the algorithms.

https://github.com/klopfe/benchmark_slope
github.com/klopfe/benchmark_slope
https://github.com/klopfe/benchmark_slope
github.com/klopfe/benchmark_slope

Johan Larsson, Quentin Klopfenstein, Mathurin Massias, Jonas Wallin

which any scaling with a strictly positive scalar smaller
than one produces a solution with at least one non-zero
coefficient. We then parameterize the experiments by
scaling λmax, using the fixed factors 1/2, 1/10, and
1/50, which together cover the range of very sparse
solutions to the almost-saturated case.

We pre-process datasets by first removing features with
less than three non-zero values. Then, we center and
scale each feature by its mean and standard deviation
respectively. For sparse data, we scale each feature by
its maximum absolute value. This approach is in line
with recommendations in, for instance, Pedregosa et al.
(2022).

Each solver was coded in python, using numpy (Harris et
al., 2020) and numba (Lam, Pitrou, and Seibert, 2015)
for performance-critical code. The code is available
at github.com/jolars/slopecd. In Appendix D, we
provide additional details on the implementations of
some of the solvers used in our benchmarks.

The computations were carried out on a computing
cluster with dual Intel Xeon CPUs (28 cores) and 128
GB of RAM.

3.1 Simulated Data

The design matrix X was generated such that features
had mean one and unit variance, with correlation be-
tween features j and j′ equal to 0.6|j−j′|. We generated
β ∈ Rp such that k entries, chosen uniformly at random
throughout the vector, were sampled from a standard
Gaussian distribution. The response vector, meanwhile,
was set to y = Xβ + ε, where ε was sampled from a
multivariate Gaussian distribution with variance such
that ‖Xβ‖/‖ε‖ = 3. The different scenarios for the
simulated data are described in Table 2.

Table 2: Scenarios for the simulated data in our bench-
marks, including the number of rows (n), columns (p),
signals (k), and the fraction of non-zero entries (den-
sity) of X.

Scenario n p k Density
1 200 20 000 20 1
2 20 000 200 40 1
3 200 200 000 20 0.001

In Figure 6, we present the results of the benchmarks
on simulated data. We see that for smaller fractions of
λmax our hybrid algorithm allows significant speedup
in comparison to its competitors mainly when the num-
ber of features is larger than the number of samples.
On very large scale data such as in simulated data
setting 3, we see that the hybrid solver is faster than
its competitors by one or two orders of magnitude.

For the second scenario, notice that all solvers take con-
siderably longer than the oracle CD method to reach
convergence. This gap is a consequence of Cholesky fac-
torization in the case of ADMM and computation of ‖X‖2
in the remaining cases. For the hybrid method, we can
avoid this cost, with little impact on performance, since
‖X‖2 is used only in the PGD step.

3.2 Real data

The datasets used for the experiments have been de-
scribed in Table 3 and were obtained from Chang and
Lin (2011), Chang and Lin (2022), and Breheny (2022).

Table 3: List of real datasets used in our experiments,
including the number of rows (n), columns (p), sig-
nals (k), and the fraction of non-zero entries (density)
of the corresponding X matrices. See Table 6 in Ap-
pendix E for references on these datasets.

Dataset n p Density
bcTCGA 536 17 322 1
news20 19 996 1 355 191 0.000 34
rcv1 20 242 44 504 0.0017
Rhee2006 842 360 0.025

Figure 7 shows the suboptimality for the objective func-
tion P as a function of the time for the four different
datasets. We see that when the regularization parame-
ter is set at λmax/2 and λmax/10, our proposed solver
is faster than all its competitors—especially when the
datasets become larger. This is even more visible for
the news20 dataset where we see that our proposed
method is faster by at least one order of magnitude.

When the parametrization value is set to λmax/50, our
algorithm remains competitive on the different datasets.
It can be seen that the different competitors do not
behave consistently across the datasets. For example,
the Newt-ALM method is very fast on the bcTCGA dataset
but is very slow on the news20 dataset whereas the
hybrid method remains very efficient in both settings.

4 DISCUSSION

In this paper we have presented a new, fast algo-
rithm for solving Sorted L-One Penalized Estimation
(SLOPE). Our method relies on a combination of prox-
imal gradient descent to identify the cluster structure
of the solution and coordinate descent to allow the
algorithm to take large steps. In our results, we have
shown that our method often outperforms all competi-
tors by orders of magnitude for high-to-medium levels
of regularization and typically performs among the best
algorithms for low levels of regularization.

https://github.com/jolars/slopecd
github.com/jolars/slopecd

Coordinate Descent for SLOPE

oracle CD
hybrid (ours)

ADMM (ρ = 100)
Anderson PGD

PGD
FISTA

Newt-ALM

0 1 2 3
10−8

10−2

λmax/2

0 5 10

λmax/10

0 5 10

Sim
ulated

1

λmax/50

0 1 2 3
10−8

10−2

0 1 2 3 0 1 2 3

Sim
ulated

2

0 20 40
10−8

10−4

0 20 40 0 100 200 300

Sim
ulated

3

Time (s)

P
(β

)−
P

(β
∗)

Figure 6: Benchmark on simulated datasets. The plots show suboptimality (difference between the objective
at the current iterate, P (β), and the optimum, P (β∗)) as a function of time for SLOPE on multiple simulated
datasets and λ sequences of varying strength.

