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ANALYSIS OF COMPRESSIBLE BUBBLY FLOWS. PART II : DERIVATION OF
A MACROSCOPIC MODEL

Matthieu Hillairet1,*, Hélène Mathis1 and Nicolas Seguin2

Abstract. This paper is the second of the series of two papers, which focuses on the derivation of an
averaged 1D model for compressible bubbly flows. For this, we start from a microscopic description of
the interactions between a large but finite number of small bubbles with a surrounding compressible
fluid. This microscopic model has been derived and analysed in the first paper. In the present one,
provided physical parameters scale according to the number of bubbles, we prove that solutions to the
microscopic model exist on a timespan independent of the number of bubbles. Considering then that
we have a large number of bubbles, we propose a construction of the macroscopic variables and derive
the averaged system satisfied by these quantities. Our method is based on a compactness approach
in a strong-solution setting. In the last section, we propose the derivation of the Williams–Boltzmann
equation corresponding to our setting.
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1. Introduction

The present work represents a straight continuation of a series of articles which proposes to justify the
construction of multiphase flow models. The structure of multiphase flow models can be derived formally by
applying standard conservation principles [9,10,12,17]. However this procedure leaves aside key-terms that have
to be related to mechanical/thermodynamical unknowns via state laws. To this end, a sharp description of the
interactions between phases is required. Classical methods are based on averaging operators whose range of
validity is still to be investigated. Furthermore, the action of these averaging operators on nonlinear quantities
requires further modelling assumptions. From the analytical standpoint, the computations we provide herein
follow previous analysis of the first author notably in collaboration with D. Bresch [3, 4, 7, 14] complementing
previous approaches in [1, 13, 20]. In these references, one-velocity Baer–Nunziato-like models are derived for
multiphase fluids [2]. By this terminology, we mean that the averaged mixture is described by an additional
evolution equation which governs the dynamics of the void fraction. This additional equation includes a relax-
ation term due to mechanical exchanges between phases. These derivations are based on the remark that, if the
interfaces act as a “perfect” transducer (no mass transfer, perfect transfer of mechanical stress), combining the
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different phases equations yields a global one-fluid equation. Deriving multiphase flow models then reduces to
a thorough analysis of highly-oscillatory solutions to the one-fluid equation. A particular analytical framework
of mixed-regularity (smooth velocity with discontinuous densities [8, 16, 22]) is identified in [5] to make this
approach fully rigorous. However, this approach is restricted to an ideal case (see [6] for further investigations
in this context). The aim of this paper is to tackle the derivation of averaged models in presence of jumps at
interfaces. Starting from an original microscopic model (that is derived in the first paper [15]) in which the
two phases are fully separated, we derive a 1D averaged compressible bubbly-flow model by performing space
averaging operators.

The averaged model reads as follows. It is set on the container Ω = (−1, 1) filled with a gas/fluid mixture.
The averaged variables are the void fractions �̄�𝑓,𝑔 ∈ [0, 1], the mean densities 𝜌𝑓,𝑔 ∈ [0,∞), a bubble phase
covolume1 𝑓𝑔 ∈ [0,∞) and the mixture velocity �̄� ∈ R. It reads:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡

(︀
�̄�𝑔𝑓𝑔

)︀
+ 𝜕𝑥

(︀
�̄�𝑔𝑓𝑔�̄�

)︀
= 0,

𝜕𝑡(�̄�𝑓𝜌𝑓 ) + 𝜕𝑥(�̄�𝑓𝜌𝑓 �̄�) = 0,
𝜕𝑡(�̄�𝑔𝜌𝑔) + 𝜕𝑥(�̄�𝑔𝜌𝑔�̄�) = 0,

𝜕𝑡�̄�𝑓 + �̄�𝜕𝑥�̄�𝑓 = RT,
𝜕𝑡(𝜌�̄�) + 𝜕𝑥

(︀
𝜌�̄�2
)︀

= 𝜕𝑥Σ̄,

on (0, 𝑇 )× Ω, (1)

with the compatibility conditions:

�̄�𝑓 + �̄�𝑔 = 1, 𝜌 = �̄�𝑓𝜌𝑓 + �̄�𝑔𝜌𝑔 (2)

and where the mixture stress tensor writes

Σ̄ =
𝜇𝑔𝜇𝑓

�̄�𝑓𝜇𝑔 + �̄�𝑔𝜇𝑓

[︂
𝜕𝑥�̄�−

(︂
�̄�𝑓

𝜇𝑓
p𝑓 (𝜌𝑓 ) +

�̄�𝑔

𝜇𝑔
p𝑔(𝜌𝑔)

)︂
− 𝛾𝑠

�̄�𝑔

𝜇𝑔
𝑓𝑔

]︂
, (3)

while the void fraction relaxation term reads:

RT =
�̄�𝑔�̄�𝑓

�̄�𝑓𝜇𝑔 + �̄�𝑔𝜇𝑓

[︀
(𝜇𝑔 − 𝜇𝑓 )𝜕𝑥�̄�+ (p𝑓 (𝜌𝑓 )− p𝑔(𝜌𝑔))− 𝛾𝑠𝑓𝑔

]︀
. (4)

In these latter identities appear the constants 𝜇𝑓 , 𝜇𝑔 > 0 (resp. the functions p𝑓 ,p𝑔) representing the fluid and
bubble viscosities (resp. the fluid and gas pressure laws). The constant 𝛾𝑠 > 0 represents the surface tension.

The system (1) and (2) complemented with the state laws (3) and (4) is obtained starting from the following
microscopic model, where the two phases are disjoint and their interactions only appear through the interfaces.
Again, the two-phase flow is posed in the one-dimensional domain Ω = (−1, 1), filled by a liquid (the fluid,
or the continuous phase, indexed by 𝑓) and bubbles (the gas, or the dispersed phase, indexed by 𝑔). The 𝑁
bubbles are described by their centers 𝑐𝑘 and their radii 𝑅𝑘, so that the 𝑘th bubble is

𝐵𝑘 =
(︀
𝑥−𝑘 , 𝑥

+
𝑘

)︀
, 𝑥±𝑘 = 𝑐𝑘 ±𝑅𝑘, ∀ 𝑘 = 1, . . . , 𝑁.

The fluid domain is

ℱ = Ω ∖
𝑁⋃︁

𝑘=1

𝐵𝑘.

For later use, we also introduce the fluid intervals

ℱ𝑘 =
(︀
𝑥+

𝑘 , 𝑥
−
𝑘+1

)︀
for 𝑘 = 0, . . . , 𝑁 (5)

1The denomination covolume may be misleading here. In classical thermodynamics, the term covolume refers to the specific
volume. Here the quantity 𝑓𝑔 is linked to the volume of the gaseous phase. In 3D configurations, it would be related to the interfacial
area.
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setting 𝑥+
0 = −1 and 𝑥−𝑁+1 = 1.

The fluid is supposed to be compressible and viscous, so that it is governed by the 1D compressible Navier–
Stokes system, posed in ℱ :

𝜕𝑡𝜌𝑓 + 𝜕𝑥(𝜌𝑓𝑢𝑓 ) = 0, (6)
𝜕𝑡(𝜌𝑓𝑢𝑓 ) + 𝜕𝑥(𝜌𝑓𝑢

2
𝑓 ) = 𝜕𝑥Σ𝑓 , (7)

Σ𝑓 = 𝜇𝑓𝜕𝑥𝑢𝑓 − p𝑓 (𝜌𝑓 ), (8)

where 𝜌𝑓 is the density, 𝑢𝑓 the velocity and Σ𝑓 the stress tensor of the fluid. Moreover, 𝜇𝑓 > 0 is the shear
viscosity and p𝑓 is an isentropic pressure law for the fluid:

p𝑓 (𝜌𝑓 ) = 𝜅𝑓𝜌
𝛾𝑓

𝑓 ,

where 𝜅𝑓 > 0 and 𝛾𝑓 > 1 stands for the adiabatic exponent. We assume that the fluid is present at the boundary
of the domain Ω, where no-slip boundary conditions are imposed:

𝑢𝑓 (𝑡,±1) = 0. (9)

Equations for bubble kinematics and dynamics are proposed in [15]. Therein, the derivation is based on the
assumption that the bubbles are made of a compressible viscous fluid with an infinite shear viscosity (compared
to the volumic viscosity) and that their spherical shapes are preserved (in three dimensions). We point out that
these assumptions restricts also the possible micro-motions inside the bubbles. We are aware that this restriction
borrows from droplet dynamics but we shall keep the naming bubbles throughout the paper. We have then first
that the continuity of the velocity at the interfaces reads:

𝑢𝑓 (𝑡, 𝑥±𝑘 (𝑡)) = �̇�𝑘(𝑡)± �̇�𝑘(𝑡) for 𝑘 = 1, . . . , 𝑁. (10)

In addition, imposing that the jump of the stress tensor at the interfaces is due to the surface tension, one
obtains the following system for the dynamics of a bubble:

𝑚𝑘𝑐𝑘(𝑡) = Σ𝑓

(︀
𝑡, 𝑥+

𝑘

)︀
− Σ𝑓

(︀
𝑡, 𝑥−𝑘

)︀
, (11)

𝑚𝑘

3
�̈�𝑘(𝑡) = Σ𝑓

(︀
𝑡, 𝑥−𝑘

)︀
+ Σ𝑓

(︀
𝑡, 𝑥+

𝑘

)︀
− 2Σ𝑘(𝑡), (12)

Σ𝑘 = 𝜇𝑔
�̇�𝑘

𝑅𝑘
− p𝑔(𝜌𝑘)− 𝐹𝑠

2
, (13)

where 𝜇𝑔 > 0 is the volumic viscosity of the gas, and 𝑚𝑘 and 𝜌𝑘 are the mass and the density of the bubble,
linked by 𝑚𝑘 = 2𝑅𝑘𝜌𝑘. As a consequence of mass conservation in bubbles, the masses 𝑚𝑘 do not depend on
time. The term 𝐹𝑠 denotes the force due to the surface tension and writes 𝐹𝑠 = 𝛾𝑠/𝑅𝑘, 𝛾𝑠 being the surface
tension. In order to simplify the analysis, we assume an isothermal equation of state in the bubbles, so that

𝜋𝑘 := p𝑔(𝜌𝑘) +
𝐹𝑠

2
=

(𝑎𝑔)2𝑚𝑘 + 𝛾𝑠/2
𝑅𝑘

=
𝜅𝑘

𝑅𝑘
, (14)

where 𝑎𝑔 > 0 is the sound speed of the gas. The last form of 𝜋𝑘 will be used mainly for the analysis of the
model, while the first form will be useful to interpret the various terms appearing in equations, notably those
due to surface tension. In particular, computing surface tension effects in the microscopic system involves the
quantity 1/(2𝑅𝑘) that corresponds to the covolume of bubble 𝐵𝑘 in our 1𝐷 setting. We point out that the
system (6)–(13) is not integrable and, specifically, does not yield any particular value for the fluid velocity-field
𝑢𝑓 . We are then not in the Rayleigh–Plesset regime where the bubble equations (11) and (12) reduce to ordinary
differential equations in terms of (𝑐𝑘, 𝑅𝑘) and an asymptotic pressure [23]. We refer the reader to the companion
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paper [15] for more details on the derivation of (6)–(13) and the analysis of the associated Cauchy problem.
Yet, we shall explain in further details the construction of solutions in the next section.

The main result of this paper is to show that, starting from solutions to (6)–(13) we obtain (1)–(4) by letting
the number 𝑁 of bubbles go to infinity in case:

𝑚𝑘 ∼ 𝑁−1, 𝑅𝑘 ∼ 𝑁−1, |ℱ𝑘| ∼ 𝑁−1, 𝛾𝑠 ∼ 𝑁−1, (15)

with the other parameters being fixed. This approach contains at least two severe difficulties. The first one is
to prove that the scaling (15) remains valid on a timespan independent of 𝑁. The second one is that the target
system (1)–(4) is highly nonlinear. Specifically, products between volume fractions and other (fluid or gas)
unknowns are ubiquitous. To obtain such nonlinear terms, it appears that strong convergences of densities or
gas covolume in sufficiently smooth spaces are necessary. Hence, with this approach, we face two key-difficulties:

– to prove that the scaling regime (15) holds on a timespan independent of the number 𝑁 of bubbles,
– to define the macroscopic unknowns and especially, the fluid and gas densities 𝜌𝑓 , 𝜌𝑔 and the gas covolume
𝑓𝑔.

The first item in this list is the content of the next section. Therein, we consider initial data that are con-
structed as follows. Firstly, we fix fluid initial data

(︁
𝜌0

𝑓 , 𝑢
0
𝑓

)︁
∈ 𝐻1(Ω) ×𝐻1

0 (Ω) that are thus defined globally
on Ω. We assume further that they are far from vacuum. Secondly, we fix initial distributions of centers/radii(︀
𝑐0𝑘, 𝑅

0
𝑘

)︀
𝑘=1,...,𝑁

such that (15) holds. We complement then the microscopic system (6)–(13) with initial condi-
tions so that the initial bubble velocities match the velocities prescribed by the fluid on the boundaries. This
reads:

𝑐𝑘(0) = 𝑐0𝑘 𝑅𝑘(0) = 𝑅0
𝑘, for 𝑘 = 1, . . . , 𝑁, (16)

𝑢(0, ·) = 𝑢0
𝑓 𝜌(0, ·) = 𝜌0

𝑓 , on ℱ0, (17)

and

�̇�0𝑘 =
𝑢0

𝑓

(︀
𝑐0𝑘 +𝑅0

𝑘

)︀
+ 𝑢0

𝑓

(︀
𝑐0𝑘 −𝑅0

𝑘

)︀
2

, for 𝑘 = 1, . . . , 𝑁, (18)

�̇�0
𝑘 =

𝑢0
𝑓

(︀
𝑐0𝑘 +𝑅0

𝑘

)︀
− 𝑢0

𝑓

(︀
𝑐0𝑘 −𝑅0

𝑘

)︀
2

, for 𝑘 = 1, . . . , 𝑁. (19)

The main result of Section 2 is then that there exists a classical solution to (6)–(13) on a timespan that depends
only on fluid initial data and the parameters quantifying initially assumption (15). To obtain this result, we
combine classical energy and regularity estimates for Navier Stokes equations. We remind that, in this strategy,
one classically uses extra regularity thanks to the form of the stress tensor Σ𝑓 . However, such regularity estimates
should depend on the geometry (and then on N). In particular, we cannot rely on the methods introduced to
study the piston problem as in [19,21] since they do not consider this scaling issue. To overcome this difficulty,
we propose to consider suitable extensions of Σ𝑓 (resp. Σ𝑔) on the complementary gas (resp. fluid) domain. In
this way, the extension is defined on a fixed domain and the regularity gain is independent of the geometry.
We point out here that contrary to the classical approach in the topic of homogenization of multidimensional
compressible Navier Stokes equations in perforated domains [11, 18], our construction takes advantage of the
information on the moments of the fluid stress tensor on 𝜕𝐵𝑘 that are provided by the bubble equations.

The second key-difficulty of our approach is tackled in Section 3. Once solutions to (6)–(13) are constructed
on a time-interval that does not depend on 𝑁, we consider the behavior of these solutions for large 𝑁 . In
particular, we look for definitions of the unknowns that are involved in the macroscopic system (1)–(4). Void
fractions as well as global velocity-fields are obtained classically by considering indicator functions or suitably
extended vector-fields (see Props. 13 and 15). However, the issue is more involved when going to density and
covolume unknowns. Indeed, at the discrete level, fluid density and bubble density, for instance, are defined
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a priori on dispersed subdomains only. This cannot yield convergence with sufficient regularity. To get better
convergence results, we decide to construct suitable extensions. For this we proceed in two steps. Firstly, we
ensure that the initial conditions for (6)–(13) enable to define smooth extended densities and covolume (see
Prop. 12). Then, we propagate this regularity with a well-chosen extended flow (see Props. 14 and 17). With
this construction at-hand, the derivation of (1)–(4) is plain sailing.

In our construction, we start from initial data for the macroscopic system and define a sequence of initial
conditions for the microscopic system that are compatible with the scaling (15) and enable to construct extended
densities. It turns out that this requires further assumption on initial data that we explain now. We recall that
initial data for the macroscopic system consists in:

– initial fluid and gas densities : 𝜌0
𝑓 , 𝜌

0
𝑔,

– initial fluid and gas void fractions �̄�0
𝑓 , �̄�

0
𝑔

– an initial velocity of the two-phase mixture �̄�0,
– an initial gas covolume 𝑓0

𝑔 .

It is worth noting that all these functions are defined for 𝑥 in Ω, since both phases are no longer separated at
the macroscopic scale. We shall remain at the regularity level of classical solution and require that all these
initial conditions are 𝐻1(Ω). For our construction, we require that initial densities and void fraction satisfy:

𝜌min ≤ min
(︀
𝜌0

𝑓 , 𝜌
0
𝑔

)︀
(20)

𝛼min ≤ min
(︀
�̄�0

𝑓 , �̄�
0
𝑔

)︀
�̄�0

𝑔 + �̄�0
𝑓 = 1 (21)

for some positive constants 𝜌min, 𝛼min. The first condition means that we are away from vacuum. The second
one expresses that there is a mixture of both phases everywhere in Ω. Note that the second conditions imply
simultaneously

max
(︁⃦⃦
�̄�0

𝑔

⃦⃦
𝐿∞(Ω)

,
⃦⃦
�̄�0

𝑓

⃦⃦
𝐿∞(Ω)

)︁
≤ 1− 𝛼min. (22)

Concerning, 𝑓0
𝑔 , we will require that:

𝑓min ≤ 𝑓0
𝑔 , �̄�0

𝑔𝑓
0
𝑔 is a probability density, (23)

where 𝑓min is a positive constant. To explain these latter conditions, we point out that in the 1D case the
covolume of bubbles is proportional to the inverse radius. So 𝑓min is a bound from above on the initial radius
of bubbles and, since we expect �̄�0

𝑔𝑓
0
𝑔 to be the limit of the indicator function of bubble domains multiplied by

the inverse radius of bubbles, a straightforward computations yields that it is a positive function whose total
mass is 1, hence a probability density.

The multiphase system we consider in this paper enters the family of spray models as studied by Williams
in [24, Sect. 11]. With this standpoint, a classical tool to analyze the behavior of the dispersed phase is the so-
called “Williams–Boltzmann” equation which describes the time-evolution of the particle-distribution function
of the dispersed phase. In the last section of this paper, we derive what would be the equivalent equation in our
setting. It is worth to mention that this is not a supplementary equation but simply a rephrasing of the bubble-
gas equation that we derived previously. In particular, herein the bubble-gas velocities are correlated to their
position and drag forces are at equilibrium. We do neither have collision or creation of bubbles. Hence, the only
term to be taken into account is the “evaporation” term which should be understood as compression/expansion
term in our compressible setting.

In brief, the outline of the paper is as follows. In the next section, we prove that solutions to the microscopic
system (6)–(13) satisfying (15) do exist on a timespan independent of 𝑁 if initial data are well prepared, see
Theorem 1. In Sections 3 and 4, we tackle the asymptotics of these solutions when 𝑁 →∞. In the last section,
we discuss an alternative approach based on using particle-distribution functions for the bubbles. In appendices,
we provide some technical computations involved in the construction of solutions to the microscopic model.
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2. Local Cauchy theory for the microscopic system

In this section, we forget temporarily our homogenization goal. We focus on the microscopic model (6)–(13)
in the scaling (15) and we address the existence of solutions with lifespan independent of the number 𝑁 of
bubbles provided initial data are constructed as in (16)–(19). In particular, we fix

(︁
𝜌0

𝑓 , 𝑢
0
𝑓

)︁
∈ 𝐻1(Ω) ×𝐻1

0 (Ω)
throughout the section. We assume these global fluid data satisfy:

2𝜌∞ ≤ 𝜌0
𝑓 ≤ 𝜌∞/2 on Ω (24)

for some pair (𝜌∞, 𝜌∞) ∈ (0,∞)2.
To make precise our main result, we start by giving a quantified version of assumption (15) that we assume

to hold initially. Firstly, we fix that bubbles characteristics enjoy the property:

(𝐼𝐶0) 𝑀∞ ≤ 𝑁𝑚𝑘, 𝑁𝜅𝑘 ≤ (𝑀∞)−1, 𝑘 = 1, . . . , 𝑁 ,
(𝐼𝐶1) 2𝑑∞ ≤ 𝑁𝑅0

𝑘 ≤ (2𝑑∞)−1, 𝑘 = 1, . . . , 𝑁 ,
(𝐼𝐶2) 2𝑑∞ ≤ 𝑁 |ℱ0

𝑘 | ≤ (2𝑑∞)−1, 𝑘 = 0, . . . , 𝑁 .

Here 𝑀∞, 𝑑∞ are strictly positive constants independent of 𝑁. We recall the convention (5) for the definition
of ℱ0

𝑘 (adapted to notations for initial data). Their union constitutes the initial fluid domain ℱ0. The physical
parameters (𝜇𝑓 , 𝜇𝑔) and pressure laws are fixed independent of 𝑁 . With these conventions, the main result of
this section reads:

Theorem 1. Let initial condition to (6)–(13) be constructed as in (16)–(19). Assume further that parameters
(𝑚𝑘, 𝜅𝑘)𝑘=1,...,𝑁 and initial bubble distributions (𝑐0𝑘, 𝑅

0
𝑘)𝑘∈{1,...,𝑁} satisfy (𝐼𝐶0)–(𝐼𝐶2). Then, there exists 𝑇∞ >

0 independent of the number of bubbles and depending only on

𝑀∞, 𝑑∞, 𝜌∞, 𝜌∞,
⃦⃦
𝑢0

𝑓

⃦⃦
𝐻1(Ω)

,
⃦⃦
𝜌0

𝑓

⃦⃦
𝐻1(Ω)

, (25)

such that there exists a solution to (6)–(13) on (0, 𝑇∞).

What remains of this section is devoted to the proof of this theorem. From now on, we pick a family of
physical parameters and bubble centers/radii satisfying the assumptions of Theorem 1 and we construct initial
data for (6)–(13).

In the companion paper [15], we prove local-in-time existence and uniqueness of classical solutions to the
Cauchy problem associated with (6)–(13). In this moving-domain setting, classical solution means broadly that:

– the motion of the bubbles is 𝐻2(0, 𝑇 ) (i.e. (𝑐𝑘, 𝑅𝑘) ∈ 𝐻2(0, 𝑇 )),
– 𝑢 is 𝐻1

𝑡 𝐿
2
𝑥 and 𝐿2

𝑡𝐻
2
𝑥 in the fluid domain,

– 𝜌 is 𝐻1
𝑡,𝑥 in the fluid domain.

Existence and uniqueness of solutions on a lifespan (0, 𝑇0) is obtained for initial data such that

– there is no overlap of the bubbles,
– initial fluid data are 𝐻1 in the fluid domain with strictly positive density,
– initial fluid and bubble velocities match at interfaces (so that (18)–(19) hold true).

It is also worth noting that the time 𝑇0 is uniform in data satisfying uniform bounds from below for the distance
between bubbles, the minimal radius of bubbles, the minimum density and also the size of initial fluid velocity
and density in 𝐻1-spaces. We refer to [15] for more precise and quantitative statements.

So, under the assumptions of Theorem 1, the local-in-time existence result of [15] yields a solution on a
time-interval (0, 𝑇0) that depends on the list of parameters (25) but also on 𝑁. To rule out this dependency, we
construct 𝑇∞ such that as long as 𝑡 < 𝑇∞ the solution(︂

𝜌𝑓 (𝑡, ·), 𝑢𝑓 (𝑡, ·),
(︁
𝑐𝑘(𝑡), 𝑅𝑘(𝑡), �̇�𝑘(𝑡), �̇�𝑘(𝑡)

)︁
𝑘∈{1,...,𝑁}

)︂
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yields an initial condition that is compatible with the Cauchy theory of [15] with an associated existence time
independent of 𝑡. We emphasize that any classical solution does not allow overlap of the bubbles and ensures
identity (18)–(19) is satisfied at any time. Controlling the existence time associated with the value of the solution
at time 𝑡 – considered as an initial data – reduces to obtaining uniform 𝐻1 bound for the velocity field and for
the density, uniform bound from above and from below on the fluid density, the radius of the bubbles and the
length of fluid segments.

