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ANALYSIS OF COMPRESSIBLE BUBBLY FLOWS. PART I: CONSTRUCTION
OF A MICROSCOPIC MODEL

Matthieu Hillairet1,*, Hélène Mathis1 and Nicolas Seguin2

Abstract. In this note, we introduce a microscopic model for the motion of gas bubbles in a viscous
fluid. By interpreting a bubble as a compressible fluid with infinite shear viscosity, we derive a pde/ode
system coupling the density/velocity/pressure in the surrounding fluid with the linear/angular velocities
and radii of the bubbles. We provide a 1D analogue of the system and construct an existence theory for
this simplified system in a natural regularity framework. The second part of the paper is a preparatory
work for the derivation of an averaged or macroscopic model.

Mathematics Subject Classification. 76T05, 76T10, 35Q30.

Received September 15, 2022. Accepted May 16, 2023.

1. Introduction

This note is the first of two papers in which we extend the derivation of averaged compressible multiphase
flows in presence of jumps at interfaces between the phases. For this purpose, we focus in these papers on
the construction of 1D models describing a mixture made of a leading viscous compressible fluid transporting
compressible gas bubbles. To this aim, we follow a classical scheme for deriving averaged models. Firstly, we
write a so-called “microscopic” model, also refered as “local instant configuration” in the literature [8,9,14,24],
where the two phases are separated and occupy disjoint domains. We prescribe equations for both phases and fix
interface conditions. Secondly, we perform averaging operators on this microscopic model to derive an averaged
or macroscopic model. The terms “microscopic” and “macroscopic” are borrowed from large particle systems. It
should be noticed that, in our setting, the “particles” are the gas bubbles so that we keep continuum mechanics
equations to describe the fluids in presence.

It is well known that the averaging method contains different severe difficulties. Beyond the writing of a
relevant microscopic model, the action of mean operators on nonlinear quantities is classically problematic. In
particular, ad hoc modelling assumptions are usually added after averaging to fix the values of some interaction
terms and close the system [8,11,13,14,24]. A fully rigorous approach preventing from this problem is proposed
in [3–6], see also [1,12,18] for previous tentatives. However, it is restricted to ideal interface conditions between
the phases. In particular, the interface is supposed to behave as a perfect transducer: it transmits with no
alteration the effort of one phase on the interface to the other phase, leading besides to a unique velocity field
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in opposition to the full Baer–Nunziato model [2]. In this series of papers, we tackle the introduction of more
complex interface behavior. In particular, we shall consider different families of models for the two phases: one
phase is modelled with pdes while the other one is modelled by a discrete set of odes. Surface tension effects
are also considered in transmission condition at interfaces.

In this first note, we tackle the writing and analysis of the microscopic model. The second step, namely the
averaging process, is the content of the next paper. This note splits then into two parts. In the next section, we
propose the derivation of the 3D microscopic bubbly flow model. One originality of this model is that, focusing
on the property that the bubbles remain spherical, we propose to restrict the gas equations to a set of three
odes per bubble: one equation for the center of mass, one equation for the angular motion of the bubble and
the last one for the radius of the bubble. One key question is then to fix the influence of the surrounding fluid
in these equations. This question is now completely classical for what concerns the center of mass and angular
motion of the bubbles but we found no equivalent derivation for the radius equation. For this, we propose
herein to extend one method that is classically used in the case of rigid bubbles [10, 19]: we identify formally
spherical compressible bubbles as a compressible viscous fluid whose shear viscosity is infinite (following [23],
Lem. 1.1, Chap. 1 in the case of rigid particles). So we start from a microscopic model where the two phases
are viscous compressible fluids. We write classical interface conditions: no mass transfer, continuity of velocity,
jump of normal stress proportional to surface tension. In passing, we derive a global weak formulation for this
set of equations. Then, we assume that the bubble remain spherical and send the shear viscosity to infinity
in the gas phase and compute formally a limiting model by considering special test-functions in the weak
formulation. We point out that, further than the shape dynamics of the bubbles, the above assumption restricts
the possible micro-motions inside the bubble (see Prop. A.1). We are aware that this restriction borrows from
droplet dynamics but we shall keep the naming bubbles throughout the paper.

With this analysis at-hand, we propose an interpretation of the different terms involved in the resulting set of
equations from which we derive a 1D analogue system. This sytem reads as follows. In Ω = (−1, 1), the bubble
domains are:

𝐵𝑖 = (𝑐𝑖 −𝑅𝑖, 𝑐𝑖 + 𝑅𝑖), ∀𝑖 = 1, . . . , 𝑁

where 𝑐𝑖 is the center of the 𝑖-th bubble and 𝑅𝑖 its radius. We write then the fluid equation{︃
𝜕𝑡𝜌𝑓 + 𝜕𝑥(𝜌𝑓𝑢𝑓 ) = 0
𝜕𝑡(𝜌𝑓𝑢𝑓 ) + 𝜕𝑥(𝜌𝑓𝑢2

𝑓 ) = 𝜕𝑥Σ𝑓
(1)

in ℱ := Ω ∖
⋃︀𝑁

𝑖=1 �̄�𝑖 and where:
Σ𝑓 = 𝜇𝑓𝜕𝑥𝑢𝑓 − 𝑝𝑓 (𝜌𝑓 ). (2)