We have not, in this paper, considered using screening
rules for SLOPE (Larsson, Bogdan, and Wallin, 2020;
Elvira and Herzet, 2021). Although screening rules
work for any algorithm considered in this article, they
are particularly effective when used in tandem with
coordinate descent (Fercoq, Gramfort, and Salmon,
2015) and, in addition, easy to implement due to the
nature of coordinate descent steps. Coordinate descent
is moreover especially well-adapted to fitting a path of λ
sequences (Friedman et al., 2007; Friedman, Hastie, and
Tibshirani, 2010), which is standard practice during
cross-validating to obtain an optimal λ sequence.

Future research directions may include investigating
alternative strategies to split clusters, for instance by
considering the directional derivatives with respect to
the coefficients of an entire cluster at once. Another
potential approach could be to see if the full proximal
gradient steps might be replaced with batch stochas-
tic gradient descent in order to reduce the costs of
these steps. It would also be interesting to consider
whether gap safe screening rules might be used not
only to screen predictors, but also to deduce whether
clusters are able to change further during optimization.
Finally, combining cluster identification of proximal

gradient descent with solvers such as second order ones
as in Bareilles, Iutzeler, and Malick (2022) is a direction
of interest.

Acknowledgements

The experiments presented in this paper were carried
out using the HPC facilities of the University of Lux-
embourg (Varrette et al., 2022) (see hpc.uni.lu).

The results shown here are in whole or part based
upon data generated by the TCGA Research Network:
https://www.cancer.gov/tcga.

References

Bareilles, Gilles, Franck Iutzeler, and Jérôme Malick
(2022). “Newton acceleration on manifolds identified
by proximal gradient methods”. In: Mathematical
Programming, pp. 1–34.

Beck, Amir and Marc Teboulle (2009). “A Fast Iterative
Shrinkage-Thresholding Algorithm for Linear Inverse
Problems”. In: SIAM Journal on Imaging Sciences
2.1, pp. 183–202.

Bogdan, Małgorzata, Ewout van den Berg, Weijie Su,
and Emmanuel Candès (2013). “Statistical Estima-

http://hpc.uni.lu
https://www.cancer.gov/tcga

Johan Larsson, Quentin Klopfenstein, Mathurin Massias, Jonas Wallin

oracle CD
hybrid (ours)

ADMM (ρ = 100)
Anderson PGD

PGD
FISTA

Newt-ALM

0.00 0.02 0.04
10−8

10−3

λmax/2

0.00 0.05 0.10

λmax/10

0.0 0.1 0.2

Rhee2006

λmax/50

0 5 10
10−8

10−3

0 20 40 0 20 40

bcTCGA

0 1 2
10−8

10−2

0 2 4 6 0 5 10

rcv1

0 20 40
10−8

10−2

0 20 40 0 100 200 300

news20

Time (s)

P
(β

)−
P

(β
∗)

Figure 7: Benchmark on real datasets. The plots show suboptimality (difference between the objective at the
current iterate, P (β), and the optimum, P (β∗)) as a function of time for SLOPE on multiple simulated datasets
and λ sequences of varying strength.

tion and Testing via the Sorted L1 Norm”. arXiv:
1310.1969 [math, stat].

Bogdan, Małgorzata, Xavier Dupuis, Piotr Graczyk,
Bartosz Kołodziejek, Tomasz Skalski, Patrick Tardi-
vel, and Maciej Wilczyński (May 17, 2022). “Pattern
Recovery by SLOPE”. arXiv: 2203.12086 [math,
stat]. url: http://arxiv.org/abs/2203.12086
(visited on 06/03/2022).

Bogdan, Małgorzata, Ewout van den Berg, Chiara
Sabatti, Weijie Su, and Emmanuel Candès (Sept.
2015). “SLOPE - Adaptive Variable Selection via
Convex Optimization”. In: The annals of applied
statistics 9.3, pp. 1103–1140.

Boyd, Stephen, N. Parikh, E. Chu, B. Peleato, and J.
Eckstein (2011). MATLAB Scripts for Alternating
Direction Method of Multipliers. Stanford University.
url: https://web.stanford.edu/~boyd/papers/
admm/ (visited on 10/11/2022).

Boyd, Stephen, Neil Parikh, Eric Chu, Borja Peleato,
and Jonathan Eckstein (2010). “Distributed Opti-

mization and Statistical Learning via the Alternating
Direction Method of Multipliers”. In: Foundations
and Trends® in Machine Learning 3.1, pp. 1–122.
issn: 1935-8237, 1935-8245.

Breheny, Patrick (2022). Patrick Breheny. University of
Iowa. url: https://myweb.uiowa.edu/pbreheny/
(visited on 05/17/2022).

Breheny, Patrick and Jian Huang (2011). “Coordinate
Descent Algorithms for Nonconvex Penalized Re-
gression, with Applications to Biological Feature
Selection”. In: The Annals of Applied Statistics 5.1,
pp. 232–253.

Chang, Chih-Chung and Chih-Jen Lin (2011). “LIB-
SVM: A Library for Support Vector Machines”. In:
ACM Transactions on Intelligent Systems and Tech-
nology 2.3, 27:1–27:27.

– (2022). LIBSVM Data: Classification, Regression,
and Multi-Label. LIBSVM - A library for Support
Vector Machines. url: https://www.csie.ntu.

https://arxiv.org/abs/1310.1969
https://arxiv.org/abs/2203.12086
https://arxiv.org/abs/2203.12086
http://arxiv.org/abs/2203.12086
https://web.stanford.edu/~boyd/papers/admm/
https://web.stanford.edu/~boyd/papers/admm/
https://myweb.uiowa.edu/pbreheny/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Coordinate Descent for SLOPE

edu.tw/~cjlin/libsvmtools/datasets/ (visited
on 10/05/2022).