Our approach relies on a suitable combination of energy and regularity estimates for the coupled system
(6)–(13). So, we recall in the next sections the classical estimates that are associated with (6)–(13). We will
pay special attention to obtain estimates independent on 𝑁. This will be particularly challenging for regularity
estimates. In particular, we shall study the regularity of fluid velocity-fields that can be gained through the
integrability of the stress tensor by working on extensions of fluid unknowns on bubble domains and conversely.
A tricky part of the proof is that we can obtain these sharp bounds under the condition that we have already
a priori bounds. So, we implement a continuation argument. This continuation argument is explained in the
last part of the section. However, the extensive proof is rather long and technical. Hence, the last subsection
reduces to a roadmap of the proof that is detailed further in Appendix A.

2.1. Classical estimates

We introduce the conjugate function of the fluid pressure q𝑓 : [0,∞) → [0,∞) defined by

q′𝑓 (𝑠)𝑠− q𝑓 (𝑠) = p𝑓 (𝑠). (26)

In other words, the function q𝑓 represents the volumic internal energy of the fluid. Considering an isentropic
pressure law, it yields

q𝑓 (𝑠) =
𝑎𝑓𝑠

𝛾𝑓

𝛾𝑓 − 1
·

We can now state the total energy equation. In the bracket of the statement below, the first term is the total
energy of the fluid, while the second and the third terms respectively are the kinetic energy and the internal
energy of the bubbles.

Proposition 2. For any reference radius 𝑅ref > 0, it holds

d
d𝑡

⎡⎢⎣∫︁
ℱ

(︃
𝜌𝑓
|𝑢𝑓 |2

2
+ q𝑓 (𝜌𝑓 )

)︃
d𝑥+

𝑁∑︁
𝑘=1

𝑚𝑘

⎛⎜⎝ |�̇�𝑘|22
+

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
6

⎞⎟⎠
−2

𝑁∑︁
𝑘=1

𝜅𝑘 ln
(︂
𝑅𝑘

𝑅ref

)︂]︃
+
∫︁
ℱ
𝜇𝑓 |𝜕𝑥𝑢𝑓 |2 d𝑥+ 2𝜇𝑔

𝑁∑︁
𝑘=1

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
|𝑅𝑘|

= 0.

(27)

Proof. First let multiply the Navier–Stokes equation (7) by the velocity 𝑢𝑓 and integrate over the fluid domain
ℱ . Using the mass conservation equation (6), it yields∫︁

ℱ
𝜌𝑓 (𝜕𝑡𝑢𝑓 + 𝑢𝑓𝜕𝑥𝑢𝑓 )𝑢𝑓 d𝑥 =

∫︁
ℱ
𝑢𝑓𝜕𝑥Σ𝑓 d𝑥. (28)

Since the mass conservation (6) gives

d
d𝑡

∫︁ 𝑥−𝑘+1

𝑥+
𝑘

𝜌𝑓
|𝑢𝑓 |2

2
d𝑥 =

∫︁ 𝑥−𝑘+1

𝑥+
𝑘

𝜌𝑓 (𝜕𝑡𝑢𝑓 + 𝑢𝑓𝜕𝑥𝑢𝑓 )𝑢𝑓 d𝑥,
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one obtains, using an integration by part of the right-hand side,

d
d𝑡

∫︁
ℱ
𝜌𝑓
|𝑢𝑓 |2

2
d𝑥 = 𝑇1 − 𝑇2 − 𝑇3,

with

𝑇1 =
𝑁∑︁

𝑘=0

Σ𝑓

(︀
𝑥−𝑘+1

)︀
𝑢𝑓

(︀
𝑥−𝑘+1

)︀
− Σ𝑓

(︀
𝑥+

𝑘

)︀
𝑢𝑓

(︀
𝑥+

𝑘

)︀
,

𝑇2 =
∫︁
ℱ
𝜇𝑓 |𝜕𝑥𝑢𝑓 |2 d𝑥,

𝑇3 = −
∫︁
ℱ

p𝑓 (𝜌𝑓 )𝜕𝑥𝑢𝑓 d𝑥,

where the terms 𝑇2 and 𝑇3 come from the definition (8) of the stress Σ𝑓 .
Using the boundary conditions (9) and, after, the continuity of the velocities at the droplet interfaces (10),

the term 𝑇1 can be rewritten as

𝑇1 = −
𝑁∑︁

𝑘=1

(︀
Σ𝑓

(︀
𝑥+

𝑘

)︀
𝑢𝑓

(︀
𝑥+

𝑘

)︀
− Σ𝑓

(︀
𝑥−𝑘
)︀
𝑢𝑓

(︀
𝑥−𝑘
)︀)︀

= −
𝑁∑︁

𝑘=1

�̇�𝑘
(︀
Σ𝑓

(︀
𝑥+

𝑘

)︀
− Σ𝑓

(︀
𝑥−𝑘
)︀)︀

+ �̇�𝑘

(︀
Σ𝑓

(︀
𝑥+

𝑘

)︀
+ Σ𝑓

(︀
𝑥−𝑘
)︀)︀
.

Finally the droplets motion equations (11) and (12) and the definition of the droplet pressure law (14) yield
(whatever the value of 𝑅ref > 0):

𝑇1 = − d
d𝑡

⎡⎢⎣
⎛⎜⎝ 𝑁∑︁

𝑘=1

𝑚𝑘
|�̇�𝑘|2

2
+
𝑚𝑘

3

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
2

⎞⎟⎠− 2
𝑁∑︁

𝑘=1

𝜅𝑘 ln
(︂
𝑅𝑘

𝑅ref

)︂⎤⎥⎦− 2𝜇𝑔

𝑁∑︁
𝑘=1

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

·

We now turn to the term 𝑇3. By the definition (26) of the function q𝑓 , and by the mass conservation equation
(6), it holds

𝜕𝑡q𝑓 (𝜌𝑓 ) + 𝜕𝑥(q𝑓 (𝜌𝑓 )𝑢𝑓 ) = −p𝑓 (𝜌𝑓 )𝜕𝑥𝑢𝑓 .

Because the fluid domain evolves with the velocity 𝑢𝑓 , 𝑇3 can be recovered

d
d𝑡

∫︁
ℱ
𝑞(𝜌𝑓 ) d𝑥 = −

∫︁
ℱ

p𝑓 (𝜌𝑓 )𝜕𝑥𝑢𝑓 d𝑥 = 𝑇3.

One deduces the final estimate (27) combining the terms 𝑇1, 𝑇2 and 𝑇3. �

In the regime of initial data specified in this section, we obtain the following corollary:

Corollary 3. If initial data are constructed as in (16)–(19) and satisfy (𝐼𝐶0)–(𝐼𝐶1)–(𝐼𝐶2), there exists a
constant 𝐸0 depending only on the list of parameters (25) such that any classical solution to (6)–(13) on some
time-interval [0, 𝑇 ] satisfies:∫︁

ℱ

(︂
𝜌𝑓
|𝑢𝑓 |2

2
+ 𝑞(𝜌𝑓 )

)︂
d𝑥+

1
2

𝑁∑︁
𝑘=1

𝑚𝑘

(︂
|�̇�𝑘|2 +

1
3

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2)︂
− 2

𝑁∑︁
𝑘=1

𝜅𝑘 ln(𝑑∞𝑁𝑅𝑘) ≤ 𝐸0, (29)
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on (0, 𝑇 ) with, denoting by ln+ the positive part of the ln:∫︁ 𝑇

0

[︃(︃∫︁
ℱ
𝜇𝑓 |𝜕𝑥𝑢𝑓 |2 d𝑥+ 𝜇𝑔

𝑁∑︁
𝑘=1

|�̇�𝑘|2

𝑅𝑘

)︃]︃
d𝑡 ≤ 𝐸0 + 2 max

[0,𝑇 ]

𝑁∑︁
𝑘=1

𝜅𝑘 ln+(𝑑∞𝑁𝑅𝑘). (30)

Proof. To obtain these inequalities, we integrate (27) with 𝑅ref = 1/𝑑∞𝑁 and remark that all the terms on the
left-hand side are positive but:

𝑁∑︁
𝑘=1

𝜅𝑘 ln(𝑑∞𝑁𝑅𝑘).

We obtain then the inequalities (29) and (30) with:

𝐸0 :=
∫︁
ℱ0

⎛⎜⎝𝜌0
𝑓

⃒⃒⃒
𝑢0

𝑓

⃒⃒⃒2
2

+ 𝑞𝑓
(︀
𝜌0

𝑓

)︀⎞⎟⎠ d𝑥+
𝑁∑︁

𝑘=1

⎛⎜⎝⃒⃒�̇�0𝑘 ⃒⃒22
+

⃒⃒⃒
�̇�0

𝑘

⃒⃒⃒2
6

⎞⎟⎠− 2
𝑁∑︁

𝑘=1

𝜅𝑘 ln
(︀
𝑅0

𝑘𝑑∞𝑁
)︀
.

The first term in 𝐸0 is clearly controlled by
⃦⃦⃦
𝑢0

𝑓

⃦⃦⃦
𝐿2

and 𝜌∞. As for the second term, the velocity continuity

(18) and (19) gives ⃒⃒
�̇�0𝑘
⃒⃒
+
⃒⃒⃒
�̇�0

𝑘

⃒⃒⃒
≤ 2
⃦⃦
𝑢0

𝑓

⃦⃦
𝐿∞(Ω)

, ∀ 𝑘 = 1, . . . , 𝑁.

Then, with (𝐼𝐶0), we obtain:
𝑁∑︁

𝑘=1

𝑚𝑘

(︂⃒⃒
�̇�0𝑘
⃒⃒2

+
1
3

⃒⃒⃒
�̇�0

𝑘

⃒⃒⃒2)︂
≤ 4
𝑀∞

⃦⃦
𝑢0

𝑓

⃦⃦2

𝐿∞(Ω)
,

and, with a classical Sobolev embedding, this part is again controlled by 𝑀∞ and
⃦⃦⃦
𝑢0

𝑓

⃦⃦⃦
𝐻1

0 (Ω)
. Now using the

bound (𝐼𝐶1) on the initial radii, it holds

2𝑑2
∞ ≤ 𝑅0

𝑘𝑁𝑑∞ ≤ 1
2
,

so that

−
𝑁∑︁

𝑘=1

𝜅𝑘 ln
(︀
𝑑∞𝑁𝑅

0
𝑘

)︀
≤
⃒⃒
ln
(︀
2𝑑2
∞
)︀⃒⃒

𝑀∞
·

This concludes the proof. �

We proceed with a second classical regularity estimate:

Proposition 4. The following identity holds

d
d𝑡

⎡⎢⎣∫︁
ℱ

(︃
𝜇𝑓
|𝜕𝑥𝑢𝑓 |2

2
− p𝑓 (𝜌𝑓 )𝜕𝑥𝑢𝑓

)︃
d𝑥+

𝑁∑︁
𝑘=1

⎛⎜⎝𝜇𝑔

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

− 2𝜅𝑘
�̇�𝑘

𝑅𝑘

⎞⎟⎠
⎤⎥⎦

+
∫︁
ℱ
𝜌𝑓 |𝜕𝑡𝑢𝑓 + 𝑢𝑓𝜕𝑥𝑢𝑓 |2d𝑥+

𝑁∑︁
𝑘=1

𝑚𝑘

(︂
|𝑐𝑘|2 +

1
3

⃒⃒⃒
�̈�𝑘

⃒⃒⃒2)︂

=
∫︁
ℱ

(︃
p′𝑓 (𝜌𝑓 )𝜌𝑓 |𝜕𝑥𝑢𝑓 |2 − 𝜇𝑓

(𝜕𝑥𝑢𝑓 )3

2

)︃
d𝑥

+
𝑁∑︁

𝑘=1

⎛⎜⎝2𝜅𝑘

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅2

𝑘

− 𝜇𝑔

⃒⃒⃒
�̇�𝑘

⃒⃒⃒3
𝑅2

𝑘

⎞⎟⎠.

(31)
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Proof. Multiplying the momentum equation (7) by 𝜕𝑡𝑢𝑓 +𝑢𝑓𝜕𝑥𝑢𝑓 and integrating over the fluid domain ℱ yield∫︁
ℱ
𝜌𝑓 |𝜕𝑡𝑢𝑓 + 𝑢𝑓𝜕𝑥𝑢𝑓 |2 d𝑥 =

∫︁
ℱ

(𝜕𝑡𝑢𝑓 + 𝑢𝑓𝜕𝑥𝑢𝑓 )𝜕𝑥Σ𝑓 d𝑥

= 𝑇4 − 𝑇5,

(32)

with

𝑇4 =
𝑁∑︁

𝑘=0

Σ𝑓

(︀
𝑥−𝑘+1

)︀
(𝜕𝑡𝑢𝑓 + 𝑢𝑓𝜕𝑥𝑢𝑓 )

(︀
𝑥−𝑘+1

)︀
− Σ𝑓

(︀
𝑥+

𝑘

)︀
(𝜕𝑡𝑢𝑓 + 𝑢𝑓𝜕𝑥𝑢𝑓 )

(︀
𝑥+

𝑘

)︀
,

𝑇5 =
∫︁
ℱ

Σ𝑓𝜕𝑥(𝜕𝑡𝑢𝑓 + 𝑢𝑓𝜕𝑥𝑢𝑓 ) d𝑥.

The boundary term 𝑇4 can be simplified by using the interface conditions (10),

d
d𝑡

(︁
�̇�𝑘 ± �̇�𝑘

)︁
=

d
d𝑡
(︀
𝑢𝑓

(︀
𝑥±𝑘
)︀)︀

= (𝜕𝑡𝑢𝑓 + 𝑢𝑓𝜕𝑥𝑢𝑓 )
(︀
𝑥±𝑘
)︀
.

Then one obtains

𝑇4 =
𝑁∑︁

𝑘=0

Σ𝑓

(︀
𝑥−𝑘+1

)︀(︁
𝑐𝑘+1 − �̈�𝑘+1

)︁
− Σ𝑓

(︀
𝑥+

𝑘

)︀(︁
𝑐𝑘 + �̈�𝑘

)︁
.

The boundary conditions (9) allow to reorganize the sum, and using the bubble equations of motion (11) and
(12) and the bubble pressure law (14), we have successively

𝑇4 = −
𝑁∑︁

𝑘=1

Σ𝑓

(︀
𝑥+

𝑘

)︀(︁
𝑐𝑘 + �̈�𝑘

)︁
− Σ𝑓

(︀
𝑥−𝑘
)︀(︁
𝑐𝑘 − �̈�𝑘

)︁
= −

𝑁∑︁
𝑘=1

𝑐𝑘
(︀
Σ𝑓

(︀
𝑥+

𝑘

)︀
− Σ𝑓

(︀
𝑥−𝑘
)︀)︀

+ �̈�𝑘

(︀
Σ𝑓

(︀
𝑥+

𝑘

)︀
+ Σ𝑓

(︀
𝑥−𝑘
)︀)︀

= −
𝑁∑︁

𝑘=1

𝑚𝑘

(︂
|𝑐𝑘|2 +

1
3

⃒⃒⃒
�̈�𝑘

⃒⃒⃒2)︂
+ 2�̈�𝑘

(︃
𝜇𝑔
�̇�𝑘

𝑅𝑘
− 𝜅𝑘

𝑅𝑘

)︃

= −
𝑁∑︁

𝑘=1

⎧⎪⎨⎪⎩𝑚𝑘

(︂
|𝑐𝑘|2 +

1
3
|�̈�𝑘|2

)︂
+

d
d𝑡

⎡⎢⎣𝜇𝑔

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

− 2𝜅𝑘
�̇�𝑘

𝑅𝑘

⎤⎥⎦
⎫⎪⎬⎪⎭

+
𝑁∑︁

𝑘=1

⎛⎜⎝2𝜅𝑘

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅2

𝑘

− 𝜇𝑔

(︁
�̇�𝑘

)︁3

𝑅2
𝑘

⎞⎟⎠.
We now turn to the volumic term 𝑇5. Developing the term 𝑇5 gives

𝑇5 = 𝑇6 +
∫︁
ℱ
𝜇𝑓 (𝜕𝑥𝑢𝑓 )3 d𝑥− 𝑇7 −

∫︁
ℱ

p𝑓 (𝜌𝑓 )|𝜕𝑥𝑢𝑓 |2 d𝑥, (33)

with

𝑇6 =
∫︁
ℱ
𝜇𝑓𝜕𝑥𝑢𝑓 (𝜕𝑡(𝜕𝑥𝑢𝑓 ) + 𝑢𝑓𝜕𝑥(𝜕𝑥𝑢𝑓 )) d𝑥,

𝑇7 =
∫︁
ℱ

p𝑓 (𝜌𝑓 )(𝜕𝑡(𝜕𝑥𝑢𝑓 ) + 𝑢𝑓𝜕𝑥(𝜕𝑥𝑢𝑓 )) d𝑥.
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These two terms can be handled by classical manipulations, providing

d
d𝑡

[︃∫︁
ℱ
𝜇𝑓
|𝜕𝑥𝑢𝑓 |2

2
d𝑥

]︃
= 𝑇6 +

∫︁
ℱ
𝜇𝑓

(𝜕𝑥𝑢𝑓 )3

2
,

d
d𝑡

[︂∫︁
ℱ

p𝑓 (𝜌𝑓 )𝜕𝑥𝑢𝑓 d𝑥
]︂

= 𝑇7 −
∫︁
ℱ

(︀
p𝑓 (𝜌𝑓 )− p′𝑓 (𝜌𝑓 )𝜌𝑓

)︀
|𝜕𝑥𝑢𝑓 |2 d𝑥.

As a result,

𝑇5 =
d
d𝑡

[︃∫︁
ℱ
𝜇𝑓
|𝜕𝑥𝑢𝑓 |2

2
− p𝑓 (𝜌𝑓 )𝜕𝑥𝑢𝑓 d𝑥

]︃

+ 𝜇𝑓

∫︁
ℱ

(𝜕𝑥𝑢𝑓 )3

2
d𝑥+

∫︁
ℱ

p′𝑓 (𝜌𝑓 )𝜌𝑓 |𝜕𝑥𝑢𝑓 |2 d𝑥.

Finally plugging the expressions of 𝑇4 and 𝑇5 into (32) gives the expected result. �

In the regime of initial data specified in this section, we obtain the following corollary:

Corollary 5. If initial data are constructed as in (16)–(19) and satisfy (𝐼𝐶0)–(𝐼𝐶1)–(𝐼𝐶2), there exists a
constant 𝐸1 depending only on the list of parameters (25) such that any classical solution to (6)–(13) on some
time-interval [0, 𝑇 ] satisfies:

sup
[0,𝑇 ]

⎛⎜⎝∫︁
ℱ
𝜇𝑓
|𝜕𝑥𝑢𝑓 |2

2
d𝑥+ 𝜇𝑔

𝑁∑︁
𝑘=1

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

⎞⎟⎠
+
∫︁ 𝑇

0

(︃∫︁
ℱ
𝜌𝑓 |𝜕𝑡𝑢𝑓 + 𝑢𝑓𝜕𝑥𝑢𝑓 |2 d𝑥+

𝑁∑︁
𝑘=1

𝑚𝑘

(︂
|𝑐𝑘|2 +

⃒⃒⃒
�̈�𝑘

⃒⃒⃒2)︂)︃

≤ sup
[0,𝑇 ]

⎡⎣⎛⎝2
𝑁∑︁

𝑘=1

𝜅𝑘

⃒⃒⃒
�̇�𝑘

⃒⃒⃒
𝑅𝑘

⎞⎠+
∫︁
ℱ

p𝑓 (𝜌𝑓 )|𝜕𝑥𝑢𝑓 |d𝑥

⎤⎦+
∫︁ 𝑇

0

∫︁
ℱ
𝜇𝑓
|𝜕𝑥𝑢𝑓 |3

2
d𝑥

+
∫︁ 𝑇

0

𝑁∑︁
𝑘=1

⎛⎜⎝2𝜅𝑘

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅2

𝑘

+ 𝜇𝑔

⃒⃒⃒
�̇�𝑘

⃒⃒⃒3
𝑅2

𝑘

⎞⎟⎠+ 𝐸1.

(34)

Proof. Integrating identity (31) given in Proposition 4 between 0 and 𝑡 ≤ 𝑇 , rejecting all non-signed term on
the right-hand side that we bound then by putting absolute values, it yields:

(︂∫︁
ℱ
𝜇𝑓
|𝜕𝑥𝑢𝑓 |2

2
d𝑥+ 𝜇𝑔

𝑁∑︁
𝑘=1

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

⎞⎟⎠
+
∫︁ 𝑡

0

(︃∫︁
ℱ
𝜌𝑓 |𝜕𝑡𝑢𝑓 + 𝑢𝑓𝜕𝑥𝑢𝑓 |2 d𝑥+

𝑁∑︁
𝑘=1

𝑚𝑘

(︂
|𝑐𝑘|2 +

⃒⃒⃒
�̈�𝑘

⃒⃒⃒2)︂)︃

+
∫︁ 𝑇

0

∫︁
ℱ
𝜅𝑓𝛾𝑓𝜌

𝛾𝑓

𝑓 |𝜕𝑥𝑢𝑓 |2 d𝑥

≤

⎡⎣⎛⎝2
𝑁∑︁

𝑘=1

𝜅𝑘

⃒⃒⃒
�̇�𝑘

⃒⃒⃒
𝑅𝑘

⎞⎠+
∫︁
ℱ

p𝑓 (𝜌𝑓 )|𝜕𝑥𝑢𝑓 | d𝑥

⎤⎦+
∫︁ 𝑡

0

∫︁
ℱ
𝜇𝑓
|𝜕𝑥𝑢𝑓 |3

2
d𝑥
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+
∫︁ 𝑡

0

𝑁∑︁
𝑘=1

⎛⎜⎝2𝜅𝑘

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅2

𝑘

+ 𝜇𝑔

⃒⃒⃒
�̇�𝑘

⃒⃒⃒3
𝑅2

𝑘

⎞⎟⎠+
∫︁
ℱ0
𝜇𝑓

⃒⃒⃒
𝜕𝑥𝑢

0
𝑓

⃒⃒⃒2
2

d𝑥+
𝑁∑︁

𝑘=1

⎛⎜⎝𝜇𝑔

⃒⃒⃒
�̇�0

𝑘

⃒⃒⃒2
𝑅0

𝑘

+2𝜅𝑘

⃒⃒⃒
�̇�0

𝑘

⃒⃒⃒
𝑅0

𝑘

⎞⎟⎠.
To obtain the expected result, it remains to drop the last term in the left-hand side which is positive and to

bound the last term on the right-hand side by a constant 𝐸1 with the expected dependencies. For this, we note
that the first integral in this last term clearly depends on

⃦⃦⃦
𝑢0

𝑓

⃦⃦⃦
𝐻1

0 (Ω)
. Concerning the first term in the sum, the

continuity of the velocity field (19) rewrites for any 𝑘 :

�̇�0
𝑘 =

1
2

∫︁
𝐵0

𝑘

𝜕𝑥𝑢
0
𝑓 (𝑠) d𝑠,

so that ⃒⃒⃒
�̇�0

𝑘

⃒⃒⃒
≤ 1

2

√︁
𝑅0

𝑘

(︃∫︁
𝐵0

𝑘

⃒⃒
𝜕𝑥𝑢

0
𝑓 (𝑠)

⃒⃒2
d𝑠

)︃1/2

.

As a consequence it holds
𝑁∑︁

𝑘=1

⃒⃒⃒
�̇�0

𝑘

⃒⃒⃒2
𝑅0

𝑘

≤ 1
2

∫︁
∪𝐵0

𝑘

⃒⃒
𝜕𝑥𝑢

0
𝑓 (𝑠)

⃒⃒2
d𝑠 ≤

⃦⃦
𝑢0

𝑓

⃦⃦2

𝐻1(Ω)
.