We denote here by 𝜇𝑓 > 0 and 𝑝𝑓 : (0,∞) → (0,∞) the viscosity and pressure respectively of the fluid phase.
The fluid equations are then complemented by boundary conditions:

𝑢𝑓 (𝑡,±1) = 0 𝑢𝑓 (𝑡, 𝑐𝑖 ±𝑅𝑖) = �̇�𝑖 ± �̇�𝑖, ∀𝑖 = 1, . . . , 𝑁. (3)

As for the gas bubbles, we obtain equations for the centers of mass 𝑐𝑖 and radii 𝑅𝑖 (note that in this 1D setting,
there is no rotation). These equations read for 𝑖 = 1, . . . , 𝑁 :{︃

𝑚𝑖𝑐𝑖 = Σ𝑓 (𝑡, 𝑐𝑖 + 𝑅𝑖)− Σ𝑓 (𝑡, 𝑐𝑖 −𝑅𝑖)
𝑚𝑖

3
�̈�𝑖 = Σ𝑓 (𝑡, 𝑐𝑖 + 𝑅𝑖) + Σ𝑓 (𝑡, 𝑐𝑖 −𝑅𝑖)− 2Σ𝑖 + 𝜅𝑖

(4)

where Σ𝑖 is the gas bubble stress tensor:

Σ𝑖 = 𝜇𝑔
�̇�𝑖

𝑅𝑖
− 𝑝𝑔

(︂
𝑚𝑖

2𝑅𝑖

)︂
· (5)
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Here we introduced the positive constants 𝑚𝑖 > 0 and 𝜇𝑔 standing respectively for the mass (depending on 𝑖)
and viscosity (independent of 𝑖) of the gas bubbles. We also introduced p𝑔 : (0,∞) → (0,∞) the gas pressure
law. The argument of 𝑝𝑔 is computed from the mass and radius of the bubble noting that the density is constant
in each bubble. Finally the surface tension in the bubble 𝑖 reads:

𝜅𝑖 =
𝜅

𝑅𝑖
(6)

where 𝜅 > 0 is a given parameter.
In the last section of the paper, we construct a Cauchy theory for system (1)–(6). The above system is

analogous to 1D models for the motion of point particles in a viscous compressible fluid (see [15,17,20]). However,
since we consider volumic compressible bubbles, we need to address new difficulties related to the unknown time-
variations of their volumes. Furthermore, having in mind the homogenization process in the companion paper, we
need to address a Cauchy theory with an arbitrary number of bubbles. This motivates the following adaptation
of previous results. We stick to a classical regularity framework : we have 𝐿∞𝑡 𝐻1

𝑥 × (𝐿∞𝑡 𝐻1
𝑥 ∩𝐿2

𝑡 𝐻
2
𝑥) regularity

for the pair (𝜌𝑓 , 𝑢𝑓 ) and 𝐻2
𝑡 regularity of the bubble unknowns. However, the system being posed on a time-

dependent unknown domain, some preliminary work is performed to design a suitable regularity framework for
our solution. As in the classical case of rigid bodies moving in a viscous fluid [22], we construct our notion of
solution by fixing the fluid domain with a suitable change of unknown and write the above regularity framework
in this fixed-domain formulation. As classical (again) with compressible 1D equations, a good choice for fixed-
domain framework is to work with time/mass lagrangian coordinates. Since there is no mass transfer through
liquid/gas interfaces, this change of variable also fixes the bubble domains. Section 3 then splits into two parts.
Firstly, we write the system in a fixed domain and analyse the regularity requirement in the moving frame
that corresponds to a classical solution in the fixed one (see Cor. 1). In the second step, we prove local-in-time
existence and uniqueness of solutions to the system in a fixed frame. We remark here that in the fixed frame
(1)–(6) becomes a standard quasilinear system with non-standard boundary conditions (see (31)–(33)). We
obtain then the existence/uniqueness result via a standard perturbation approach (see Thm. 1).

2. Derivation of microscopic model for compressible bubbly flows

In this section we provide the formal derivation of a 3D microscopic compressible model for bubbly flows.
We start from a mixture of compressible fluids filling a container Ω. We assume that the mixture is made of
one leading fluid – whose density/velocity/pressure are denoted (𝜌𝑓 , 𝑢𝑓 , 𝑝𝑓 ) – that fills a subset

ℱ = Ω ∖
𝑁⋃︁

𝑖=1

𝐵𝑖

which stands for the container Ω deprived from a finite number of inclusions 𝐵𝑖 – the bubbles. Further on, we will
assume that the 𝐵𝑖 are balls of radius 𝑅𝑖. The bubbles 𝐵𝑖 are disjoint and contain a different compressible fluid.
Typically, the following model applies to a liquid (modeled by the surrounding fluid) containing gaseous drops
(modeled by the bubbles). We denote (𝜌𝑖, 𝑢𝑖, 𝑝𝑖) the respective densities/velocities/pressures of this second fluid
in the bubble 𝐵𝑖. We impose in the model that this second phase is the same in all inclusions by assuming that
the physical parameters (shear/dynamic viscosity and pressure law) do not depend on 𝑖. Namely, we write the
Newtonian barotropic compressible Navier–Stokes equations for all phases, and we obtain the systems:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑡𝜌𝑓 + div(𝜌𝑓𝑢𝑓 ) = 0

