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Abstract

Label-free microscopy exploits light scattering to obtain a three-

dimensional image of biological tissues. However, light propagation is af-

fected by aberrations and multiple scattering, which drastically degrade the

image quality and limit the penetration depth. Multi-conjugate adaptive

optics and time-gated matrix approaches have been developed to compen-

sate for aberrations but the associated frame rate is extremely limited for

3D imaging. Here we develop a multi-spectral matrix approach to solve

these fundamental problems. Based on an interferometric measurement of

a polychromatic reflection matrix, the focusing process can be optimized

in post-processing at any voxel by addressing independently each frequency

component of the wave-field. A proof-of-concept experiment demonstrates

the three-dimensional image of an opaque human cornea over a 0.1 mm3-

field-of-view at a 290 nm-resolution and a 1 Hz-frame rate. This work paves

the way towards a fully-digital microscope allowing real-time, in-vivo, quan-

titative and deep inspection of tissues.
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Introduction

Imaging of thick scattering tissues remains the greatest challenge in label-free

microscopy1,2. On the one hand, short-scale inhomogeneities of the refractive in-

dex backscatter light and the reflected wave-field can be leveraged to provide a

structural image of the sample. On the other hand, larger-scale inhomogeneities

give rise to forward multiple scattering events that distort the incident and re-

flected wave-fronts. This phenomenon, known as aberration, leads to a drastic

degradation of resolution and contrast at depths greater than the scattering mean

free path ℓs (∼100 µm in biological tissues).

To circumvent this issue, adaptive optics (AO) has been transposed from as-

tronomy to microscopy for the last twenty years3. The basic idea is to compensate

for wave distortions either by a direct sampling of the wave-field generated by a

guide star or by an indirect metric optimization of the image. Unfortunately, AO

correction is limited to a finite area, the so-called isoplanatic patch, the area over

which aberrations can be considered spatially invariant. This problem becomes

particularly important for deep imaging, where each isoplanatic patch reduces to

a speckle grain at depths larger than the transport mean free path ℓt (∼ 1 mm

in biological tissues). Multi-conjugate AO could increase the corrected field-of-

view4, but this would be at the price of a much more complex optical setup and

an extremely long optimization process5.

More recently, following seminal works that proposed post-processing compu-

tational strategies for AO6–9, a reflection matrix approach has been developed for

deep imaging10–16. The basic idea is to illuminate the sample by a set of input

wave-fronts and record via interferometry the reflected wave-front on a camera.

Once this reflection matrix is measured, a set of matrix operations can be applied

in order to perform a local compensation of aberrations and restore a diffraction-

limited resolution for each pixel of the field-of-view. Nevertheless, the existing

approaches suffer from several limitations. In most experimental works10,11,13–16,
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the reflection matrix is time-gated around the ballistic time as usually performed

in time-domain OCT17. Such a measurement has one main advantage since it en-

ables the temporal filtering of most multiply-scattered photons18. However, it also

suffers from two strong drawbacks. First, time-gating means that a large part of

the information on the medium is discarded: Only the weakly distorted paths are

recorded and can be compensated by a spatial phase modulation of the incident

and reflected wave-fronts. Second, volumetric imaging can only be obtained by a

mechanical axial scanning of the sample, which limits the frame rate Fps to, at

best, 106 pixels.s−1 for a high quality correction over millimetric FOVs.

To go beyond, an acquisition of a spectral reflection matrix is required in or-

der to capture all the information required for the three-dimensional imaging of

a sample. In recent works19,20, the spatio-temporal degrees of freedom exhibited

by the reflection matrix have been exploited for tailoring dispersive focusing laws.

However, the acquisition rate was slow (Fps ∼ 103 pixels.s−1) because the num-

ber of input wave-fronts scaled as the number of voxels in the image. Moreover,

the experimental demonstration was limited to the imaging of a resolution target

through a scattering medium19,20 or a sparse medium made of colloidal particles20.

In this paper, we go beyond an academic proof-of-concept and address the ex-

tremely challenging case of ultra-fast 3D imaging of biological tissues themselves

(nerves, cells, collagen, extracellular matrix etc.). In particular, we will show how

the number of input wave-fronts can be drastically decreased by deterministic fo-

cusing operations applied to the reflection matrix guided by a self-portrait of the

focusing process.