Finally, the last term in the sum is bounded by using that 𝜅𝑘 scales like 1/𝑁. Indeed, applying (𝐼𝐶0) with (𝐼𝐶1)
we have:

𝜅𝑘√︀
𝑅0

𝑘

≤ 𝑀∞√
2𝑑∞

1√
𝑁

∀ 𝑘 = 1, . . . , 𝑁,

and then, with the above bound on
⃒⃒⃒
�̇�0

𝑘

⃒⃒⃒
/
√︀
𝑅0

𝑘, we obtain:

𝑁∑︁
𝑘=1

𝜅𝑘

⃒⃒⃒
�̇�0

𝑘

⃒⃒⃒
𝑅0

𝑘

≤ 𝑀∞√
8𝑑∞

(︃∫︁
∪𝐵0

𝑘

⃒⃒
𝜕𝑥𝑢

0
𝑓

⃒⃒2)︃ 1
2

.

This ends the proof. �

2.2. Extended stress-tensor estimates

In order to obtain regularity estimates on the fluid velocity field, a classical way is to use the stress tensor.
However Σ𝑓 is only defined on the fluid domain ℱ , so that estimates on this stress tensor depend on the
geometric properties of ℱ , in particular the number of bubbles. In order to remove this dependency, we define
new stress tensors for the fluid and for the gas phase, extended to the full domain Ω:

Σ̃𝑓 =

{︃
Σ𝑓 , in ℱ ,
Σ𝑓(𝑥−𝑘 )+Σ𝑓(𝑥+

𝑘 )
2 − Σ𝑓(𝑥−𝑘 )−Σ𝑓(𝑥+

𝑘 )
2𝑅𝑘

(𝑥− 𝑐𝑘), in 𝐵𝑘, 𝑘 = 1, . . . , 𝑁,
(35)

and

Σ̃𝑔 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Σ𝑘, in 𝐵𝑘, 𝑘 = 1, . . . , 𝑁,
Σ𝑁 , in ℱ𝑁 ,

Σ0, in ℱ0,

Σ𝑘 + Σ𝑘+1−Σ𝑘

𝑥−𝑘+1−𝑥+
𝑘

(︀
𝑥− 𝑥+

𝑘

)︀
, in ℱ𝑘, 𝑘 = 1, . . . , 𝑁 − 1.

(36)

Observe that these two stress tensors are continuous at each interface 𝑥±𝑘 . We analyze here the properties of
these extensions, when Σ𝑓 obeys further the continuity properties adapted from (11) to (13). In the stationary
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analysis of this subsection, these latter identities may stand for definitions of 𝑐𝑘 and �̈�𝑘. These quantities will
be related to the dynamical problem afterwards.

Proposition 6. Assume that Σ𝑓 ∈ 𝐻1(ℱ) satisfies (11) and (12) with Σ𝑘 defined by (13). Then Σ̃𝑓 ∈ 𝐻1(Ω)
and there exists a constant 𝐶0 > 0 such that⃦⃦⃦

Σ̃𝑓

⃦⃦⃦
𝐻1(Ω)

≤ 𝐶0

[︃
‖Σ𝑓‖2𝐻1(ℱ) +

𝑁∑︁
𝑘=1

(𝑚𝑘)2
(︃⃒⃒⃒
�̈�𝑘

⃒⃒⃒2
+
|𝑐𝑘|2

𝑅𝑘

)︃

+
𝑁∑︁

𝑘=1

⎛⎜⎝𝜇2
𝑔

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

+
𝜅2

𝑘

𝑅𝑘

⎞⎟⎠
⎤⎥⎦

1
2

.

(37)

Proof. By continuity of Σ̃𝑓 at the interfaces,⃦⃦⃦
Σ̃𝑓

⃦⃦⃦2

𝐻1(Ω)
= ‖Σ𝑓‖2𝐻1(ℱ) +

𝑁∑︁
𝑘=1

⃦⃦⃦
Σ̃𝑓

⃦⃦⃦2

𝐻1(𝐵𝑘)
.

We just have to study the 𝐻1 norm of Σ̃𝑓 on a bubble 𝐵𝑘. The 𝐿2 norm of Σ𝑓 can be bounded as follows:

⃦⃦⃦
Σ̃𝑓

⃦⃦⃦2

𝐿2(𝐵𝑘)
=
∫︁

𝐵𝑘

⃒⃒⃒⃒
⃒Σ𝑓

(︀
𝑥−𝑘
)︀

+ Σ𝑓

(︀
𝑥+

𝑘

)︀
2

⃒⃒⃒⃒
⃒
2

+

⃒⃒⃒⃒
⃒Σ𝑓

(︀
𝑥−𝑘
)︀
− Σ𝑓

(︀
𝑥+

𝑘

)︀
2𝑅𝑘

⃒⃒⃒⃒
⃒
2

|𝑥− 𝑐𝑘|2 d𝑥

=

⃒⃒⃒⃒
⃒Σ𝑓

(︀
𝑥−𝑘
)︀

+ Σ𝑓

(︀
𝑥+

𝑘

)︀
2

⃒⃒⃒⃒
⃒
2

2𝑅𝑘 +

⃒⃒⃒⃒
⃒Σ𝑓

(︀
𝑥−𝑘
)︀
− Σ𝑓

(︀
𝑥+

𝑘

)︀
2𝑅𝑘

⃒⃒⃒⃒
⃒
2

2𝑅3
𝑘

3

=
⃒⃒
Σ𝑓

(︀
𝑥−𝑘
)︀

+ Σ𝑓

(︀
𝑥+

𝑘

)︀⃒⃒2𝑅𝑘

2
+
⃒⃒
Σ𝑓

(︀
𝑥−𝑘
)︀
− Σ𝑓

(︀
𝑥+

𝑘

)︀⃒⃒2𝑅𝑘

6
·

On the other hand, ⃦⃦⃦
𝜕𝑥Σ̃𝑓

⃦⃦⃦2

𝐿2(𝐵𝑘)
=
∫︁

𝐵𝑘

⃒⃒⃒⃒
⃒Σ𝑓

(︀
𝑥−𝑘
)︀
− Σ𝑓

(︀
𝑥+

𝑘

)︀
2𝑅𝑘

⃒⃒⃒⃒
⃒
2

d𝑥

=

⃒⃒⃒⃒
⃒Σ𝑓

(︀
𝑥−𝑘
)︀
− Σ𝑓

(︀
𝑥+

𝑘

)︀
2𝑅𝑘

⃒⃒⃒⃒
⃒
2

2𝑅𝑘 =

⃒⃒
Σ𝑓

(︀
𝑥−𝑘
)︀
− Σ𝑓

(︀
𝑥+

𝑘

)︀⃒⃒2
2𝑅𝑘

·

We now gather the two estimates, and obtain⃦⃦⃦
Σ̃𝑓

⃦⃦⃦2

𝐻1(𝐵𝑘)
=

⃒⃒
Σ𝑓

(︀
𝑥−𝑘
)︀
− Σ𝑓

(︀
𝑥+

𝑘

)︀⃒⃒2
2𝑅𝑘

+
⃒⃒
Σ𝑓

(︀
𝑥−𝑘
)︀

+ Σ𝑓

(︀
𝑥+

𝑘

)︀⃒⃒2𝑅𝑘

2

+
⃒⃒
Σ𝑓

(︀
𝑥−𝑘
)︀
− Σ𝑓

(︀
𝑥+

𝑘

)︀⃒⃒2𝑅𝑘

6
·

Using the equations of motion of the bubbles (11) and the definition (13) of the stress tensor Σ𝑘, one gets

⃦⃦⃦
Σ̃𝑓

⃦⃦⃦2

𝐻1(𝐵𝑘)
≤ 𝑚2

𝑘|𝑐𝑘|
2

(︂
1

2𝑅𝑘
+
𝑅𝑘

6

)︂
+

(︃
𝑚𝑘

3
�̈�𝑘 + 2

(︃
𝜇𝑔
�̇�𝑘

𝑅𝑘
− 𝜅𝑘

𝑅𝑘

)︃)︃2
𝑅𝑘

2

≤ 𝑚2
𝑘|𝑐𝑘|

2

(︂
1

2𝑅𝑘
+
𝑅𝑘

6

)︂
+

2
9
𝑚2

𝑘

⃒⃒⃒
�̈�𝑘

⃒⃒⃒2
𝑅𝑘 + 8𝜇2

𝑔

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

+ 8
𝜅2

𝑘

𝑅𝑘
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Finally, this gives the estimate

⃦⃦⃦
Σ̃𝑓

⃦⃦⃦2

𝐻1(Ω)
≤ 8

⎡⎢⎣‖Σ𝑓‖2𝐻1(ℱ) +
𝑁∑︁

𝑘=1

(𝑚𝑘)2
(︂⃒⃒⃒
�̈�𝑘

⃒⃒⃒2
𝑅𝑘 + |𝑐𝑘|2

(︂
1
𝑅𝑘

+𝑅𝑘

)︂)︂
+

𝑁∑︁
𝑘=1

⎛⎜⎝𝜇2
𝑔

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

+
𝜅2

𝑘

𝑅𝑘

⎞⎟⎠
⎤⎥⎦

1
2

,

which leads to the desired result since 𝑅𝑘 < 1. �

From the above inequality we deduce the following 𝐿∞-bound in case Σ𝑓 is a viscous stress tensor:

Proposition 7. Assume that Σ𝑓 ∈ 𝐻1(ℱ) satisfies (11) and (12) with Σ𝑘 defined by (13). Assume further that
Σ𝑓 is related to (𝜌𝑓 , 𝑢𝑓 ) ∈ 𝐻1(ℱ)×𝐻2(ℱ) via (8). Then, there exists 𝐶1 > 0 such that

‖𝜕𝑥𝑢𝑓‖𝐿∞(ℱ) ≤
𝐶1

𝜇𝑓

(︂⃦⃦⃦
Σ̃𝑓

⃦⃦⃦
𝐻1(Ω)

+ ‖p𝑓 (𝜌𝑓 )‖𝐿∞(ℱ)

)︂
. (38)

Proof. In the fluid domain, the stress tensor writes Σ𝑓 = 𝜇𝑓𝜕𝑥𝑢𝑓 − p𝑓 , which gives

𝜕𝑥𝑢𝑓 =
1
𝜇 𝑓

(Σ𝑓 − p𝑓 (𝜌𝑓 )).

Hence one has
‖𝜕𝑥𝑢𝑓‖𝐿∞(ℱ) ≤

1
𝜇𝑓

(︁
‖Σ𝑓‖𝐿∞(ℱ) + ‖p𝑓 (𝜌𝑓 )‖𝐿∞(ℱ)

)︁
.

The definition of global tensor Σ̃𝑓 gives then

‖Σ𝑓‖𝐿∞(ℱ) ≤
⃦⃦⃦

Σ̃𝑓

⃦⃦⃦
𝐿∞(Ω)

.

The 𝐻1(Ω) ⊂ 𝐿∞(Ω) embedding allows to conclude the proof. �

One can note here the gain of working with an extended stress tensor. Indeed, the constant 𝐶1 we obtain in
the previous proposition is independent of the position of the particles and their radius. This would not be a
priori the case if we wanted to control 𝜕𝑥𝑢 by Σ𝑓 only. Nevertheless, in (37) we introduced on the right-hand side
negative powers of 𝑅𝑘 that we shall control independently. To this end, we performed a symmetric construction
with the bubble stress-tensor Σ𝑔 and we provide now a corresponding proposition:

Proposition 8. There holds Σ̃𝑔 ∈ 𝐻1(Ω) and there exists a constant 𝐶2 > 0 such that

⃦⃦⃦
Σ̃𝑔

⃦⃦⃦
𝐻1(Ω)

≤ 𝐶2

⎡⎣⃦⃦⃦Σ̃𝑓

⃦⃦⃦2

𝐻1(Ω)
+

1
min

𝑘∈{0,...,𝑁}
|ℱ𝑘|

𝑁∑︁
𝑘=1

(𝑚𝑘)2
(︂⃒⃒⃒
�̈�𝑘

⃒⃒⃒2
+ |𝑐𝑘|2

)︂⎤⎦1/2

. (39)

Proof. By straightforward calculations, the definition of Σ̃𝑔 yields

⃦⃦⃦
Σ̃𝑔

⃦⃦⃦2

𝐻1(Ω)
≤

𝑁∑︁
𝑘=1

2𝑅𝑘|Σ𝑘|2 + |Σ0|2
⃒⃒
𝑥−1 − 𝑥+

0

⃒⃒
+ |Σ𝑁 |2

⃒⃒
𝑥−𝑁+1 − 𝑥+

𝑁

⃒⃒
+

𝑁−1∑︁
𝑘=1

(︃
|Σ𝑘+1 − Σ𝑘|2⃒⃒
𝑥−𝑘+1 − 𝑥+

𝑘

⃒⃒ + 2|Σ𝑘|2
⃒⃒
𝑥−𝑘+1 − 𝑥+

𝑘

⃒⃒
+

2
3
|Σ𝑘+1 − Σ𝑘|2

⃒⃒
𝑥−𝑘+1 − 𝑥+

𝑘

⃒⃒)︂
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≤ 𝐶

(︃
𝑁∑︁

𝑘=1

𝑅𝑘|Σ𝑘|2 +
𝑁∑︁

𝑘=0

|ℱ𝑘||Σ𝑘|2 +
𝑁∑︁

𝑘=1

|Σ𝑘+1 − Σ𝑘|2⃒⃒
𝑥−𝑘+1 − 𝑥+

𝑘

⃒⃒ )︃

where 𝐶 is a positive constant, since the length of the bubbles and of the fluid parts are bounded. Summing
equations (11) and (12) leads to

Σ𝑘 = Σ𝑓

(︀
𝑥+

𝑘

)︀
− 𝑚𝑘

2

(︃
𝑐𝑘 +

�̈�𝑘

3

)︃
. (40)

We deduce the following estimates, with some constant 𝐶 ′ > 0,

|Σ𝑘| ≤
⃦⃦⃦
Σ̃𝑓

⃦⃦⃦
𝐿∞(𝐵𝑘)

+𝑚𝑘𝐶
′
(︁
|𝑐𝑘|+

⃒⃒⃒
�̈�𝑘

⃒⃒⃒)︁
,

|Σ𝑘+1 − Σ𝑘| ≤
⃒⃒
𝑥+

𝑘+1 − 𝑥+
𝑘

⃒⃒1/2
⃦⃦⃦
𝜕𝑥Σ̃𝑓

⃦⃦⃦
𝐿2(𝑥+

𝑘 ,𝑥+
𝑘+1)

+
𝑚𝑘

2

(︁⃒⃒⃒
�̈�𝑘

⃒⃒⃒
+ |𝑐𝑘|

)︁
+
𝑚𝑘+1

2

(︁⃒⃒⃒
�̈�𝑘+1

⃒⃒⃒
+ |𝑐𝑘+1|

)︁
.

One can now go back to the estimate on Σ̃𝑔. Noting the relation:

𝑁∑︁
𝑘=0

|ℱ𝑘|+
𝑁∑︁

𝑘=1

2𝑅𝑘 = |Ω|,

the embedding 𝐻1(Ω) ⊂ 𝐿∞(Ω) implies the expected result. �

As for the fluid stress tensor, we deduce from the previous computation a control on the (Σ𝑘)𝑘=1,...,𝑁 by
applying again the embedding 𝐻1(Ω) ⊂ 𝐿∞(Ω):

Corollary 9. Under the same assumptions as in Proposition 8, there holds:

max
𝑘=1,...,𝑁−1

⃒⃒⃒⃒
⃒𝜇𝑔

�̇�𝑘

𝑅𝑘
− 𝜅𝑘

𝑅𝑘

⃒⃒⃒⃒
⃒ ≤ 𝐶2

[︃⃦⃦⃦
Σ̃𝑓

⃦⃦⃦2

𝐻1(Ω)

+
1

min
𝑘∈{0,...,𝑁}

|ℱ𝑘|

𝑁∑︁
𝑘=1

(𝑚𝑘)2
(︂⃒⃒⃒
�̈�𝑘

⃒⃒⃒2
+ |𝑐𝑘|2

)︂⎤⎦1/2

.

(41)

This latter corollary shall enable to control the radius of the bubble from below, preventing from collapse.

2.3. Proof of Theorem 1

We combine now the computations of the previous section to construct a solution on a time-interval inde-
pendent of the number 𝑁 of bubbles. For this, we show that the following bounds can be continued:

(𝑄1) 𝑑∞ ≤ 𝑁𝑅𝑘 ≤ (𝑑∞)−1, 𝑘 = 1, . . . , 𝑁 ,
(𝑄2) 𝑑∞ ≤ 𝑁 |ℱ𝑘| ≤ (𝑑∞)−1, 𝑘 = 1, . . . , 𝑁 ,
(𝑄3) 𝜌∞ ≤ 𝜌𝑓 ≤ 𝜌∞ on ℱ(𝑡)

and, introducing a sufficiently large 𝐾 > 0 :

(𝑄4)
[︂∫︀
ℱ 𝜇𝑓

|𝜕𝑥𝑢𝑓 |2
2 d𝑥+ 𝜇𝑔

∑︀𝑁
𝑘=1

|�̇�𝑘|2
𝑅𝑘

]︂
≤ 𝐾,

(𝑄5)
∫︀ 𝑡

0

[︂⃦⃦⃦
Σ̃𝑓

⃦⃦⃦2

𝐻1(Ω)
+
⃦⃦⃦

Σ̃𝑔

⃦⃦⃦2

𝐻1(Ω)
+
∑︀𝑁

𝑘=1𝑚𝑘

(︂⃒⃒⃒
�̈�𝑘

⃒⃒⃒2
+ |𝑐𝑘|2

)︂]︂
d𝑠 ≤ 𝐾.
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We keep the convention here that tildas represent extended stress tensors as constructed in the previous subsec-
tion. We prove that, if 𝐾 is chosen sufficiently large wrt the list of parameters (25), then we have such estimates
on a time interval (0, 𝑇 ) that depends only on the same list of parameters (25) (possibly via 𝐾).

Technically, we apply a continuation argument based on the a priori assumption that the solution exists.
The precise statement is the following proposition in which we denote (Q𝑖)𝑖=1,...,5 the estimates corresponding
to the above (𝑄𝑖)𝑖=1,...,5 where large inequalities are replaced with strict inequalities. Tacitly, all constants that
are introduced in the following proposition may depend on the list of parameters (25).

Proposition 10. There exists 𝐾∞ > 0 such that, for any 𝐾 > 𝐾∞ there exists 𝑇∞[𝐾] > 0 for which the
following statement holds: if 𝑇 ≤ 𝑇∞[𝐾] and ((𝜌𝑓 , 𝑢𝑓 ), (𝑐𝑘, 𝑅𝑘)𝑘=1,...,𝑁 ) is a classical solution to (6)–(13) on
(0, 𝑇 ) satisfying (𝑄1)–(𝑄5) then it satisfies also (Q1)–(Q5).

The proof of Proposition 10 is the content of Appendix A. We explain here how it implies Theorem 1. For
this, given 𝐾 > 0 we introduce:

ℐ := {𝑇 ∈ (0,∞) s.t. the unique classical solution exists on (0, 𝑇 ) and satisfies (𝑄1)− (𝑄5)}.

Firstly, thanks to the local-in-time existence result, there exists 𝑇0 depending on 𝑁 such that we have a
classical solution on (0, 𝑇0). Indeed, for such a solution the radius 𝑅𝑘 and 𝑐𝑘 are continuous in time. Since we
assume initially (𝐼𝐶1)–(𝐼𝐶2) (resp. (24)) we have that, up to restrict 𝑇0, this solution satisfies (𝑄1)–(𝑄2) (resp.
(𝑄3)) on [0, 𝑇0]. Similarly, we remark that the quantities on the left-hand side of (𝑄4)–(𝑄5) are continuous time-
dependent functions of the classical solution. Since the left-hand side of (𝑄4) is controlled initially by

⃦⃦⃦
𝑢0

𝑓

⃦⃦⃦
𝐻1

0 (Ω)

and parameters involved in (25) (see the proof of Coro. 5), there exists 𝐾0 sufficiently large depending only on
the list of parameters (25) such that we can enforce (𝑄4)–(𝑄5) on [0, 𝑇0] also whatever the value of 𝐾 > 𝐾0.

Let fix now 𝐾 = max(𝐾0,𝐾∞) with 𝐾∞ given by Proposition 10 and denote 𝑇∞ = 𝑇∞[𝐾]. By the previous
arguments, we have that [0, 𝑇0] ⊂ ℐ. We show now that [0, 𝑇∞] ⊂ ℐ which shall end the proof. By restriction, ℐ∩
[0, 𝑇∞] is a closed subinterval of [0, 𝑇∞] containing [0, 𝑇0]. Let us prove that ℐ∩[0, 𝑇∞] is open (in [0, 𝑇∞]). Indeed,
assume [0, 𝑇 ] is a strict subinterval of [0, 𝑇∞] in ℐ, then we can apply Proposition 10 and the solution satisfies
(Q1)–(Q5) on [0, 𝑇 ]. It remains to show that we can continue the solution beyond [0, 𝑇 ]. The inequalities (Q1)-
(Q5) being strict, the large inequalities (𝑄1)–(𝑄5) shall be satisfied on a slightly longer interval by continuity.
To extend the solution, we note that (𝑄1)–(𝑄2) (resp. (𝑄3)) entail “a minimum distance between” and “a
minimum radius of” bubbles (resp. strictly positive distance to vacuum) on [0, 𝑇 ]. Inequality (𝑄4) also ensures
a (uniform) bound from above for ‖𝑢𝑓‖𝐻1(ℱ) on [0, 𝑇 ]. By Proposition 29 of Appendix B we have also a uniform
bound for ‖𝜌𝑓‖𝐻1(ℱ) (up to take 𝑇∞ smaller). We can then apply the local-in-time existence result with initial

data
(︁

(𝜌𝑓 (𝑇 ′, ·), 𝑢𝑓 (𝑇 ′, ·)), (𝑐𝑘(𝑇 ′), 𝑅𝑘(𝑇 ′))𝑘=1,...,𝑁

)︁
for 𝑇 ′ arbitrary close to 𝑇. This yields a solution on some

time-interval ∆𝑇 (independent of 𝑇 ′, given the uniform bound above). By concatenation, we obtain a solution
on (0, 𝑇 ′ + ∆𝑇 ) where 𝑇 ′ + ∆𝑇 > 𝑇 for a well-chosen 𝑇 ′.

To conclude this section, we mention that the proof above entails that we have the following corollary to
Theorem 1:

Corollary 11. The unique classical solution to (6)–(13) on [0, 𝑇∞] satisfies the bounds (𝑄1)–(𝑄2) (resp. (𝑄3))
with 𝑑∞ corresponding to (𝐼𝐶1)–(𝐼𝐶2) (res. 𝜌∞, 𝜌∞ corresponding to (24)) and (𝑄4)–(𝑄5) with 𝐾∞ depending
on the list of parameters (25).

3. Construction of macroscopic unknowns

In this section, we detail the construction of the unknowns for the macroscopic model starting from a sequence
of solutions to the microscopic model with increasing number of gas bubbles. The full justification of the system
(1)–(4) is postponed to the next section. From now on, we fix initial data

(︁
𝜌0

𝑓 , 𝜌
0
𝑔, �̄�

0, �̄�0
𝑓 , �̄�

0
𝑔, 𝑓

0
𝑔

)︁
for the
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macroscopic model. All these quantities are 𝐻1(Ω) functions. We assume further that they fulfill conditions
(20), (21) and (23).