𝜕𝑡(𝜌𝑓𝑢𝑓 ) + div(𝜌𝑓𝑢𝑓 ⊗ 𝑢𝑓 ) = div
[︂
2𝜇𝑓

(︂
𝐷(𝑢𝑓 )− 1

3
div 𝑢𝑓 I3

)︂
+ (𝜆𝑓 div 𝑢𝑓 − 𝑝𝑓 )I3

]︂
𝑝𝑓 = 𝑝𝑓 (𝜌𝑓 )

(7)
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in ℱ , and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝑡𝜌𝑖 + div(𝜌𝑖𝑢𝑖) = 0

𝜕𝑡(𝜌𝑖𝑢𝑖) + div(𝜌𝑖𝑢𝑖 ⊗ 𝑢𝑖) = div
[︂
2𝜇𝑔

(︂
𝐷(𝑢𝑖)−

1
3

div 𝑢𝑖I3
)︂

+ (𝜆𝑔div 𝑢𝑖 − 𝑝𝑖)I3
]︂

𝑝𝑖 = 𝑝𝑔(𝜌𝑖)

(8)

in 𝐵𝑖, for 𝑖 = 1, . . . , 𝑁. In these systems, we introduce (𝜇𝑓 , 𝜆𝑓 ) and (𝜇𝑔, 𝜆𝑔) the respective shear and volume
viscosities of the two phases. The index 𝑓 stands for “fluid” and 𝑔 for “gas”. We use similar conventions for the
pressure laws 𝑝𝑓 and 𝑝𝑔. We also introduce the symbol 𝐷 to denote the symmetric part of the gradient:

𝐷(𝑢) =
1
2
(︀
∇𝑢 +∇⊤𝑢

)︀
.

The symbol div stands for the classical divergence of vector-fields. In case we apply the divergence to a matrix-
application, it stands for the straightforward extension that one obtains by applying the vector operator row-
wise.

We prescribe then the continuity of velocities through the interfaces between both fluids and a jump of stress
due to a (constant) surface-tension. Precisely, we set:{︂

𝑢𝑓 − 𝑢𝑖 = 0
(Σ𝑓 − Σ𝑔)𝑛 = 𝜅𝑖𝑛

on 𝜕𝐵𝑖 for 𝑖 = 1, . . . , 𝑁, (9)

In these conditions, we denote with 𝑛 the normal to 𝜕𝐵𝑖 and we use the shortcut:

Σ𝑓 = 2𝜇𝑓

(︂
𝐷(𝑢𝑓 )− 1

3
div 𝑢𝑓 I3

)︂
+ (𝜆𝑓 div 𝑢𝑓 − 𝑝𝑓 )I3

and the corresponding definition for Σ𝑔. We emphasize that, with this convention, we can rewrite the momentum
equation for the fluid phase:

𝜕𝑡(𝜌𝑓𝑢𝑓 ) + div(𝜌𝑓𝑢𝑓 ⊗ 𝑢𝑓 ) = div Σ𝑓

and similarly with the gas phase. The 𝜅𝑖 are positive constants modelling the surface tension at the interface
𝜕𝐵𝑖. It can be related to the state of 𝐵𝑖 (further on we will assume that it is a function of the bubble radius) but
it is constant over 𝜕𝐵𝑖. We also prescribe that the fluid and bubble domains follow the characteristics associated
with velocities 𝑢𝑓 and 𝑢𝑖: {︂

𝜕𝑡1ℱ + 𝑢𝑓 · ∇1ℱ = 0
𝜕𝑡1𝐵𝑖

+ 𝑢𝑖 · ∇1𝐵𝑖
= 0

in Ω. (10)

We complement the system with boundary conditions:

𝑢𝑓 = 0 on 𝜕Ω.

Since we have (9) we note that, if 𝑢𝑓 and 𝑢𝑖 are sufficiently smooth, we keep the property that the (𝐵𝑖)𝑖=1,...,𝑁

together with ℱ realize a partition of Ω.
We enforce now the further assumption that the 𝐵𝑖 are balls of gas with a constant density. We denote 𝑋𝑖

the center of 𝐵𝑖 and 𝑅𝑖 its radius. Since the state of the bubbles is completly fixed by their centers and radii,
we propose to reduce the coupled problem (7)–(8)–(9)–(10) to a coupled system in terms of (𝜌𝑓 , 𝑢𝑓 , 𝑝𝑓 ) and
((𝑋𝑖, 𝑅𝑖))𝑖=1,...,𝑁 . Our derivation is based on the following remark.

Proposition 1. Let 𝑋 ∈ R3 and 𝑅 > 0. If 𝑢 ∈ 𝐻1(𝐵(𝑋,𝑅)) satisfies

𝐷(𝑢)− 1
3

div 𝑢I3 = 0 on 𝐵(𝑋, 𝑅)
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then 𝑢 ∈ 𝐶∞(�̄�(𝑋, 𝑅)). If we assume furthermore that:

(𝑢(𝑥)− 𝑢(𝑋)) · 𝑛 = 𝑐𝑠𝑡𝑡, on 𝜕𝐵(𝑋, 𝑅)

there exists (𝑉, 𝜔, Λ) ∈ R3 × R3 × R such that:

𝑢(𝑥) = 𝑉 + 𝜔 × (𝑥−𝑋) +
Λ
3

(𝑥−𝑋), ∀𝑥 ∈ 𝐵(𝑋, 𝑅).