To that aim, we report on a measurement of the multi-spectral reflection matrix

at a much higher frame rate (Fps ∼ 1010 pixels.s−1), with a 3D imaging demon-

stration on an ex-vivo opaque cornea at a resolution of 0.29 µm and 1.1 µm in

the transverse and axial directions, respectively. The experimental set up com-

bines a Fourier-domain full-field OCT (FD-FF-OCT) setup21–23 with a coherent
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multi-illumination scheme. Capable of recording a polychromatic reflection matrix

of 1010 coefficients in less than 1 s with an ultra-fast camera, this device is fully

compatible with future in-vivo applications. As in FD-FF-OCT, a spectral Fourier

transform and numerical refocusing can provide a 3D image of the sample for each

incident wave-front21–23 but, as expected, multiple scattering is shown to strongly

hamper the imaging process. A coherent compound of images obtained for each il-

lumination in post-processing can then provide a confocal image but its resolution

and contrast are drastically affected by sample-induced aberrations. Interestingly,

matrix imaging can go beyond by decoupling input and output focusing points at

each time-of-flight. A focused reflection matrix is synthesized and measures the

cross-talk between each point inside the sample. While previous works only con-

sidered focusing points at the same depth11–14, we show here that their axial scan

gives access to a self-portrait of the light focusing process. A minimization of the

point spread function extension enables an autofocus process at each depth of the

sample. Finally, a compensation of transverse aberrations is performed by means

of a local analysis of wave distortions16. A digital clearing of long-scale refractive

index heterogeneities is thus applied and a three-dimensional image of the sample

is obtained with an optimized contrast and close-to-ideal resolution throughout

the volume.

Results

Recording the Multi-Spectral Reflection Matrix.

3D matrix imaging is based on the measurement of a multi-spectral reflection

matrix from the scattering sample. The experimental setup and procedure are de-

scribed in Fig. 1 (see Methods and Supplementary Figure S1). Inspired by spectral

domain FFOCT24, it simply consists in a Linnik interferometer (Fig. 1a). In the

first arm, a reference mirror is placed in the focal plane of a microscope objective

(MO). The second arm contains the scattering sample to be imaged through an

identical MO. This interferometer is illuminated by a swept source through two
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FIG. 1. Measuring the multi-spectral reflection matrix. a, A wavelength swept

light source illuminates a Linnik interferometer through a collimator, two scanning mir-

rors and a lens (L1) that allows a raster scanning of the focal spot in the MO pupil

planes (uin) in each arm (a1). The sample placed in the focal plane of the first MO

(MO1, NA=0.8) is thus illuminated by a set of plane waves at each frequency of the

light source bandwidth (a2). The backscattered wave field is collected through the same

MO, focused by means of a second lens L2 on the surface of a CMOS camera where it

interferes with a reference beam (a3). The latter beam results from the reflection of the

same incident wave-fronts by a reference mirror placed in the focal plane of the second

MO (MO2, NA=0.8). b, At each frequency ω, for each input wave-front uin, the inter-

ferogram I(sout) (b1) recorded by each pixel sout of the camera provides one column of

the spectral reflection matrix Rsu(ω) = [R(sout,uin, ω)] (b2).

scanning mirrors and a lens that allows a raster scanning of the focal spot in the

MO pupil planes (Fig. 1a1). The sample and reference mirror are thus illuminated

by a set of plane waves at each frequency of the light source bandwidth (Fig. 1a2).

The reflected waves are collected through the same MOs and, ultimately, interfere

on a camera conjugated with the focal plane. For each input wave-front of coordi-

nate uin in the pupil plane, the interferogram I(sout,uin, ω) recorded at frequency

ω (Fig. 1a3) provides one column of the reflection matrix Rsu = [R(sout,uin, ω)]

(see Methods and Fig. 1b), where sout is the transverse location of each camera

5



sensor.

In the opaque cornea experiment, the reflection matrix R is measured with

Nin = 177 plane waves, corresponding to a full scan of the immersion MO pupil

(NA=0.8, refractive index n0 = 1.33). The interferograms are recorded by Nout =

10242 pixels of the camera, corresponding to an output FOV of Ωout×Ωout = 297×

297 µm2, with a spatial sampling δρout = 290 nm. Finally, Nω = 201 independent

frequencies are used to probe the sample within the frequency bandwidth [800; 875]

nm of the light source. All the information about the sample is thus contained

in the 1010 coefficients acquired in 1.4 s. In the following, we show how to post-

process this wealth of optical data to build a 3D highly-contrasted image of the

cornea at a diffraction-limited resolution.

Ultra-fast Three-Dimensional Imaging.

To that aim, the most direct path is to perform, a Fourier transform over

frequency ω of the back-scattered wave-field recorded for one illumination21: This

is the principle of FF-SS-OCT which provides an image whose axial dimension is

dictated by photons’ times-of-flight (Supplementary Section S2). In the present

case, the resulting image is, however, completely blurred without any connection

with the sample reflectivity (Supplementary Figure S2). Indeed, a high NA implies

a very restricted depth-of-field (δzf ∼ 2n0λ/NA2 ∼ 3.5 µm), which is prohibitory

for 3D imaging. A prior numerical focusing of the wave-field recorded by the

camera shall be performed at each depth z of the sample. This is the principle of

the holoscope developed by Hillmann et al. about a decade ago9.