Combettes, Patrick and Valérie Wajs (2005). “Signal
recovery by proximal forward-backward splitting”.
In: Multiscale modeling & simulation 4.4, pp. 1168–
1200.

Dupuis, Xavier and Patrick Tardivel (2022). “Proxi-
mal operator for the sorted l1 norm: Application to
testing procedures based on SLOPE”. In: Journal of
Statistical Planning and Inference 221, pp. 1–8.

Elvira, Clément and Cédric Herzet (2021). Safe Rules
for the Identification of Zeros in the Solutions of the
SLOPE Problem. arXiv: 2110.11784.

Fan, Jianqing and Runze Li (2001). “Variable Selection
via Nonconcave Penalized Likelihood and Its Oracle
Properties”. In: Journal of the American Statistical
Association 96.456, pp. 1348–1360.

Fercoq, Olivier, Alexandre Gramfort, and Joseph
Salmon (2015). “Mind the Duality Gap: Safer Rules
for the Lasso”. In: ICML. Vol. 37. Proceedings of
Machine Learning Research, pp. 333–342.

Figueiredo, Mario and Robert Nowak (2016). “Ordered
Weighted L1 Regularized Regression with Strongly
Correlated Covariates: Theoretical Aspects”. In: AIS-
TATS, pp. 930–938.

Friedman, Jerome, Trevor Hastie, Holger Höfling, and
Robert Tibshirani (2007). “Pathwise Coordinate Op-
timization”. In: The Annals of Applied Statistics 1.2,
pp. 302–332.

Friedman, Jerome, Trevor Hastie, Rob Tibshirani, Bal-
asubramanian Narasimhan, Kenneth Tay, Noah Si-
mon, Junyang Qian, and James Yang (Apr. 15, 2022).
Glmnet: Lasso and Elastic-Net Regularized Gener-
alized Linear Models. Version 4.1-4. url: https:
//CRAN.R-project.org/package=glmnet (visited
on 09/20/2022).

Friedman, Jerome, Trevor Hastie, and Robert Tibshi-
rani (2010). “Regularization Paths for Generalized
Linear Models via Coordinate Descent”. In: Journal
of Statistical Software 33.1, pp. 1–22.

Harris, Charles R, K Jarrod Millman, Stéfan J Van Der
Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J Smith, et al. (2020). “Array program-
ming with NumPy”. In: Nature 585.7825, pp. 357–
362.

Keerthi, S. Sathiya and Dennis DeCoste (2005). “A
Modified Finite Newton Method for Fast Solution of
Large Scale Linear SVMs”. In: JMLR 6.12, pp. 341–
361.

Kos, Michał and Małgorzata Bogdan (2020). “On the
Asymptotic Properties of SLOPE”. In: Sankhya A
82.2, pp. 499–532.

Lam, Siu Kwan, Antoine Pitrou, and Stanley Seibert
(2015). “Numba: A llvm-based python jit compiler”.

In: Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, pp. 1–6.

Larsson, Johan, Małgorzata Bogdan, and Jonas Wallin
(2020). “The Strong Screening Rule for SLOPE”. In:
NeurIPS. Vol. 33, pp. 14592–14603.

Larsson, Johan, Jonas Wallin, Malgorzata Bogdan,
Ewout van den Berg, Chiara Sabatti, et al. (Mar. 14,
2022). SLOPE: Sorted L1 Penalized Estimation. Ver-
sion 0.4.1. url: https://CRAN.R-project.org/
package=SLOPE (visited on 09/20/2022).

Lewis, A. S. (Jan. 2002). “Active Sets, Nonsmoothness,
and Sensitivity”. In: SIAM Journal on Optimization
13.3, pp. 702–725. issn: 1052-6234, 1095-7189.

Lewis, David D., Yiming Yang, Tony G. Rose, and Fan
Li (2004). “RCV1: A New Benchmark Collection for
Text Categorization Research”. In: JMLR 5, pp. 361–
397.

Liang, Jingwei, Jalal Fadili, and Gabriel Peyré (2014).
“Local linear convergence of Forward–Backward un-
der partial smoothness”. In: Advances in neural in-
formation processing systems 27.

Luo, Ziyan, Defeng Sun, Kim-Chuan Toh, and Naihua
Xiu (2019). “Solving the OSCAR and SLOPE Models
Using a Semismooth Newton-Based Augmented La-
grangian Method”. In: Journal of Machine Learning
Research 20.106, pp. 1–25.

Moreau, Thomas, Mathurin Massias, Alexandre Gram-
fort, Pierre Ablin, Pierre-Antoine Bannier, et al.
(2022). “Benchopt: Reproducible, efficient and col-
laborative optimization benchmarks”. In: NeurIPS.

National Cancer Institute (2022). The Cancer Genome
Atlas Program. National Cancer Institute. url:
https : / / www . cancer . gov / about - nci /
organization / ccg / research / structural -
genomics/tcga (visited on 05/17/2022).

Paige, Christopher C. and Michael A. Saunders (1982).
“LSQR: An Algorithm for Sparse Linear Equations
and Sparse Least Squares”. In: ACM Transactions
on Mathematical Software 8.1, pp. 43–71. issn: 0098-
3500.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, et al. (Sept. 16, 2022). Preprocessing
Data. scikit-learn. url: https://scikit-learn/
stable/modules/preprocessing.html (visited on
01/29/2023).