The framework identified in the previous section must be adapted for homogenization purpose. For instance,
given a 𝑁 -bubble solution the gas unknowns at-hand are a priori the discrete set of center/radius/mass
(𝑐𝑘, 𝑅𝑘,𝑚𝑘)𝑘=1,...,𝑁 . From them, we can reconstruct a (functional) density and a covolume by defining:

𝑓 (𝑁)
𝑔 :=

𝑁∑︁
𝑘=1

1
2𝑁𝑅𝑘

1𝐵𝑘
𝜌(𝑁)

𝑔 :=
𝑁∑︁

𝑘=1

𝑚𝑘

2𝑅𝑘
1𝐵𝑘

. (42)

However, these reconstructed functions experience 𝑂(1) jumps through bubble/fluid interfaces and might not
have sufficient regularity to perform the homogenization process. To gain regularity, we shall propagate an initial
regularity through a well-chosen evolution equation (which extends the one satisfied by 𝑓 (𝑁)

𝑔 , 𝜌
(𝑁)
𝑔 on the 𝐵𝑘).

However, this requires to be able to construct regular initial covolume and density (with uniform bounds in
terms of 𝑁). This is obtained with the following proposition:

Proposition 12. Under the assumption that the initial data fulfill the conditions (20)–(21)–(23), there exist

sequences of initial bubble center/radii
(︂(︁

𝑐
(𝑁),0
𝑘 , 𝑅

(𝑁),0
𝑘

)︁
𝑘=1,...,𝑁

)︂
𝑁∈N

and masses
(︁
𝑚

(𝑁)
𝑘

)︁
𝑘=1,...,𝑁

so that:

(i) (𝐼𝐶0)–(𝐼𝐶1)–(𝐼𝐶2) are satisfied with 𝑀∞ and 𝑑∞ independent of 𝑁 ,
(ii) there exist 𝐻1(Ω) extensions

(︁
𝑓

(𝑁),0
𝑔 , 𝜌

(𝑁),0
𝑔

)︁
of the associated reconstructed covolumes and densities such

that:

–
(︁
𝑓

(𝑁),0
𝑔 , 𝜌

(𝑁),0
𝑔

)︁
is bounded in 𝐻1(Ω)

– for arbitrary 𝛽 ∈ 𝐶1([0,∞)× [0,∞)) there holds:

𝛽
(︁
𝜌(𝑁),0

𝑔 , 𝑓 (𝑁),0
𝑔

)︁
1Ω∖ℱ̄(𝑁),0 ⇀ �̄�0

𝑔𝛽
(︀
𝜌0

𝑔, 𝑓
0
𝑔

)︀
in 𝒟′(Ω).

Proof. Up to a localizing argument, we give a proof in the case:

(1− 𝛼min)
⃦⃦
𝑓0

𝑔

⃦⃦
𝐿∞(Ω)

< 𝑓min := inf
Ω
𝑓0

𝑔 . (43)

To construct our gas bubble, we note that �̄�0
𝑔𝑓

0
𝑔 is a probability density on Ω. Then, we might construct the

associated cumulative distribution function:

𝐹𝑔(𝑥) =
∫︁ 𝑥

−1

�̄�0
𝑔(𝑥)𝑓0

𝑔 (𝑥) d𝑥.

With assumptions (20)–(21)–(23), this is a 𝐶1 one-to-one mapping Ω̄ → [0, 1] with 𝐹 ′𝑔 ≥ 𝛼min𝑓min on Ω. We set
then:

𝑐0𝑘 := 𝐹−1
𝑔

(︂
𝑘

𝑁 + 1

)︂
, 𝑅0

𝑘 :=
1

2𝑁
[︀
𝑓𝑔(𝑐0𝑘)

]︀−1
𝑚𝑘 := 2𝑅0

𝑘𝜌
0
𝑔(𝑐0𝑘) for 𝑘 = 1, . . . , 𝑁. (44)

Considering the bounds from above and from below for 𝐹 ′𝑔, we obtain that:

1
𝑁 + 1

1
(1− 𝛼min)

⃦⃦
𝑓0

𝑔

⃦⃦
𝐿∞(Ω)

≤ 𝑐0𝑘+1 − 𝑐0𝑘 ≤
1

𝑁 + 1
1

𝛼min𝑓min

while
1

2𝑁
⃦⃦
𝑓0

𝑔

⃦⃦
𝐿∞(Ω)

≤ 𝑅0
𝑘 ≤

1
2𝑁

1
𝑓min

·
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In particular

⃒⃒
ℱ0

𝑘

⃒⃒
=
(︀
𝑐0𝑘+1 −𝑅0

𝑘+1

)︀
−
(︀
𝑐0𝑘 +𝑅0

𝑘

)︀
≥ 1
𝑁

(︃
𝑁/(𝑁 + 1)

(1− 𝛼min)
⃦⃦
𝑓0

𝑔

⃦⃦
𝐿∞(Ω)

− 1
𝑓min

)︃

≤ 𝑐0𝑘+1 − 𝑐0𝑘 ≤
1
𝑁

1
𝛼min𝑓min

where 𝑁/((𝑁 + 1)(1− 𝛼min))
⃦⃦
𝑓0

𝑔

⃦⃦
𝐿∞(Ω)

− 1/𝑓min > 0 by (43) for 𝑁 large. Finally, we have:

1
𝑁

𝜌min⃦⃦
𝑓0

𝑔

⃦⃦
𝐿∞(Ω)

≤ 𝑚𝑘 ≤
1
𝑁

⃦⃦
𝜌0

𝑔

⃦⃦
𝐿∞(Ω)

𝑓min
·

Item (i) is satisfied.
For item (ii), we remark that the reconstructed densities and covolumes read:

𝑓 (𝑁),0
𝑔 :=

𝑁∑︁
𝑘=1

1
2𝑁𝑅0

𝑘

1𝐵0
𝑘

𝜌(𝑁),0
𝑔 :=

𝑁∑︁
𝑘=1

𝑚𝑘

2𝑅0
𝑘

1𝐵0
𝑘
.

We recall that we denote 𝐵0
𝑘 =

(︀
𝑥−𝑘 , 𝑥

+
𝑘

)︀
where 𝑥±𝑘 = 𝑐0𝑘 ±𝑅0

𝑘 (and 𝑥+
0 = −1, 𝑥−𝑁+1 =1). At this point, we note

that by item (i), we have:

min
𝑘∈{0,...,𝑁}

⃒⃒
𝑥−𝑘+1 − 𝑥+

𝑘

⃒⃒
≥ 1

2𝑑∞𝑁
·

Consequently, for 𝑘 = 2, . . . , 𝑁 − 1. we can construct a piecewise affine function 𝜓0
𝑘 with satisfies 𝜓0

𝑘 = 1 on 𝐵0
𝑘,

that vanishes in 𝑥−𝑘+1 and 𝑥+
𝑘−1 and further away from 𝐵0

𝑘. For 𝑘 = 1 and 𝑘 = 𝑁 we define similarly 𝜓0
1 and 𝜓0

𝑁

up to the condition that 𝜓0
1 is constant equal to 1 between −1 and 𝐵0

1 (resp. 𝜓0
𝑁 is constant equal to 1 between

𝐵0
𝑁 and 1). Then, we set:

𝑓 (𝑁),0
𝑔 :=

𝑁∑︁
𝑘=1

1
2𝑁𝑅0

𝑘

𝜓0
𝑘 𝜌(𝑁),0

𝑔 :=
𝑁∑︁

𝑘=1

𝑚𝑘

2𝑅0
𝑘

𝜓0
𝑘.

By standard computations, we have for instance:⃦⃦⃦
𝑓 (𝑁),0

𝑔

⃦⃦⃦2

𝐿2(Ω)
≤

𝑁∑︁
𝑘=1

1

𝑁2|𝑅0
𝑘|

2

⃦⃦
𝜓0

𝑘

⃦⃦2

𝐿2(Ω)

.
1
𝑁

𝑁∑︁
𝑘=1

1

𝑁2|𝑅0
𝑘|

2 .
⃦⃦
𝑓0

𝑔

⃦⃦2

𝐿∞(Ω)

where the first inequality on the second line involves a constant depending on 𝑑∞. We also derive using that
𝜓𝑘+1 = 1− 𝜓𝑘 on Supp(𝜓′𝑘) ∩ Supp

(︀
𝜓′𝑘+1

)︀
:⃦⃦⃦

𝜕𝑥𝑓
(𝑁),0
𝑔

⃦⃦⃦2

𝐿2(Ω)
.

𝑁−1∑︁
𝑘=1

[︂
1

𝑁𝑅0
𝑘+1

− 1
𝑁𝑅0

𝑘

]︂2
𝑁

.
𝑁−1∑︁
𝑘=1

𝑁

⃒⃒⃒⃒
⃒
∫︁ 𝑐0

𝑘+1

𝑐0
𝑘

𝜕𝑥𝑓
0
𝑔 (𝑧) d𝑧

⃒⃒⃒⃒
⃒
2

.
⃦⃦
𝜕𝑥𝑓

0
𝑔

⃦⃦2

𝐿2(Ω)
.

In these computations, we use extensively the definitions (44) and also that |𝐵0
𝑘| and |ℱ0

𝑘 | are both of size
𝑂(1/𝑁). Similar arguments yield that: ⃦⃦⃦

𝜌(𝑁),0
𝑔

⃦⃦⃦2

𝐻1(Ω)
.
⃦⃦
𝜌0

𝑔

⃦⃦2

𝐻1(Ω)
.
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Finally, for arbitrary 𝛽 ∈ 𝐶1([0,∞)× [0,∞)) and 𝜙 ∈ 𝐶∞𝑐 (Ω), we have:∫︁
Ω

𝛽
(︁
𝜌(𝑁),0

𝑔 , 𝑓 (𝑁),0
𝑔

)︁
1Ω∖ℱ̃(𝑁),0𝜙 d𝑥 =

𝑁∑︁
𝑘=1

∫︁
𝐵0

𝑘

𝛽
(︀
𝜌𝑔

(︀
𝑐0𝑘
)︀
, 𝑓𝑔

(︀
𝑐0𝑘
)︀)︀
𝜙(𝑥) d𝑥

=
𝑁∑︁

𝑘=1

2𝑅0
𝑘𝛽
(︀
𝜌𝑔

(︀
𝑐0𝑘
)︀
, 𝑓𝑔

(︀
𝑐0𝑘
)︀)︀
𝜙
(︀
𝑐0𝑘
)︀

+𝑂(1/𝑁)‖𝜕𝑥𝜙‖𝐿∞(Ω)

=
1
𝑁

𝑁∑︁
𝑘=1

𝛽
(︀
𝜌𝑔

(︀
𝑐0𝑘
)︀
, 𝑓𝑔

(︀
𝑐0𝑘
)︀)︀

𝑓0
𝑔 (𝑐0𝑘)

𝜙
(︀
𝑐0𝑘
)︀

+𝑂(1/𝑁)‖𝜕𝑥𝜙‖𝐿∞(Ω).

At this point, we remark that, by construction, we have that

1
𝑁

𝑁∑︁
𝑘=1

𝛿𝑐0
𝑘
⇀ �̄�0

𝑔𝑓
0
𝑔 in P(Ω).

Since 𝑡 ↦→ 𝛽
(︀
𝜌0

𝑔(𝑡), 𝑓0
𝑔 (𝑡)

)︀
/𝑓0

𝑔 (𝑡) is continuous on Ω̄ we infer that:

lim
𝑁→∞

∫︁
Ω

𝛽
(︁
𝜌(𝑁),0

𝑔 , 𝑓 (𝑁),0
𝑔

)︁
1Ω∖ℱ̃(𝑁),0𝜙 d𝑥 =

∫︁
Ω

𝛽
(︀
𝜌𝑔, 𝑓

0
𝑔

)︀
�̄�0

𝑔𝜙 d𝑥.

This concludes the proof. �

Below, we pick a sequence of initial bubble distribution
(︁
𝑐
(𝑁),0
𝑘 , 𝑅

(𝑁),0
𝑘

)︁
𝑘=1,...,𝑁

and masses
(︁
𝑚

(𝑁)
𝑘

)︁
𝑘=1,...,𝑁

given by Proposition 12. For any 𝑁 ∈ N, assuming the fluid initial data is associated with 𝜌0
𝑓 , �̄�

0, we construct
initial data for the microscopic system like in (16)–(19). We have then that the initial data match the assumptions
of Theorem 1 and we obtain a solution(︂

𝜌
(𝑁)
𝑓 , 𝑢

(𝑁)
𝑓 ,

(︁
𝑐
(𝑁)
𝑘 , 𝑅

(𝑁)
𝑘

)︁
𝑘∈{1,...,𝑁}

)︂
that is defined on a time-span [0, 𝑇 ] which does not depend on 𝑁. This creates a sequence of solutions indexed
by 𝑁 whose asymptotic behavior (when 𝑁 →∞) is analyzed in the remaining sections.

Firstly, Corollary 11 entails that we have uniform bounds on [0, 𝑇 ] in the form of (A.1) and (A.2) with a
right-hand side 𝐸0 independent of 𝑁 , and that (𝑄1)–(𝑄5) hold also with a constant 𝐾 independent of 𝑁 . In
passing, we point out that all the bounds that are derived in Appendices A and B are available since they are
obtained under the sole assumptions that initial data are of the form (16)–(19) and that the bounds (𝑄1)–(𝑄5)
hold true. Below we denote �̃�(𝑁) the ”mixture” velocity-field meaning that

�̃�(𝑁) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢

(𝑁)
𝑓 , on ℱ (𝑁),

𝑢𝑓

(︁
𝑥
−,(𝑁)
𝑘

)︁
+𝑢𝑓

(︁
𝑥
+,(𝑁)
𝑘

)︁

2

−
𝑢𝑓

(︁
𝑥
−,(𝑁)
𝑘

)︁
−𝑢𝑓

(︁
𝑥
+,(𝑁)
𝑘

)︁

2𝑅
(𝑁)
𝑘

(𝑥− 𝑐𝑘), on 𝐵
(𝑁)
𝑘 , 𝑘 = 1, . . . , 𝑁.

(45)

Note that the restriction of �̃�(𝑁) on the bubbles boils down to

�̃�(𝑁)(·, 𝑥) = �̇�
(𝑁)
𝑘 +

�̇�
(𝑁)
𝑘

𝑅
(𝑁)
𝑘

(︁
𝑥− 𝑐

(𝑁)
𝑘

)︁
on 𝐵

(𝑁)
𝑘 . (46)

In what remains of this section, we introduce functions describing the different species and the mixture and we
analyse their possible convergences. Since we use mostly compactness argument below, all convergence results
must be understood “up to the extraction of a subsequence that we do not relabel.”
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3.1. Fluid unknowns

In (1), the fluid behavior is encoded through its “void fraction” �̄�𝑓 and its density 𝜌𝑓 . We recover such
quantities from microscopic counterparts. We start with the following construction of the void fraction:

Proposition 13. Let 𝜒(𝑁) = 1ℱ(𝑁) . It satisfies{︃
𝜕𝑡𝜒

(𝑁) + �̃�(𝑁)𝜕𝑥𝜒
(𝑁) = 0, on(0, 𝑇 )× Ω,

𝜒(𝑁)(0, .) = 1ℱ(𝑁),0 .
(47)

Moreover, there exists �̄�𝑓 ∈ 𝐿∞((0, 𝑇 )×Ω), called the void fraction of the fluid, such that, up to the extraction
of a subsequence,

𝜒(𝑁) ⇀ �̄�𝑓 in 𝐿∞((0, 𝑇 )× Ω)− 𝑤* and 0 ≤ �̄�𝑓 ≤ 1− 2𝑑2
∞/3 𝑎.𝑒. (48)

Proof. Since the fluid domain ℱ (𝑁) is transported by the velocity field �̃�(𝑁), (47) holds. The convergence result
is straightforward since the sequence 𝜒(𝑁) is nonnegative and bounded in 𝐿∞((0, 𝑇 )×Ω). The limit is obviously
positive. The only crucial information is the bound from above. For this, we remark that under (𝑄1)–(𝑄2),
any sequence of bubble + fluid intervals has at most length 3/(𝑑∞𝑁). Hence, for large 𝑁 , any segment in Ω of
length ℓ contains at least ℓ𝑁𝑑∞/3− 2 such sequences in which the volumic proportion of gas-bubbles is at least
2ℓ𝑑2

∞/3 +𝑂(1/𝑁). The fluid part of this segment is then asymptotically less than ℓ
(︀
1− 2𝑑2

∞/3
)︀
. �

We point out that a strictly positive bound from below for �̄�𝑓 is also true with similar arguments. We dot not
state this bound here since it will not help in the sequel. For constructing the macroscopic density, we choose
to extend at first the microscopic fluid density by “filling” the bubbles in a sufficiently smooth manner. To this
end, we take advantage of the fact that 𝜌0

𝑓 is initially defined (and sufficiently regular) on the whole Ω. So, we

introduce 𝜌(𝑁)
𝑓 as the unique solution to:⎧⎪⎪⎨⎪⎪⎩

𝜕𝑡𝜌
(𝑁)
𝑓 + �̃�(𝑁)𝜕𝑥𝜌

(𝑁)
𝑓 = −𝜌

(𝑁)
𝑓

𝜇𝑓

(︁
Σ̃(𝑁)

𝑓 + p𝑓

(︁
𝜌
(𝑁)
𝑓

)︁)︁
, on (0, 𝑇 )× Ω,

𝜌
(𝑁)
𝑓 (0, .) = 𝜌0

𝑓 , on Ω,

(49)

where Σ̃(𝑁)
𝑓 is defined from Σ𝑓 by (35).

Proposition 14. There exists a time 𝑇0 < 𝑇 , independent of 𝑁 , such that the Cauchy problem (49) admits a
unique solution 𝜌

(𝑁)
𝑓 ∈ 𝐶([0, 𝑇0]× Ω).

Moreover, there exists 𝜌𝑓 ∈ 𝐿2((0, 𝑇0) × Ω) called the density of the fluid such that, up to the extraction of a
subsequence,

𝜌
(𝑁)
𝑓 −→ 𝜌𝑓 in 𝐿2((0, 𝑇0)× Ω) when 𝑁 → +∞.

Proof. The well-posedness of the Cauchy problem (49) is guaranteed by the method of characteristics, since
�̃�(𝑁) belongs to 𝐿2((0, 𝑇 );𝑊 1,∞(Ω)).

The result of convergence is an application of the Aubin–Lions lemma. One has to check:

–
(︁
𝜌
(𝑁)
𝑓

)︁
𝑁

bounded in 𝐿2
(︀
(0, 𝑇 );𝐻1(Ω)

)︀
,

–
(︁
𝜕𝑡𝜌

(𝑁)
𝑓

)︁
𝑁

bounded in 𝐿2
(︀
(0, 𝑇 );𝐿2(Ω)

)︀
.
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For the first item, we apply Proposition 29 in Appendix B which yields that, up to restrict to some time-interval
[0, 𝑇0] ⊂ [0, 𝑇 ] we have that 𝜌(𝑁)

𝑓 satisfies a uniform bound in 𝐿∞((0, 𝑇 );𝐻1(Ω)). As for the second item, using
directly equation (49), a uniform estimate can be obtained:

⃦⃦⃦
𝜕𝑡𝜌

(𝑁)
𝑓

⃦⃦⃦
𝐿2((0,𝑇 )×Ω)

≤ 𝐶0

[︃⃦⃦⃦
�̃�(𝑁)

⃦⃦⃦
𝐿2((0,𝑇 );𝐻1(Ω))

⃦⃦⃦
𝜕𝑥𝜌

(𝑁)
𝑓

⃦⃦⃦
𝐿∞((0,𝑇 );𝐿2((Ω))

+

⃦⃦⃦
𝜌
(𝑁)
𝑓

⃦⃦⃦
𝐿∞((0,𝑇 )×Ω)

𝜇𝑓

(︂⃦⃦⃦
Σ̃(𝑁)

𝑓

⃦⃦⃦
𝐿2((0,𝑇 );𝐻1(Ω))

+
√
𝑇
⃦⃦⃦
𝜌
(𝑁)
𝑓

⃦⃦⃦𝛾

𝐿∞((0,𝑇 )×Ω)

)︂⎤⎥⎦,
where 𝐶0 depends only on the parameters of the problem independent of 𝑁 . Here again, the right-hand side is
uniformly bounded with respect to 𝑁 , so that the Aubin–Lions lemma can be applied to deduce the existence
of the limit 𝜌𝑓 stated in the proposition. �

To illustrate again that our choice for 𝜌(𝑁)
𝑓 is rigorously adapted, we mention that, on the fluid domain ℱ (𝑁),

the definition of the fluid tensor (8) gives

1
𝜇𝑓

(︁
Σ̃(𝑁)

𝑓 + p𝑓

(︁
𝜌
(𝑁)
𝑓

)︁)︁
= 𝜕𝑥𝑢

(𝑁)
𝑓 .

Moreover, 𝑢(𝑁)
𝑓 and �̃�(𝑁) coincide on ℱ (𝑁), and the density 𝜌(𝑁)

𝑓 is also solution of⎧⎨⎩𝜕𝑡𝜌
(𝑁)
𝑓 + 𝜕𝑥

(︁
𝜌
(𝑁)
𝑓 𝑢

(𝑁)
𝑓

)︁
= 0, on (0, 𝑇 )×ℱ𝑁 ,

𝜌
(𝑁)
𝑓 (0, .) = 𝜌0

𝑓 .
(50)

As a consequence, the fluid density 𝜌
(𝑁)
𝑓 on the fluid domain ℱ (𝑁) is the restriction of the global microscopic

density 𝜌(𝑁)
𝑓 :

𝜌
(𝑁)
𝑓 = 𝜌

(𝑁)
𝑓 , on (0, 𝑇 )×ℱ (𝑁). (51)

3.2. Mixture unknowns

We proceed with the construction of unknowns that are involved in composite equations: a mixture velocity,
a mixture density and a mixture stress tensor.

The mixture velocity is deduced from the reconstructed velocity �̃�(𝑁) defined by (45):

Proposition 15. There exists �̄� ∈ 𝐿2((0, 𝑇 );𝐿2(Ω)) such that, up to the extraction of a subsequence,

�̃�(𝑁) → �̄� in 𝐿2((0, 𝑇 );𝐿2(Ω)) when 𝑁 → +∞.

Proof. This result is an application of the Aubin–Lions lemma again. From Corollary 3 and (𝑄1), the sequence
(�̃�(𝑁)) is bounded in 𝐿2((0, 𝑇 );𝐻1(Ω)). It remains to prove a uniform bound for

(︀
𝜕𝑡�̃�

(𝑁)
)︀
𝑁

in 𝐿2((0, 𝑇 );𝐿2(Ω)).
By (7) and (46), the time derivative of the velocity reads:

𝜕𝑡�̃�
(𝑁) =

⎧⎨⎩−𝑢
(𝑁)
𝑓 𝜕𝑥𝑢

(𝑁)
𝑓 − 1

𝜌
(𝑁)
𝑓

𝜕𝑥Σ(𝑁)
𝑓 on ℱ ,

𝑐𝑘 + �̈�𝑘𝑅𝑘−(�̇�𝑘)2

𝑅2
𝑘

(𝑥− 𝑐𝑘)− �̇�𝑘
�̇�𝑘

𝑅𝑘
on 𝐵𝑘,
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(note that some exponents (𝑁) have been removed to lighten the notations). Since the velocity �̃�(𝑁) is continuous
through the interfaces 𝑐𝑘 ±𝑅𝑘, one has, in 𝒟′((0, 𝑇 )× Ω),

𝜕𝑡�̃�
(𝑁) =

(︃
−𝑢(𝑁)

𝑓 𝜕𝑥𝑢
(𝑁)
𝑓 − 1

𝜌
(𝑁)
𝑓

𝜕𝑥Σ(𝑁)
𝑓

)︃
1ℱ

+
𝑁∑︁

𝑘=1

[︃
𝑐𝑘 +

(︃
�̈�𝑘

𝑅𝑘
− (�̇�𝑘)2

𝑅2
𝑘

)︃
(𝑥− 𝑐𝑘)− �̇�𝑘

�̇�𝑘

𝑅𝑘

]︃
1𝐵𝑘

.