This numerical focusing process is performed by means of Fresnel propagators.

For this purpose, the multi-spectral reflection matrix should be first projected in

the output pupil plane (uout) by a simple 2D spatial Fourier transform:

Ruu(ω) = T∗
us(ω)×Rsu(ω) (1)
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where Tus = [T (u, s)] is the Fourier transform operator:

T (u, s, ω) = e
−j ω

c0

u·s
f (2)

with f , the focal length of the MOs and c0 the vacuum light velocity. A Fresnel

propagator is then applied at the output of Ruu(ω) to numerically shift the focal

plane, originally located in the middle of the sample (z = 0) to any depth z:

Rρu(z, ω) = [T⊤
uρ(ω) ◦ Fu(z, ω)]×Ruu(ω) (3)

where the symbol ◦ accounts for the Hadamard (term-by-term) product. Fu(z, ω)

is a phase mask that accounts for the propagation of each plane wave of transverse

wave vector k|| = ωu/(c0f) over a thickness z of the sample:

F (u, z, ω) = e
−j

(
n0ω
c0

−kz
)
zO(u) (4)

with

kz =
ω

c0

√
n2
0 −

||u||2
f 2

, (5)

the longitudinal component of the wave vector, and O(u), the finite pupil support:

O(u) = 1 for ||u|| < fNA and zero elsewhere. Each reflection matrix Rρu(z, ω) =

[R(ρout,uin, z, ω)] connects each output virtual focusing point rout = (ρout, z) to

each input illumination uin at frequency ω.

Each frequency component of Rρu(z, ω) should then be recombined in order to

time gate the singly-scattered photons. In practice, an inverse Fourier transform

over frequency ω is performed and yields an R−matrix as a function of photon’s

time-of-flight t:

Rρu(z, t) =

∫
dωRρu(z, ω)e

jωt. (6)

At each time t, the single scattering contribution of the wave-field corresponds to
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photons that have been scattered in a coherence volume located at a depth zt in

the sample and of thickness δzt ∼ c0λ
2/(2n0∆λ) ∼ 3.5 µm. When the focusing

plane and the coherence volume coincide (Fig. 2a1), an holoscopic image of the

sample, IH , can be obtained for each input wave-front uin (Fig. 2a1):

IH(rt,uin) = R(ρout,uin, zt, t). (7)

with rt = (ρout, zt). In practice, an exact matching between the focusing plane

and coherence volume is difficult to obtain especially for deep imaging (i.e low

single-to-multiple scattering ratio). We will describe further how matrix imaging

can provide a robust observable for this fine tuning.

Figures 2a2-a4 display longitudinal and transverse cross-sections of the cornea

obtained for a normal incident plane wave (see also Supplementary Movies 1 and

2). Although this holoscopic image can be obtained at a very high frame rate

(Fps ∼ 1012 pixel/s), it also exhibits a speckle-like feature. Indeed, multiply-

scattered photons taking place ahead of the coherence volume at each time t can

pollute the image. Such paths generate a random speckle noise without any con-

nection with the medium reflectivity. To remove it, a naive strategy is to sum the

intensity of the holoscopic images obtained for each illumination uin. Such an in-

coherent compound tends to smooth out the speckle noise but the resulting image

still exhibits an extremely low contrast due to the multiple scattering background

(see Supplementary Fig. S2). To get rid of it, the single-to-multiple scattering ra-

tio shall be increased18. For this purpose, a spatial filtering of multiply-scattered

photons can be performed by means of a confocal filter. Nevertheless, this op-

eration is extremely sensitive to the focusing quality inside the sample. A prior

optimization of the focusing process is thus needed.

Digital confocal imaging.