Rhee, Soo-Yon, Jonathan Taylor, Gauhar Wadhera,
Asa Ben-Hur, Douglas L. Brutlag, and Robert W.
Shafer (2006). “Genotypic Predictors of Human Im-
munodeficiency Virus Type 1 Drug Resistance”. In:
Proceedings of the National Academy of Sciences
103.46, pp. 17355–17360.

Schneider, Ulrike and Patrick Tardivel (2020). The
Geometry of Uniqueness, Sparsity and Clustering
in Penalized Estimation. arXiv: 2004.09106. url:
http://arxiv.org/abs/2004.09106.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://arxiv.org/abs/2110.11784
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=SLOPE
https://CRAN.R-project.org/package=SLOPE
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://scikit-learn/stable/modules/preprocessing.html
https://scikit-learn/stable/modules/preprocessing.html
https://arxiv.org/abs/2004.09106
http://arxiv.org/abs/2004.09106

Johan Larsson, Quentin Klopfenstein, Mathurin Massias, Jonas Wallin

Tibshirani, Robert, Michael Saunders, Saharon Ros-
set, Ji Zhu, and Keith Knight (2005). “Sparsity
and smoothness via the fused lasso”. In: Journal
of the Royal Statistical Society: Series B (Statistical
Methodology) 67.1, pp. 91–108.

Tseng, Paul (2001). “Convergence of a block coordinate
descent method for nondifferentiable minimization”.
In: Journal of optimization theory and applications
109.3, pp. 475–494.

Vaiter, Samuel, Charles Deledalle, Jalal Fadili, Gabriel
Peyré, and Charles Dossal (Aug. 2017). “The De-
grees of Freedom of Partly Smooth Regularizers”.
In: Annals of the Institute of Statistical Mathematics
69.4, pp. 791–832. issn: 00203157.

Varrette, S., H. Cartiaux, S. Peter, E. Kieffer, T.
Valette, and A. Olloh (July 2022). “Management
of an Academic HPC & Research Computing Facil-
ity: The ULHPC Experience 2.0”. In: Proc. of the
6th ACM High Performance Computing and Cluster
Technologies Conf. (HPCCT 2022). Fuzhou, China:
Association for Computing Machinery (ACM). isbn:
978-1-4503-9664-6.

Zangwill, Willard I. (1969). Nonlinear Programming:
A Unified Approach. 1st ed. New Orleans, USA:
Prentice-Hall. 384 pp. isbn: 978-0-13-623579-8.

Zeng, Xiangrong and Mario Figueiredo (2014). The Or-
dered Weighted `1 Norm: Atomic Formulation, Pro-
jections, and Algorithms. arXiv: 1409.4271.

Zhang, Cun-Hui (Apr. 2010). “Nearly Unbiased Vari-
able Selection under Minimax Concave Penalty”. In:
The Annals of Statistics 38.2, pp. 894–942.

Zhang, Junzi, Brendan O’Donoghue, and Stephen Boyd
(2020). “Globally convergent type-I Anderson accel-
eration for nonsmooth fixed-point iterations”. In:
SIAM Journal on Optimization 30.4, pp. 3170–3197.

https://arxiv.org/abs/1409.4271

Coordinate Descent for SLOPE

Supplement to Coordinate Descent for SLOPE

A PROOFS

A.1 Proof of Theorem 2.2

Let c\k be the set containing all elements of c except the k-th one: c\k = {c1, . . . ck−1, ck+1, . . . , cm}.
From the observations in Remark 2.1, we have the following cases to consider: |z| ∈ c\k, |z| = 0, and |z| /∈ {0}∪c\k.
Since C(z + δh) = C(z) = Ck and sign(z + δh) = sign(z) for h small enough,

H(z + δh)−H(z) =
p∑
j=1
|β(z + δh)j |λ(j)−

z+δh
−

p∑
j=1
|β(z)j |λ(j)−z

=
p∑
j=1

(|β(z + δh)j | − |β(z)j |)λ(j)−z

=
p∑
j=1

(|β(z + δh)j | − |β(z)j |)λ(j)−z

=
p∑

j∈C(z)

(|β(z + δh)j | − |β(z)j |)λ(j)−z

=
∑

j∈C(z)

sign(β(z)j)(z + δh− z)λ(j)−z

=
∑

j∈C(z)

sign(z)δhλ(j)−z

=
∑
j∈Ck

sign(z)δhλ(j)−z . (11)

Case 2 Then if z 6= 0 and |z| is equal to one of the ci’s, i 6= k, one has C(z) = Ck ∪ Ci, C(z + δh) = Ck, and
sign(z + δh) = sign(z) for h small enough. Thus

H(z + δh)−H(z) =
p∑
j=1
|β(z + δh)j |λ(j)−

z+δh
−

p∑
i=1
|β(z)j |λ(j)−z

=
∑

j∈Ck∪Ci

(
|β(z + δh)j |λ(j)−

z+δh
− |β(z)j |λ(j)−z

)
=
∑
j∈Ck

(ci + δh)λ(i)−
z+δh
− ciλ(i)−z +

∑
j∈Ci

(
ciλ(j)−

z+δh
− ciλ(i)−z

)
. (12)

Note that there is an ambiguity in terms of permutation, since, due to the clustering, there can be more than
one permutation reordering β(z). However, choosing any such permutation result in the same values for the
computed sums.