This proposition is an extension of Lemma 1.1, Chapter 1 in [23]. A proof is provided in Appendix A. We
point out that we choose the normalization factor 1/3 so that:

div
(︂

Λ
3

(𝑥−𝑋)
)︂

= Λ.

With this proposition, we can interpret formally a bubble as a compressible fluid with infinite shear viscosity.
Then, for our derivation we propose to reverse the method yielding a weak formulation for fluid/solid inter-
action system, see [21]. Namely, first, we write a unified weak formulation for the coupled system in terms of
a (composite) density/velocity/pressure (𝜌, 𝑢, 𝑝). Assuming that the bubbles remain spherical, we send then
formally 𝜇𝑔 to ∞ and compute a reduced system in terms of ((𝑋𝑖, 𝑅𝑖)𝑖=1,...,𝑁 , (𝜌𝑓 , 𝑢𝑓 , 𝑝𝑓 )) with a good choice
of test functions.

2.1. Unified system

Assume that (𝜌𝑖, 𝑢𝑖, 𝑝𝑖)𝑖=1,...,𝑁 with (𝜌𝑓 , 𝑢𝑓 , 𝑝𝑓 ) is a classical solution to (7)–(8)–(9)–(10). Let us define:

𝜌 := 𝜌𝑓1ℱ +
𝑁∑︁

𝑖=1

𝜌𝑖1𝐵𝑖
, 𝑢 := 1ℱ𝑢𝑓 +

𝑁∑︁
𝑖=1

1𝐵𝑖
𝑢𝑖, 𝑝 := 𝑝𝑓1ℱ +

𝑁∑︁
𝑖=1

𝑝𝑖1𝐵𝑖
.

Then, because of the coupling condition (9), we can formally combine (7) and (8) with (10) to derive that
(𝜌, 𝑢, 𝑝) satisfies: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑡𝜌 + div(𝜌𝑢) = 0
𝜕𝑡(𝜌𝑢) + div(𝜌𝑢⊗ 𝑢) = divΣ +∇𝜅

Σ = 2𝜇

(︂
𝐷(𝑢)− 1

3
div 𝑢I3

)︂
+ (𝜆div 𝑢− 𝑝)I3

on Ω (11)

with

𝜇 = 𝜇𝑓1ℱ +
𝑁∑︁

𝑖=1

𝜇𝑔1𝐵𝑖
, 𝜆 = 𝜆𝑓1ℱ +

𝑁∑︁
𝑖=1

𝜆𝑔1𝐵𝑖
, 𝜅 =

𝑁∑︁
𝑖=1

𝜅𝑖1𝐵𝑖
.

To address the well-posedness of the derived system, we should complement our system with a pressure law:

𝑝 = 𝑝(1ℱ , 𝜌), 𝑝(𝑐, 𝜌) = 𝑐 𝑝𝑓 (𝜌) + (1− 𝑐)𝑝𝑔(𝜌)

where 1ℱ and 1𝐵𝑖
are all solutions of the transport equation (with generic unknown 1)

𝜕𝑡1 + 𝑢 · ∇1 = 0.

In particular, assuming that there exist functions 𝑞𝑓 : (0,∞) → (0,∞) and 𝑞𝑔 : (0,∞) → (0,∞) such that:

d
d𝑧

[︂
q𝑓 (𝑧)

𝑧

]︂
=

𝑝𝑓 (𝑧)
𝑧2

and
d
d𝑧

[︂
q𝑔(𝑧)

𝑧

]︂
=

p𝑔(𝑧)
𝑧2

, on (0,∞),
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we derive that the “composite potential energy”:

𝑞 := q(1ℱ , 𝜌), 𝑞(𝑐, 𝜌) = 𝑐 q𝑓 (𝜌) + (1− 𝑐)q𝑔(𝜌).

satisfies the equation:
𝜕𝑡𝑞 + div(𝑞𝑢) = 𝑝 div 𝑢. (12)

Hence, multiplying the second equation of (11) with 𝑢 and combining with (12), we conclude that

𝑒 := e(𝜌, 𝑢, 𝑞) =
1
2
𝜌|𝑢|2 + 𝑞,

satisfies:

𝜕𝑡𝑒 + div
(︂

𝜌𝑢
|𝑢|2

2
− (Σ + 𝜅I3)𝑢

)︂
+ 2𝜇

⃒⃒⃒⃒
𝐷(𝑢)− 1

3
div 𝑢I3

⃒⃒⃒⃒2
+ 𝜆|div 𝑢|2 + [𝜅 · ∇]𝑢 = 0. (13)

We underline that the state-law that we write above for the composite pressure and the composite energy is
reminiscent of the idea that the indicator function plays the role of an order parameter 𝑐 (see [7]).

2.2. Identification of bubbles and their mechanical properties.

In (13), the 𝜅 term can be handled by the positive dissipation. Hence, setting 𝜇𝑔 = ∞, we conclude that

𝐷(𝑢)− 1
3

div 𝑢 = 0 on 𝐵𝑖 for all 𝑖.