To that aim, the reflection matrix is projected in the focused basis both at input
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FIG. 2. From Holoscopy to Matrix Imaging. a, Imaging Methods. a1, Holoscopy:

The sample is illuminated by a plane wave (in green) and an image is produced by spatio-

temporal focusing of the back-scattered wave-field on each voxel rout mapping the sample

(red). a2, Digital confocal imaging: The sample is illuminated by a set of plane waves

(in green) and a focused refection matrix Rρρ(zt) is built by numerical focusing. A 3D

confocal image is deduced from the diagonal elements of Rρρ(z) at each depth zt. a3,

Reflection matrix imaging: A local compensation of wave distortions is performed for

each voxel. b, B-scan image showing one longitudinal section of the cornea reflectivity.

c-d, En-face image of the cornea at z = 150 µm and 275 µm, respectively [scale bar: 75

µm]. In panels (a)-(d), subscripts 1, 2 and 3 stand for holoscopy, digital confocal and

RMI, respectively. e, RPSF at depth z = 150 µm [scale bar: 3 µm] for digital confocal

(e1-f1) and RMI (e2-f2) images. The radial evolutions of these RPSFs are compared in

panel (e3) [DCM: blue; RMI: orange]. f, Same as in panel (e) but at depth z = 275 µm.9



and output. Mathematically, it simply consists in a numerical input focusing of

Rρu using the Fresnel propagator Fu (Eq. 4):

Rρρ(z, t) =
∑
ω

Rρu(z, ω)× [Tuρ(ω) ◦ F∗
u(z, ω)]e

jωt. (8)

where the symbol ∗ stands for phase conjugate. Expressed in the focused basis,

the reflection matrix Rρρ(z, t) contains the responses at each echo time t between

virtual sensors of expected positions rin = (ρin, z) and rout = (ρout, z).

At each time-of-flight, the focused R-matrix is equivalent to the time-gated

reflection matrix considered in previous studies for optical matrix imaging, except

that we here have at our disposal a supplementary degree of freedom: The param-

eter z that controls the axial position of the focusing plane. A raw confocal image

IC can be built by considering the diagonal elements of Rρρ (ρin = ρout):

IC(rt, z) = R(ρ,ρ, z, t). (9)

with r = (ρ, zt). Figure 3c shows the en-face image obtained at a given time-

of-flight t for different values of z. Qualitatively, we see that the image quality

strongly depends on the relative position between the coherence volume and the

focusing plane. Here the presence of a highly reflecting structure, a corneal nerve,

allows us to determine the parameter z that allows to match the focusing plane

with the coherence volume.

Self-portrait of the focusing process.

A more quantitative and robust observable is provided by the off-diagonal co-

efficients of Rρρ(z, t) that enable to probe the focusing quality at any voxel. More

precisely, this can be done by investigating the reflection point spread function
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(RPSF) defined as follows:

RPSF (∆ρ,ρ, z, t) = |R(ρ−∆ρ/2,ρ+∆ρ/2, z, t)|2 , (10)

This quantity derived from the off-diagonal coefficients of Rρρ, quantifies the fo-

cusing quality for each point rt = (ρ, zt). For a medium of random reflectivity

and under a local isoplanatic assumption, its ensemble average actually scales as25

(Supplementary Section S5):

⟨RPSF (∆ρ,ρ, z, t)⟩ ∝ |H in|2
∆ρ
⊛ |Hout|2(∆ρ,ρ, z, t) (11)

where the symbol ⟨· · · ⟩ stands for ensemble average. H in/out(∆ρ,ρ, z, t) is the

spatial distribution of the input/output PSF along the de-scanned coordinate ∆ρ

in the coherence plane at zt when trying to focus at point (ρ, z).

The RPSF can thus provide a self-portrait of the focusing process inside the

cornea. Figure 3a shows the evolution of the laterally-averaged RPSF for a given

time t as a function of the parameter z in the Fresnel propagator (Eq. 4). As

expected, the focusing plane and coherence volume coincide when the RPSF ex-

tension is minimized (Fig. 3b), i.e for a defocus distance ∆z = z−zt = 0 (Fig. 3a2).

The estimated defocus is roughly constant over the whole thickness of the cornea.

This proves that the effective index of the cornea is actually very close to the

refractive index n0 used in our propagation model (see Supplementary Section

S6).

Figures 2b1-b−3 displays longitudinal and transverse cross-sections of the con-

focal image obtained after tuning the coherence volume and focusing plane at any

depth (see also Supplementary Movies 3 and 4). The resolution and contrast are

much better than the incoherent compound image (Supplementary Fig. S2). In

particular, the axial resolution δzc of the digital confocal image both benefits from

the virtual time gating and confocal filter: δzc = 1/(1/δzt + 2/δzf ) ∼ 1.1 µm.
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FIG. 3. Auto-focusing process guided by the reflection point spread function.

a Evolution of the RPSF versus the defocus distance ∆z for a fixed coherence volume.

The transverse distribution of the RPSF is shown for several values of defocus (a1)-(a3).

The evolution of its radial average is displayed in panel (a4). b. Relative position of

the focusing plane (dash-dotted line) and coherence volume (red layer) for the different

values of defocus ∆z displayed in (a). c. En-face confocal image and zoom on a nerve.

