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Abstract

Label-free microscopy exploits light scattering to obtain a three-

dimensional image of biological tissues. However, light propagation is af-

fected by aberrations and multiple scattering, which drastically degrade the

image quality and limit the penetration depth. Multi-conjugate adaptive

optics and time-gated matrix approaches have been developed to compen-

sate for aberrations but the associated frame rate is extremely limited for

3D imaging. Here we develop a multi-spectral matrix approach to solve

these fundamental problems. Based on an interferometric measurement of

a polychromatic reflection matrix, the focusing process can be optimized

in post-processing at any voxel by addressing independently each frequency

component of the wave-field. A proof-of-concept experiment demonstrates

the three-dimensional image of an opaque human cornea over a 0.1 mm3-

field-of-view at a 290 nm-resolution and a 1 Hz-frame rate. This work paves

the way towards a fully-digital microscope allowing real-time, in-vivo, quan-

titative and deep inspection of tissues.
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Introduction

Imaging of thick scattering tissues remains the greatest challenge in label-free

microscopy1–3. On the one hand, short-scale inhomogeneities of the refractive in-

dex backscatter light and the reflected wave-field can be leveraged to provide a

structural image of the sample. On the other hand, larger-scale inhomogeneities

give rise to forward multiple scattering events that distort the incident and re-

flected wave-fronts. This phenomenon, known as aberrations, leads to a drastic

degradation of resolution and contrast at depths greater than the scattering mean

free path ℓs (∼100 µm in biological tissues).

To circumvent this issue, adaptive optics (AO) has been transposed from as-

tronomy to microscopy for the last twenty years4. The basic idea is to compensate

for wave distortions either by a direct sampling of the wave-field generated by a

guide star or by an indirect metric optimization of the image. Unfortunately, AO

correction is limited to a finite area, the so-called isoplanatic patch, the area over

which aberrations can be considered spatially invariant. This problem becomes

particularly important for deep imaging, where each isoplanatic patch reduces to

a speckle grain at depths larger than the transport mean free path ℓt (∼ 1 mm

in biological tissues). Multi-conjugate AO could increase the corrected field-of-

view5, but this would be at the price of a much more complex optical setup and

an extremely long optimization process6.

More recently, following seminal works that proposed post-processing compu-

tational strategies for AO7–11, a reflection matrix approach has been developed for

deep imaging12–18. The basic idea is to illuminate the sample by a set of input

wave-fronts and record via interferometry the reflected wave-front on a camera.

Once this reflection matrix is measured, a set of matrix operations can be applied

in order to perform a local compensation of aberrations and restore a diffraction-

limited resolution for each pixel of the field-of-view. Nevertheless, the existing

approaches suffer from several limitations. In most experimental works12,13,15–18,
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the reflection matrix is time-gated around the ballistic time as usually performed

in time-domain OCT19. Such a measurement has one main advantage since it en-

ables the temporal filtering of most multiply-scattered photons20. However, it also

suffers from two strong drawbacks. First, time-gating means that a large part of

the information on the medium is discarded: Only the weakly distorted paths are

recorded and can be compensated by a spatial phase modulation of the incident

and reflected wave-fronts. Second, volumetric imaging can only be obtained by a

mechanical axial scanning of the sample, which limits the frame rate Fps to, at

best, 106 voxels.s−1 for a high quality correction over millimetric FOVs.

To go beyond, an acquisition of a spectral reflection matrix is required in or-

der to capture all the information required for the three-dimensional imaging of

a sample. In recent works21,22, the spatio-temporal degrees of freedom exhibited

by the reflection matrix have been exploited for tailoring dispersive focusing laws.

However, the acquisition rate was slow (Fps ∼ 103 voxels.s−1) because the num-

ber of input wave-fronts scaled as the number of voxels in the image. Moreover,

the experimental demonstration was limited to the imaging of a resolution target

through a scattering medium21,22 or a sparse medium made of colloidal particles22.

In this paper, we go beyond an academic proof-of-concept and address the ex-

tremely challenging case of ultra-fast 3D imaging of biological tissues themselves

(nerves, cells, collagen, extracellular matrix etc.). In particular, we will show how

the number of input wave-fronts can be drastically decreased by deterministic fo-

cusing operations applied to the reflection matrix guided by a self-portrait of the

focusing process.

To that aim, we report on a measurement of the multi-spectral reflection matrix

at a much higher frame rate (Fps ∼ 109 voxels.s−1), with a 3D imaging demon-

stration on an ex-vivo opaque cornea at a resolution of 0.29 µm and 0.5 µm in

the transverse and axial directions, respectively. The experimental set up com-

bines a Fourier-domain full-field OCT (FD-FF-OCT) setup23–25 with a coherent
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multi-illumination scheme. Capable of recording a polychromatic reflection matrix

of 1010 coefficients in less than 1 s with an ultra-fast camera, this device is fully

compatible with future in-vivo applications. As in FD-FF-OCT, a spectral Fourier

transform and numerical refocusing can provide a 3D image of the sample for each

incident wave-front23–25 but, as expected, multiple scattering is shown to strongly

hamper the imaging process. A coherent compound of images obtained for each

illumination in post-processing can then provide a digital confocal image but its

resolution and contrast are drastically affected by sample-induced aberrations. In-

terestingly, reflection matrix imaging (RMI) can go beyond by decoupling input

and output focusing points at each time-of-flight. A focused reflection matrix is

synthesized and measures the cross-talk between each point inside the sample.

While previous works only considered focusing points at the same depth13–16, we

show here that their axial scan gives access to a self-portrait of the light focusing

process. A minimization of the point spread function extension enables an auto-

focus process at each depth of the sample. Finally, a compensation of transverse

aberrations is performed by means of a local analysis of wave distortions18. A

digital clearing of long-scale refractive index heterogeneities is thus applied and a

three-dimensional image of the sample is obtained with an optimized contrast and

close-to-ideal resolution throughout the volume.

Results

Recording the Multi-Spectral Reflection Matrix.

3D matrix imaging is based on the measurement of a multi-spectral reflection

matrix from the scattering sample. The experimental setup and procedure are de-

scribed in Fig. 1 (see Methods and Supplementary Figure S1). Inspired by spectral

domain FFOCT26, it simply consists in a Linnik interferometer (Fig. 1a). In the

first arm, a reference mirror is placed in the focal plane of a microscope objective

(MO). The second arm contains the scattering sample to be imaged through an

identical MO. This interferometer is illuminated by a swept source through two
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FIG. 1. Measuring the multi-spectral reflection matrix. a, A wavelength swept

light source illuminates a Linnik interferometer through a collimator, two scanning mir-

rors and a lens (L1) that allows a raster scanning of the focal spot in the MO pupil

planes (uin) in each arm (a1). The sample placed in the focal plane of the first MO

(MO1, NA=0.8) is thus illuminated by a set of plane waves at each frequency of the

light source bandwidth (a2). The backscattered wave field is collected through the same

MO, focused by means of a second lens L2 on the surface of a CMOS camera where it

interferes with a reference beam (a3). The latter beam results from the reflection of the

same incident wave-fronts by a reference mirror placed in the focal plane of the second

MO (MO2, NA=0.8). b, At each frequency ω, for each input wave-front uin, the inter-

ferogram I(sout) (b1) recorded by each pixel sout of the camera provides one column of

the spectral reflection matrix Rsu(ω) = [R(sout,uin, ω)] (b2).

scanning mirrors and a lens that allows a raster scanning of the focal spot in the

MO pupil planes (Fig. 1a1). The sample and reference mirror are thus illuminated

by a set of plane waves at each frequency of the light source bandwidth (Fig. 1a2).