With the further assumption that 𝐵𝑖 remains spherical, we enforce also that

(𝑢(𝑥)− 𝑢(𝑋𝑖)) · (𝑥−𝑋𝑖) = 2�̇�𝑖𝑅𝑖 on 𝜕𝐵𝑖

and thus, from Proposition 1, there exists (𝑉𝑖, 𝜔𝑖, Λ𝑖) ∈ R3 × R3 × R for which

𝑢(𝑡, 𝑥) = 𝑉𝑖 + 𝜔𝑖 × (𝑥−𝑋𝑖) +
Λ𝑖

3
(𝑥−𝑋𝑖), on 𝐵𝑖.

We recall here that 𝑋𝑖 is chosen to be the center of 𝐵𝑖 (and we denote by 𝑅𝑖 its radius). In particular, we can
replace 𝑢 by this identity in the transport equation (10) satisfied by 1𝐵𝑖

. Solving the characteristics problem
associated with the right-hand side, we get that, at time 𝑡 > 0, there holds 𝐵𝑖 = 𝐵(𝑋𝑖(𝑡), 𝑅𝑖(𝑡)) where 𝑋𝑖, 𝑅𝑖

are computed by integrating the odes:

�̇�𝑖 = 𝑉𝑖, �̇�𝑖 =
Λ𝑖

3
𝑅𝑖.

For later purpose, we introduce now some mechanical quantities characterizing the momentums of the bubbles.
Since 𝜌𝑖1𝐵𝑖 is a solution to:

𝜕𝑡(𝜌𝑖1𝐵𝑖
) + div(𝜌𝑖1𝐵𝑖

𝑢𝑖) = 0

and we assumed 𝜌𝑖 is constant on 𝐵𝑖, we get that �̇�𝑖 = −Λ𝑖𝜌𝑖. Next, we introduce the three important quantities
associated with the kinetic energy related to the possible motion of 𝐵𝑖. First, we define the mass:

𝑚𝑖 =
∫︁

𝐵𝑖

𝜌𝑖 =
4𝜋

3
𝜌𝑖𝑅

3
𝑖 . (14)

Given the differential equations satisfied by 𝜌𝑖 and 𝑅𝑖, we get that 𝑚𝑖 is a constant, independent of time-
evolution (as could be expected). Second, we introduce the inertia matrix J𝑖 ∈ ℳ3(R) standing for the unique
(positive) symmetric matrix such that:

(J𝑖𝜔) · �̃� =
∫︁

𝐵𝑖

𝜌𝑖(𝜔 × (𝑥−𝑋𝑖)) · (�̃� × (𝑥−𝑋𝑖)) d𝑥, ∀(𝜔, �̃�) ∈ R3 × R3. (15)
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We will see below that this matrix is related to the computation of the kinetic energy coming from the bubble
rotations. In the case of a homogeneous ball that we consider here, we have:

J𝑖 =
8𝜋

15
𝜌𝑖𝑅

3
𝑖 I3 =

2
5
𝑚𝑖𝑅

2
𝑖 I3.

In particular, we remark that contrary to the case of a rigid ball, this quantity is time-dependent. Finally, we
introduce 𝐾𝑖 ∈ R the equivalent characteristics to J𝑖 measuring the contribution of dilation to kinetic energy.
It reads:

𝐾𝑖 =
∫︁

𝐵𝑖

𝜌𝑖

9
|𝑥−𝑋𝑖|2 d𝑥 (16)

and satisfies:
𝐾𝑖 =

4𝜋

45
𝜌𝑖𝑅

5
𝑖 =

𝑚𝑖

15
𝑅2

𝑖 .

According to the previous formulas, we have some specific algebraic identities that will come into play in
future computations. First, given (𝜔, �̃�) ∈ R3 × R3, applying the classical formula:

�̃� · 𝜔 = (𝜔 · 𝑒)(�̃� · 𝑒) + (𝜔 × 𝑒) · (�̃� × 𝑒) ∀𝑒 ∈ S2

with 𝑒 = (𝑥−𝑋𝑖)/|𝑥−𝑋𝑖| and integrating in space, we obtain that

(J𝑖𝜔) · �̃� +
∫︁

𝐵𝑖

𝜌𝑖(𝜔 · (𝑥−𝑋𝑖))(�̃� · (𝑥−𝑋𝑖)) =
∫︁

𝐵𝑖

𝜌𝑖𝜔 · �̃�|𝑥−𝑋𝑖|2. (17)

Second, differentiating with respect to time the explicit formulas for J𝑖 and 𝐾𝑖 and applying the differential
equations for 𝑅𝑖 (as well as the fact that 𝑚𝑖 is constant) we deduce that:

�̇�𝑖 =
2
3

Λ𝑖𝐾𝑖, J̇𝑖 =
2
3

Λ𝑖J𝑖. (18)

To conclude, we illustrate our definition of (𝑚𝑖, J𝑖, 𝐾𝑖), by simply stating that, whatever the value of
(𝑉, 𝜔, Λ) ∈ R3 × R3 × R, there holds:∫︁

𝐵𝑖

𝜌𝑖

(︂
𝑉 + 𝜔 × (𝑥−𝑋𝑖) +

Λ
3

(𝑥−𝑋𝑖)
)︂
·
(︂

𝑉 + 𝜔 × (𝑥−𝑋𝑖) +
Λ
3

(𝑥−𝑋𝑖)
)︂

d𝑥 = 𝑚𝑖|𝑉 |2 + (J𝑖𝜔) · 𝜔 + 𝐾𝑖|Λ|2.