We now take the 𝐿2 norm:⃦⃦⃦
𝜕𝑡�̃�

(𝑁)
⃦⃦⃦2

𝐿2(Ω)
≤
⃦⃦⃦
�̃�(𝑁)

⃦⃦⃦2

𝐿∞(Ω)

⃦⃦⃦
𝜕𝑥�̃�

(𝑁)
⃦⃦⃦2

𝐿2(Ω)
+

1⃒⃒⃒
𝜌∞

⃒⃒⃒2 ⃦⃦⃦𝜕𝑥Σ̃(𝑁)
𝑓

⃦⃦⃦2

𝐿2(Ω)

+ 2
𝑁∑︁

𝑘=1

⎡⎢⎣𝑅𝑘(𝑐𝑘)2 +𝑅𝑘

(︁
�̈�𝑘

)︁2

+

(︁
�̇�𝑘

)︁4

𝑅𝑘
+

(︁
�̇�𝑘�̇�𝑘

)︁2

𝑅𝑘

⎤⎥⎦
≤ 𝐶

⃦⃦⃦
�̃�(𝑁)

⃦⃦⃦4

𝐻1(Ω)
+

1⃒⃒⃒
𝜌∞

⃒⃒⃒2 ⃦⃦⃦Σ̃(𝑁)
𝑓

⃦⃦⃦2

𝐻1(Ω)

+ 2
1

𝑑∞𝑀∞

𝑁∑︁
𝑘=1

𝑚𝑘

(︂
(𝑐𝑘)2 +

(︁
�̈�𝑘

)︁2
)︂

+ 2
𝑁∑︁

𝑘=1

1
𝑅𝑘

(︂(︁
�̇�𝑘

)︁4

+
(︁
�̇�𝑘�̇�𝑘

)︁2
)︂

by (𝐼𝐶0) and (𝑄1). Time-integrals of the two first terms on the right-hand side are bounded by (𝑄4) and (𝑄5)
respectively. The third is controlled using (𝑄5). Moreover, by (𝐼𝐶0), (𝑄1), and then by (A.1), the last term can
be bounded this way:

∫︁ 𝑇

0

𝑁∑︁
𝑘=1

(︁
�̇�𝑘

)︁2

𝑅𝑘

(︂(︁
�̇�𝑘

)︁2

+ (�̇�𝑘)2
)︂

d𝑡

≤ 1
𝑑∞𝑀∞

∫︁ 𝑇

0

max
𝑘=1,...,𝑁

(︁
�̇�𝑘

)︁2

𝑅2
𝑘

𝑁∑︁
𝑘=1

𝑚𝑘

(︂(︁
�̇�𝑘

)︁2

+ (�̇�𝑘)2
)︂

d𝑡

≤ 2𝐸0

𝑑∞𝑀∞

∫︁ 𝑇

0

max
𝑘=1,...,𝑁

(︁
�̇�𝑘

)︁2

𝑅2
𝑘

d𝑡.

The last right-hand side is finally bounded by using Lemma 27. This concludes the proof of the assumptions of
the Aubin–Lions lemma, leading to the convergence of the sequence (�̃�(𝑁))𝑁 in 𝐿2

(︀
(0, 𝑇 );𝐿2(Ω)

)︀
. �

We focus now on the mixture density. For this, we construct the global density 𝜌(𝑁):

𝜌(𝑁) = 𝜌
(𝑁)
𝑓 1ℱ(𝑁) +

𝑁∑︁
𝑘=1

𝜌
(𝑁)
𝑘 1𝐵𝑘

, (52)

where 𝜌(𝑁)
𝑘 = 𝑚

(𝑁)
𝑘 /(2𝑅(𝑁)

𝑘 ) is the bubble density that we reconstruct from the bubble mass and radius. Notice
that the global density 𝜌(𝑁) belongs to 𝐿∞((0, 𝑇 )×Ω), and satisfies a classical mass conservation law (the proof
is left to the reader):

𝜕𝑡𝜌
(𝑁) + 𝜕𝑥

(︁
𝜌(𝑁)�̃�

(𝑁)
𝑓

)︁
= 0, in (0, 𝑇 )× Ω. (53)
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To conclude, we address the asymptotic behavior of extended stresses. This is the content of the following
proposition:

Proposition 16. There exist Σ̃𝑓 and Σ̃𝑔 in 𝐿2
(︀
(0, 𝑇 );𝐻1(Ω)

)︀
such that, up to the extraction of a subsequence,

Σ̃(𝑁)
𝑓 ⇀ Σ̄𝑓

Σ̃(𝑁)
𝑔 ⇀ Σ̄𝑔

in 𝐿2
(︀
(0, 𝑇 );𝐻1(Ω)

)︀
when 𝑁 → +∞.

Proof. The estimate (𝑄5) ensures that the sequences Σ̃(𝑁)
𝑓 and Σ̃(𝑁)

𝑔 are both bounded in the space
𝐿2((0, 𝑇 );𝐻1(Ω)). Hence they are relatively compact in 𝐿2

(︀
(0, 𝑇 );𝐻1(Ω)

)︀
endowed with the weak topology,

and the result follows. �

3.3. Bubble unknowns

We mention first that the indicator of the bubble domains reads 1 − 𝜒(𝑁). Similarly to Proposition 13 we
obtain that it converges weakly to some �̄�𝑔 satisfying also 0 ≤ �̄�𝑔 ≤ 1 a.e.. Since 1 = �̄�𝑔 + �̄�𝑓 , Proposition 13
entails further that �̄�𝑔 ≥ 2𝑑2

∞/3.
For our analysis, we need a sufficiently strong (pointwise) convergence of bubble density 𝜌(𝑁)

𝑔 and covolume
𝑓

(𝑁)
𝑔 as defined in (42). Yet, these quantities are defined only on subsets depending on 𝑁. To overcome this

difficulty, we note that both quantities satisfy the same continuity equation:{︃
𝜕𝑡𝜌

(𝑁)
𝑔 + 𝜕𝑥(𝜌(𝑁)

𝑔 �̃�(𝑁)) = 0,

𝜕𝑡𝑓
(𝑁)
𝑔 + 𝜕𝑥(𝑓 (𝑁)

𝑔 �̃�(𝑁)) = 0,
in 𝒟′((0, 𝑇 )× Ω). (54)

We used here in particular that 𝑚(𝑁)
𝑘 is time-independent and that the bubbles follow the flow associated with

the extended velocity. We propose then to reproduce the same method we used in the case of fluid unknowns
(see Prop. 14). We remark that, on 𝐵𝑘, there holds:

𝜕𝑥�̃�
(𝑁) =

1
𝜇𝑔

Σ(𝑁)
𝑘 +

𝜅𝑘

𝑅
(𝑁)
𝑘

· (55)

We recall that, on the right-hand side, the first term is the restriction to 𝐵𝑘 of the extended stress tensor Σ̃(𝑁)
𝑔 .

As for the last term, we wish to extract the contribution of the pressure and the contribution of the surface
tension for modelling reason (even though keeping the current form would not change the remark in progress).
So we rewrite:

𝜅𝑘

𝑅
(𝑁)
𝑘

= p𝑔

(︁
𝜌
(𝑁)
𝑘

)︁
+

𝛾𝑆

2𝑁𝑅(𝑁)
𝑘

·

Here, the second term could be related artificially to a density, but it is usually related to a “covolume” and
is treated independently. Actually, this is the reason motivating the introduction of the unknown 𝑓 (𝑁)

𝑔 . We use
now this novel writing of the term 𝜕𝑥�̃�

(𝑁) to see that
(︁
𝜌
(𝑁)
𝑔 , 𝑓

(𝑁)
𝑔

)︁
is the restriction of a pair

(︁
𝜌
(𝑁)
𝑔 , 𝑓

(𝑁)
𝑔

)︁
solution to:

𝜕𝑡

(︃
𝜌
(𝑁)
𝑔

𝑓
(𝑁)
𝑔

)︃
+ �̃�(𝑁)𝜕𝑥

(︃
𝜌
(𝑁)
𝑔

𝑓
(𝑁)
𝑔

)︃
= − 1

𝜇𝑔

(︃
𝜌
(𝑁)
𝑔

𝑓
(𝑁)
𝑔

)︃(︁
Σ̃(𝑁)

𝑔 + p𝑔(𝜌(𝑁)
𝑔 ) + 𝛾𝑠𝑓

(𝑁)
𝑔

)︁
, on (0, 𝑇 )× Ω. (56)

We can then use the stability properties of this latter equation to yield the following proposition:

Proposition 17. There exists a time 𝑇0 < 𝑇 (independent of 𝑁) and sequences
(︁
𝜌
(𝑁)
𝑔 , 𝑓

(𝑁)
𝑔

)︁
∈

𝐶
(︀
[0, 𝑇0];𝐻1(Ω)

)︀
satisfying the following properties:
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– there holds 𝜌(𝑁)
𝑔 = 𝜌

(𝑁)
𝑔 and 𝑓 (𝑁)

𝑔 = 𝑓
(𝑁)
𝑔 on 𝐵𝑘 for all 𝑘 = 1, . . . , 𝑁,

– there exists (𝜌𝑔, 𝑓𝑔) ∈ 𝐿2((0, 𝑇0)× Ω)2 such that, up to the extraction of a subsequence,(︁
𝜌(𝑁)

𝑔 , 𝑓 (𝑁)
𝑔

)︁
−→

(︀
𝜌𝑔, 𝑓𝑔

)︀
in 𝐿2((0, 𝑇0)× Ω)2 when 𝑁 → +∞.

Proof. We recall that the initial bubble distribution
(︁
𝑐
(𝑁)
𝑘 , 𝑅

(𝑁)
𝑘

)︁
𝑘=1,...,𝑁

is obtained by applying Proposition 12

so that they are associated with a sequence of initial density/covolume 𝜌(𝑁),0
𝑔 , 𝑓

(𝑁),0
𝑔 which extend initially 𝜌(𝑁)

𝑔

and 𝑓
(𝑁)
𝑔 and that converge weakly in 𝐻1(Ω). Hence, we complement (56) with initial condition

𝜌(𝑁)
𝑔 (0, ·) = 𝜌(𝑁),0

𝑔 𝑓 (𝑁)
𝑔 (0, ·) = 𝑓 (𝑁),0

𝑔 on Ω. (57)

The result is then proved following exactly the same steps as in the proof of Proposition 14, since (𝑄5) involves
similar controls on Σ̃(𝑁)

𝑓 and Σ̃(𝑁)
𝑔 . �

3.4. Two technical lemmas

We close this section by providing two crucial results which allow to pass to the limit in some nonlinear
terms. The procedure we apply here is similar to the construction in [6].

Let 𝑏 ∈ 𝐶1([0, 1]× R+ × R+) and consider the sequence

𝑏(𝑁)(𝑡, 𝑥) = 𝑏
(︁
𝜒(𝑁)(𝑡, 𝑥), 𝜌(𝑁)(𝑡, 𝑥), 𝑓 (𝑁)

𝑔 (𝑡, 𝑥)
)︁
, ∀ (𝑡, 𝑥) ∈ (0, 𝑇 )× Ω, (58)

where 𝜌(𝑁) is defined by (52) and 𝑓
(𝑁)
𝑔 by (42).

Proposition 18. There exists �̄� ∈ 𝐿∞((0, 𝑇 )× Ω) such that, up to extraction of a subsequence,

𝑏(𝑁) ⇀ �̄�, in 𝐿∞((0, 𝑇 )× Ω)− 𝑤⋆ when 𝑁 → +∞.

This limit verifies the following identity, for almost every (𝑡, 𝑥) ∈ (0, 𝑇 )× Ω,

�̄� = 𝑏(1, 𝜌𝑓 , 0)�̄�𝑓 + 𝑏
(︀
0, 𝜌𝑔, 𝑓𝑔

)︀
�̄�𝑔. (59)

Proof. By definition, we have:

𝑏(𝑁) = 𝑏
(︁

1, 𝜌(𝑁)
𝑓 , 0

)︁
𝜒(𝑁) + 𝑏

(︁
0, 𝜌(𝑁)

𝑔 , 𝑓 (𝑁)
𝑔

)︁(︁
1− 𝜒(𝑁)

)︁
The strong convergence of 𝜌(𝑁)

𝑓 (resp. 𝜌(𝑁)
𝑔 and 𝑓 (𝑁)

𝑔 ), see Proposition 14 (resp. Prop. 17) and the weak conver-
gence of 𝜒(𝑁) (Prop. 13) ensure that the first term converges weakly towards 𝑏(1, 𝜌𝑓 , 0)�̄�𝑓 and the second one
to 𝑏

(︀
0, 𝜌𝑔, 𝑓𝑔

)︀
�̄�𝑔. �

In the following result, the term Σ̃(𝑁) denotes either Σ̃(𝑁)
𝑓 or Σ̃(𝑁)

𝑔 .

Proposition 19. Assume that Σ̃(𝑁) converges weakly in 𝐿2((0, 𝑇 );𝐻1(Ω)), and denote by Σ̄ its limit. Then for
all 𝑏 ∈ 𝐶1([0, 1]× R+ × R+), it holds

Σ̃(𝑁)𝑏(𝑁) ⇀ Σ̄�̄�, in 𝒟′((0, 𝑇 )× Ω) when 𝑁 → +∞.

Proof. This result is a variant of so-called “compensated compactness” lemma. We can reproduce here the proof
of [4, Lemma 10] up to adapt the definition of the operator 𝜕−1

𝑥 on mean free functions. �
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4. Derivation of a macroscopic model

Thanks to the results of the previous section, we are now in position to address the limit 𝑁 → +∞ for the
microscopic model (6)–(13). Based on the previous definitions of macroscopic unknowns, we derive successively
the various equations of (1). This is the content of the following theorem.

Theorem 20. Let 𝜌𝑓 , �̄�𝑓 , �̄�𝑔, 𝜌𝑔, �̄� be as constructed in the previous section. Then, we have that(︀
�̄�𝑓 , 𝜌𝑓 , �̄�𝑔, 𝜌𝑔, 𝑓𝑔, �̄�

)︀
is a solution to (1)–(2)–(3)–(4) on (0, 𝑇 ) with initial condition on Ω:

�̄�𝑓 (0, ·) = �̄�0
𝑓 �̄�𝑔(0, ·) = �̄�0

𝑓

𝜌𝑓 (0, ·) = 𝜌0
𝑓 �̄�𝑔𝜌𝑔(0, ·) = �̄�0

𝑔𝜌
0
𝑔

�̄�(0, ·) = �̄�0 �̄�𝑔𝑓𝑔(0, ·) = �̄�0
𝑔𝑓

0
𝑔

What remains of this section is devoted to the proof of this theorem. Our first result provides the limit
equation for the limit �̄� associated with an abstract choice of 𝑏.

Proposition 21. Let 𝑏 ∈ 𝐶1([0, 1]× R+ × R+) and define

𝑏1,𝑓 (𝑧, 𝜉, 𝜈) = (𝜕2𝑏(𝑧, 𝜉, 𝜈)𝜉 + 𝜕3𝑏(𝑧, 𝜉, 𝜈)𝜈 − 𝑏(𝑧, 𝜉, 𝜈))𝑧,
𝑏1,𝑔(𝑧, 𝜉, 𝜈) = (𝜕2𝑏(𝑧, 𝜉, 𝜈)𝜉 + 𝜕3𝑏(𝑧, 𝜉, 𝜈)𝜈 − 𝑏(𝑧, 𝜉, 𝜈))(1− 𝑧),
𝑏2,𝑓 (𝑧, 𝜉, 𝜈) = (𝜕2𝑏(𝑧, 𝜉, 𝜈)𝜉 + 𝜕3𝑏(𝑧, 𝜉, 𝜈)𝜈 − 𝑏(𝑧, 𝜉, 𝜈))𝑧p𝑓 (𝜉),
𝑏2,𝑔(𝑧, 𝜉, 𝜈) = (𝜕2𝑏(𝑧, 𝜉, 𝜈)𝜉 + 𝜕3𝑏(𝑧, 𝜉, 𝜈)𝜈 − 𝑏(𝑧, 𝜉, 𝜈))(1− 𝑧)(p𝑔(𝜉) + 𝛾𝑠𝜈).

Then, the limit �̄� defined in Proposition 18 satisfies the equation⎧⎨⎩ 𝜕𝑡�̄�+ 𝜕𝑥(�̄��̄�) +
1
𝜇𝑓

(︀
�̄�1,𝑓 Σ̄𝑓 + �̄�2,𝑓

)︀
+

1
𝜇𝑔

(︀
�̄�1,𝑔Σ̄𝑔 + �̄�2,𝑔

)︀
= 0

�̄�(0, ·) = �̄�0
𝑓𝑏
(︀
1, 𝜌0

𝑓 , 0
)︀

+ �̄�0
𝑔𝑏
(︀
0, 𝜌0

𝑔, 𝑓
0
𝑔

)︀ (60)

Proof. Let us compute for arbitrary 𝑁 ∈ N

𝜕𝑡𝑏
(︁
𝜒(𝑁), 𝜌(𝑁), 𝑓 (𝑁)

𝑔

)︁
= 𝜕1𝑏

(𝑁)𝜕𝑡𝜒
(𝑁) + 𝜕2𝑏

(𝑁)𝜕𝑡𝜌
(𝑁) + 𝜕3𝑏

(𝑁)𝜕𝑡𝑓
(𝑁)
𝑔

= −𝜕1𝑏
(𝑁)�̃�(𝑁)𝜕𝑥𝜒

(𝑁) − 𝜕2𝑏
(𝑁)𝜕𝑥

(︁
𝜌(𝑁)�̃�(𝑁)

)︁
− 𝜕3𝑏

(𝑁)𝜕𝑥

(︁
𝑓 (𝑁)

𝑔 �̃�(𝑁)
)︁

by (47), (53) and (54). As a result, we obtain:

𝜕𝑡𝑏
(︁
𝜒(𝑁), 𝜌(𝑁), 𝑓 (𝑁)

𝑔

)︁
+𝜕𝑥

(︁
𝑏
(︁
𝜒(𝑁), 𝜌(𝑁), 𝑓 (𝑁)

𝑔

)︁
�̃�(𝑁)

)︁
(61)

+
(︁
𝜕2𝑏
(︁
𝜒(𝑁), 𝜌(𝑁), 𝑓 (𝑁)

𝑔

)︁
𝜌(𝑁) + 𝜕3𝑏

(︁
𝜒(𝑁), 𝜌(𝑁), 𝑓 (𝑁)

𝑔

)︁
𝑓 (𝑁)

𝑔

−𝑏
(︁
𝜒(𝑁), 𝜌(𝑁), 𝑓 (𝑁)

𝑔

)︁)︁
𝜕𝑥�̃�

(𝑁) = 0,

in 𝒟′((0, 𝑇 ) × Ω). In this equation, due to the weak convergence of 𝑏(𝑁) and the strong convergence of �̃�(𝑁)
𝑓 ,

respectively stated in Propositions 18 and 15, it holds that:{︃
𝑏(𝑁) ⇀ �̄�,

𝑢
(𝑁)
𝑓 𝑏

(︁
𝜒(𝑁), 𝜌(𝑁), 𝑓

(𝑁)
𝑔

)︁
⇀ �̄� �̄�,

in 𝒟′((0, 𝑇 )× Ω).

Then, we rewrite:

𝜕2𝑏
(︁
𝜒(𝑁), 𝜌(𝑁), 𝑓 (𝑁)

𝑔

)︁
𝜌(𝑁) + 𝜕3𝑏

(︁
𝜒(𝑁), 𝜌(𝑁), 𝑓 (𝑁)

𝑔

)︁
𝑓 (𝑁)

𝑔 − 𝑏(𝑁)𝜕𝑥𝑢
(𝑁)
𝑓
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=
1
𝜇𝑓

(︁
𝑏
(𝑁)
1,𝑓 Σ̃(𝑁)

𝑓 + 𝑏
(𝑁)
2,𝑓

)︁
+

1
𝜇𝑔

(︁
𝑏
(𝑁)
1,𝑔 Σ̃(𝑁)

𝑔 + 𝑏
(𝑁)
2,𝑔

)︁
.

The weak convergence stated in Proposition 19 allows to pass to the limit the right-hand side, leading to

𝜕2𝑏
(︁
𝜒(𝑁), 𝜌(𝑁), 𝑓 (𝑁)

𝑔

)︁
𝜌(𝑁) + 𝜕3𝑏

(︁
𝜒(𝑁), 𝜌(𝑁), 𝑓 (𝑁)

𝑔

)︁
𝑓 (𝑁)

𝑔 − 𝑏(𝑁)𝜕𝑥𝑢
(𝑁)
𝑓

⇀
1
𝜇𝑓

(︀
�̄�1,𝑓 Σ̄𝑓 + �̄�2,𝑓

)︀
+

1
𝜇𝑔

(︀
�̄�1,𝑔Σ̄𝑔 + �̄�2,𝑔

)︀
,

where the terms �̄�1,𝑓 , �̄�1,𝑔, �̄�2,𝑓 , and �̄�2,𝑔 are defined as in Proposition 18. This provides equation (60) for �̄�.
Finally, we have initially

𝑏(𝑁)(0, ·) = 𝜒(𝑁),0𝑏
(︀
1, 𝜌0

𝑓 , 0
)︀

+
(︁

1− 𝜒(𝑁),0
)︁
𝑏
(︁

0, 𝜌(𝑁),0
𝑔 , 𝑓 (𝑁),0

𝑔

)︁
and we are in position to apply Proposition 12 to pass to the limit in this identity when 𝑁 →∞. �

Let us recall that the link between the limit �̄� and the function 𝑏 is provided in Proposition 18. According to
the choice of 𝑏, different relevant macroscopic equations can be obtained.

Corollary 22. The void fractions satisfy the following equations⎧⎨⎩ 𝜕𝑡�̄�𝑓 + 𝜕𝑥(�̄�𝑓 �̄�) =
�̄�𝑓

𝜇𝑓

(︀
Σ̄𝑓 + p𝑓 (𝜌𝑓 )

)︀
, �̄�𝑓 (0, ·) = �̄�0

𝑓

�̄�𝑓 + �̄�𝑔 = 1
(62)

The covolume unknown 𝑓𝑔 satisfies the conservation equation:

𝜕𝑡

(︀
�̄�𝑔𝑓𝑔

)︀
+ 𝜕𝑥

(︀
�̄�𝑔𝑓𝑔�̄�

)︀
= 0, �̄�𝑔(0, ·)𝑓𝑔(0, ·) = �̄�0

𝑔𝑓
0
𝑔 .

The mass conservation laws of both phases read

𝜕𝑡(�̄�𝑓𝜌𝑓 ) + 𝜕𝑥(�̄�𝑓𝜌𝑓 �̄�) = 0, �̄�𝑓 (0, ·)𝜌𝑓 (0, ·) = �̄�0
𝑓𝜌

0
𝑓 (63)

𝜕𝑡(�̄�𝑔𝜌𝑔) + 𝜕𝑥(�̄�𝑔𝜌𝑔�̄�) = 0, �̄�𝑔(0, ·)𝜌𝑔(0, ·) = �̄�0
𝑔𝜌

0
𝑔. (64)

Proof. By Proposition 21, it suffices to compute the different terms of equation (60). In the first case, we consider
𝑏(𝑧, 𝜉, 𝜈) = 𝑧. It yields �̄� = �̄�𝑓 and

𝑏1,𝑓 (1, 𝑟) = −1, 𝑏1,𝑔(1, 𝑟) = 0, 𝑏2,𝑓 (1, 𝑟) = −p𝑓 (𝑟), 𝑏2,𝑔(1, 𝑟) = 0,
𝑏1,𝑓 (0, 𝑟) = 0, 𝑏1,𝑔(0, 𝑟) = 0, 𝑏2,𝑓 (0, 𝑟) = 0, 𝑏2,𝑔(0, 𝑟) = 0.

Computing the associated limits, one recovers the first equation of (62). The second equation is true by construc-
tion. The equation on 𝑓𝑔 is obtained in the same way, taking 𝑏(𝑧, 𝜉, 𝜈) = 𝜈. Finally the phasic mass conservation
laws are derived using 𝑏(𝑧, 𝜉, 𝜈) = 𝑧𝜉 and 𝑏(𝑧, 𝜉, 𝜈) = (1− 𝑧)𝜉 respectively. �

4.1. Momentum equation and closure laws

We proceed with the derivation of the momentum equation.