The reflected waves are collected through the same MOs and, ultimately, interfere

on a camera conjugated with the focal plane. For each input wave-front of coordi-

nate uin in the pupil plane, the interferogram I(sout,uin, ω) recorded at frequency

ω (Fig. 1a3) provides one column of the reflection matrix Rsu = [R(sout,uin, ω)]

(see Methods and Fig. 1b), where sout is the transverse location of each camera
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sensor.

In the opaque cornea experiment, the reflection matrix R is measured with

Nin = 177 plane waves, corresponding to a full scan of the immersion MO pupil

(NA=0.8, refractive index n0 = 1.33). The interferograms are recorded by Nout =

10242 pixels of the camera, corresponding to an output FOV of Ωout×Ωout = 297×

297 µm2, with a spatial sampling δρout = 290 nm. Finally, Nω = 201 independent

frequencies are used to probe the sample within the frequency bandwidth [800; 875]

nm of the light source. All the information about the sample is thus contained

in the 1010 coefficients acquired in 1.4 s. In the following, we show how to post-

process this wealth of optical data to build a 3D highly-contrasted image of the

cornea at a diffraction-limited resolution.

Ultra-fast Three-Dimensional Imaging.

To that aim, the most direct path is to perform, a Fourier transform over

frequency ω of the back-scattered wave-field recorded for one illumination23:

This is the principle of FF-SS-OCT which provides an image whose axial di-

mension is dictated by photons’ times-of-flight (Supplementary Figure S2). The

resulting image is, however, completely blurred without any connection with the

sample reflectivity . Indeed, a high NA implies a very restricted depth-of-field

(δzf ∼ n0λ/{2 sin2[asin(NA/2)]} ∼ 2.7 µm)27, which is prohibitory for 3D imag-

ing. A prior numerical focusing of the wave-field recorded by the camera shall be

performed at each depth z of the sample. This is the principle of the holoscope

developed by Hillmann et al. about a decade ago10.

This numerical focusing process is performed by means of Fresnel propagators.

For this purpose, the multi-spectral reflection matrix is projected at output in the

focused basis:

Rρu(z, ω) = F∗
us(z, ω)×Rsu(ω) (1)

where the symbol ∗ stands for phase conjugate. Fus(z, ω) = [F (u, s, z, ω)] is the
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Fresnel operator that describes free-space propagation from the camera (s) to

any focal plane (ρ) located at expected depth z in the sample (Methods). Each

frequency component of Rρu(z, ω) should then be recombined in order to time

gate the singly-scattered photons. In practice, an inverse Fourier transform over

frequency ω is performed and yields an R−matrix as a function of photon’s time-

of-flight t:

Rρu(z, t) =

∫
dωRρu(z, ω)e

jωt. (2)

At each time t, the single scattering contribution of the wave-field corresponds to

photons that have been scattered in a coherence volume located at a depth zt in

the sample and of thickness δzt ∼ c0λ
2/(2n0∆λ) ∼ 3.5 µm. When the focusing

plane and the coherence volume coincide (Fig. 2a1), an holoscopic image of the

sample, IH , can be obtained for each input wave-front uin (Fig. 2a1):

IH(rt,uin) = R(ρout,uin, zt, t). (3)

with rt = (ρout, zt). In practice, an exact matching between the focusing plane

and coherence volume is difficult to obtain especially for deep imaging (i.e low

single-to-multiple scattering ratio). We will describe further how matrix imaging

can provide a robust observable for this fine tuning.

Figures 2a2-a4 display longitudinal and transverse cross-sections of the cornea

obtained for a normal incident plane wave (see also Supplementary Movies 1 and

228). Although this holoscopic image can be obtained at a very high frame rate

(Fps ∼ 1011 voxels/s), it also exhibits a speckle-like feature. Indeed, multiply-

scattered photons taking place ahead of the coherence volume at each time t can

pollute the image. Such paths generate a random speckle noise without any con-

nection with the medium reflectivity. To remove it, a naive strategy is to sum the

intensity of the holoscopic images obtained for each illumination uin. Such an in-

coherent compound tends to smooth out the speckle noise but the resulting image

7



still exhibits an extremely low contrast due to the multiple scattering background

(see Supplementary Fig. S2). To get rid of it, the single-to-multiple scattering ra-

tio shall be increased20. For this purpose, a spatial filtering of multiply-scattered

photons can be performed by means of a confocal filter. Nevertheless, this op-

eration is extremely sensitive to the focusing quality inside the sample. A prior

optimization of the focusing process is thus needed.

Digital confocal imaging.

To that aim, the dual reflection matrix is projected in the focused basis both at

input and output. Mathematically, it simply consists in a numerical input focusing

ofRρu using the Fresnel propagator Fuρ that describes free space propagation from

the MO pupil plane and the focal plane at depth z (Methods):

Rρρ(z, t) =

∫
dωRρu(z, ω)× F†

uρ(z, ω)e
−jωt. (4)

where the symbol † stands for transpose conjugate. Expressed in the focused

basis, the reflection matrix Rρρ(z, t) contains the responses at each time-of-flight

t between virtual sensors of expected positions rin = (ρin, z) and rout = (ρout, z).

The focused R-matrix is equivalent to the time-gated reflection matrix consid-

ered in previous studies for RMI12–18, except that we now have at our disposal a

supplementary degree of freedom: The parameter z that controls the axial position

of the focusing plane. A raw confocal image IC can be built by considering the

diagonal elements of Rρρ (ρin = ρout):

IC(rt, z) = R(ρ,ρ, z, t). (5)

Figure 3c shows the en-face image obtained at a given time-of-flight t for different

values of z. Qualitatively, we see that the image quality strongly depends on the

relative position between the coherence volume and the focusing plane. Here the
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FIG. 2. From Holoscopy to Matrix Imaging. a, Imaging Methods. a1, Holoscopy:

The sample is illuminated by a plane wave (in green) and an image is produced by

spatio-temporal focusing of the back-scattered wave-field on each voxel rout mapping

the sample (red). a2, Digital confocal microscopy (DCM): The sample is illuminated

by a set of plane waves (in green) and a focused refection matrix Rρρ(zt) is built by

numerical focusing. A 3D confocal image is deduced from the diagonal elements of

Rρρ(z) at each depth zt. a3, Reflection matrix imaging (RMI): A local compensation of

wave distortions is performed for each voxel. b, B-scan image showing one longitudinal

section of the cornea reflectivity. c-d, En-face image of the cornea at z = 150 µm and

275 µm, respectively [scale bar: 75 µm]. In panels (a)-(d), subscripts 1, 2 and 3 stand

for holoscopy, DCM and RMI, respectively. In panel c3, blue and red arrows design some

corneal nerves and keratocytes , respectively; in panel d3, stroma striae are highlighted

by green dashed lines. e, RPSF at depth z = 150 µm [scale bar: 3 µm] for DCM (e1-f1)

and RMI (e2-f2) images. The radial evolutions of these RPSFs are compared in panel

(e3) [DCM: blue; RMI: orange]. f, Same as in panel (e) but at depth z = 275 µm.
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presence of a highly reflecting structure, a corneal nerve, allows us to determine the

parameter z that allows to match the focusing plane with the coherence volume.