In each panel, the subscripts 1, 2 and 3 stand for defocus distances ∆z = −4, 0, and +4

µm. The considered coherence volume is located at the effective depth zt = 140 µm in

the cornea.

However, the image quality remains perfectible. Indeed, the RPSF still spreads

well beyond the theoretical resolution cell (∼ 1 pixel) in Fig. 3a2. These residual

aberrations originate from the lateral fluctuations of the optical index n(ρ, z) in

the cornea. To demonstrate this last assertion, the transverse evolution of the

focusing process can be investigated by a local assessment of the focusing quality

(see Methods). A map of local RPSFs is displayed in Fig. 4a. Although the digi-
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tal autofocus process provides a correct focusing quality over the whole thickness

of the cornea on average, the local RPSFs exhibit important fluctuations across-

the field-of-view. This observation is a manifestation of the 3D distribution of

the optical index n(r) inside the cornea. This anisoplanic feature requires a local

compensation of aberrations as we will see below.

Local Compensation of Wave Distortions.

By considering the set of autofocused reflection matrices, Rρρ(zt), a local com-

pensation of transverse aberrations can be performed at each depth zt
16. It ba-

sically consists in a local analysis of wave distortions on overlapping spatial win-

dows of size L = 18.6 µm.By exploiting a shift-shift memory effect characteristic

of anisotropic scattering in the cornea26, one can estimate the input and output

aberration phase matrices, Φin/out(zt) = [ϕin/out(uin/out,ρ, zt)], between the pupil

plane (uin/out) and the medium voxels (ρ, zt) (Methods)16. The result is displayed

in Fig. 4b at zt = 140 µm. Strikingly, the estimated aberration laws exhibit strong

phase fluctuations and vary quickly between neighboring windows. This complex

feature has two origins: (i) the lateral fluctuations exhibited by the optical index

inside the cornea; (i) the imperfections of the imaging system. The latter compo-

nent accounts for the difference observed between the input and output aberration

transmittances (Supplementary Section S4). In fact, the input aberration phase

law accumulates not only the input aberrations of the sample-arm but also those

of the reference arm. The sample-induced aberrations can be investigated inde-

pendently from the imperfections of the experimental set up by considering the

output aberration phase matrix ϕ
(out)
u . The aberration phase is mainly a defocus

that varies across the field-of-view due to lateral variations of the optical index.

Local shifts of the pupil function are also observed and result from a local curvature

of the coherence volume with respect to the focusing plane.

The extracted aberration phase laws can be used to build focusing matri-

ces Gin/out containing the estimated impulse responses between the image voxels

13



FIG. 4. Local Adaptive Focusing by Matrix Analysis of Wave Distortions.

a, Transverse map of local RPSFs after the auto-focusing process (a1) and after the

aberration matrix compensation of wave distortion (a2) at zt = 140 µm Each RPSF is

displayed over a de-scan area of 6× 6 µm2. b, Transverse map of input (b1) and output

(b2) aberration phase laws, ϕin/out, estimated from the pupil plane at the same depth.

(ρin/out) and the focal plane at each depth zt:

Gin/out(zt) =
{
Tuρ ◦ exp

[
iΦin/out(zt)

}]
×T†

uρ (12)

The focused R−matrix is then de-convolved by applying the phase conjugate of
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the focusing matrices at its input and output (Fig. 2a3), such that:

R(c)
ρρ(zt) = G†

out(zt)×Rρρ(zt)×G∗
in(zt) (13)

The final image of the sample can be obtained by considering the diagonal elements

of the corrected matrix R
(c)
ρρ:

IM(rt) = R(c)(ρ,ρ, zt). (14)

Figures 2c3-e3 display the corresponding longitudinal and transverse cross-sections

of the matrix image (see also Supplementary Movies 5, 6 and 7). The comparison

with the confocal image [Figs. 2c2-e2] shows a clear gain in contrast. The resolution

improvement can be assessed by examining the RPSF. While, at the previous

step, the confocal peak exhibits a spreading well beyond the diffraction limit and

a background at depth due to forward multiple scattering events (Fig. 2e1,f1),

matrix imaging compensates for these two issues and leads to an almost ideal

RPSF (Fig. 2e2,f2). The map of final RPSFs displayed by Fig. 4c3 shows the high

focusing quality provided by matrix imaging over the whole field-of-view at the

considered depth zt = 140 µm.