Proposition 23. Let 𝜌 = �̄�𝑓𝜌𝑓 + �̄�𝑔𝜌𝑔 be the mixture density. The mixture momentum equation reads

𝜕𝑡(𝜌�̄�) + 𝜕𝑥

(︀
𝜌�̄�2
)︀

= 𝜕𝑥

(︀
�̄�𝑓 Σ̄𝑓 + �̄�𝑔Σ̄𝑔

)︀
, (65)

with
𝜕𝑥�̄� =

�̄�𝑓

𝜇𝑓

[︀
Σ̄𝑓 + p𝑓 (𝜌𝑓 )

]︀
+
�̄�𝑔

𝜇𝑔

[︀
Σ̄𝑔 + p𝑔(𝜌𝑔) + 𝛾𝑠𝑓𝑔

]︀
, (66)

and
Σ̄𝑓 = Σ̄𝑔. (67)
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Proof. Let us consider the momentum equation in the fluid domain and multiply it by a test function 𝑤 ∈
𝐶∞𝑐 ((0, 𝑇 )× Ω). It yields∫︁ 𝑇

0

∫︁
ℱ(𝑁)(𝑡)

(︂
𝜕𝑡

(︁
𝜌
(𝑁)
𝑓 𝑢

(𝑁)
𝑓

)︁
+ 𝜕𝑥

(︂
𝜌
(𝑁)
𝑓

⃒⃒⃒
𝑢

(𝑁)
𝑓

⃒⃒⃒2)︂)︂
𝑤 d𝑥 d𝑡 =

∫︁ 𝑇

0

∫︁
ℱ(𝑁)(𝑡)

𝜕𝑥Σ(𝑁)
𝑓 𝑤 d𝑥 d𝑡.

Since the fluid domain ℱ (𝑁)(𝑡) is transported with the velocity 𝑢
(𝑁)
𝑓 , an integration by part in time of the

left-hand side gives∫︁ 𝑇

0

∫︁
ℱ(𝑁)(𝑡)

(︂
𝜕𝑡

(︁
𝜌
(𝑁)
𝑓 𝑢

(𝑁)
𝑓

)︁
+ 𝜕𝑥

(︂
𝜌
(𝑁)
𝑓

⃒⃒⃒
𝑢

(𝑁)
𝑓

⃒⃒⃒2)︂)︂
𝑤 d𝑥 d𝑡

= −
∫︁ 𝑇

0

∫︁
ℱ(𝑁)(𝑡)

𝜌
(𝑁)
𝑓 𝑢

(𝑁)
𝑓

(︁
𝜕𝑡𝑤 + 𝑢

(𝑁)
𝑓 𝜕𝑥𝑤

)︁
d𝑥 d𝑡.

The right-hand side is handled by an integration by part in space. Reorganising the boundary terms yields (we
omit time dependencies for simplicity):∫︁ 𝑇

0

∫︁
ℱ(𝑁)(𝑡)

𝜕𝑥Σ(𝑁)
𝑓 𝑤 d𝑥 d𝑡 =−

∫︁ 𝑇

0

𝑁∑︁
𝑘=1

(︁
Σ(𝑁)

𝑓

(︀
𝑥+

𝑘

)︀
𝑤
(︀
𝑥+

𝑘

)︀
− Σ(𝑁)

𝑓

(︀
𝑥−𝑘
)︀
𝑤
(︀
𝑥−𝑘
)︀)︁

d𝑡

−
∫︁ 𝑇

0

∫︁
ℱ(𝑁)

Σ(𝑁)
𝑓 𝜕𝑥𝑤 d𝑥 d𝑡.

We now focus on the boundary terms. For 𝑘 = 1, . . . , 𝑁 , one has

Σ(𝑁)
𝑓

(︀
𝑥+

𝑘

)︀
𝑤
(︀
𝑥+

𝑘

)︀
− Σ(𝑁)

𝑓

(︀
𝑥−𝑘
)︀
𝑤
(︀
𝑥−𝑘
)︀

=
(︁

Σ(𝑁)
𝑓

(︀
𝑥+

𝑘

)︀
− Σ(𝑁)

𝑓

(︀
𝑥−𝑘
)︀)︁
𝑤(𝑐𝑘)

+
(︁

Σ(𝑁)
𝑓

(︀
𝑥+

𝑘

)︀
+ Σ(𝑁)

𝑓

(︀
𝑥−𝑘
)︀)︁
𝑅𝑘𝜕𝑥𝑤(𝑐𝑘)

+𝑂

(︂⃦⃦⃦
Σ(𝑁)

𝑓

⃦⃦⃦
𝐿∞(Ω)

𝑅2
𝑘‖𝑤‖𝐶2

)︂
.

From the bubbles equations (11) and (12), one deduces

Σ(𝑁)
𝑓

(︀
𝑥+

𝑘

)︀
𝑤
(︀
𝑥+

𝑘

)︀
− Σ(𝑁)

𝑓

(︀
𝑥−𝑘
)︀
𝑤
(︀
𝑥−𝑘
)︀

= 𝑚𝑘𝑐𝑘𝑤(𝑡, 𝑐𝑘) +
(︁𝑚𝑘

3
�̈�𝑘 + 2Σ𝑘

)︁
𝑅𝑘𝜕𝑥𝑤(𝑡, 𝑐𝑘)

+𝑂

(︂⃦⃦⃦
Σ(𝑁)

𝑓

⃦⃦⃦
𝐿∞(Ω)

𝑅2
𝑘‖𝑤‖𝐶2

)︂
.

The term involving the stress tensor can be rewritten as follows

2Σ𝑘𝑅𝑘𝜕𝑥𝑤(𝑡, 𝑐𝑘) =
∫︁

𝐵𝑘

Σ(𝑁)
𝑔 𝜕𝑥𝑤 d𝑥+𝑂

(︂⃦⃦⃦
Σ(𝑁)

𝑔

⃦⃦⃦
𝐿∞(Ω)

𝑅2
𝑘‖𝑤‖𝐶2

)︂
.

Therefore, one has

−
∫︁ 𝑇

0

𝑁∑︁
𝑘=1

(︁
Σ(𝑁)

𝑓

(︀
𝑥+

𝑘

)︀
𝑤
(︀
𝑥+

𝑘

)︀
− Σ(𝑁)

𝑓

(︀
𝑥−𝑘
)︀
𝑤
(︀
𝑥−𝑘
)︀)︁

d𝑡

= −
∫︁ 𝑇

0

𝑁∑︁
𝑘=1

(︂
𝑚𝑘𝑐𝑘𝑤(𝑡, 𝑐𝑘) +

𝑚𝑘

3
�̈�𝑘𝑅𝑘𝜕𝑥𝑤(𝑡, 𝑐𝑘) +

∫︁
𝐵𝑘

Σ(𝑁)
𝑔 𝜕𝑥𝑤 d𝑥
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+𝑂
(︂(︂⃦⃦⃦

Σ(𝑁)
𝑓

⃦⃦⃦
𝐿∞(Ω)

+
⃦⃦⃦

Σ(𝑁)
𝑔

⃦⃦⃦
𝐿∞(Ω)

)︂
𝑅2

𝑘‖𝑤‖𝐶2

)︂)︂
d𝑡.

An integration by part in time gives

−
∫︁ 𝑇

0

𝑁∑︁
𝑘=1

(︁
Σ(𝑁)

𝑓

(︀
𝑥+

𝑘

)︀
𝑤
(︀
𝑥+

𝑘

)︀
− Σ(𝑁)

𝑓

(︀
𝑥−𝑘
)︀
𝑤
(︀
𝑥−𝑘
)︀)︁

d𝑡

=
∫︁ 𝑇

0

𝑁∑︁
𝑘=1

𝑚𝑘

(︂
|�̇�𝑘|2𝜕𝑥𝑤(𝑡, 𝑐𝑘) +

1
3

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝜕𝑥𝑤(𝑡, 𝑐𝑘) +

1
3
�̇�𝑘𝑅𝑘 �̇�𝑘𝜕𝑥𝑥𝑤(𝑡, 𝑐𝑘)

)︂
d𝑡

+
∫︁ 𝑇

0

𝑁∑︁
𝑘=1

𝑚𝑘

(︂
�̇�𝑘𝜕𝑡𝑤(𝑡, 𝑐𝑘) +

1
3
�̇�𝑘𝑅𝑘𝜕𝑥𝑡𝑤(𝑡, 𝑐𝑘)

)︂
d𝑡

−
∫︁ 𝑇

0

∫︁
Ω∖ℱ(𝑁)

Σ(𝑁)
𝑔 𝜕𝑥𝑤 d𝑥 d𝑡

+𝑂

(︃(︂⃦⃦⃦
Σ(𝑁)

𝑓

⃦⃦⃦
𝐿2((0,𝑇 ),𝐻1(Ω))

+
⃦⃦⃦

Σ(𝑁)
𝑔

⃦⃦⃦
𝐿2((0,𝑇 ),𝐻1(Ω))

)︂√
𝑇‖𝑤‖𝐶2 max

[0,𝑇 ]

𝑁∑︁
𝑘=1

𝑅2
𝑘

)︃

=
∫︁ 𝑇

0

𝑁∑︁
𝑘=1

𝑚𝑘

(︂
|�̇�𝑘|2𝜕𝑥𝑤(𝑡, 𝑐𝑘) +

1
3

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝜕𝑥𝑤(𝑡, 𝑐𝑘) + �̇�𝑘𝜕𝑡𝑤(𝑡, 𝑐𝑘)

)︂
d𝑡

−
∫︁ 𝑇

0

∫︁
Ω∖ℱ(𝑁)

Σ(𝑁)
𝑔 𝜕𝑥𝑤 d𝑥 d𝑡

+𝑂

(︂(︂⃦⃦⃦
Σ(𝑁)

𝑓

⃦⃦⃦
𝐿2((0,𝑇 ),𝐻1(Ω))

+
⃦⃦⃦

Σ(𝑁)
𝑔

⃦⃦⃦
𝐿2((0,𝑇 ),𝐻1(Ω))

)︂√
𝑇‖𝑤‖𝐶2(𝑑∞𝑁)−1

+ (𝑀∞𝑁)−
1
2 ‖𝑤‖𝐶2𝑇

√︀
𝐸0

)︃
.

where we applied (𝐼𝐶0) and (A.1) with (𝑄1) to yield the last term in the last inequality. On the bubble 𝐵𝑘, it
holds ∫︁

𝐵𝑘

𝜌𝑘�̃�
(𝑁)
(︁
𝜕𝑡𝑤 + �̃�(𝑁)𝜕𝑥𝑤

)︁
d𝑥

=
∫︁

𝐵𝑘

𝑚𝑘

2𝑅𝑘
�̃�(𝑁)

(︁
𝜕𝑡𝑤 + �̃�(𝑁)𝜕𝑥𝑤

)︁
d𝑥

= 𝑚𝑘 �̇�𝑘𝜕𝑡𝑤(𝑐𝑘) +𝑚𝑘

(︂
|�̇�𝑘|2 +

1
3

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2)︂
𝜕𝑥𝑤(𝑐𝑘)

+𝑂
(︁
𝑚𝑘‖𝑤‖𝐶2

(︁
1 + |�̇�𝑘|+

⃒⃒⃒
�̇�𝑘

⃒⃒⃒)︁(︁
|�̇�𝑘|+ |�̇�𝑘|

)︁
|𝑅𝑘|

)︁
.

Gathering the fluid and gas expressions yields

−
∫︁ 𝑇

0

∫︁
Ω

𝜌(𝑁)�̃�(𝑁)
(︁
𝜕𝑡𝑤 + �̃�(𝑁)𝜕𝑥𝑤

)︁
d𝑥 d𝑡

= −
∫︁ 𝑇

0

∫︁
Ω

(︁
𝜒(𝑁)Σ̃(𝑁)

𝑓 +
(︁

1− 𝜒(𝑁)
)︁

Σ̃(𝑁)
𝑔

)︁
𝜕𝑥𝑤 d𝑥 d𝑡+𝑂

(︁
𝑁−1/2

)︁
.
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Using the strong convergence of �̃�(𝑁) and the weak convergence of 𝜌(𝑁), obtained by Proposition 18 with
𝑏(𝑧, 𝜉, 𝜈) = 𝜉, the left-hand side tends to

−
∫︁ 𝑇

0

∫︁
Ω

𝜌�̄�(𝜕𝑡𝑤 + �̄�𝜕𝑥𝑤) d𝑥 d𝑡.

The limit of the right-hand side is deduced from Proposition 19. One ends up with the desired momentum
equation (65).

It remains to close the system by determining relations between the tensors Σ̄𝑓 and Σ̄𝑔 and the other
quantities. To do so, we prove that Σ̄𝑓 and Σ̄𝑔 are solutions of a 2× 2 system.

First observe that

𝜕𝑥𝑢
(𝑁) = 𝜒(𝑁)

Σ̃(𝑁)
𝑓 + p𝑓

(︁
𝜌
(𝑁)
𝑓

)︁
𝜇𝑓

+
(︁

1− 𝜒(𝑁)
)︁ Σ̃(𝑁)

𝑔 + p𝑔

(︁
𝜌
(𝑁)
𝑔

)︁
+ 𝐹𝑠/2

𝜇𝑔
·

The different results of convergence given in Section 3, especially Proposition 19, allow to pass to the limit in
both sides of the equation. In particular, in the right-hand side, the definition of the surface tension yields

(︁
1− 𝜒(𝑁)

)︁𝐹𝑠

2
=

𝑁∑︁
𝑘=1

𝛾𝑠

2𝑁𝑅𝑘
1𝐵𝑘

= 𝛾𝑠𝑓
(𝑁)
𝑔

(︁
1− 𝜒(𝑁)

)︁
⇀ 𝛾𝑠�̄�𝑔𝑓𝑔.

Eventually, it holds

𝜕𝑥�̄� =
�̄�𝑓

𝜇𝑓

[︀
Σ̄𝑓 + p𝑓 (𝜌𝑓 )

]︀
+
�̄�𝑔

𝜇𝑔

[︀
Σ̄𝑔 + p𝑔(𝜌𝑔) + 𝛾𝑠𝑓𝑔

]︀
.

The second equation is obtained while studying the difference Σ̄𝑓 −Σ̄𝑔. Using the definition (35) of the extended
tensor Σ̃𝑓 and the Newton laws (11) and (12) for the bubbles, it holds

Σ̃(𝑁)
𝑓 =

Σ𝑓

(︀
𝑥−𝑘
)︀

+ Σ𝑓

(︀
𝑥+

𝑘

)︀
2

−
Σ𝑓

(︀
𝑥−𝑘
)︀
− Σ𝑓

(︀
𝑥+

𝑘

)︀
2𝑅(𝑁)

𝑘

(︁
𝑐− 𝑐

(𝑁)
𝑘

)︁
=
𝑚𝑘

6
�̈�𝑘 + Σ𝑘 +

𝑚𝑘𝑐𝑘
2𝑅𝑘

(𝑥− 𝑐𝑘).

Since Σ̃(𝑁)
𝑔 = Σ𝑘 on the bubbles domain 𝐵𝑘, one has

(︁
1− 𝜒(𝑁)

)︁(︁
Σ̃(𝑁)

𝑓 − Σ̃(𝑁)
𝑔

)︁
=

𝑁∑︁
𝑘=1

(︂
𝑚𝑘

6
�̈�𝑘 +

𝑚𝑘𝑐𝑘
2𝑅𝑘

(𝑥− 𝑐𝑘)
)︂
1𝐵𝑘

.

Proposition 19 applies to the left-hand side:(︁
1− 𝜒(𝑁)

)︁(︁
Σ̃(𝑁)

𝑓 − Σ̃(𝑁)
𝑔

)︁
⇀ (1− �̄�𝑓 )

(︀
Σ̄𝑓 − Σ̄𝑔

)︀
,

in the sense of distributions. The right-hand side can be proved to tend to zero in 𝐿2((0, 𝑇 )× Ω)) since⃦⃦⃦⃦
⃦

𝑁∑︁
𝑘=1

(︂
𝑚𝑘

6
�̈�𝑘 +

𝑚𝑘𝑐𝑘
2𝑅𝑘

(𝑥− 𝑐𝑘)
)︂
1𝐵𝑘

⃦⃦⃦⃦
⃦

2

𝐿2(Ω)

≤

⃦⃦⃦⃦
⃦1

2

𝑁∑︁
𝑘=1

𝑚𝑘

(︁⃒⃒⃒
�̈�𝑘

⃒⃒⃒
+ |𝑐𝑘|

)︁
1𝐵𝑘

⃦⃦⃦⃦
⃦

2

𝐿2(Ω)

≤
𝑁∑︁

𝑘=1

∫︁
𝐵𝑘

𝑚2
𝑘

(︂⃒⃒⃒
�̈�𝑘

⃒⃒⃒2
+ |𝑐𝑘|2

)︂
d𝑥
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≤ 2
𝑁2𝑑∞𝑀∞

𝑁∑︁
𝑘=1

𝑚𝑘

(︂⃒⃒⃒
�̈�𝑘

⃒⃒⃒2
+ |𝑐𝑘|2

)︂
≤ 2𝐾∞
𝑁2𝑑∞𝑀∞

,

thanks to (𝐼𝐶0), (𝑄1) and (𝑄5). Recalling the second part of (48), one recovers (67). �

5. An alternative description of the bubble dynamics

In order to describe the dynamics of the bubbles, an alternative approach is to introduce the distribution
function in position and (scaled) radius

𝑆
(𝑁)
𝑡 =

1
𝑁

𝑁∑︁
𝑘=1

𝛿𝑐𝑘(𝑡),𝑁𝑅𝑘(𝑡), (68)

which is a measure on Ω× (0,∞). According to (𝑄1), one has

supp
(︁
𝑆

(𝑁)
𝑡

)︁
⊂ Ω̄× [𝑑∞, 1/𝑑∞], ∀ 𝑡 ∈ (0, 𝑇 ).

Proposition 24. For all 𝛽 ∈ 𝐶(Ω̄× [𝑑∞, 1/𝑑∞]), the distribution function 𝑆
(𝑁)
𝑡 satisfies

𝜕𝑡

⟨
𝑆

(𝑁)
𝑡 , 𝛽

⟩
−
⟨
𝑆

(𝑁)
𝑡 , �̃�(𝑁)(𝑥)𝜕𝑥𝛽

⟩
− 1
𝜇𝑔

⟨
𝑆

(𝑁)
𝑡 ,

(︁(︁
Σ̃(𝑁)

𝑔 (𝑥) + p𝑔

(︁
𝜌(𝑁)

𝑔

)︁)︁
𝑟 + 𝛾𝑠/2

)︁
𝜕𝑟𝛽

⟩
= 0. (69)

Moreover, the sequence of applications 𝑡 ↦→ 𝑆
(𝑁)
𝑡 is compact in 𝐶

(︀
[0, 𝑇 ];P

(︀
Ω̄× [𝑑∞, 1/𝑑∞]

)︀)︀
. As a consequence,

there exists 𝑆𝑔 ∈ 𝐶
(︀
[0, 𝑇 ];P

(︀
Ω̄× [𝑑∞, 1/𝑑∞]

)︀)︀
such that, up to the extraction of a subsequence,⟨

𝑆(𝑁), 𝛽
⟩
→
⟨︀
𝑆𝑔, 𝛽

⟩︀
, in 𝐶([0, 𝑇 ]),

for any 𝛽 ∈ 𝐶
(︀
Ω̄× [𝑑∞, 1/𝑑∞]

)︀
.

Proof. Let us first prove that, for any 𝛽 ∈ 𝐶1
(︀
Ω̄× [𝑑∞, 1/𝑑∞]

)︀
, the sequence 𝛽(𝑁) : 𝑡 ↦→

⟨
𝑆

(𝑁)
𝑡 , 𝛽

⟩
is uniformly

equicontinuous. The definition of 𝛽(𝑁) and (68) enable to write

𝛽(𝑁)(𝑡) =
1
𝑁

𝑁∑︁
𝑘=1

𝛽(𝑐𝑘(𝑡), 𝑁𝑅𝑘(𝑡)).

For legibility, we drop the exponent (𝑁) in 𝑐𝑘 and 𝑅𝑘 here and in what remains of the proof. By construction,
𝑐𝑘 and 𝑅𝑘 belong to 𝐻2(0, 𝑇 ) and thus are in 𝐶1([0, 𝑇 ]). It follows that 𝛽(𝑁) ∈ 𝐶1([0, 𝑇 ]), and

d
dt
𝛽(𝑁)(𝑡) =

1
𝑁

𝑁∑︁
𝑘=1

(︁
�̇�𝑘𝜕𝑥𝛽(𝑐𝑘, 𝑁𝑅𝑘) +𝑁�̇�𝑘𝜕𝑟𝛽(𝑐𝑘, 𝑁𝑅𝑘)

)︁
=

1
𝑁

𝑁∑︁
𝑘=1

(︃
�̃�

(𝑁)
𝑓 (𝑐𝑘)𝜕𝑥𝛽(𝑐𝑘, 𝑁𝑅𝑘) +

�̇�𝑘

𝑅𝑘
𝑁𝑅𝑘𝜕𝑟𝛽(𝑐𝑘, 𝑁𝑅𝑘)

)︃
.

(70)

Recall that, by Corollary 3, �̃�(𝑁)
𝑓 is bounded in 𝐿2((0, 𝑇 );𝐻1(Ω)) and then in 𝐿2((0, 𝑇 );𝐶(Ω̄)). Moreover

(𝑄1) ensures that 𝑁𝑅𝑘 is bounded by 𝑑∞. From Lemma 27, d
dt𝛽

(𝑁) is bounded in 𝐿2(0, 𝑇 ). Thus 𝛽(𝑁) is
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bounded in 𝐻1(0, 𝑇 ) and then uniformly equicontinuous. The compactness result and the existence of 𝑆𝑔 is
then straightforward.

It remains to check that 𝑆(𝑁)
𝑡 verifies equation (68). This comes directly from (70) where the term �̇�𝑘/𝑅𝑘 is

replaced using (13):

�̇�𝑘

𝑅𝑘
=

1
𝜇𝑔

(︂
Σ𝑘 + p𝑔(𝜌𝑘) +

𝛾𝑠

2
1

𝑁𝑅𝑘

)︂
=

1
𝜇𝑔

(︂
Σ̃𝑔(𝑐𝑘) + p𝑔(𝜌𝑔(𝑐𝑘)) +

𝛾𝑠

2
1

𝑁𝑅𝑘

)︂
.

�

Actually, the dependence of the measures 𝑆𝑔,𝑡 with respect to the space variable 𝑥 can be precised:

Proposition 25. For any 𝛽 ∈ 𝐶∞(R+), there exists 𝑆𝛽 ∈ 𝐿∞((0, 𝑇 );𝐿∞(Ω)) such that, for all Φ ∈ 𝐶∞𝑐 ((0, 𝑇 )×
Ω) and all 𝑡 ∈ (0, 𝑇 ), ⟨︀

𝑆𝑔,𝑡,Φ(𝑡, ·)⊗ 𝛽
⟩︀

=
∫︁

Ω

𝑆𝛽(𝑡, 𝑥)Φ(𝑡, 𝑥) d𝑥. (71)

In other words, we have:

𝑆𝛽(𝑡, ·) =
∫︁
R+
𝛽(𝑟)𝑆𝑔,𝑡(·,d𝑟) ∈ 𝐿∞((0, 𝑇 )× Ω).

Proof. Let 𝛽 ∈ 𝐶∞(R+) and 𝜑 ∈ 𝐶∞𝑐 ((0, 𝑇 )× Ω). One has for every 𝑡 ∈ (0, 𝑇 )

⟨
𝑆

(𝑁)
𝑔,𝑡 , 𝜑(𝑡, ·)⊗ 𝛽

⟩
=

1
𝑁

𝑁∑︁
𝑘=1

𝛽(𝑁𝑅𝑘(𝑡))𝜑(𝑡, 𝑐𝑘(𝑡))

=
𝑁∑︁

𝑘=1

∫︁
𝐵𝑘

1
2𝑁𝑅𝑘

𝛽(𝑁𝑅𝑘)𝜑(𝑡, 𝑥) d𝑥

−
𝑁∑︁

𝑘=1

∫︁
𝐵𝑘

1
2𝑁𝑅𝑘

𝛽(𝑁𝑅𝑘)(𝜑(𝑡, 𝑥)− 𝜑(𝑡, 𝑐𝑘)).