Self-portrait of the focusing process.

A more quantitative and robust observable is provided by the off-diagonal co-

efficients of Rρρ(z, t) that enable to probe the focusing quality at any voxel. More

precisely, this can be done by investigating the reflection point spread function

(RPSF) defined as follows:

RPSF (∆ρ,ρ, z, t) = |R(ρ−∆ρ/2,ρ+∆ρ/2, z, t)|2 , (6)

This quantity derived from the off-diagonal coefficients of Rρρ, quantifies the fo-

cusing quality for each point rt = (ρ, zt). For a medium of random reflectivity

and under a local isoplanatic assumption, its ensemble average actually scales as29

(Supplementary Section S5):

⟨RPSF (∆ρ,ρ, z, t)⟩ ∝ |hin|2
∆ρ
⊛ |hout|2(∆ρ,ρ, z, t) (7)

where the symbols ⟨· · · ⟩ and ⊛ stand for ensemble average and convolution prod-

uct, respectively. hin/out(∆ρ,ρ, z, t) is the spatial distribution of the input/output

PSF along the de-scanned coordinate ∆ρ in the coherence plane at zt when trying

to focus at point (ρ, z).

The RPSF can thus provide a self-portrait of the focusing process inside the

cornea. Figure 3a shows the evolution of the laterally-averaged RPSF for a given

time t as a function of the parameter z in the Fresnel propagator (Methods).

As expected, the focusing plane and coherence volume coincide when the RPSF

extension is minimized (Fig. 3b), i.e for a defocus distance ∆z = z − zt = 0

(Fig. 3a2). The estimated defocus is roughly constant over the whole thickness

of the cornea. This proves that the effective index of the cornea is actually very
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FIG. 3. Auto-focusing process guided by the reflection point spread function.

a Evolution of the RPSF versus the defocus distance ∆z for a fixed coherence volume.

The transverse distribution of the RPSF is shown for several values of defocus (a1)-(a3).

The evolution of its radial average is displayed in panel (a4). b. Relative position of

the focusing plane (dash-dotted line) and coherence volume (red layer) for the different

values of defocus ∆z displayed in (a). c. En-face confocal image and zoom on a nerve.

In each panel, the subscripts 1, 2 and 3 stand for defocus distances ∆z = −4, 0, and +4

µm. The considered coherence volume is located at the effective depth zt = 140 µm in

the cornea.

close to the refractive index n0 used in our propagation model (see Supplementary

Section S4).

Figures 2b1-b3 displays longitudinal and transverse cross-sections of the confo-

cal image obtained after tuning the coherence volume and focusing plane at any

depth (see also Supplementary Movies 1 and 228). The resolution and contrast

are much better than the incoherent compound image (Supplementary Fig. S2).
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In particular, the axial resolution δzc of the digital confocal image benefits from

the virtual time gating and confocal filters: δzc = 1/[2(1/δzt + 1/δzf )] ∼ 0.5 µm.

However, the image quality remains perfectible. Indeed, the RPSF still spreads

well beyond the theoretical resolution cell (∼ 1 pixel) in Fig. 3a2. These residual

aberrations originate from the lateral fluctuations of the optical index n(ρ, z) in

the cornea. To demonstrate this last assertion, the transverse evolution of the

focusing process can be investigated by a local assessment of the focusing quality

(see Methods). A map of local RPSFs is displayed in Fig. 4a. Although the digi-

tal autofocus process provides a correct focusing quality over the whole thickness

of the cornea on average, the local RPSFs exhibit important fluctuations across-

the field-of-view. This observation is a manifestation of the 3D distribution of

the optical index n(r) inside the cornea. This anisoplanic feature requires a local

compensation of aberrations as we will see below.

Local Compensation of Wave Distortions.

By considering the set of autofocused reflection matrices, Rρρ(zt), a local com-

pensation of transverse aberrations can be performed at each depth zt
18. It ba-

sically consists in a local analysis of wave distortions on overlapping spatial win-

dows of size L = 18.6 µm.By exploiting a shift-shift memory effect characteristic

of anisotropic scattering in the cornea30, one can estimate the input and output

aberration phase matrices, Φin/out(zt) = [ϕin/out(uin/out,ρ, zt)], between the pupil

plane (uin/out) and the medium voxels (ρ, zt) (Methods)18. The result is displayed

in Fig. 4b at zt = 140 µm. Strikingly, the estimated aberration laws exhibit strong

phase fluctuations and vary quickly between neighboring windows. This complex

feature has two origins: (i) the lateral fluctuations exhibited by the optical index

inside the cornea; (i) the imperfections of the imaging system. The latter compo-

nent accounts for the difference observed between the input and output aberration

transmittances (Supplementary Section S4). In fact, the input aberration phase

law accumulates not only the input aberrations of the sample-arm but also those
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FIG. 4. Local Adaptive Focusing by Matrix Analysis of Wave Distortions.

a, Transverse map of local RPSFs after the auto-focusing process (a1) and after the

aberration matrix compensation of wave distortion (a2) at zt = 140 µm Each RPSF is

displayed over a de-scan area of 6× 6 µm2. b, Transverse map of input (b1) and output

(b2) aberration phase laws, ϕin/out, estimated from the pupil plane at the same depth.

of the reference arm. The sample-induced aberrations can be investigated inde-

pendently from the imperfections of the experimental set up by considering the

output aberration phase matrix Φout. The aberration phase is mainly a defocus

that varies across the field-of-view due to lateral variations of the optical index.

Local shifts of the pupil function are also observed and result from a local curvature

of the coherence volume with respect to the focusing plane.
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The extracted aberration phase laws can be used to build transmission matri-

ces Gin/out containing the estimated impulse responses between the image vox-

els (ρin/out) and each focal plane located at depth zt (Methods). The focused

R−matrix is then de-convolved by applying the phase conjugate of the transmis-

sion matrices at its input and output (Fig. 2a3), such that:

R(c)
ρρ(zt) = G†

out(zt)×Rρρ(zt)×G∗
in(zt) (8)

The final image of the sample can be obtained by considering the diagonal elements

of the corrected matrix R
(c)
ρρ:

IM(rt) = R(c)(ρ,ρ, zt). (9)

Figures 2c3-e3 display the corresponding longitudinal and transverse cross-sections

obtained by RMI (see also Supplementary Movies 1, 2 and 328). The comparison

with the confocal image [Figs. 2c2-e2] shows a clear gain in contrast. The resolution

improvement can be assessed by examining the RPSF. While, at the previous step,

the confocal peak exhibits a spreading well beyond the diffraction limit and a

background at depth due to forward multiple scattering events (Fig. 2e1,f1), RMI

compensates for these two issues and leads to an almost ideal RPSF (Fig. 2e2,f2).

The map of final RPSFs displayed by Fig. 4c3 shows the high focusing quality

provided by RMI over the whole field-of-view at the considered depth zt = 140

µm.

The obtained three-dimensional image highlights several crucial features of the

cornea: its lamellar structure induced by the collagen fibrils (Fig. 2b3); (ii) the

complex network of nerves that covers the cornea; (iii) characteristic structures

of the cornea such as keratocytes and; (iv) stromal striae whose presence is an

indicator of keratoconus31. Such a high-resolution image can thus be of particular

importance for bio-medical diagnosis, given the high frame rate of our device. Of
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course, RMI is not limited to the cornea but can be also applied to the deep inspec-

tion of retina, skin or arteries, tissues whose structures are already monitored by

OCT but, until now, limited by a modest penetration depth. In that perspective,

the ability of RMI in overcoming high-order aberrations and multiple scattering

constitutes a paradigm shift for deep optical microscopy.