Johan Larsson, Quentin Klopfenstein, Mathurin Massias, Jonas Wallin

Case 3 Finally let us treat the case z = 0. If cm = 0 then the proof proceeds as in case 2, with the exception
that |β(z + δh)| = h and so the result is just:

H(z + δh)−H(z) = h
∑
j∈Ck

λ(i)−
z+δh

. (13)

If cm 6= 0, then the computation proceeds exactly as in case 1.

A.2 Proof of Theorem 2.3

Recall that G(z) : R→ R is a convex, continuous piecewise-differentiable function with breakpoints whenever
|z| = c

\k
i or z = 0. Let γ = ck‖x̃‖2 + x̃T r and ω = ‖x̃‖2 and note that the optimality criterion for (6) is

δ(ωz − γ) +H ′(z; δ) ≥ 0, ∀δ ∈ {−1, 1},

which is equivalent to
ωz −H ′(z;−1) ≤ γ ≤ ωz +H ′(z; 1). (14)

We now proceed to show that there is a solution z∗ ∈ arg minz∈RH(z) for every interval over γ ∈ R.

First, assume that the first case in the definition of T holds and note that this is equivalent to (14) with z = 0
since C(εc) = C(−εc) and λ(j)−−εc

= λ(j)−εc
. This is sufficient for z∗ = 0.

Next, assume that the second case holds and observe that this is equivalent to (14) with z = c
\k
i , since

C(ci + εc) = C(−ci − εc) and C(−ci + εc) = C(ci − εc). Thus z∗ = sign(γ)c\ki .

For the third case, we have ∑
j∈C(ci+εc)

λ(j)−ci+εc
=

∑
j∈C(ci−1−εc)

λ(j)−
ci−1−εc

and therefore (14) is equivalent to

ci <
1
ω

(
|γ| −

∑
j∈C(ci+εc)

λ(j)−ci+εc

)
< ci−1.

Now let
z∗ = sign(γ)

ω

(
|γ| −

∑
j∈C(ci+εc)

λ(j)−ci+εc

)
(15)

and note that |z∗| ∈
(
c
\k
i , c

\k
i−1
)
and hence

1
ω

(
|γ| −

∑
j∈C(ci+εc)

λ(j)−ci+εc

)
= 1
ω

(
|γ| −

∑
j∈C(z∗)

λ(j)−
z∗

)
.

Furthermore, since G is differentiable in
(
c
\k
i , c

\k
i−1
)
, we have

∂

∂z
G(z)

∣∣∣
z=z∗

= ωz∗ − γ + sign(z∗)
∑

j∈C(z∗)

λ(j)−
z∗

= 0,

and therefore (15) must be the solution.

The solution for the last case follows using reasoning analogous to that of the third case.

A.3 Proof of Lemma 2.6

To prove the lemma, we will show that limt→∞ β(t) ∈ Ω = {β : 0 ∈ ∂P (β)} using Convergence Theorem A in
Zangwill (1969, p. 91). For simplicity, we assume that the point to set map A is generated by v iterations of
Algorithm 1, that is A(β(0)) = {β(vi)}∞i=0. To be able to use the theorem, we need the following assumptions to
hold.

Coordinate Descent for SLOPE

1. The set of iterates, A(β(0)) is in a compact set.

2. P is continuous and if β /∈ Ω = {β : 0 ∈ ∂P (β)}, then for any β̂ ∈ A(β) it holds that P (β̂) < P (β).

3. If β ∈ Ω = {β : 0 ∈ ∂P (β)}, then for any β̂ ∈ A(β) it holds that P (β̂) ≤ P (β).

Before tackling these three assumptions, we decompose the map into two parts: v − 1 coordinate descent steps,
TCD, and one proximal gradient decent step, TPGD. This clearly means that

P (TCD(β)) ≤ P (β)

for all β ∈ Rp. For TPGD, we have two useful properties: first, if ||TPGD(β)− β|| = 0, then by Lemma 2.2 in Beck
and Teboulle (2009) it follows that β ∈ Ω. Second, by Lemma 2.3 in Beck and Teboulle (2009), using x = y, it
follows that

P (TPGD(β))− P (β) ≤ −L(f)
2 ||TPGD(β)− β||2,

where L(f) is the Lipschitz constant of the gradient of f(β) = 1
2 ||y −Xβ||2.

We are now ready to prove that the three assumptions hold.

• Assumption 1 follows from the fact that the level sets of P are compact and from P (TPGD(β)) ≤ P (β) and
P (TCD(β)) ≤ P (β).

• Assumption 2 holds since if β /∈ Ω, it follows that ||TPGD(β)− β|| > 0 and thus P (TPGD(β)) < P (β).

• Assumption 3 follows from P (TPGD(β)) ≤ P (β) and P (TCD(β)) ≤ P (β).

Using Theorem 1 from Zangwill (1969), this means that Algorithm 1 converges as stated in the lemma.

A.4 Partial Smoothness of the Sorted `1 Norm

In this section, we prove that the sorted `1 norm J is partly smooth (Lewis, 2002). This allows us to apply results
about the structure identification of the proximal gradient algorithm.
Definition A.1. Let J be a proper closed convex function and x a point of its domain such that ∂J(x) 6= ∅. J is
said to be partly smooth at x relative to a setM containing x if:

1. M is a C2-manifold around x and J restricted toM is C2 around x.

2. The tangent space ofM at x is the orthogonal of the parallel space of ∂J(x).

3. ∂J is continuous at x relative toM.