The second term of the right-hand side can be bounded by(︂
max

𝑘=1,...,𝑁
𝑅𝑘

)︂
‖𝛽‖𝐿∞([𝑑∞,1/𝑑∞])‖𝜕𝑥𝜑‖𝐿∞((0,𝑇 );𝐿∞(Ω)),

and then tends to 0 when 𝑁 → +∞ (see (𝑄1)). The first term can be written as∫︁
Ω

𝑆
(𝑁)
𝛽 (𝑡, 𝑥)𝜑(𝑡, 𝑥) d𝑥

with

𝑆
(𝑁)
𝛽 (𝑡, 𝑥) =

𝑁∑︁
𝑘=1

1
2𝑁𝑅𝑘(𝑡)

𝛽(𝑁𝑅𝑘(𝑡))1𝐵𝑘(𝑡)(𝑥)

which provides a bounded sequence in 𝐿∞((0, 𝑇 )× Ω), by (𝑄1). Therefore, there exists 𝑆𝛽 ∈ 𝐿∞((0, 𝑇 )× Ω)
such that, up to the extraction of a subsequence,

𝑆
(𝑁)
𝛽 ⇀ 𝑆𝛽 , in 𝐿∞((0, 𝑇 )× Ω)− 𝑤⋆ when 𝑁 → +∞.

Then, letting 𝑁 →∞ in the previous equality yields (71). �
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We obtain then the following limiting equation for 𝑆𝑔,𝑡 :

Proposition 26. The limit 𝑆𝑔,𝑡 defined in Proposition 24 satisfies the equation

𝜕𝑡𝑆𝑔,𝑡 + 𝜕𝑥

(︀
𝑆𝑔,𝑡�̄�

)︀
+

1
𝜇𝑔
𝜕𝑟

(︀(︀
𝑟
(︀
Σ̄𝑔 + p𝑔(𝜌𝑔)

)︀
+ 𝛾𝑠/2

)︀
𝑆𝑔,𝑡

)︀
= 0. (72)

Proof. To obtain a time-evolution PDE for 𝑆𝑔,𝑡, we go back to equation (69) with a tensorised test function
𝛽(𝑥, 𝑟) = 𝛽𝑥(𝑥)𝛽𝑟(𝑟), which writes

𝜕𝑡

⟨
𝑆

(𝑁)
𝑡 , 𝛽

⟩
=
⟨
𝑆

(𝑁)
𝑡 , �̃�(𝑁)(𝑥)𝛽′𝑥 ⊗ 𝛽𝑟

⟩
+

1
𝜇𝑔

⟨
𝑆

(𝑁)
𝑡 , 𝑟Σ̃(𝑁)

𝑔 (𝑥)𝛽𝑥 ⊗ 𝛽′𝑟

⟩
+

1
𝜇𝑔

⟨
𝑆

(𝑁)
𝑡 , 𝑟p𝑔

(︁
𝜌(𝑁)

𝑔

)︁
𝛽𝑥 ⊗ 𝛽′𝑟

⟩
+

𝛾𝑠

2𝜇𝑔

⟨
𝑆

(𝑁)
𝑡 , 𝛽𝑥 ⊗ 𝛽′𝑟

⟩
.

The first term of the right-hand side can be dealt using the strong convergence of (�̃�(𝑁))𝑁 in 𝐿2
(︀
(0, 𝑇 ), 𝐿2(Ω)

)︀
.

Since it is bounded in 𝐿2
(︀
(0, 𝑇 ), 𝐻1(Ω)

)︀
, the sequence

(︀
�̃�(𝑁)

)︀
𝑁

converges also in 𝐿2
(︀
(0, 𝑇 ), 𝐶

(︀
Ω̄
)︀)︀

by inter-

polation. The weak convergence of
(︁
𝑆

(𝑁)
𝑡

)︁
𝑁

in 𝐶
(︀
[0, 𝑇 ],P

(︀
Ω̄× R+

)︀)︀
together with this strong convergence

gives ⟨
𝑆

(𝑁)
𝑡 , �̃�(𝑁)𝛽′𝑥 ⊗ 𝛽𝑟

⟩
−→

⟨︀
𝑆𝑔,𝑡, �̄�𝛽

′
𝑥 ⊗ 𝛽𝑟

⟩︀
.

Since Σ̃𝑔 is uniformly bounded in 𝐿2((0, 𝑇 ), 𝐻1(Ω)) ⊂ 𝐿2((0, 𝑇 ), 𝐶0,1/2(Ω̄)), the second term writes

⟨
𝑆

(𝑁)
𝑡 , 𝑟Σ̃(𝑁)

𝑔 (𝑥)𝛽𝑥 ⊗ 𝛽′𝑟

⟩
=

1
𝑁

𝑁∑︁
𝑘=1

Σ̃(𝑁)
𝑔 (𝑐𝑘)𝑁𝑅𝑘𝛽𝑥(𝑐𝑘)𝛽′𝑟(𝑁𝑅𝑘)

=
1
2

𝑁∑︁
𝑘=1

∫︁
𝐵𝑘

Σ̃(𝑁)
𝑔 (𝑥)𝛽𝑥(𝑥)𝛽′𝑟(𝑁𝑅𝑘) d𝑥+

𝐶𝛽

⃦⃦⃦
Σ̃𝑔

⃦⃦⃦
𝐻1(Ω)√
𝑁

=
1
2

∫︁
Ω

Σ̃(𝑁)
𝑔 (𝑥)𝛽𝑥(𝑥)𝑏(𝑁)(𝑥) d𝑥+

𝐶𝛽

⃦⃦⃦
Σ̃𝑔

⃦⃦⃦
𝐻1(Ω)√
𝑁

where 𝑏(𝑁) is defined by equation (58), with

𝑏(1, ·, ·) = 0, 𝑏(0, ·, 𝜈) = 𝛽′𝑟(1/(2𝜈)).

Indeed, this provides

𝑏(𝑁) =

{︃
0 in ℱ (𝑁),

𝛽′𝑟(1/(2𝑓𝑘)) in 𝐵𝑘.

Using successively Propositions 19, 18 and 25, we obtain⟨
𝑆

(𝑁)
𝑡 , 𝑟Σ̃(𝑁)

𝑔 (𝑥)𝛽𝑥 ⊗ 𝛽′𝑟

⟩
−→1

2

∫︁
Ω

Σ̄𝑔(𝑥)�̄�(𝑥)𝛽𝑥(𝑥) d𝑥

=
1
2

∫︁
Ω

Σ̄𝑔(𝑥)
[︂
𝑏(1, 𝜌𝑔, 0)�̄�𝑓
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+
∫︁
R+

(2𝑟)𝑏(0, 𝜌𝑔, 1/(2𝑟))𝑆𝑔,𝑡(d𝑟)
]︂
𝛽𝑥(𝑥) d𝑥

=
1
2

∫︁
Ω

Σ̄𝑔(𝑥)
[︂∫︁
R+

(2𝑟)𝛽′𝑟(𝑟)𝑆𝑔,𝑡 (d𝑟)
]︂
𝛽𝑥(𝑥) d𝑥

=
⟨︀
𝑆𝑔,𝑡, 𝑟Σ̄𝑔𝛽𝑥 ⊗ 𝛽′𝑟

⟩︀
.

For the third term, we proceed similarly, defining

𝑏(1, ·, ·) = 0, 𝑏(0, 𝜉, 𝜈) = p𝑔(𝜉)𝛽′𝑟(1/(2𝜈)),

so that ⟨
𝑆

(𝑁)
𝑡 , 𝑟p𝑔

(︁
𝜌(𝑁)

𝑔

)︁
𝛽𝑥 ⊗ 𝛽′𝑟

⟩
−→

⟨︀
𝑆𝑔,𝑡, 𝑟p𝑔(𝜌𝑔)𝛽𝑥 ⊗ 𝛽′𝑟

⟩︀
.

The convergence of the last term is nothing else but the convergence of 𝑆(𝑁)
𝑡 . �

Observe that �̄�𝑔𝑓𝑔 and �̄�𝑔 are respectively the zeroth and first moments of 𝑆𝑔. Their PDE’s, see Corollary 22,
can be deduced from the equation (72).

Appendix A. Proof of Proposition 10

In the whole section, we consider 𝑇 > 0 and
(︁
𝜌𝑓 , 𝑢𝑓 , (𝑐𝑘, 𝑅𝑘)𝑘=1,...,𝑁

)︁
is a classical solution to (6)–(13) on

(0, 𝑇 ), satisfying (𝑄1)–(𝑄5).
To start with, we recall that Corollary 3 applies. With (𝑄1), these estimates yield:∫︁

ℱ

(︃
𝜌𝑓
|𝑢𝑓 |2

2
+ 𝑞(𝜌𝑓 )

)︃
d𝑥+

1
2

𝑁∑︁
𝑘=1

𝑚𝑘

(︂
|�̇�𝑘|2 +

1
3

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2)︂
(A.1)

−
𝑁∑︁

𝑘=1

𝜅𝑘 ln(𝑑∞𝑁𝑅𝑘) ≤ 𝐸0,

∫︁ 𝑇

0

[︃(︃∫︁
ℱ
𝜇𝑓 |𝜕𝑥𝑢𝑓 |2 d𝑥+ 𝜇𝑔

𝑁∑︁
𝑘=1

|�̇�𝑘|2

𝑅𝑘

)︃]︃
d𝑡 ≤ 𝐸0, (A.2)

with a constant 𝐸0 depending only on the list of parameters (25).

Strict version (Q1) of (𝑄1)

Since |𝑎| − |𝑏| ≤ |𝑎− 𝑏| and (𝛼2 + 𝛽2 + 𝛾2)1/2 ≤ 𝛼+ (𝛽2 + 𝛾2)1/2 as soon as the 𝛼, 𝛽 and 𝛾 are nonnegative,
it follows from Corollary 9, (𝐼𝐶0) and the bounds (𝑄1) on 𝑅𝑘, (𝑄2) on |ℱ𝑘| that⃒⃒⃒⃒

⃒ �̇�𝑘

𝑅𝑘

⃒⃒⃒⃒
⃒ ≤ 1

𝜇𝑔

1
𝑀∞𝑁𝑅𝑘

+
𝐶1

𝜇𝑔

⃦⃦⃦
Σ̃𝑔

⃦⃦⃦
𝐻1(Ω)

+
𝐶1

𝜇𝑔

(︃
1

min𝑘|ℱ𝑘|

𝑁∑︁
𝑘=1

(𝑚𝑘)2
(︂⃒⃒⃒
�̈�𝑘

⃒⃒⃒2
+ |𝑐𝑘|2

)︂)︃1/2

and then: ⃒⃒⃒⃒
⃒ �̇�𝑘

𝑅𝑘

⃒⃒⃒⃒
⃒ ≤ 1

𝜇𝑔

1
𝑀∞𝑑∞

+
𝐶1

𝜇𝑔

⃦⃦⃦
Σ̃𝑔

⃦⃦⃦
𝐻1(Ω)

+
𝐶1

𝜇𝑔

(︃
1

𝑀∞𝑑∞

𝑁∑︁
𝑘=1

𝑚𝑘

(︂⃒⃒⃒
�̈�𝑘

⃒⃒⃒2
+ |𝑐𝑘|2

)︂)︃1/2

. (A.3)

The last term can be bounded by
√
𝐾∞ according to (𝑄5). Integrating on the time interval (0, 𝑡), 𝑡 < 𝑇 , it

yields ∫︁ 𝑡

0

⃒⃒⃒⃒
⃒ �̇�𝑘

𝑅𝑘

⃒⃒⃒⃒
⃒ d𝑡 ≤ 1

𝜇𝑔𝑀∞𝑑∞
𝑇 +

𝐶2

𝜇𝑔

(︂
1 +

1√
𝑀∞𝑑∞

)︂√
𝐾𝑇.
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Considering a smaller time 𝑇 , only depending on 𝜇𝑔, 𝑑∞, 𝑀∞, 𝐶0 and 𝐾∞, it holds∫︁ 𝑡

0

⃒⃒⃒⃒
⃒ �̇�𝑘

𝑅𝑘

⃒⃒⃒⃒
⃒ d𝑡 <

1
2
,

which gives
𝑅0

𝑘

2
< 𝑒−1/2𝑅0

𝑘 < 𝑅𝑘 < 𝑒1/2𝑅0
𝑘 < 2𝑅0

𝑘.

Finally the Assumption (𝐼𝐶1) on the initial radii leads to the desired estimate (Q1). We note in passing that
we obtained the following lemma:

Lemma 27. There exists a constant �̃� depending on 𝜇𝑔, 𝑑∞, 𝑀∞, 𝐶0 and 𝐾, such that:

∫︁ 𝑇

0

(︃
max

𝑘=1,...,𝑁

⃒⃒⃒⃒
⃒ �̇�𝑘(𝑡)
𝑅𝑘(𝑡)

⃒⃒⃒⃒
⃒
)︃2

d𝑡 ≤ �̃�.

The proof of this lemma is a straightforward application of (A.3) and is left to the reader.

Strict version (Q2) of (𝑄2)

First, we remark that we can also adapt the previous proof to yield the following lemma:

Lemma 28. There exists a constant 𝐶 ′, depending only on 𝐾 and the list of parameters (25), such that, for
𝑇 < 1, there holds ∫︁ 𝑇

0

‖𝜕𝑥𝑢𝑓‖𝐿∞(ℱ) d𝑡 ≤ 𝐶 ′
√
𝑇 .

Proof. We use the 𝐿∞ bound on 𝜕𝑥𝑢𝑓 , see (38), and the bound (𝑄3) on the density 𝜌𝑓 . It holds, by integrating
on (0, 𝑇 ), ∫︁ 𝑇

0

‖𝜕𝑥𝑢𝑓‖𝐿∞(ℱ) d𝑡 ≤ 𝐶

𝜇𝑓

∫︁ 𝑇

0

⃦⃦⃦
Σ̃𝑓

⃦⃦⃦
𝐻1(Ω)

d𝑡+ 𝑇 max
𝜌
∞

/2≤𝑟≤2𝜌∞
p𝑓 (𝑟).

Inequality (𝑄5) on the stress tensor leads to∫︁ 𝑇

0

‖𝜕𝑥𝑢𝑓‖𝐿∞(ℱ) d𝑡 ≤ 𝐶

𝜇𝑓

√
𝑇𝐾 + 𝑇 max

𝜌
∞

/2≤𝑟≤2𝜌∞
p𝑓 (𝑟),

which gives the expected bound for 𝑇 < 1. �

The continuity of the velocities (10) implies then that

d
d𝑡
(︀
𝑥−𝑘+1 − 𝑥+

𝑘

)︀
= 𝑢

(︀
𝑥−𝑘+1

)︀
− 𝑢
(︀
𝑥+

𝑘

)︀
≤ ‖𝜕𝑥𝑢𝑓‖𝐿∞(ℱ)

⃒⃒
𝑥−𝑘+1 − 𝑥+

𝑘

⃒⃒
.

From Lemma 28, we can choose 𝑇 small (depending only on 𝐶 ′) such that there holds:⃒⃒
ℱ0

𝑘

⃒⃒
2

< |ℱ𝑘| < 2
⃒⃒
ℱ0

𝑘

⃒⃒
,

on (0, 𝑇 ), which leads to the desired estimate.
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Strict version (Q3) of (𝑄3)

Since the fluid density 𝜌𝑓 satisfies a continuity equation associated with the velocity 𝑢𝑓 on the fluid domains
ℱ𝑘 which are transported by the same velocity field 𝑢𝑓 , a classical estimate on (0, 𝑇 ) provides(︂

min
𝑥∈ℱ0

𝜌0
𝑓

)︂
× exp

(︃
−
∫︁ 𝑇

0

‖𝜕𝑥𝑢𝑓‖𝐿∞(ℱ) d𝑡

)︃
(A.4)

≤ 𝜌𝑓 (𝑡, 𝑥) ≤
(︂

max
𝑥∈ℱ0

𝜌0
𝑓

)︂
× exp

(︃∫︁ 𝑇

0

‖𝜕𝑥𝑢𝑓‖𝐿∞(ℱ) d𝑡

)︃
,

Lemma 28 allows to bound the exponential terms in (A.4) for small time. Namely, for 𝑇 small (depending on
𝐶 ′) it holds, on [0, 𝑇 ],

𝜌𝑓 (𝑡, 𝑥) ∈
(︂

1
2

min
𝑥∈ℱ0

𝜌0
𝑓 , 2 max

𝑥∈ℱ0
𝜌0

𝑓

)︂
.

Then the assumption (24) on the initial fluid density allows to deduce a strict version of estimate (𝑄3).

Strict version (Q4) of (𝑄4)

Applying (34), we obtain:

sup
[0,𝑇 ]

⎛⎜⎝∫︁
ℱ
𝜇𝑓
|𝜕𝑥𝑢𝑓 |2

2
d𝑥+ 𝜇𝑔

𝑁∑︁
𝑘=1

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

⎞⎟⎠
+
∫︁ 𝑇

0

(︃∫︁
ℱ
𝜌𝑓 |𝜕𝑡𝑢𝑓 + 𝑢𝑓𝜕𝑥𝑢𝑓 |2 d𝑥+

𝑁∑︁
𝑘=1

𝑚𝑘

(︂
|𝑐𝑘|2 +

⃒⃒⃒
�̈�𝑘

⃒⃒⃒2)︂)︃

≤ sup
[0,𝑇 ]

⎡⎣⎛⎝2
𝑁∑︁

𝑘=1

𝜅𝑘

⃒⃒⃒
�̇�𝑘

⃒⃒⃒
𝑅𝑘

⎞⎠+
∫︁
ℱ

p𝑓 (𝜌𝑓 )|𝜕𝑥𝑢𝑓 | d𝑥

⎤⎦
+
∫︁ 𝑇

0

∫︁
ℱ
𝜇𝑓
|𝜕𝑥𝑢𝑓 |3

2
d𝑥

+
∫︁ 𝑇

0

𝑁∑︁
𝑘=1

⎛⎜⎝2𝜅𝑘

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅2

𝑘

+ 𝜇𝑔

⃒⃒⃒
�̇�𝑘

⃒⃒⃒3
𝑅2

𝑘

⎞⎟⎠+ 𝐸1,

with a constant 𝐸1 depending only on the list of parameters (25). To proceed, we detail now the controls of the
five remaining terms on the right-hand side.

Concerning the first line in the right-hand side, the first term can be rewritten with (𝐼𝐶0):

𝑁∑︁
𝑘=0

𝜅𝑘

⃒⃒⃒
�̇�𝑘

⃒⃒⃒
𝑅𝑘

≤ 1
𝑀∞

𝑁∑︁
𝑘=0

⎛⎝
⃒⃒⃒
�̇�𝑘

⃒⃒⃒
√
𝑅𝑘

1
𝑁
√
𝑅𝑘

⎞⎠.
The Cauchy–Schwarz inequality gives then

𝑁∑︁
𝑘=0

𝜅𝑘

⃒⃒⃒
�̇�𝑘

⃒⃒⃒
𝑅𝑘

≤ 1
𝑀∞

√
𝜇𝑔

⎛⎜⎝𝜇𝑔

𝑁∑︁
𝑘=0

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

⎞⎟⎠
1/2(︃

𝑁∑︁
𝑘=0

1
𝑁2𝑅𝑘

)︃1/2

.
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The first parenthesis can be bounded by 𝐾 using (𝑄4) and the second one by 1/
√
𝑑∞ thanks to (𝑄1) so that

𝑁∑︁
𝑘=0

𝜅𝑘

⃒⃒⃒
�̇�𝑘

⃒⃒⃒
𝑅𝑘

≤ 1
𝑀∞

√
𝜇𝑔

√
𝐾√
𝑑∞

· (A.5)

The control of the second pressure term relies on (𝑄3)–(𝑄4) and a Cauchy–Schwarz inequality:∫︁
ℱ

p𝑓 (𝜌𝑓 )|𝜕𝑥𝑢𝑓 | d𝑥 ≤
√

2
√
𝜇𝑓

(︃∫︁
ℱ
𝜇𝑓
|𝜕𝑥𝑢𝑓 |2

2
d𝑥

)︃1/2[︃
max

[𝜌∞/2,2𝜌∞]
p𝑓

]︃
√

2′

≤ 2
√
𝜇𝑓

[︃
max

[𝜌∞/2,2𝜌∞]
p𝑓

]︃
√
𝐾. (A.6)

As for the term on the second line in the right-hand side of (34), we decompose as follows∫︁ 𝑇

0

∫︁
ℱ
𝜇𝑓
|𝜕𝑥𝑢𝑓 |3

2
d𝑥 ≤

(︃
sup
[0,𝑇 ]

∫︁
ℱ
𝜇𝑓
|𝜕𝑥𝑢𝑓 |2

2

)︃(︃∫︁ 𝑇

0

‖𝜕𝑥𝑢𝑓‖𝐿∞(ℱ)

)︃
,

where the first term can be bounded by 𝐾 according to (𝑄4). The second one is bounded using Lemma 28. It
follows that ∫︁ 𝑇

0

∫︁
ℱ
𝜇𝑓
|𝜕𝑥𝑢𝑓 |3

2
d𝑥 ≤ 𝐶 ′

√
𝑇𝐾. (A.7)

We now turn to the first term on the third line. Applying a standard 𝐿∞−𝐿1 Hölder inequality allows to bound
this term by ∫︁ 𝑇

0

𝑁∑︁
𝑘=1

𝜅𝑘

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅2

𝑘

≤ 1
𝑀∞𝜇𝑔𝑁

max
𝑘∈{1,...,𝑁}

⃦⃦⃦⃦
1
𝑅𝑘

⃦⃦⃦⃦
𝐿∞(0,𝑇 )

∫︁ 𝑇

0

𝜇𝑔

𝑁∑︁
𝑘=1

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

·

The 𝐿∞ norm can be handled by the bound (𝑄1) and the integral term by (A.2). It follows that

∫︁ 𝑇

0

𝑁∑︁
𝑘=1

𝜅𝑘

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅2

𝑘

≤ 𝐸0

𝑀∞𝜇𝑔𝑑∞
· (A.8)

It remains to bound the second term on the third line. In this respect, we decompose the nonlinear term⃒⃒⃒
�̇�𝑘

⃒⃒⃒3
𝑅2

𝑘

=

⃒⃒⃒
�̇�𝑘

⃒⃒⃒
𝑅𝑘

⃒⃒⃒
�̇�𝑘

⃒⃒⃒3/2

𝑅
3/4
𝑘

⃒⃒⃒
�̇�𝑘

⃒⃒⃒1/2

𝑅
1/4
𝑘

and apply a 𝐿∞ − 𝐿4/3 − 𝐿4 Hölder inequality to yield:

𝑁∑︁
𝑘=1

⃒⃒⃒
�̇�𝑘

⃒⃒⃒3
𝑅2

𝑘

≤ max
𝑘∈{1,...,𝑁}

⃒⃒⃒
�̇�𝑘

⃒⃒⃒
𝑅𝑘

⎛⎜⎝ 𝑁∑︁
𝑘=1

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

⎞⎟⎠
3/4⎛⎜⎝ 𝑁∑︁

𝑘=1

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

⎞⎟⎠
1/4

.