Discussion

In contrast with previous works that considered the reflection matrix at a single

frequency32 or time-of-flight12,13,16, the measurement of a polychromatic reflection

matrix22 allowed us to realize in post-processing: (i) a 3D confocal image of the

sample reflectivity on millimetric volumes (0.1 mm3 = 109 voxels) in an ultra-

fast acquisition time (1 s) ; (ii) a local compensation of aberrations which usually

prevent deep imaging. The required number of input wave-fronts depends on

the aberration level and scales as the number of resolution cells covered by the

RPSF33. Compared with time-domain and scanning OCT, spectral measurement

and spatial multiplexing of the wave-field provides a much better signal-to-noise

ratio34. Moreover, while a time-gated reflection matrix only allows a transverse

compensation of aberrations, the polychromatic reflection matrix gives access to

temporal degrees of freedom that can be exploited for compensating the axial

distortions of the coherence volume. Eventually, it can be exploited for overcoming

the multiple scattering limit in optical microscopy since it provides the opportunity

of tailoring complex spatio-temporal focusing laws21 required to focus light in

depth.

To do so, the mapping of the refractive index will also be an important step to

build accurate focusing laws inside the medium35. As shown by quantitative phase

imaging of thin biological samples, this physical parameter is also a quantitative

marker for biology. Mapping the refractive index in 3D and in an epi-detection

geometry will pave the way towards a quantitative imaging of biological tissues.

In that perspective, an issue we have not considered yet is medium motion
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during the acquisition of the reflection matrix. Of course, the assumption of a

static medium is everything but true especially for in-vivo applications36. To cope

with the dynamic features of the medium, two strategies can be followed. The first

one is to limit the measurement time of theR-matrix at its minimum, as allowed by

our device using a few illuminations. The second one is to develop algorithms that

consider medium motion during the measurement of R37. Interestingly, temporal

fluctuations of the medium’s reflectivity and refractive index can provide a key

information for probing the multi-cellular dynamics in optical microscopy38,39.

Just as the concept of plane-wave imaging40 revolutionized the field of ultra-

sound41,42 by providing an unprecedented frame rate, our device will constitute

in a near future an ideal tool for probing the 3D dynamics of tissues at a much

smaller scale.
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Methods

Experimental components.

The following components were used in the experimental setup (Fig. 1): A

swept laser source (800-875 nm; Superlum-850 HP), one galvanometer (Thorlabs,

LSKGG4), one scan lens L1 (f1 = 110 mm), two immersion objective lenses (40×;

NA, 0.8; Nikon), an imaging lens L2 (f2 = 250 mm) and an ultrafast camera

(25 kHz; Phantom-v2640).

Sample preparation.

In the presented experiment, the corneal sample was fixed with paraformalde-

hyde (4% concentration).

Sampling of input and output wave-fields.

The dimension of the input pupil is Din×Din = 9×9 mm; the spatial sampling

of input wave-fields is δuin = 600µm. Given the magnification of the output

lens system (MO, L2) system MO1 and the inter-pixel distance of the camera

(δsout = 12 µm), the output wave-field is sampled at a resolution close to λ/(4NA):

δρout = 290 nm.

Data acquisition and GPU processing.

All the interferograms of the acquisition sequence are recorded by the camera

in 1.4 s and stored in its internal memory. Then, the whole data set (75 Go)

is transferred to the computer in 5 min. The numerical post-processing of the

reflection matrix is performed by GPU (NVIDIA TITAN RTX) and takes 3.6 s

per input wave-fronts. For the data set considered in this paper, all the focusing

and aberration correction algorithms are performed in 1 hour.

On-axis holography.

For each input wave-field, the interferogram recorded by the camera can be
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expressed as follows:

I(sout,uin, ω) = |E(sout,uin,ω) + Eref(sout,uin, ω)|2 (10)

with E and Eref, the wave-fields reflected by the sample and reference arms. Then

a Fourier transform in the frequency domain is performed. The resulting intensity

can be written as follows:

I(sout,uin, t) = E(sout,uin, t)
t
⊛ E∗(sout,uin,−t) (11)

+ Eref(sout,uin,−t)
t
⊛ E∗

ref(sout,uin,−t) (12)

+ Eref(sout,uin, t)
t
⊛ E∗(sout,uin,−t) (13)

+ E(sout,uin, t)
t
⊛ E∗

ref(sout,uin,−t) (14)

The two first terms (Eqs. 11 and 12) correspond to the self-interference of each arm

with itself. Both contributions emerge at an optical depth close to zero (t = 0).

The two last terms correspond to the anti-causal (Eq. 13) and causal (Eq. 14) com-

ponents of the interference between the two arms. By applying a Heavyside filter

to I(sout,uin, t) along the time dimension, one can isolate the causal contribution

(Eq. 14). An inverse Fourier transform then yields the distorted wave-field:

D(sout,uin, ω) = E(sout,uin, ω)E
∗
ref(sout,uin, ω). (15)

If aberrations in the reference arm are neglected (Supplementary Section S3), the

reference wave-field is a replica of the incident wave-field,

Eref(sout,uin, ω) = exp

(
i
2π

λf
uin.sout

)
.
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The multi-spectral reflection matrix is thus extracted using the following relation:

R(sout,uin, ω) = D(sout,uin, ω) exp

(
−i

2π

λf
uin.sout

)
. (16)

Fresnel operators

The numerical focusing process is performed by means of Fresnel propagators.

For this purpose, the multi-spectral reflection matrix should be first projected in

the output pupil plane (uout) by a simple 2D spatial Fourier transform:

Ruu(ω) = P∗
us(ω)×Rsu(ω) (17)

where Pus = [P (u, s)] is the Fourier transform operator:

P (u, s, ω) = e
−j ω

c0

u·s
f (18)

with f , the focal length of the MOs and c0 the vacuum light velocity. A Fresnel

phase law is then applied at the output of Ruu(ω) to numerically shift the focal

plane, originally located in the middle of the sample (z = 0) to any depth z:

Rρu(z, ω) = [P⊤
uρ(ω) ◦ Fu(z, ω)]×Ruu(ω) (19)

where the symbol ◦ accounts for the Hadamard (term-by-term) product. Each

column vector F0(z, ω) is a phase mask that accounts for the propagation of each

plane wave of transverse wave vector k|| = ωu/(c0f) over a thickness z of an

homogeneous medium of refractive index n0:

F0(u, z, ω) = e
−j

(
n0ω
c0

−kz
)
zO(u) (20)
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with

kz =
ω

c0

√
n2
0 −

||u||2
f 2

, (21)

the longitudinal component of the wave vector, and O(u), the finite pupil support:

O(u) = 1 for ||u|| < fNA and zero elsewhere. Each reflection matrix Rρu(z, ω) =

[R(ρout,uin, z, ω)] connects each output virtual focusing point rout = (ρout, z) to

each input illumination uin at frequency ω. The combination of Eqs. 17, 19 and 20

leads us to define the Fresnel operator Fsρ(z, ω) = [F (sout,ρout, z, ω)] that enables

the projection of the optical data from the camera sensors (sout) to any focal plane

(ρout) of expected depth z (Eq. 1):

Fsρ(z, ω) = [P⊤
uρ(ω) ◦ F0(z, ω)]×P∗

us(ω) (22)

The projection between the plane wave illumination basis (uin) and the focused

basis (uin) can also performed by means of a Fresnel propagator Fρu this time

defined between the pupil plane and the each focal plane identified by their depth

z:

Fuρ(z, ω) = P∗
uρ(ω) ◦ F0(z, ω) (23)

Local estimation of focusing quality

To probe the local RPSF, the field-of-view is divided at each effective depth

zt into regions that are defined by their central midpoint ρp = (xp, yp) and their

spatial extension L. A local average of the back-scattered intensity can then be

performed in each region:

RPSFl(∆ρ,ρp, z, zt) = ⟨|R(ρ+∆ρ/2,ρ−∆ρ/2, z, t)|2WL(ρ− ρp)⟩ρ (24)
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where the symbol ⟨· · · ⟩m stands for an average over the variable m in subscript.