Because the sorted `1 norm is a polyhedral, it follows immediately that it is partly smooth (Vaiter et al., 2017,
Example 18). But since we believe a direct proof is interesting in and of itself, we provide and prove the following
proposition here.
Proposition A.2. Suppose that the regularization parameter λ is a strictly decreasing sequence. Then the sorted
`1 norm is partly smooth at any point of Rp.

Proof. Let m be the number of clusters of x and C1, . . . , Cm be those clusters, and let c1 > · · · > cm > 0 be the
value of |x| on the clusters.

We define εc as in Equation (9) and let B = {u ∈ Rp : ‖u− x‖∞ < εc/2}. Let vk ∈ Rp for k ∈ [m] be equal to
sign(xCk) on Ck and to 0 outside, such that x =

∑m
k=1 ckvk. We define

M =
{

span(v1, . . . , vm) ∩ B if cm 6= 0 ,
span(v1, . . . , vm−1) ∩ B otherwise .

We will show that J is partly smooth at x relative toM.

Johan Larsson, Quentin Klopfenstein, Mathurin Massias, Jonas Wallin

As a first statement, we prove that any u ∈ M shares the same clusters as x. For any u ∈ M there exists
c′ ∈ Rm, u =

∑m
k=1 c

′
kvk (with c′m = 0 if cm = 0). Suppose that there exist k 6= k′ such that c′k = c′k′ . Then since

‖x− u‖∞ = maxk |ck − c′k| and |ck − ck′ | > εc, one has:

εc < |ck − ck′ | = |ck − c′k + c′k′ − ck′ |
≤ |ck − c′k|+ |c′k′ − ck′ |
≤ 2‖x− u‖∞
≤ εc .

This shows that clusters of any u ∈M are equal to clusters of x. Further, clearly the tangent space ofM at x is
span(v1, . . . , vm) if cm 6= 0 and span(v1, . . . , vm−1) otherwise.

1. The setM is then the intersection of a linear subspace and an open ball, and hence is a C2 manifold. Since
the clusters of any u ∈M are the same as the clusters of x, we can write that

J(u) =
m∑
k=1

∑
j∈Ck

λj

 c′k , (16)

and hence J is linear onM and thus C2 around x.

2. We let x↓ denote a version of x sorted in non-increasing order and let R : Rp → Np be the function that
returns the ranks of the absolute values of its argument. The subdifferential of J at x (Larsson, Bogdan, and
Wallin, 2020, Thm. 1)6 is the set of all g ∈ Rp such that

gCi ∈ Gi ,

s ∈ R|Ci| :


cumsum(|s|↓ − λR(g)Ci) � 0 if xCi = 0 ,
cumsum(|s|↓ − λR(g)Ci) � 0

and
∑
j∈Ci(|sj | − λR(g)Ci) = 0

and sign(xCi) = sign(s) otherwise.

 (17)

Hence, the problem can be decomposed over clusters. We will restrict the analysis to a single Ci without loss
of generality and proceed in R|Ci|.

• First we treat the case where |Ci| = 1 and xCi 6= 0. The set Gi is then the singleton {sign(xCi)λR(s)Ci }
and its parallel space is simply {0}. Hence, par(Gi)⊥ = R = span(sign(x)Ci).

• Then, we study the case where |Ci| 6= 1 and xCi 6= 0. Since for all j ∈ [p], λj 6= 0 and
λ is a strictly decreasing sequence, we have that for ε > 0 small enough, the |Ci| − 1 points
λR(g)Ci +ε[− sign(xCi)1, sign(xCi)2, 0, . . . , 0]T , λR(g)Ci +ε[0,− sign(xCi)2, sign(xCi)3, . . . , 0]T , . . ., λR(g)Ci +
ε[0, 0, 0, . . . ,− sign(xCi)|Ci|−1, sign(xCi)|Ci|]T belong to Gi. Since these vectors are linearly independent,
and using the last equality in the feasible set that, we have that∑

j∈Ci
sign(xj)sj =

∑
j∈Ci

λR(g)Ci .

Its parallel space is simply the set {s ∈ R|Ci| :
∑
j∈Ci sign(xj)sj = 0}, that is just span(sign(xCi))⊥.

Hence par(Gi)⊥ = span(sign(xCi)).
• Finally, we study the case where xCm = 0. Then the `∞ ball {s ∈ R|Cm| : ‖s‖∞ ≤ λp} is contained in

the feasible set of the differential, hence the parallel space of Gm is R|Cm| and its orthogonal is reduced
to {0}.

We can now prove that par(∂J(x))⊥ is the tangent space ofM. From the decomposability of ∂J (Equa-
tion (17)), one has that u ∈ par(∂J(x))⊥ if and only if uCi ∈ par(Gi)⊥ for all i ∈ [m].

6We believe there to be a typo in the definition of the subgradient in (Larsson, Bogdan, and Wallin, 2020, Thm. 1).
We believe the argument of R should be g, not s, since otherwise there is a dimension mismatch.

Coordinate Descent for SLOPE

If cm > 0, we have
par(∂J(x))⊥ = {u ∈ Rp : ∀i ∈ [m], uCi ∈ par(Gi)⊥}

= {u ∈ Rp : ∀i ∈ [m], uCi ∈ span(sign(xCi))}
= span(v1, . . . , vm) .

(18)

If cm = 0, we have

par(∂J(x))⊥ = {u ∈ Rp : ∀i ∈ [m], uCi ∈ par(Gi)⊥}
= {u ∈ Rp : ∀i ∈ [m− 1], uCi ∈ span(sign(xCi)) & uCm = 0}
= span(v1, . . . , vm−1) .