Integrating over (0, 𝑇 ) we obtain again with a 𝐿2 − 𝐿4 − 𝐿4 Hölder inequality that:

∫︁ 𝑇

0

𝑁∑︁
𝑘=1

⃒⃒⃒
�̇�𝑘

⃒⃒⃒3
𝑅2

𝑘

≤

⎛⎜⎝∫︁ 𝑇

0

⃒⃒⃒⃒
⃒⃒ max
𝑘∈{1,...,𝑁}

⃒⃒⃒
�̇�𝑘

⃒⃒⃒
𝑅𝑘

⃒⃒⃒⃒
⃒⃒
2
⎞⎟⎠

1/2
⎛⎜⎜⎝∫︁ 𝑇

0

⃒⃒⃒⃒
⃒⃒⃒ 𝑁∑︁
𝑘=1

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

⃒⃒⃒⃒
⃒⃒⃒
3
⎞⎟⎟⎠

1/4⎛⎜⎝∫︁ 𝑇

0

𝑁∑︁
𝑘=1

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

⎞⎟⎠
1/4

.
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Corollary 9 and inequality (𝑄1) allow to control the first term on the right-hand side. Indeed,

𝜇𝑔 max
𝑘∈{1,...,𝑁}

⃒⃒⃒
�̇�𝑘

⃒⃒⃒
𝑅𝑘

≤ 1
𝑀∞𝑑∞

+ 𝐶1

(︃⃦⃦⃦
Σ̃𝑓

⃦⃦⃦2

𝐻1(Ω)
+

1
𝑀∞𝑑∞

𝑁∑︁
𝑘=1

𝑚𝑘

(︂⃒⃒⃒
�̈�𝑘

⃒⃒⃒2
+ |𝑐𝑘|2

)︂)︃1/2

.

Taking the 𝐿2-norm in time and applying a triangular inequality and (𝑄5) provides⎛⎜⎝∫︁ 𝑇

0

⃒⃒⃒⃒
⃒⃒ max
𝑘∈{1,...,𝑁}

⃒⃒⃒
�̇�𝑘

⃒⃒⃒
𝑅𝑘

⃒⃒⃒⃒
⃒⃒
2
⎞⎟⎠

1/2

≤ 1
𝜇𝑔

(︃
√
𝑇

1
𝑀∞𝑑∞

+ 𝐶1

√︃
𝐾

(︂
1 +

1
𝑀∞𝑑∞

)︂)︃
.

As the second term is concerned, it holds⎛⎜⎜⎝∫︁ 𝑇

0

⃒⃒⃒⃒
⃒⃒⃒ 𝑁∑︁
𝑘=1

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

⃒⃒⃒⃒
⃒⃒⃒
3
⎞⎟⎟⎠

1/4

≤ 𝑇 1/4

⎛⎜⎝sup
[0,𝑇 ]

𝑁∑︁
𝑘=1

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

⎞⎟⎠
3/4

,

which can be handled thanks to (𝑄4), leading to⎛⎜⎜⎝∫︁ 𝑇

0

⃒⃒⃒⃒
⃒⃒⃒ 𝑁∑︁
𝑘=1

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

⃒⃒⃒⃒
⃒⃒⃒
3
⎞⎟⎟⎠

1/4

≤ 𝑇 1/4

(︂
𝐾

𝜇𝑔

)︂3/4

.

Now the bound (A.2) gives ⎛⎜⎝∫︁ 𝑇

0

𝑁∑︁
𝑘=1

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

⎞⎟⎠
1/4

≤
(︂
𝐸0

𝜇𝑔

)︂1/4

.

To sum up, it finally yields

∫︁ 𝑇

0

𝑁∑︁
𝑘=1

⃒⃒⃒
�̇�𝑘

⃒⃒⃒3
𝑅2

𝑘

≤ 1
𝜇2

𝑔

𝑇 1/4𝐾3/4𝐸
1/4
0

(︃
√
𝑇

1
𝑀∞𝑑∞

+ 𝐶1

√︃
𝐾

(︂
1 +

1
𝑀∞𝑑∞

)︂)︃
. (A.9)

Plugging (A.5)–(A.9) into (34), it yields

sup
[0,𝑇 ]

⎛⎝∫︁
ℱ

|𝜕𝑥𝑢𝑓 |2

2
d𝑥+

𝑁∑︁
𝑘=1

𝜇𝑔

⃒⃒⃒
�̇�2

𝑘

⃒⃒⃒
𝑅𝑘

⎞⎠ (A.10)

≤ 2

(︃ √
𝐾

𝑀∞
√︀
𝜇𝑔𝑑∞

+
1

√
𝜇𝑓

max
[𝜌∞/2,2𝜌∞]

p𝑓 (𝑟)
√
𝐾

)︃

+ 𝐶 ′
√
𝑇𝐾 +

𝐸0

𝑀∞𝜇𝑔𝑑∞

+
2
𝜇2

𝑔

𝑇 1/4𝐾3/4𝐸
1/4
0

(︃
√
𝑇

1
𝑀∞𝑑∞

+ 𝐶1

√︃
𝐾

(︂
1 +

1
𝑀∞𝑑∞

)︂)︃
+ 𝐸1.
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A key remark here is that, on the right hand side, we have two types of quantities: some quantities are constants
multiplied by powers of 𝐾 less than 1 (these can be made arbitary smaller than 𝐾 for sufficiently large 𝐾)
either we have some constant depending on 𝐾 multiplied by a positive power of 𝑇 (these can be made arbitrary
smaller than 𝐾 for small 𝑇 ). If one considers 𝐾 > 1 and 𝑇 < 1, defining

𝐶 ′1 = 2

(︃
1

𝑀∞
√︀
𝜇𝑔𝑑∞

+
1

√
𝜇𝑓

max
[𝜌∞/2,2𝜌∞]

p𝑓 (𝑟)

)︃
,

𝐶 ′2 =
2
𝜇2

𝑔

𝐸
1/4
0

(︂
1

𝑀∞𝑑∞
+ 𝐶1

√︂
1 +

1
𝑀∞𝑑∞

)︂
,

the previous inequality writes

sup
[0,𝑇 ]

⎛⎝∫︁
ℱ

|𝜕𝑥𝑢𝑓 |2

2
d𝑥+

𝑁∑︁
𝑘=1

𝜇𝑔

⃒⃒⃒
�̇�2

𝑘

⃒⃒⃒
𝑅𝑘

⎞⎠ ≤ 𝐶 ′1
√
𝐾 +

𝐸0

𝑀∞𝜇𝑔𝑑∞
+ 𝐶 ′

√
𝑇𝐾 + 𝑇 1/4𝐾5/2𝐶 ′2 + 𝐸1. (A.11)

Introduce 𝜆 ∈ (0, 1/2) to be fixed later on and set:

𝐾∞ :=
4|𝐶 ′1|2

𝜆2
+

1
𝑀∞𝜇𝑔𝑑∞

𝐸0

2𝜆
+

𝐸1

1− 2𝜆
·

When 𝐾 > 𝐾∞, the sum of the two first terms on the right-hand side of (A.11) are bounded by 𝜆𝐾. Now
taking 𝑇 small enough, for instance

𝑇 = min

{︃
(𝜆/2|𝐶 ′|)2,

(︂
𝜆
(︁
𝐾3/2𝐶 ′2

)︁−1

/2
)︂4
}︃
,

the sum of the third and fourth term can be bounded by 𝜆𝐾 as well. Finally, the right-hand side is bounded
according to

sup
[0,𝑇 ]

⎛⎝∫︁
ℱ

|𝜕𝑥𝑢𝑓 |2

2
d𝑥+

𝑁∑︁
𝑘=1

𝜇𝑔

⃒⃒⃒
�̇�2

𝑘

⃒⃒⃒
𝑅𝑘

⎞⎠ ≤ 𝐸1 + 2𝜆𝐾 < 𝐾

since 𝜆 < 1/2 and 𝐶 ′1 > 0.

Strict version (Q5) of (𝑄5)

In order to prove this estimate, we can adjust with the parameter 𝜆. First, thanks to Proposition 6 and to
the bounds (𝑄1) and (𝐼𝐶0), there exists 𝐶 > 0, depending in particular on 𝑀∞ and 𝑑∞, such that∫︁ 𝑇

0

⃦⃦⃦
Σ̃𝑓

⃦⃦⃦2

𝐻1(Ω)
d𝑡 ≤ 𝐶0

∫︁ 𝑇

0

[︃
‖Σ𝑓‖2𝐻1(ℱ) (A.12)

+
𝑁∑︁

𝑘=1

𝑚𝑘

(︂⃒⃒⃒
�̈�𝑘

⃒⃒⃒2
+ |𝑐𝑘|2

)︂
+

𝑁∑︁
𝑘=1

⎛⎜⎝𝜇2
𝑔

⃒⃒⃒
�̇�𝑘

⃒⃒⃒2
𝑅𝑘

+
𝜅2

𝑘

𝑅𝑘

⎞⎟⎠
⎤⎥⎦ d𝑡.

The second term of the right-hand side can be bounded with the help of (34) by bounding the right-hand side
of (34) as in the previous analysis on (𝑄4). This entails:∫︁ 𝑇

0

𝑁∑︁
𝑘=1

𝑚𝑘

(︂⃒⃒⃒
�̈�𝑘

⃒⃒⃒2
+ |𝑐𝑘|2

)︂
d𝑡 ≤ 𝐸1 + 2𝜆𝐾. (A.13)
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The third term is controlled using (A.2). The last term can be bounded by 𝑇/((𝑀∞)2𝑑∞). Therefore, this
inequality becomes∫︁ 𝑇

0

⃦⃦⃦
Σ̃𝑓

⃦⃦⃦2

𝐻1(Ω)
d𝑡 ≤ 𝐶0

[︃∫︁ 𝑇

0

‖Σ𝑓‖2𝐻1(ℱ) d𝑡+ (𝐸1 + 2𝜆𝐾) + 𝜇𝑔𝐸0 +
𝑇

(𝑀∞)2𝑑∞

]︃
. (A.14)

Let us now focus on the first term. We use the definition (8) of Σ𝑓 and the momentum equation (7) to write∫︁ 𝑇

0

‖Σ𝑓‖2𝐻1(ℱ) d𝑡 =
∫︁ 𝑇

0

‖𝜇𝑓𝜕𝑥𝑢𝑓 − p𝑓 (𝜌𝑓 )‖2𝐿2(ℱ) d𝑡

+
∫︁ 𝑇

0

‖𝜌𝑓 (𝜕𝑡𝑢𝑓 + 𝑢𝑓𝜕𝑥𝑢𝑓 )‖2𝐿2(ℱ) d𝑡.

Thanks to (A.2) and (𝑄3), the first term can be bounded. For the second term, one has∫︁ 𝑇

0

‖𝜌𝑓 (𝜕𝑡𝑢𝑓 + 𝑢𝑓𝜕𝑥𝑢𝑓 )‖2𝐿2(ℱ) d𝑡 ≤ 𝜌∞

∫︁ 𝑇

0

∫︁
ℱ
𝜌𝑓 |𝜕𝑡𝑢𝑓 + 𝑢𝑓𝜕𝑥𝑢𝑓 |2 d𝑡,

and this right-hand side actually appears in (34) and thus, the previous estimate obtained to prove (𝑄4) can
be used. This provides ∫︁ 𝑇

0

‖Σ𝑓‖2𝐻1(ℱ) d𝑡 ≤ 2𝜇𝑓𝐸0 + 2𝑇

[︃
max

[𝜌
∞

,𝜌∞]
p𝑓

]︃2

+ 𝜌∞(𝐸1 + 2𝜆𝐾).

Gathering the previous estimates and after rearrangement,∫︁ 𝑇

0

⃦⃦⃦
Σ̃𝑓

⃦⃦⃦2

𝐻1(Ω)
d𝑡 ≤ 𝐶0

[︃
(2𝜇𝑓𝐸0 + (𝜌∞ + 1)𝐸1 + 𝜇𝑔𝐸0)

+

⎛⎝2

[︃
max

[𝜌∞,𝜌∞]
p𝑓

]︃2

+
1

(𝑀∞)2𝑑∞

⎞⎠𝑇 + 2(𝜌∞ + 1)𝜆𝐾

⎤⎦
holds. Now starting from Proposition 8, a similar estimate can be proved for Σ̃𝑔. Then, using again (A.13), one
finally have ∫︁ 𝑇

0

[︂⃦⃦⃦
Σ̃𝑓

⃦⃦⃦2

𝐻1(Ω)
+
⃦⃦⃦

Σ̃𝑔

⃦⃦⃦2

𝐻1(Ω)
+𝑚𝑘

(︂⃒⃒⃒
�̈�𝑘

⃒⃒⃒2
+ |𝑐𝑘|2

)︂]︂
d𝑡 ≤ 𝐶1 + 𝐶2𝑇 + 𝐶3𝜆𝐾,

where 𝐶1, 𝐶2 and 𝐶3 are positive and independent of 𝑁 , 𝑇 , 𝜆 and 𝐾. To conclude, it suffices to choose
𝜆 sufficiently small so that 𝜆 ≤ (4𝐶3)−1 and 𝐾 ≥ 4𝐶1. We can then take 𝑇 smaller if necessary so that
𝐶2𝑇 ≤ 𝐾/4.

Appendix B. Analysis of the density equation

This section is devoted to the proof of the following proposition:

Proposition 29. Assume that 𝑇 > 0 and
(︁
𝜌𝑓 , 𝑢𝑓 , (𝑐𝑘, 𝑅𝑘)𝑘=1,...,𝑁

)︁
is a classical solution to (6)–(13) on (0, 𝑇 )

– complemented with initial conditions constructed as in (16)–(19) – that satisfies (𝑄1)–(𝑄5). Then, there exists
strictly positive constants 𝐾1 and 𝑇1 depending only on the list of parameters (25) and 𝐾 such that

‖𝜌𝑓 (𝑡)‖𝐻1(ℱ(𝑡)) ≤ 𝐾1 on (0, 𝑇1).
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Again, the main difficulty in obtaining this proposition is to make the constant 𝐾1 independent of the
parameter 𝑁. For this, we proceed as in Section 4 and interpret 𝜌𝑓 on ℱ(𝑡) as the trace of some global density
defined on Ω. We notice here that, by assumption, we already have this property initially since we set

𝜌𝑓 (0, ·) = 𝜌0
𝑓 on ℱ0

with 𝜌0
𝑓 ∈ 𝐻1(Ω). To extend this property, we construct again extensions �̃�𝑓 of fluid velocity-field 𝑢𝑓 and Σ̃𝑓 of

stress tensor Σ𝑓 with the same formula as in (45) and (35) respectively. We then construct 𝜌𝑓{︃
𝜕𝑡𝜌𝑓 + �̃�𝑓𝜕𝑥𝜌𝑓 = − 𝜌𝑓

𝜇𝑓

(︁
Σ̃𝑓 + p𝑓 (𝜌𝑓 )

)︁
, on (0, 𝑇 )× Ω,

𝜌𝑓 (0, .) = 𝜌0
𝑓 , on Ω,

(B.15)

By (𝑄5) with Proposition 38 for the fluid part and (𝑄1)–(𝑄5) with Corollary 9 for the bubble part, we obtain
that �̃�𝑓 ∈ 𝐿2

(︀
0, 𝑇 ;𝑊 1,∞(Ω)

)︀
with Σ̃𝑓 ∈ 𝐿2

(︀
0, 𝑇 ;𝐻1(Ω)

)︀
. Consequently, we have a unique solution (B.15) which

solves (6) on ℱ . By uniqueness of the solution to (6) in the regularity class of classical solutions (see [15]), we
have thus 𝜌𝑓 = 𝜌𝑓 on ℱ(𝑡) for 𝑡 ∈ (0, 𝑇 ). So, our proof reduces to computing bounds for 𝜌𝑓 .

First, we prove that there exists 𝑇0 ≤ 𝑇 such that we can control ‖𝜌𝑓‖𝐿∞(Ω) explicitly on (0, 𝑇0). By the
method of characteristics and the explicit value of p𝑓 :

‖𝜌𝑓 (𝑡, .)‖𝐿∞(Ω) ≤
⃦⃦
𝜌0

𝑓

⃦⃦
𝐿∞(Ω)

exp

(︃
1
𝜇𝑓

∫︁ 𝑇

0

(︂⃦⃦⃦
Σ̃𝑓

⃦⃦⃦
𝐿∞(Ω)

+ 𝑎𝑓‖𝜌𝑓 (𝑡, .)‖𝛾𝑓

𝐿∞(Ω)

)︂
d𝑡

)︃
.

The bound (𝑄5) coupled with the embedding of 𝐻1(Ω) in 𝐿∞(Ω) allows to control the stress tensor norm by
𝐾. If ‖𝜌𝑓 (𝑡, .)‖𝐿∞(Ω) ≤ 2

⃦⃦⃦
𝜌0

𝑓 (𝑡, .)
⃦⃦⃦

𝐿∞(Ω)
, it yields

‖𝜌𝑓 (𝑡, .)‖𝐿∞(Ω) ≤
⃦⃦
𝜌0

𝑓

⃦⃦
𝐿∞(Ω)

exp
(︂

1
𝜇𝑓

√
𝑇𝐾 + 2𝑎𝑓𝑇

⃦⃦
𝜌0

𝑓 (𝑡, .)
⃦⃦𝛾𝑓

𝐿∞(Ω)

)︂
.

By a standard continuation argument, we construct then a time-interval (0, 𝑇0) depending only on 𝐾, 𝑎𝑓 , 𝛾𝑓

and ‖𝜌0
𝑓 (𝑡, .)‖𝐿∞(Ω) so that:

‖𝜌𝑓 (𝑡, .)‖𝐿∞(Ω) ≤ 2
⃦⃦
𝜌0

𝑓

⃦⃦
𝐿∞(Ω)

for 𝑡 < 𝑇0.
We focus now on 𝜕𝑥𝜌𝑓 . For this, we apply a space derivative to (B.15):⎧⎪⎪⎨⎪⎪⎩

𝜕𝑡(𝜕𝑥𝜌𝑓 ) + 𝜕𝑥(�̃�𝜕𝑥𝜌𝑓 ) = − 𝜌𝑓

𝜇𝑓
𝜕𝑥Σ̃𝑓

− 1
𝜇𝑓

(︁
Σ̃𝑓 + p𝑓 (𝜌𝑓 ) + 𝜌𝑓 p′𝑓 (𝜌𝑓 )

)︁
𝜕𝑥𝜌𝑓

(𝜕𝑥𝜌𝑓 )(0, ·) = 𝜕𝑥𝜌
0
𝑓 .

For simplicity, we denote from now on 𝑌 := 𝜕𝑥𝜌𝑓 . We multiply the previous equation by 2𝑌 , leading to

𝜕𝑡(𝑌 2) + 𝜕𝑥(�̃�𝑌 2) = −2𝑌
𝜌𝑓

𝜇𝑓
𝜕𝑥Σ̃𝑓 − 𝑌 2𝐴

where 𝐴 denotes 𝜕𝑥�̃�+ 2
𝜇𝑓

(︁
Σ̃𝑓 + 𝜅𝑓 (𝛾𝑓 + 1)(𝜌𝑓 )𝛾𝑓

)︁
. Let first bound the right-hand side by a standard Cauchy-

Schwarz/Minkowski inequality:∫︁
Ω

(︂
−2𝑌

𝜌𝑓

𝜇𝑓
𝜕𝑥Σ̃𝑓 − 𝑌 2𝐴

)︂
d𝑥 ≤ 1

𝜇𝑓

⃦⃦⃦
𝜌𝑓𝜕𝑥Σ̃𝑓

⃦⃦⃦2

𝐿2(Ω)
+
(︂

1
𝜇𝑓

+ ‖𝐴‖𝐿∞(Ω)

)︂
‖𝑌 ‖2𝐿2(Ω).
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Going back to the PDE for 𝑌 2, the 𝐿2 norm of 𝜕𝑥𝜌𝑓 can be bounded as

‖𝜕𝑥𝜌𝑓‖2𝐿2(Ω) ≤

(︃⃦⃦
𝜕𝑥𝜌

0
𝑓

⃦⃦2

𝐿2(Ω)
+

1
𝜇𝑓

∫︁ 𝑇

0

⃦⃦⃦
𝜌𝑓𝜕𝑥Σ̃𝑓

⃦⃦⃦2

𝐿2(Ω)
d𝑡

)︃

× exp

(︃
𝑇

𝜇𝑓
+
∫︁ 𝑇

0

(︂
‖𝜕𝑥�̃�‖𝐿∞(Ω) +

2
𝜇𝑓

(︂⃦⃦⃦
Σ̃𝑓

⃦⃦⃦
𝐿∞(Ω)

+ 𝜅𝑓 (𝛾𝑓 + 1)‖𝜌𝑓‖
𝛾𝑓

𝐿∞(Ω)

)︂)︂)︃
.

All the terms can be controlled using (𝑄3) and (𝑄5), except
∫︀ 𝑇

0
‖𝜕𝑥�̃�‖𝐿∞(Ω) d𝑡. This latter term can be bounded

using lemmas 28 and 27 (corresponding respectively to the contributions of ‖𝜕𝑥�̃�‖𝐿∞(ℱ) and ‖𝜕𝑥�̃�‖𝐿∞(Ω∖ℱ)).
Then, for a sufficiently small time 𝑇1 ≤ 𝑇0,∫︁ 𝑇1

0

‖𝜕𝑥�̃�‖𝐿∞(Ω)d𝑡 <
1
2
,

so that on (0, 𝑇1) :

‖𝜕𝑥𝜌𝑓‖2𝐿2(Ω) ≤
(︂⃦⃦
𝜕𝑥𝜌

0
𝑓

⃦⃦2

𝐿2(Ω)
+

2
𝜇𝑓

⃦⃦
𝜌0

𝑓

⃦⃦2

𝐿∞(Ω)
𝐾

)︂
× exp

(︂
𝑇1

𝜇𝑓
+

1
2

+
2
𝜇𝑓

√︀
𝑇1𝐾 + 𝑇1𝜅𝑓 (𝛾𝑓 + 1)2𝛾𝑓

⃦⃦
𝜌0

𝑓

⃦⃦𝛾𝑓

𝐿∞(Ω)

)︂
.

This completes the proof.
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52 (2019) 255–295.

[5] D. Bresch and X. Huang, A multi-fluid compressible system as the limit of weak solutions of the isentropic compressible
Navier–Stokes equations. Arch. Ration. Mech. Anal. 201 (2011) 647–680.

[6] D. Bresch, C. Burtea and F. Lagoutière, Physical relaxation terms for compressible two-phase systems. Preprint
arXiv:arxiv:2012.06497 (2020).

[7] D. Bresch, B. Desjardins, J.-M. Ghidaglia, E. Grenier and M. Hillairet, Multi-fluid models including compressible fluids, in
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham (2018) 2927–2978.

[8] B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier–Stokes equations. Commun. Partial Differ.
Equ. 22 (1997) 977–1008.

[9] D.A. Drew and S.L. Passman, Theory of multicomponent fluids, in Applied Mathematical Sciences. Vol. 135. Springer-Verlag,
New York (1999).

[10] P. Embid and M. Baer, Mathematical analysis of a two-phase continuum mixture theory. Contin. Mech. Thermodyn. 4 (1992)
279–312.
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[22] D. Serre, Variations de grande amplitude pour la densité d’un fluide visqueux compressible. Phys. D 48 (1991) 113–128.

[23] N. Wang and P. Smereka, Effective equations for sound and void wave propagation in bubbly fluids. SIAM J. Appl. Math. 63
(2003) 1849–1888.

[24] F.A. Williams, Combustion Theory. CRC Press, Taylor and Francis Group (1985).

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model
(S2O). We are thankful to our subscribers and supporters for making it possible to
publish this journal in open access in the current year, free of charge for authors and
readers.

Check with your library that it subscribes to the journal, or consider making a personal donation to
the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports,
is available at https://edpsciences.org/en/subscribe-to-open-s2o.

mailto:subscribers@edpsciences.org
https://edpsciences.org/en/subscribe-to-open-s2o

	Introduction
	Local Cauchy theory for the microscopic system
	Classical estimates
	Extended stress-tensor estimates
	Proof of Theorem 1

	Construction of macroscopic unknowns
	Fluid unknowns
	Mixture unknowns
	Bubble unknowns
	Two technical lemmas

	Derivation of a macroscopic model
	Momentum equation and closure laws

	An alternative description of the bubble dynamics
	Proof of Proposition 10
	Strict version (Q1) of (Q1)
	Strict version (Q2) of (Q2)
	Strict version (Q3) of (Q3)
	Strict version (Q4) of (Q4)
	Strict version (Q5) of (Q5)

	Analysis of the density equation
	References