WL(ρ − ρp) = 1 for |x − xp| < L/2 and |y − yp| < L/2, and zero otherwise. In

this paper, a spatial window of size L = 18.6 µm has been used to smooth out

fluctuations due to the sample inhomogeneous reflectivity29.

Local compensation of wave-distortions

The starting point is the time-gated reflection matrix Rρρ(zt), obtained after

tuning the focusing plane and coherence volume at each echo time t. The first

step is a projection of Rρρ(zt) in the pupil plane at input via a numerical Fourier

transform:

Rρu(zt) = P⊤
uρ ×Rρρ(zt) (25)

An input distortion matrix is then built by performing a element-wise product

between Ruρ(zt) and the phase conjugate reference matrix Tuρ(ωc) that would be

obtained in absence of aberrations15 (Supplementary Section S6):

Dρu(zt) = Rρu(zt) ◦P†
uρ (26)

A local correlation matrix Cin of wave distortions is then built around each point

rp = (ρp, zt) of the field-of-view (Supplementary Section S7). Its cofficients write:

Cin(uin,u
′
in, rp) = ⟨D(ρout,uin, zt)D(ρout,u

′
in, zt)WL(ρout − ρp)⟩ρout

(27)

Iterative phase reversal (see further) is then applied to each correlation matrix

Cin(rp)
18 (Supplementary Section S8). The resulting input phase laws, Φin(zt) =

[ϕin(uin,ρp, zt)], are used to compensate for the wave distortions undergone by the

incident wave-fronts:

R′
ρρ(zt) = {Rρu(zt) ◦ exp [−iϕin(zt)]} ×P∗

uρ (28)
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The corrected matrix R′
ρρ is only intermediate since phase distortions undergone

by the reflected wave-fronts remain to be corrected.

To that aim, R′
ρρ(zt) is now projected in the pupil plane at output:

R′
uρ(zt) = Puρ ×R′

ρρ(zt). (29)

An output distortion matrix is then built:

Duρ(zt) = P∗
uρ ◦R′

uρ(zt) (30)

From Duρ, one can build a correlation matrix Cout for each point rp:

Cout(uout,u
′
out, rp) = ⟨D(uout,ρin, zt)D

∗
out(u

′
out,ρin, zt)WL(ρin − ρp)⟩ρin

(31)

The IPR algorithm described further is then applied to each matrix Cout(rp).

The resulting output phase laws, Φout(zt) = [ϕout(uout,ρp, zt)], are leveraged to

compensate for the residual wave distortions undergone by the reflected wave-

fronts:

R(c)
ρρ(zt) = P†

uρ ×
{
exp [−iΦout(zt)] ◦R′

uρ(zt)
}

(32)

Iterative phase reversal algorithm.

The IPR algorithm is a computational process that provides an estimator of

the phase of the transmittance that links each point u of the pupil plane with each

voxel rp = (ρp, zt) of the cornea volume18. To that aim, the correlation matrix

C computed over the spatial window WL centered around a given point (ρp, zt)

is considered (Eqs. 27 and 31). Mathematically, the algorithm is based on the

following recursive relation:

Φ
(n)
in/out(ρp, zt) = arg

{
C(ρp, zt)× exp

[
iΦ

(n−1)
in/out(ρp, zt)

]}
(33)
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where Φ
(n)
in/out is the estimator of the transmittance phase at the nth iteration of

the phase reversal process. Φ
(0)
in/out is an arbitrary wave-front that initiates the

process (typically a flat phase law) and ϕin/out = limn→∞ϕ
(n)
in/out is the result of

IPR.

Transmission matrices.

The transmission matrices Gin/out used to deconvolve the focused R-matrix

(Eq. 8) can be deduced from the estimated aberration phase laws Φin/out as follows

(Eqs. 28 and 32):

Gin/out(zt) =
{
Puρ ◦ exp

[
iΦin/out(zt)

}]
×P†

uρ. (34)

Data availability. Optical data used in this manuscript have been deposited at

Zenodo (https://zenodo.org/record/8407618).

Code availability. Codes used to post-process the optical data within this paper

are available from the corresponding author.
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Supplementary Information

This document provides further information on: (i) the experimental set up;

(ii) 3D images of the cornea; (iii) the theoretical expression of the multi-spectral

reflection matrix; (iv) the theoretical expression of the focused reflection matrix;

(v) the reflection point spread function; (vi) the local distortion matrix; (vii) the

corresponding correlation matrix; (viii) iterative phase reversal.

S1. EXPERIMENTAL SET UP

The full experimental set up is displayed in Fig. S1. Compared with Fig. 1 of

the accompanying paper, it shows the presence of a scan lens and of a tube lens in

order to focuus the incident light in the pupil plane of the microscope objectives

at input. It also highlights the control of light polarization in order to minimize

spurious reflections. The beam splitter is polarized and quarter wave plates are

placed in the two arms such that the reflected light in the two arms is transmitted

to the CMOS camera. The amount of light injected in the two arms is controlled

by means of two polarizers, P1 and P2, placed before the polarized beam splitter.

An analyzer A1 allows us to project the sample and reference beams on the same

polarization and make them interfere in the camera plane.
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FIG. S1. Detailed experimental set up. P: Polarizers; A: Analyzer; QW: quarter

wave plates.
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S2. OTHER 3D IMAGES OF THE CORNEA

In complement of Fig. 2 of the accompanying paper, Figs. S2b1-d1 shows lon-

gitudinal and transverse cross-sections of the cornea obtained via spectra domain

OCT (Fig. S2a1). Its comparison with the holoscopic image displayed in Figs. 2b1-

d1 of the accompaying paper illustrate the effect of numerical focusing. While the

OCT image is completely blurred due to multiple scattering and finite depth-

of-field of the high-NA microsocpe objective, the numerical back-focusing of the

optical wave-field improves the image contrast. Nevertheless, although the bright-

est are revealed, the holoscopic image still suffers from a strong multiple scatter-

ing background that generates a random speckle. This speckle can be smoothed

by an incoherent average of the holoscopic image obtained for each illumination

(Figs. S2a2-d2). However, such an incoherent compound image remains largeley

perfectible since the contrast remains very weak. On the contrary, a coherent

compound of holoscopic images provides a much contrasted image of the cornea

(Figs. 2a2-d2 of the accompanying paper). Indeed, a coherent combination of

multi-illuminations acts as a confocal pinhole.
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FIG. S2. Intermediate 3D images of the cornea. a, Imaging Methods. b, B-scan

image showing one longitudinal section of the cornea reflectivity. c-d, En-face image of

the cornea at z = 150 µm and 275 µm, respectively [scale bar: 75 µm]. In panels (a)-

(d), subscripts 1 and 2 stand for spectral domain OCT and multi-illumination holoscopy

(incoherent compound).
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S3. MULTI-SPECTRAL REFLECTION MATRIX

In this section, we express theoretically the multi-spectral reflection matrix

recorded by the experimental set up of Fig. S1. To that aim, we will rely on a

simple Fourier optics model to describe the multi-spectral reflection matrix. For

the sake of simplicity, this model is scalar.