(19)

3. The subdifferential of J is a constant set locally around x alongM since the clusters of any point in the
neighborhood of x inM shares the same clusters with x. This shows that it is continuous at x relative toM.

Remark A.3. We believe that the assumption λ1 > · · · > λp can be lifted, since for example the `1 and `∞ norms
are particular instances of J that violate this assumption, yet are still partly smooth. Hence this assumption
could probably be lifted in a future work using a slightly different proof.

B ADDITIONAL EXPERIMENTS

B.1 glmnet versus SLOPE Comparison

In this experiment, we ran the glmnet (Friedman et al., 2022) and SLOPE (Larsson et al., 2022) packages on
the bcTCGA dataset, selecting the regularization sequence λ such that there were 100 nonzero coefficients and
clusters at the optimum for glmnet and SLOPE respectively. We used a duality gap of 10−6 as stopping criteria.
The features were centered by their means and scaled by their standard deviation. The code is available at
github.com/jolars/slopecd.

B.2 Study on Proximal Gradient Descent Frequency

To study the impact of the frequence at which the PGD step in the hybrid solver is used, we performed a
comparative study with the rcv1 dataset. We set this parameter to values ranging from 1 i.e., the PGD algorithm, to
9 meaning that a PGD step is taken every 9 epochs. The sequence of λ has been set with the Benjamini-Hochberg
method and parametrized with 0.1λmax.

Figure 8 shows the suboptimality score as a function of the time for the different values of the parameter controlling
the frequency at which a PGD step is going to be taken. A first observation is that as long as this parameter is
greater than 1 meaning that we perform some coordinate descent steps, we observe a significant speed-up. For all
our experiments, this parameter was set to 5. The figure also shows that any choice between 3 and 9 would lead
to similar performance for this example.

B.3 Benchmark with Different Parameters for the ADMM Solver

We reproduced the benchmarks setting described in Section 3 for the simulated and real data. We compared the
ADMM solver with our hybrid algorithm for different values of the augmented Lagrangian parameter ρ. We tested
three different values 10, 100 and 1000 as well as the adaptive method (Boyd et al., 2010, Sec. 3.4.1).

We present in Figure 9 and Figure 10 the suboptimality score as a function the time for the different solvers.
We see that the best value for ρ depends on the dataset and the regularization strengh. The value chosen for
the main benchmark (Section 3) performs well in comparison to other ADMM solvers. Nevertheless, our hybrid
approach is consistently faster than the different ADMM solvers.

https://github.com/jolars/slopecd
github.com/jolars/slopecd

Johan Larsson, Quentin Klopfenstein, Mathurin Massias, Jonas Wallin

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

10−10

10−8

10−6

10−4

10−2

100

P
(β

)−
P

(β
∗)

PGD Frequency
1
2
3
4
5
6
7
8
9

Figure 8: Suboptimality score as a function of the time for different frequencies of the PDG step inside the
hybrid solver for the rcv1 dataset

ADMM ρ = 10
ADMM ρ = 100

hybrid (ours)
ADMM ρ = 1000

adaptive ADMM

0 1 2 3

100

10−4

10−8

λmax/2

0.0 2.5 5.0 7.5 10.0

λmax/10

0.0 2.5 5.0 7.5 10.0

Sim
ulated

1

λmax/50

0 1 2 3

100

10−4

10−8

0 1 2 3 0 1 2 3

Sim
ulated

2

0 20 40

100

10−4

10−8

0 20 40 0 100 200 300

Sim
ulated

3

Time (s)

P
(β

)−
P

(β
∗)

Figure 9: Benchmark on simulated datasets. Suboptimality score as a function of time for SLOPE on
multiple simulated datasets and for multiple sequence of λ.

Coordinate Descent for SLOPE

ADMM (ρ = 10)
ADMM (ρ = 100)

ADMM (ρ = 1000)
adaptive ADMM

hybrid (ours)

0.00 0.02 0.04

100

10−4

10−8

λmax/2

0.00 0.05 0.10

λmax/10

0.0 0.1 0.2

Rhee2006

λmax/50

0 5 10

100

10−4

10−8

0 20 40 0 20 40

bcTCGA

0 1 2

100

10−4

10−8

0 2 4 6 0 5 10

rcv1

0 20 40

100

10−4

10−8

0 20 40 0 100 200 300

news20

Time (s)

P
(β

)−
P

(β
∗)

Figure 10: Benchmark on simulated datasets. Suboptimality score as a function of time for SLOPE on
multiple simulated datasets and for multiple sequence of λ.

B.4 SLOPE Path Benchmarks

The choice of λ sequence in SLOPE is usually made via cross-validation on a training partition of the data across
a grid of the q parameter, which controls the shape of the λ sequence, and α, a factor that scales the λ sequence.
The α grid is typically a decreasing sequence where the first and last values correspond to the intercept-only
and almost-saturated models respectively. The set of models generated from fitting SLOPE across this grid of α
values is called the SLOPE path. In this section, we report benchmarks on the performance of our algorithm in
the case of fitting a SLOPE path to the simulated and real data sets used in Section 3.