The obtained three-dimensional image highlights several crucial features of the

cornea: its lamellar structure induced by the collagen fibrils (Fig. 2b3); (ii) the

complex network of nerves that covers the cornea (blue arrows in Fig. 2c3); (iii)

characteristic structures of the cornea such as keratocytes (red arrows in Fig. 2c3)

and; (iv) stromal striae (dashed green lines in Fig. 2d3) whose presence is an

indicator of keratoconus27. Such a high-resolution image can thus be of particular

importance for bio-medical diagnosis, given the high frame rate of our device. Of

course, matrix imaging is not limited to the cornea but can be also applied to

the deep inspection of retina, skin or arteries, tissues whose structures are already

monitored by OCT but, until now, limited by a modest penetration depth. In that
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perspective, the ability of matrix imaging in overcoming high-order aberrations and

multiple scattering constitutes a paradigm shift for deep optical microscopy.

Discussion

In contrast with previous works that considered the reflection matrix at a single

frequency28 or time-of-flight10,11,14, the measurement of a polychromatic reflection

matrix20 allowed us to realize in post-processing: (i) a 3D confocal image of the

sample reflectivity on millimetric volumes (0.1 mm3 = 109 pixels) in an ultra-

fast acquisition time (1 s); (ii) a local compensation of aberrations which usually

prevent deep imaging. Compared to a time-gated reflection matrix that only allows

a transverse compensation of aberrations, the polychromatic reflection matrix gives

access to temporal degrees of freedom that can be exploited for compensating the

axial distortions of the coherence volume. Eventually, it can be exploited for

overcoming the multiple scattering limit in optical microscopy since it provides

the opportunity of tailoring complex spatio-temporal focusing laws19 required to

focus light in depth.

To do so, the mapping of the refractive index will also be an important step to

build accurate focusing laws inside the medium29. As shown by quantitative phase

imaging of thin biological samples, this physical parameter is also a quantitative

marker for biology. Mapping the refractive index in 3D and in an epi-detection

geometry will pave the way towards a quantitative imaging of biological tissues.

In that perspective, an issue we have not considered yet is medium motion

during the acquisition of the reflection matrix. Of course, the assumption of a

static medium is everything but true especially for in-vivo applications30. To cope

with the dynamic features of the medium, two strategies can be followed. The first

one is to limit the measurement time of theR-matrix at its minimum, as allowed by

our device using a few illuminations. The second one is to develop algorithms that

consider medium motion during the measurement of R31. Interestingly, temporal

fluctuations of the medium’s reflectivity and refractive index can provide a key
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information for probing the multi-cellular dynamics in optical microscopy32,33. By

its frame rate and volumetric capabilities, our device will constitute an ideal tool

for probing the 3D dynamics of tissues in a near future.
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Methods

Experimental components.

The following components were used in the experimental setup (Fig. 1): A

swept laser source (800-875 nm; Superlum-850 HP), one galvanometer (Thorlabs,

LSKGG4), one scan lens L1 (f1 = 110 mm), two immersion objective lenses (40×;

NA, 0.8; Nikon), an imaging lens L2 (f2 = 250 mm) and an ultrafast camera

(25 kHz; Phantom-v2640).

Sample preparation.

In the presented experiment, the corneal sample was fixed with paraformalde-

hyde (4% concentration).

Sampling of input and output wave-fields.

The dimension of the input pupil is Din×Din = 9×9 mm; the spatial sampling

of input wave-fields is δuin = 600µm. Given the magnification of the output

lens system (MO, L2) system MO1 and the inter-pixel distance of the camera

(δsout = 12 µm), the output wave-field is sampled at a resolution close to λ/(4NA):

δρout = 290 nm.

Data acquisition and GPU processing.

All the interferograms of the acquisition sequence are recorded by the camera

in 1.4 s and stored in its internal memory. Then, the whole data set (75 Go)

is transferred to the computer in 5 min. The numerical post-processing of the

reflection matrix is performed by GPU (NVIDIA TITAN RTX) and takes 3.6 s

per input wave-fronts. For the data set considered in this paper, all the focusing

and aberration correction algorithms are performed in 1 hour.

On-axis holography.

For each input wave-field, the interferogram recorded by the camera can be
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expressed as follows:

I(sout,uin, ω) = |R(sout,uin,ω) +Rref(sout,uin, ω)|2 (15)

with R and Rref, the wave-fields reflected by the sample and reference arms. Then

a Fourier transform in the frequency domain is performed. The resulting intensity

can be written as follows:

I(sout,uin, t) = R(sout,uin, t)
t
⊛ R∗(sout,uin,−t) (16)

+Rref(sout,uin,−t)
t
⊛ R∗

ref(sout,uin,−t) (17)

+Rref(sout,uin, t)
t
⊛ R∗(sout,uin,−t) (18)