2.3. Extraction of dynamical equations for (𝑋𝑖, 𝑅𝑖)

We want now to understand the dynamics of the bubbly flow in the regime 𝜇𝑔 = ∞. We first remark that,
by construction, we keep the dynamical equations in the fluid domain (7) as well as the continuity of fluid
velocities, with the restriction:

𝑢 = 𝑉𝑖 + 𝜔𝑖 × (𝑥−𝑋𝑖) +
Λ𝑖

3
(𝑥−𝑋𝑖), on 𝜕𝐵𝑖, ∀𝑖 = 1, . . . , 𝑁. (19)

where:

𝑉𝑖 = �̇�𝑖, Λ𝑖 = 3
�̇�𝑖

𝑅𝑖
, ∀𝑖 = 1, . . . , 𝑁. (20)

To proceed, we still assume that the 𝐵𝑖 are disjoint far from 𝜕Ω, we consider a distribution of velocities
(𝑉𝑖, �̃�𝑖, Λ̃𝑖) ∈ R3 × R3 × R and we construct a 𝑤 that vanishes on 𝜕Ω and such that:

𝑤(𝑡, 𝑥) = 𝑉𝑖 + �̃�𝑖 × (𝑥−𝑋𝑖) +
Λ̃𝑖

3
(𝑥−𝑋𝑖), on 𝐵𝑖, ∀𝑖 = 1, . . . , 𝑁.



2842 M. HILLAIRET, H. MATHIS AND N. SEGUIN

We note that, though the distribution of velocities is time-independent, we obtain a time-dependent 𝑤 because
the 𝐵𝑖 move inside the fluid domain (with time-varying radii and centers). Multiplying (11) with 𝑤 and inte-
grating by parts, we obtain that:∫︁

Ω

(𝜕𝑡(𝜌𝑢) + div(𝜌𝑢⊗ 𝑢)) · 𝑤 = −
∫︁

Ω

Σ : 𝐷(𝑤) +
∫︁

Ω

∇𝜅 · 𝑤.

We compute now independently the left-hand side and right-hand side of this identity. On the right-hand side,
we apply the definition of Σ:

RHS = −

(︃∫︁
ℱ

Σ𝑓 : 𝐷(𝑤) +
𝑁∑︁

𝑖=1

∫︁
𝐵𝑖

2𝜇𝑔

(︂
𝐷(𝑢)− 1

3
div 𝑢I3

)︂
:
(︂

𝐷(𝑤)− 1
3

div 𝑤I3
)︂

+
∫︁

𝐵𝑖

(𝜆𝑔div 𝑢− 𝑝𝑔(𝜌𝑖))div 𝑤 +
∫︁

𝐵𝑖

𝜅𝑖div 𝑤

)︂
.

Here, we argue that 𝐷(𝑤) − (div 𝑤/3)I3 = 0 so that the term in factor of 𝜇𝑔 vanishes. Then, we integrate by
parts the first identity and replace 𝑤 by its explicit value. This yields:

RHS =
∫︁
ℱ

divΣ𝑓 · 𝑤 −
𝑁∑︁

𝑖=1

(︃∫︁
𝜕𝐵𝑖

Σ𝑓𝑛 · 𝑉𝑖 +
∫︁

𝜕𝐵𝑖

((𝑥−𝑋𝑖)× Σ𝑓𝑛) · Ω̃𝑖

+
∫︁

𝜕𝐵𝑖

((𝑥−𝑋𝑖) · Σ𝑓𝑛)
Λ̃𝑖

3
+ (𝜆𝑔Λ𝑖 − 𝑝𝑔(𝜌𝑖) + 𝜅𝑖)Λ̃𝑖|𝐵𝑖|

)︃

where 𝑛 stands for the normal to 𝜕ℱ that points outwards. As for the left-hand side, we split:

LHS =
∫︁
ℱ

(𝜕𝑡(𝜌𝑓𝑢𝑓 ) + div(𝜌𝑓𝑢𝑓 ⊗ 𝑢𝑓 )) · 𝑤 +
𝑁∑︁

𝑖=1

LHS𝑖

with
LHS𝑖 =

∫︁
𝐵𝑖

𝜕𝑡(𝜌𝑖𝑢𝑖) · 𝑤 + div(𝜌𝑖𝑢𝑖 ⊗ 𝑢𝑖) · 𝑤.

Applying that 𝐵𝑖 moves with the velocity-field 𝑢𝑖, we can integrate by parts

LHS𝑖 =
d
d𝑡

[︂∫︁
𝐵𝑖

𝜌𝑖𝑢𝑖 · 𝑤
]︂
−
∫︁

𝐵𝑖

𝜌𝑖𝑢𝑖 · (𝜕𝑡𝑤 + 𝑢𝑖 · ∇𝑤).