We use the same path setup that is used by default for the lasso in the glmnet package (Friedman, Hastie, and
Tibshirani, 2010). This entails using a grid of 100 α values spaced evenly on the loge-scale. The first value, α1, is
chosen such that it leads to the intercept-only model, that is α1λ = λmax (see Section 3). The last value, α100 is
set to 10−4 if p > n and 10−2 otherwise. We terminate the path early if the number of unique nonzero coefficients
exceed n7, if the increase in the coefficient of determination is less than 10−4 between two subsequent αs on the
path, or if the coefficient of determination equals or exceeds 0.999. The λ sequence setup, preprocessing, and
data simulation setup is exactly the same as in Section 3.

For ADMM, we used ρ = 100 following the results in Appendix B.3. The Newt-ALM solver is missing from these

7Here we deviate from the standard lasso path setup because the lasso can at most select n nonzero coefficients, whilst
SLOPE can select at most n nonzero unique coefficients

Johan Larsson, Quentin Klopfenstein, Mathurin Massias, Jonas Wallin

benchmarks because we encountered several issues with convergence.

Our method outperforms the other methods for all of the real datasets (Table 4). In the case of bcTCGA, the
difference is particularly striking, with our method taking less than one twentieth of the time taken for the
runner-up. In the other cases, our method is roughly twice as fast as the second-best method.

Table 4: Time in seconds to fit a full SLOPE path to real data sets. See Table 3 for information about the
datasets. For ADMM we set ρ = 100.

Dataset Rhee2006 bcTCGA news20 rcv1

ADMM 47 9252 139 415 6852
Anderson (PGD) 30 9867 29 867 592
FISTA 335 12 682 138 363 1988
hybrid (ours) 14 379 11 574 391

For simulated data (Table 5), our method performs best for the p > n scenarios (1 and 2), being roughly
ten and five times faster, respectively, than the runner up. In the case of Scenario 2 where n > p, however,
Anderson (PGD) instead comes out on top.

Table 5: Time in seconds to fit a full SLOPE path to simulated data sets. See Table 2 for information on what
the different scenarios mean. For ADMM we set ρ = 100.

Method Scenario 1 Scenario 2 Scenario 3
ADMM 593 732 649
Anderson (PGD) 539 36 451
FISTA 589 67 279
hybrid (ours) 54 83 49

This experiment was run on a dedicated high-performance computing cluster, using two Intel Xeon E5-2650
v3 (2.3 Ghz, 10-core) CPUs and 64 GB of memory. The computations were enabled by resources provided by
LUNARC.

C EXTENSIONS TO OTHER DATAFITS

Our algorithm straightforwardly generalizes to problems where the quadratic datafit 1
2‖y −Xβ‖2 is replaced by

F (β) =
∑n
i=1 fi(X>i: β), where the fi’s are L smooth (and so F is L ∗ ‖X‖2

2-smooth), such as logistic regression.

In that case, one has by the descent lemma applied to F (β(z)), using F (β) = F (β(ck)),

F (β(z)) +H(z) ≤ F (β) +
∑
j∈Ck
∇jF (β) sign βj(z − ck) + L‖x̃‖2

2 (z − ck)2 +H(z) (20)

and so a majorization-minimization approach can be used, by minimizing the right-hand side instead of directly
minimizing F (β(z)) +H(z). Minimizing the RHS, up to rearranging, is of the form of Problem (6).

D IMPLEMENTATION DETAILS OF SOLVERS

D.1 ADMM

Our implementation of the solver is based on Boyd et al. (2011). For high-dimensional sparse X, we use the
numerical LSQR algorithm (Paige and Saunders, 1982) instead of the typical direct linear system solver. We
originally implemented the solver using the adaptive step size (ρ) scheme from Boyd et al. (2010) but discovered
that it performed poorly. Instead, we used ρ = 100 and have provided benchmarks of the alternative configurations
in Appendix B.3.

Coordinate Descent for SLOPE

D.2 Newt-ALM

The implementation of the solver is based on the pseudo-code provided in Luo et al. (2019). According to the
authors’ suggestions, we use the Matrix inversion lemma for high-dimensional and sparse X and the preconditioned
conjugate gradient method if, in addition, n is large. Please see the source code for further details regarding
hyper-parameter choices for the algorithm.

After having completed our own implementation of the algorithm, we received an implementation directly from
the authors. Since our own implementation performed better, however, we opted to use it instead.

E REFERENCES AND SOURCES FOR DATASETS

In Table 6, we list the reference and source (from which the data was gathered) for each of the real datasets used
in our experiments.

Table 6: Sources and references for the real data sets used in our experiments.

Dataset Reference Source
bcTCGA National Cancer Institute (2022) Breheny (2022)
news20 Keerthi and DeCoste (2005) Chang and Lin (2022)
rcv1 Lewis et al. (2004) Chang and Lin (2022)
Rhee2006 Rhee et al. (2006) Breheny (2022)

	INTRODUCTION
	COORDINATE DESCENT FOR SLOPE
	Coordinate Descent Update
	Proximal Gradient Descent Update
	Hybrid Strategy

	EXPERIMENTS
	Simulated Data
	Real data

	DISCUSSION
	PROOFS
	Proof of thm:sl1-directional-derivative
	Proof of thm:thresholding-operator
	Proof of lem:convergence
	Partial Smoothness of the Sorted 1 Norm

	ADDITIONAL EXPERIMENTS
	glmnet versus SLOPE Comparison
	Study on Proximal Gradient Descent Frequency
	Benchmark with Different Parameters for the ADMM Solver
	SLOPE Path Benchmarks

	EXTENSIONS TO OTHER DATAFITS
	IMPLEMENTATION DETAILS OF SOLVERS
	ADMM
	Newt-ALM

	REFERENCES AND SOURCES FOR DATASETS