+R(sout,uin, t)
t
⊛ R∗

ref(sout,uin,−t) (19)

where the symbol ⊛ stands for the convolution product. The two first terms

(Eqs. 16 and 17) correspond to the self-interference of each arm with itself. Both

contributions emerge at an optical depth close to zero (t = 0). The two last terms

correspond to the anti-causal (Eq. 18) and causal (Eq. 19) components of the in-

terference between the two arms. By applying a Heavyside filter to I(sout,uin, t)

along the time dimension, one can isolate the causal contribution (Eq. 19). An

inverse Fourier transform then yields the distorted wave-field D(sout,uin, ω) =

R(sout,uin, ω)R
∗
ref(sout,uin, ω). If aberrations in the reference are neglected (Sup-

plementary Section S3), the reference wave-field is a replica of the incident wave-

field,

Rref(sout,uin, ω) = exp

(
i
2π

λf
uin.sout

)
. The multi-spectral reflection matrix is thus extracted using the following relation:

Rsu(ω) = Dsu(ω) ◦Rref(ω) (20)
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where the symbol ◦ accounts for the Hadamard (term-by-term) product.

Local estimation of focusing quality

To probe the local RPSF, the field-of-view is divided at each effective depth

zt into regions that are defined by their central midpoint ρp and their spatial

extension L. A local average of the back-scattered intensity can then be performed

in each region:

RPSFl(∆ρ,ρp, z, zt) = ⟨|R(ρ+∆ρ/2,ρ−∆ρ/2, z, t)|2WL(ρ− ρp)⟩ρ (21)

where the symbol ⟨· · · ⟩x stands for an average over the variable x in subscript.

WL(ρ − ρp) = 1 for |ρ − ρp| < L, and zero otherwise. In this paper, a spatial

window of size L = 18.6 µm has been used to smooth out fluctuations due to the

sample inhomogeneous reflectivity25.

Local compensation of wave-distortions

The starting point is the time-gated reflection matrix Rρρ(zt), obtained after

tuning the focusing plane and coherence volume at each echo time t. The first

step is a projection of Rρρ(zt) in the pupil plane at input via a numerical Fourier

transform:

Rρu(zt) = T⊤
uρ(ωc)×Rρρ(zt) (22)

An input distortion matrix is then built by performing a element-wise product

between Ruρ(zt) and the phase conjugate reference matrix Tuρ(ωc) that would be

obtained in absence of aberrations13 (Supplementary Section S7):

Dρu(zt) = Rρu(zt) ◦T∗
uρ(ωc) (23)

A local correlation matrix Cin of wave distortions is then built around each point
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rp = (ρp, zt) of the field-of-view (Supplementary Section S8). Its cofficients write:

Cin(uin,u
′
in, rp) = ⟨D(ρout,uin, zt)D(ρout,u

′
in, zt)WL(ρout − ρp)⟩ρout

(24)

Iterative phase reversal (see further) is then applied to each correlation matrix

Cin(rp)
16 (Supplementary Section S9). The resulting input phase laws, Φin(zt) =

[ϕin(uin,ρp, zt)], are used to compensate for the wave distortions undergone by the

incident wave-fronts:

R′
ρρ(zt) = {Rρu(zt) ◦ exp [−iϕin(zt)]} ×T∗

uρ(ωc) (25)

The corrected matrix R′
ρρ is only intermediate since phase distortions undergone

by the reflected wave-fronts remain to be corrected.

To that aim, R′
ρρ(zt) is now projected in the pupil plane at output:

R′
uρ(zt) = Tuρ(ωc)×R′

ρρ(zt). (26)

An output distortion matrix is then built:

Duρ(zt) = T∗
uρ(ωc) ◦R′

uρ(zt) (27)

From Duρ, one can build a correlation matrix Cout for each point rp:

Cout(uout,u
′
out, rp) = ⟨D(uout,ρin, zt)D

∗
out(u

′
out,ρin, zt)WL(ρin − ρp)⟩ρin

(28)

The IPR algorithm described further is then applied to each matrix Cout(rp).

The resulting output phase laws, Φout(zt) = [ϕout(uout,ρp, zt)], are leveraged to

compensate for the residual wave distortions undergone by the reflected wave-

fronts:

R(c)
ρρ(zt) = T†

uρ(ωc)×
{
exp [−iϕout(zt)] ◦R′

uρ(zt)
}

(29)
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Iterative phase reversal algorithm.