The wave field Es(sout,uin, ω) reflected by the sample arm in the camera plane

can be expressed as follows:

Es(sout,uin, ω) = S(ω)

∫∫∫
G(sout,ρs, zs, ω)γ(ρs, zs)Ein(uin,ρs, zs, ω)dρsdzs.

(S1)

S(ω) is the amplitude of light source at frequency ω. G(sout,ρs, zs), the Green’s

function between the sample mapped by the vector (ρs, zs) and the CCD sensors

identified by sout. γ(ρs, zs) represents the sample reflectivity. Ein(uin,ρs, z, ω)

describes the incident wave-field that can be expressed as follows:

Ein(uin,ρs, zs, ω) = S(ω)F(uin, zs, ω)T (uin,ρs, z) exp

[
−i

2π

λf
uin.ρs

]
(S2)

where F(uin, zs, ω) is the Fresnel phase law that describes plane wave propagation

inside an homogeneous medium of effective index n (Eq. 20 in the accompany-

ing paper). The transmission matrix T = [T (uin,ρs, z)] accounts for the wave

distortions induced by the fluctuations of the optical index inside the medium.

In the reference arm, a mirror is placed in the focal plane of the MO and displays

a uniform reflectivity: γ(ρm, zm) = γmδ(zm), with δ the Dirac distribution and γm

the mirror surface reflectivity. The reference wave-field is thus given by:

Eref(sout,uin, ω) = γmS(ω)

∫∫
Gref(sout,ρm)Tref(uin,ρm) exp

(
−i

2π

λf
uin.ρm

)
dρm.

(S3)

with Gref(sout,ρm, ω), the Green’s functions between the focal plane of the MO
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(ρm) and the CCD sensors (sout) and Tref(uin,ρm), the transfer function describ-

ing the aberrations undergone by the incident wave in the reference arm due

to experimental imperfections (MO, misalignment, etc.). Assuming isoplanicity

in the reference arm, the Green’s function Gref can be replaced by a spatially-

invariant impulse response Href between the focal plane and the CCD sensors:

Gref (sout,ρm) = Href (ρm+sout). Under the same hypothesis, the transfer function

Tref(uin,ρm) becomes an aberration transmittance Tref(uin), defined as the Fourier

transform of the reference arm point spread function Href:

Tref(uin) =

∫∫
dρHref(ρ) exp

(
−i

2π

λf
uin · ρ

)
. (S4)

Under the isoplanatic assumption, Equation S3 thus simplifies into:

Eref(sout,uin, ω) = γmS(ω)Tref(−uin)Tref(uin) exp

(
i
2π

λf
uin.sout

)
(S5)

If aberrations in the reference arm are neglected, we retrieve the fact the reference

wave-field is a replica of the input wave-front:

Eref(sout,uin, ω) = γmS(ω) exp

(
i
2π

λf
uin.sout

)
. (S6)

In the following, we will not make this assumption and will consider the more

general expression of Eref given in Eq. S5.

The coefficients of the multi-spectral matrix Rsu(ω) are recorded by isolat-

ing the interference between the sample beam, Es, and the reference beam, Eref

(Eqs. 15 and 16 of the accompanying paper):

R(sout,uin, ω) = E(sout,uin, ω)E
∗
ref(sout,uin, ω) exp

(
i
2π

λf
uin.sout

)
(S7)
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Using Eqs. S1, S2, S5, the last equation can be rewritten as follows:

R(sout,uin, ω) = γm|S(ω)|2
∫∫∫

G(sout,ρs, zs, ω)γ(ρs, zs)

× T (uin,ρs, zs)F(uin, zs, ω)

× T ∗
ref(−uin)T ∗

ref(uin) exp

[
−i

2π

λf
uin.ρs

]
dρsdzs.(S8)

One can already notice from this expression that the aberrations undergone by

the reference wave-field (T ∗
ref(−uin)T ∗

ref(uin)) emerge at the input of the recorded

reflection matrix.

S4. FOCUSED REFLECTION MATRIX

In this section, we describe theoretically the numerical focusing process leading

to a time-gated focused reflection matrix at each depth of the sample.

First, a spatial Fourier transform over the camera pixels sout leads to the reflec-

tion matrix Ruu in the pupil basis (Eqs. 17 and 18 of the accompanying paper):

R(uout,uin, ω) = γm|S(ω)|2
∫∫∫

T (uout,ρs, z)F(uout, zs, ω)γ(ρs, zs)

× T (uin,ρs, z)F(uin, zs, ω)

× T ∗
ref (−uin)T ∗

ref(uin) (S9)

× exp

[
−i

2π

λf
(uin + uout).ρs

]
dρsdzs. (S10)

As for incident light (Eq. S2), the return path is decomposed in the plane wave

basis as the product between a Fresnel phase law F(uout, zs, ω), accounting for

free-space wave propagation in an homogeneous medium of refractive index n, and

the transfer function T (uin,ρs, zs) that grasps the wave distortions induced by the

refractive index fluctuations such that:

T (uout,ρs, zs)F(uout, zs, ω) =

∫∫
G(sout,ρs, zs) exp

(
−i

2π

λf
uout.sout

)
dρs. (S11)
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Numerical focusing at depth z (Eqs. 1 and 4 of the accompanying paper) then

consists in compensating wave diffraction by applying the phase conjugate of the

Fresnel propagator for refractive index n0 at input and output before a spectral

Fourier transform:

R(ρout,ρin, z, t) = γm
∑
uin

∑
uout

∫
dω|S(ω)|2 exp (iωt)F∗

0 (uout, z, ω)R(uout,uin, ω)F∗
0 (uin, z, ω)

× exp

[
i
2π

λf
(uin · ρin + uout · ρout).ρs

]
Injecting Eq. S9 leads to the following expression for the coefficients of Rρρ(z, ω):

R(ρout,ρin, z, t) =γm
∑
uin

∑
uout

∫
dω|S(ω)|2 exp (iωt)

×
∫∫∫

T (uout,ρs, z)γ(ρs, zs, ω)T (uin,ρs, zs)T ∗
ref(−uin)T ∗

ref(uin)

×F(uout, zs, ω)F∗
0 (uout, z, ω)F(uin, zs, ω)F∗

0 (uin, z, ω)

× exp

{
−i

2π

λf
[uin.(ρs − ρin) + uout.(ρs − ρout)]

}
dρsdzs.