In this identity, we use the explicit formulas:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑢𝑖 = 𝑉𝑖 + 𝜔𝑖 × (𝑥−𝑋𝑖) +
Λ𝑖

3
(𝑥−𝑋𝑖),

𝑤 = 𝑉𝑖 + �̃�𝑖 × (𝑥−𝑋𝑖) +
Λ̃𝑖

3
(𝑥−𝑋𝑖),

𝜕𝑡𝑤 + 𝑢𝑖 · ∇𝑤 = �̃�𝑖 ×
(︂

𝜔𝑖 × (𝑥−𝑋𝑖) +
Λ𝑖

3
(𝑥−𝑋𝑖)

)︂
+

Λ̃𝑖

3

(︂
𝜔𝑖 × (𝑥−𝑋𝑖) +

Λ𝑖

3
(𝑥−𝑋𝑖)

)︂
,

and, after tedious but straightforward computations, we obtain∫︁
𝐵𝑖

𝜌𝑖𝑢𝑖 · 𝑤 = 𝑚𝑖𝑉𝑖 · 𝑉𝑖 + (J𝑖𝜔𝑖) · �̃�𝑖 + 𝐾𝑖Λ𝑖Λ̃𝑖,
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and ∫︁
𝐵𝑖

𝜌𝑖𝑢𝑖 · (𝜕𝑡𝑤 + 𝑢𝑖 · ∇𝑤) = 𝑇1 + 𝑇2 + 𝑇3,

where

𝑇1 =
∫︁

𝐵𝑖

𝜌𝑖𝑉𝑖 · (𝜕𝑡𝑤 + 𝑢𝑖 · ∇𝑤) = 0,

because 𝑋𝑖 is the center of 𝐵𝑖, and

𝑇2 =
Λ𝑖

3
(J𝑖𝜔𝑖) · �̃�𝑖 +

Λ̃𝑖

3
(J𝑖𝜔𝑖) · 𝜔𝑖,

𝑇3 =
Λ𝑖

3

∫︁
𝐵𝑖

𝜌𝑖�̃�𝑖 · (𝑥−𝑋𝑖) 𝜔𝑖 · (𝑥−𝑋𝑖)−
∫︁

𝐵𝑖

𝜌𝑖�̃�𝑖 · 𝜔𝑖|𝑥−𝑋𝑖|2 +
Λ̃𝑖

3
𝐾𝑖|Λ𝑖|2.

Here, we apply (17) to yield that:

𝑇2 + 𝑇3 =
Λ̃𝑖

3

(︁
(J𝑖𝜔𝑖) · 𝜔𝑖 + 𝐾𝑖|Λ𝑖|2

)︁
.

Finally, this entails that:

LHS𝑖 =
d
d𝑡

[︁
𝑚𝑖𝑉𝑖 · 𝑉𝑖 + (J𝑖𝜔𝑖) · �̃�𝑖 + 𝐾𝑖Λ𝑖Λ̃𝑖

]︁
− Λ̃𝑖

3

[︁
(J𝑖𝜔𝑖) · 𝜔𝑖 + 𝐾𝑖|Λ𝑖|2

]︁
.

Combining the previous computations for LHS and RHS and recalling that (𝜌𝑓 , 𝑢𝑓 , 𝑝𝑓 ) satisfies the Navier–
Stokes equations on ℱ , we conclude that:

𝑁∑︁
𝑖=1

d
d𝑡

[︁
𝑚𝑖𝑉𝑖 · 𝑉𝑖 + (J𝑖𝜔𝑖) · �̃�𝑖 + 𝐾𝑖Λ𝑖Λ̃𝑖

]︁
− Λ̃𝑖

3
[︀
(J𝑖𝜔𝑖) · 𝜔𝑖 + 𝐾𝑖|Λ𝑖|2

]︀
= −

𝑁∑︁
𝑖=1

(︂∫︁
𝜕𝐵𝑖

Σ𝑓𝑛 · 𝑉𝑖 +
∫︁

𝜕𝐵𝑖

((𝑥−𝑋𝑖)× Σ𝑓𝑛) · �̃�𝑖

+
∫︁

𝜕𝐵𝑖

((𝑥−𝑋𝑖) · Σ𝑓𝑛)
Λ̃𝑖

3
+ (𝜆𝑔Λ𝑖 − 𝑝𝑔(𝜌𝑖) + 𝜅𝑖)Λ̃𝑖|𝐵𝑖|

)︃
.

Choosing sequentially that only 𝑉𝑖 or �̃�𝑖 or Λ̃𝑖 does not vanish, we end up with the system:⎧⎪⎪⎨⎪⎪⎩
𝑚𝑖�̇�𝑖 = −

∫︁
𝜕𝐵𝑖

Σ𝑓𝑛,

d
d𝑡

[J𝑖𝜔𝑖] = −
∫︁

𝜕𝐵𝑖

(𝑥−𝑋𝑖)× (Σ𝑓𝑛),
(21)

and
d
d𝑡

[𝐾𝑖Λ𝑖]−
1
3

[︁
(J𝑖𝜔𝑖) · 𝜔𝑖 + 𝐾𝑖|Λ𝑖|2

]︁
= −

(︂
1
3

∫︁
𝜕𝐵𝑖

(𝑥−𝑋𝑖) · Σ𝑓𝑛 + (𝜆𝑔Λ𝑖 − 𝑝𝑔(𝜌𝑖) + 𝜅𝑖)|𝐵𝑖|
)︂

. (22)