The IPR algorithm is a computational process that provides an estimator of

the phase of the transmittance that links each point u of the pupil plane with each

voxel rp = (ρp, zt) of the cornea volume16. To that aim, the correlation matrix

C computed over the spatial window WL centered around a given point (ρp, zt)

is considered (Eqs. 24 and 28). Mathematically, the algorithm is based on the

following recursive relation:

Φ(n)
u (ρp, zt) = arg

{
C(ρp, zt)× exp

[
iΦ(n−1)

u (ρp, zt)
]}

(30)

where Φ
(n)
u is the estimator of the transmittance phase at the nth iteration of the

phase reversal process. Φ
(0)
u is an arbitrary wave-front that initiates the process

(typically a flat phase law) and ϕ = limn→∞ϕ(n) is the result of IPR.
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Code availability. Codes used to post-process the optical data within this paper

are available from the corresponding author.
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and G. Hüttmann, Aberration-free volumetric high-speed imaging of in vivo retina,

Sci. Rep. 6, 35209 (2016).

[10] S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.-S. Lee, Y.-S. Lim,

Q.-H. Park, and W. Choi, Imaging deep within a scattering medium using collective

accumulation of single-scattered waves, Nat. Photonics 9, 253 (2015).

[11] A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, Smart optical

24

https://doi.org/10.1038/nmeth.1483
https://doi.org/10.1038/nphoton.2016.257
https://doi.org/10.1038/lsa.2014.46
https://doi.org/10.1364/oe.23.007463
https://doi.org/10.1063/1.5033917
https://doi.org/10.1063/1.5033917
https://doi.org/10.1038/nphys514
https://doi.org/10.1073/pnas.1121193109
https://doi.org/10.1038/nphoton.2013.71
https://doi.org/10.1038/srep35209
https://doi.org/10.1038/nphoton.2015.24


coherence tomography for ultra-deep imaging through highly scattering media, Sci.

Adv. 2, e1600370 (2016).

[12] S. Kang, P. Kang, S. Jeong, Y. Kwon, T. D. Yang, J. H. Hong, M. Kim, K.-D. Song,

J. H. Park, J. H. Lee, M. J. Kim, K. H. Kim, and W. Choi, High-resolution adaptive

optical imaging within thick scattering media using closed-loop accumulation of

single scattering, Nat. Commun. 8, 2157 (2017).

[13] A. Badon, V. Barolle, K. Irsch, A. C. Boccara, M. Fink, and A. Aubry, Distortion

matrix concept for deep optical imaging in scattering media, Sci. Adv. 6, eaay7170

(2020).

[14] S. Yoon, H. Lee, J. H. Hong, Y.-S. Lim, and W. Choi, Laser scanning reflection-

matrix microscopy for aberration-free imaging through intact mouse skull, Nat.

Commun. 11, 5721 (2020).

[15] Y. Kwon, J. H. Hong, S. Kang, H. Lee, Y. Jo, K. H. Kim, S. Yoon, and W. Choi,

Computational conjugate adaptive optics microscopy for longitudinal through-skull

imaging of cortical myelin, Nat. Commun. 14, 105 (2023).

[16] U. Najar, V. Barolle, P. Balondrade, M. Fink, A. C. Boccara, M. Fink, and

A. Aubry, Non-invasive retrieval of the transmission matrix for optical imaging

deep inside a multiple scattering medium, arXiv: 2303.06119 (2023).

[17] D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee,

T. Flotte, K. Gregory, C. Puliafito, et al., Optical coherence tomography, Science

254, 1178 (1991).

[18] A. Badon, A. C. Boccara, G. Lerosey, M. Fink, and A. Aubry, Multiple scattering

limit in optical microscopy, Opt. Express 25, 28914 (2017).

[19] Y.-R. Lee, D.-Y. Kim, Y. Jo, M. Kim, and W. Choi, Exploiting volumetric wave

correlation for enhanced depth imaging in scattering medium, Nat. Commun. 14

(2023).

[20] Y. Zhang, D. Minh, Z. Wang, T. Zhang, T. Chen, and C. W. Hsu, Deep

25

https://doi.org/10.1126/sciadv.1600370
https://doi.org/10.1126/sciadv.1600370
https://doi.org/10.1038/s41467-017-02117-8
https://doi.org/10.1126/sciadv.aay7170
https://doi.org/10.1126/sciadv.aay7170
https://doi.org/10.1038/s41467-020-19550-x
https://doi.org/10.1038/s41467-020-19550-x
https://doi.org/10.1038/s41467-022-35738-9
https://hal.science/hal-03981863/
http://science.sciencemag.org/content/254/5035/1178
http://science.sciencemag.org/content/254/5035/1178
https://doi.org/10.1364/OE.25.028914
https://www.nature.com/articles/s41467-023-37467-z
https://www.nature.com/articles/s41467-023-37467-z


imaging inside scattering media through virtual spatiotemporal wavefrontshaping,

arXiv:2306.08793 (2023).
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