(S12)

The positions of the coherence volume and focusing plane are determined by the

cancellation of the Fresnel phase laws,

F(uin, z, ω)F∗
0 (uin, zs, ω)F(uout, z, ω)F∗

0 (uout, zs, ω) =

exp

[
i
ω

c0

(√
n2
0 −

||uin||2
f 2

+

√
n2
0 −

||uout||2
f 2

− 2n0

)
z

]

× exp

[
−i

ω

c0

(√
n2 − ||uin||2

f 2
+

√
n2 − ||uout||2

f 2

)
zs

]
.

(S13)

Under the paraxial approximation, these Fresnel phase laws can be developed as
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follows:

F(uin, z, ω)F∗
0 (uin, zs, ω)F(uout, z, ω)F∗

0 (uout, zs, ω) =

exp

[
−2i

nω

c0
zs

]
exp

[
−i

ω

c0

(
||uin||2

2f 2
+

||uout||2

2f 2

)(
z

n0

− zs
n

)]
,

(S14)

The cancellation of the first phase term defines the real position of the coherence

volume zs = zt = c0t/(2n) that appears at an effective depth z0 = c0t/(2n0) =

(n/n0)zt (Fig. S3a). Previous expression of R(ρout,ρin, z, t) (Eq. S12) can be

rewritten as follows:

R(ρout,ρin, z, t) =γmf(t− 2nzt/c)
t
⊛ (S15)∑

ω

∑
uin

∑
uout

∫∫∫
T (uout,ρs, z)γ(ρs, zs) (S16)

× T (uin,ρs, zs)T ∗
ref(−uin)T ∗

ref(uin) exp (iωt)

× exp

[
−i

ω

c0

(
||uin||2

2f 2
+

||uout||2

2f 2

)(
z

n0

− zs
n

)]
× exp

{
−i

2π

λf
[uin.(ρs − ρin) + uout.(ρs − ρout)]

}
dρsdzs.

(S17)

with f(t) =
∫
dω|S(ω)|2eiωt, the time response of the microscope. The symbol ⊛

stands for convolution over variable t. The position zf of the focusing plane is

obtained when the parabolic phase term cancels in the previous expression, that

is to say for zs = zf = (n0/n)zt. The apparent defocus induced by the mismatch

between n and n0 is thus equal to:

∆z = zf − z0 = zt(n0/n− n/n0) (S18)

An index mismatch thus implies a defocus distance ∆z that increases linearly with

zt (Fig. S3a). In the present study, the estimated defocus is roughly constant with
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FIG. S3. Mismatch between the coherence volume and focusing plane. a.

For a medium of refractive index n > n0, the focusing plane at zf is shifted from the

coherence volume at zt and expected ballistic depth z0. b. A defocus ∆z can be applied

in post-processing in order to make coincide the coherence and focusing planes.

zt. It thus means that the cornea displays an effective optical index n ∼ n0 = 1.33

and that the observed defocus rather originates from the different lengths between

the sample and reference arms.

Once the focusing plane is matched with the coherence volume, the Fresnel

phase laws in Eq. S15 vanish. Assuming n = n0, the coefficients of the time-gated

focused reflection matrix Rρρ(zt) can be derived as follows:

R(ρout,ρin, zt) =γm
∑
uin

∑
uout

∫∫
Tout(uout,ρs, zt)γ(ρs, zt)Tin(uin,ρs, zt)

× exp

{
i
2π

λf
[uin.(ρs − ρin) + uout.(ρs − ρout)]

}
dρs. (S19)

with

Tout(uout,ρs, zt) ≡ T (uout,ρs, zt)

and

Tin(uin,ρs, zt) ≡ T (uin,ρs, zt)T ∗
ref (−uin)T ∗

ref(uin).

While the output transmission matrix Tout corresponds to the sample transmission
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matrix T, the input transmission matrix Tin grasps both the sample and reference

arm aberrations.

The Fourier transform of the transmission coefficients Tin/out in Eq. S19 provide

local PSFs, Hin/out, such that:

Hin/out(ρ,ρs, zt) =
∑
u

Tin/out(u,ρs, zt) exp

(
i
2π

λf
u.ρ

)
. (S20)

The time-gated reflection matrix can be rewritten as follows:

R(ρout,ρin, zt) =

∫∫
dρsHout(ρs − ρout,ρs, zt)γ(ρs, z)Hin(ρs − ρin,ρs, zt) (S21)

The latter expression can be recast as a function the impulse responsesGin/out(ρs,ρin/out, zt)

between input/output focusing points and points ρs mapping the sample. Both

quantities are actually linked as follows:

Gin/out(ρs,ρin/out, zt) = Hin/out(ρs − ρin/out,ρs, zt) (S22)

Injecting the last expression into Eq. S21 leads to the following expression:

R(ρout,ρin, zt) =

∫∫
Gout(ρout,ρs, zt)γ(ρs, zt)Gin(ρin,ρs, zt) (S23)

Under a matrix formalism, the last expression can be rewritten as follows:

Rρρ(zt) = Gout(zt)× Γ(zt)×G⊤
in(zt), (S24)

Γ describes the scattering process inside the sample. Under a single scattering

assumption, this matrix is diagonal. Its coefficients then correspond the sample

reflectivity γ(ρs, zt). Gin and Gout are the input and output focusing matrices.

Their coefficients, Gin/out(ρin/out,ρs, zt), describe the transverse amplitude distri-
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bution of the focal spot when trying to focus at point (ρin/out, zt).

S5. REFLECTION POINT SPREAD FUNCTION

As mentioned in the accompanying paper, the off-diagonal cofficients ofRρρ(z, t)

enable to probe the focusing quality at any voxel by investigating the reflection

point spread function (RPSF, Eq. 6). To express theoretically the latter quantity, a

local isoplanatic assumption shall be made. This hypothesis implies that the PSFs

Hin/out are locally invariant by translation. This leads us to define local spatially-

invariant PSFs hin/out around each central midpoint ρp at each time-of-flight such

that:

Hin/out(ρs − ρin/out,ρs, z, t) = hin/out(ρs − ρin/out,ρp, zp, t). (S25)

The second assumption is to consider the medium reflectivity γ(ρs, z) as random:

⟨γ (ρ1, z) γ
∗ (ρ2, z)⟩ =

〈
|γ|2
〉
δ (ρ2 − ρ1) , (S26)

By combining those assumptions with Eq. S21, the ensemble average ofRPSF (∆ρ,ρp, z, t)

(Eq. 7) can be expressed as follows:

⟨RPSF (∆ρ,ρp, z, t)⟩ =
〈
|γ|2
〉
×
[
|hin|2

∆ρ
⊛ |hout|2

]
(∆ρ,ρp, zp, t). (S27)

S6. LOCAL DISTORTION MATRIX

Wave distortions can be investigated both at input and output of the reflection

matrix (see Methods of the accompanying paper). Here we will consider the prop-

erties of the output distortion matrix but the same theoretical developments can

be made at input.

The output distortion matrix can be built by first projecting the time-gated
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focused reflection matrix Rρρ(zt) in the pupil plane at output:

Ruρ(zt) = Puρ ×Rρρ(zt). (S28)

Then, the distorted component of the wave-field can be extracted by subtracting

the geometric phase expected in an ideal case (without aberrations). Mathemati-

cally, this can be performed using the following matrix element wise product:

Dout(zt) = Ruρ(zt) ◦P∗
uρ. (S29)

or in terms of matrix coefficients,

D(uout,ρin, zt) =
∑
ρout

R(ρout,ρin, zt) exp

[
−i

2π

λf
uout · (ρout − ρin)

]
. (S30)

Injecting Eqs. S20 and S21 into the last equation yields

D(uout,ρin, zt) =

∫∫
Tout(uout,ρs, zt)γ(ρs, zt)Hin(ρs − ρin,ρs, z) (S31)

× exp

[
−i

2π

λf
uout.(ρs − ρin)

]
dρs. (S32)

In previous papers15,18, we showed that the distortion matrix D highlights spatial

correlations of the reflected wave-field induced by the shift-shift memory effect30,43:

Waves produced by nearby points inside an anisotropic scattering medium generate

highly correlated distorted wave-fields in the pupil plane. A strong similarity can

be observed between distorted wave-fronts associated with neighboring points but

this correlation tends to vanish when the two points are too far away.

To extract and exploit this local memory effect for imaging, the field-of-

illumination should be subdivided into overlapping regions18 that are defined

by their central midpoint (ρp, zt) and their lateral extension L. All of the dis-

torted components associated with focusing points ρin located within each region
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are extracted and stored in a local distortion matrix D′
out(ρp, zt):

D′(uout,ρin,ρp, zt) = D(uout,ρin, zt) WL(ρin − ρp), (S33)

where WL(x, y) = 1 for |x| < L/2 and |y| < L/2, and zero otherwise.

Under a local isoplanatic assumption (Eq. S25), the aberrations can be modelled

by a local transmittance Tout(uout,ρp, zt) around each point (ρp, zt), such that

Tout(uout,ρs, zt) ≃ Tout(uout,ρp, zt). This transmittance is the Fourier transform

of the local PSF hout(ρ,ρp, zt):

Tout(uout,ρp, zt) =

∫∫
hout(ρ,ρp, z) exp

(
2π

λf
uout · ρ

)
dρ (S34)

Under this assumption, Eq.S31 can be rewritten as follows:

D′(uout,ρin,ρp, zt) = Tout(uout,ρp, zt)︸ ︷︷ ︸
transmittance

(S35)

×
∫∫

γ(ρ+ ρout, zt)hin(ρ,ρp, zt) exp

(
−i

2π

λf
uin · ρ

)
dρ︸ ︷︷ ︸

virtual source

.

The physical meaning of this last equation is the following: Each distorted wave-

field corresponds to the diffraction of a virtual source synthesized inside the

medium modulated by the transmittance Tout of the sample between the focal

and pupil planes. Each virtual source is spatially incoherent due to the random

reflectivity of the medium, and its size is governed by the spatial extension of

the input focal spot. The idea is now to smartly combine each virtual source to

generate a coherent guide star and estimate Tout independently from the sample

reflectivity.
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S7. CORRELATION OF WAVE DISTORTIONS

To do so, the correlation matrix Cout = DoutD
†
out is an excellent tool. Its

coefficients write as follows

Cout(uout,u
′
out,ρp, zt) = N−1

W

∑
ρin

D′(uout,ρin,ρp, zt)D
′∗(u′

out,ρin,ρp, zt) (S36)

The matrix Cout(ρp, zt) can be decomposed as the sum of its ensemble average,

the covariance matrix ⟨Cout⟩ (ρp, zt), and a perturbation term δCout(ρp, zt):

Cout(ρp, zt) = ⟨Cout⟩ (ρp, zt) + δCout(ρp, zt). (S37)

The intensity of the perturbation term scales as the inverse of the number NL =

(L/δρ0)
2 of resolution cells in each sub-region44,45:

〈
|δCout(u,u

′,ρp, zt)|2
〉
=

〈
|Cout(u,u,ρp, zt)|2

〉
NL

(S38)

This perturbation term can thus be reduced by increasing the size L of the spatial

window WL, but at the cost of a resolution loss.

Under assumptions of local isoplanicity (Eqs. S25 and S35) and random reflec-

tivity,

⟨γ(ρs, z)γ
∗(ρ′

s, z)⟩ = ⟨|γ|2⟩δ(ρs − ρ′
s). (S39)

The coefficients of the covariance matrix can be expressed as follows46:

⟨Cout⟩ (ρp, zt) = [Tout(ρp, zt) ◦Puρ]×CH(rp)× [Puρ ◦ Tout(ρp, zt)]
† , (S40)
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or in terms of matrix coefficients,

⟨Cout⟩ (uout,u
′
out,ρp, zt) =Tout(uout,ρp, zt)T ∗

out(u
′
out,ρp, zt)

×
∫∫

dρs |hin(ρs,ρp, zt)|2 exp
[
−i

2π

λf
(uout − u′

out) · ρs

]
=Tout(uout,ρp, zt)T ∗

out(u
′
out,ρp, zt)

×
[
Tin

u∗ Tin

]
(uout − u′

out,ρp, zt)︸ ︷︷ ︸
=CH(uout,u′

out,ρp,zt)

, (S41)

where the symbol ∗ stands for correlation product over variable u. CH is a refer-

ence correlation matrix that would be measured in an homogeneous cornea for a

virtual reflector whose scattering distribution corresponds to the output focal spot

intensity |hin(ρs,ρp, zt)|2. The covariance matrix ⟨Cin⟩ (ρp, zt) thus corresponds

to the same experimental situation but for a virtual reflector embedded into the

heterogeneous cornea under study.

S8. ITERATIVE PHASE REVERSAL

An estimator exp[iΦout(ρp, zt)] of the local aberration transmittance Tout(ρp, zt)

can be extracted by applying an iterative phase reversal algorithm to Cout (Eq. 34

of the accompanying paper). It mimics an iterative time reversal process on the

virtual reflector described above but imposes a constant amplitude for the time-

reversal invariant. This iterative phase reversal (IPR) process converges towards a

wavefront that maximizes the coherence of the wave-field reflected by the virtual

reflector18.

This IPR process assumes the convergence of the correlation matrix Cout

(Eq. S37) towards its ensemble average ⟨Cout⟩, the covariance matrix45,46. In fact,

this convergence is never fully realized and Cout should be decomposed as the sum

of this covariance matrix ⟨Cout⟩ and the perturbation term δCout (Eq. S37). This
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incomplete convergence towards the covariance matrix leads to a phase error δϕ

made on our estimation of each aberration phase law. The variance of this error

scales as follows: 〈
|δϕout(u)|2

〉
∼ 1

NLCin
(S42)

with Cin, the coherence factor that is a direct indicator of the focusing quality47,

ranging from 0 for a fully blurred guide star to 2/9 for a diffraction-limited focal

spot48. On the one hand, this scaling of the phase error with NW explains why

each spatial window should be large enough to encompass a sufficient number of

independent realizations of disorder. On the other hand, it should be small enough

to grasp the spatial variations of aberration phasr laws across the field-of-view. A

compromise has thus to be found between these two opposite requirements. It has

led us to to choose spatial windows of size L = 18.6 µm to ensure the convergence of

the IPR process. Note that, contrary to a recent study performed in an extremely

opaque cornea18, a multi-scale approach of wave distortions is not necessary here

since the cornea under study displays smoother fluctuations of optical index over

larger characteristic length scales. As previous works dealing with the CLASS

algorithm14,16, these imaging conditions ensure:

� A lower level of transverse aberrations, hence a higher coherence factor that

allows a direct convergence of IPR over reduced spatial windows.

� Larger isoplanatic patches, hence a direct convergence of the IPR process for

reduced spatial windows and no need to iterate the IPR process over smaller

spatial windows.
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