The two first equations are the classical Newton laws of solid dynamics. The latter one is new to our knowledge.
We point out that, in the last identity, all the quantities can be computed in terms of 𝑅𝑖 and �̇�𝑖. In particular,
the second term on the left-hand side is a geometrical term that is induced by the fact that J𝑖 and 𝐾𝑖 are
time-dependant because of the time evolution of 𝑅𝑖.
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2.4. Conclusion

We conclude with a reformulation of our system in terms of the only unknown (𝜌𝑓 , 𝑢𝑓 , 𝑝𝑓 ) for the fluid and
(𝑋𝑖, 𝑅𝑖)𝑖=1,...,𝑁 for the bubbles. Concerning the fluid, we have:{︂

𝜕𝑡𝜌𝑓 + div(𝜌𝑓𝑢𝑓 ) = 0,

𝜕𝑡(𝜌𝑓𝑢𝑓 ) + div(𝜌𝑓𝑢𝑓 ⊗ 𝑢𝑓 ) = div Σ𝑓 ,

in the fluid domain

ℱ(𝑡) = Ω ∖
𝑁⋃︁

𝑖=1

𝐵𝑖,

where 𝐵𝑖 = 𝐵(𝑋𝑖, 𝑅𝑖). This system is completed with boundary conditions:⎧⎨⎩𝑢𝑓 = �̇�𝑖 + 𝜔𝑖 × (𝑥−𝑋𝑖) +
�̇�𝑖

𝑅𝑖
(𝑥−𝑋𝑖), on 𝜕𝐵𝑖,

𝑢𝑓 = 0, on 𝜕Ω.

(23)

It is also coupled with the dynamical equations for the bubbles:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑚𝑖�̈�𝑖 = −
∫︁

𝜕𝐵𝑖

Σ𝑓𝑛,

d
d𝑡

[︂
2𝑚𝑖

5
𝑅2

𝑖 𝜔𝑖

]︂
= −

∫︁
𝜕𝐵𝑖

(𝑥−𝑋𝑖)× (Σ𝑓𝑛),

d
d𝑡

[︁𝑚𝑖

5
�̇�𝑖𝑅𝑖

]︁
− 𝑚𝑖𝑅

2
𝑖

3

⎡⎣2
5
𝜔2

𝑖 +
3
5

⃒⃒⃒⃒
⃒ �̇�𝑖

𝑅𝑖

⃒⃒⃒⃒
⃒
2
⎤⎦ = −1

3

∫︁
𝜕𝐵𝑖

((𝑥−𝑋𝑖) · Σ𝑓𝑛)

−

(︃
3𝜆𝑔

�̇�𝑖

𝑅𝑖
− 𝑝𝑔

(︂
3𝑚𝑖

4𝜋𝑅3
𝑖

)︂
+ 𝜅𝑖

)︃
4
3
𝜋𝑅3

𝑖

(24)

where 𝑚𝑖 is the mass of bubble 𝐵𝑖, 𝜆𝑔 is its volumic viscosity, 𝑝𝑔 its pressure law and Σ𝑓 is the fluid stress
tensor given by

Σ𝑓 = 2𝜇𝑓

(︂
𝐷(𝑢𝑓 )− 1

3
div 𝑢𝑓 I3

)︂
+ (𝜆𝑓 div 𝑢𝑓 − 𝑝𝑓 )I3, 𝑝𝑓 = 𝑝𝑓 (𝜌𝑓 ). (25)

We mention here that, in these latter Newton-like equations, the geometric term on the left-hand side of the
last equation handles the fact that the inertia parameters of 𝐵𝑖 depend on 𝑅𝑖. As for the right-hand side, it
measures the different actions of the bubbles and fluid. We note in particular that, in the last equation, the last
term can be rewritten:

−1
3

∫︁
𝜕𝐵𝑖

(𝑥−𝑋𝑖) · (Σ𝑓 − Σ𝑔 − 𝜅𝑖)𝑛 d𝜎.

The factor 1/3 is here a dimensional artefact due to the algebra relating the dependencies of 𝑢𝑖 and div 𝑢𝑖 in
Λ𝑖. In particular, the right-hand side is not properly the surface force applied on 𝜕𝐵𝑖 (because the (𝑥 − 𝑋𝑖)
term appearing in the latter integral is homogeneous to a length).

2.5. 1D analogue

We propose now a 1D analogue to the system derived previously. So, we consider a mixture that fills the 1D
container Ω = (−1, 1). We denote the bubbles

𝐵𝑖 = (𝑐𝑖 −𝑅𝑖, 𝑐𝑖 + 𝑅𝑖), ∀𝑖 = 1, . . . , 𝑁,
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where 𝑐𝑖 ∈ Ω, 𝑅𝑖 > 0 for all 𝑖, and

ℱ = Ω ∖
𝑁⋃︁

𝑖=1

𝐵𝑖.

Following the previous notations, we introduce (𝜌𝑓 , 𝑢𝑓 ) the fluid density/velocity which solve the 1D compressible
Navier–Stokes system: ⎧⎪⎨⎪⎩

𝜕𝑡𝜌𝑓 + 𝜕𝑥(𝜌𝑓𝑢𝑓 ) = 0
𝜕𝑡(𝜌𝑓𝑢𝑓 ) + 𝜕𝑥

(︀
𝜌𝑓𝑢2

𝑓

)︀
= 𝜕𝑥Σ𝑓

Σ𝑓 = 𝜇𝑓𝜕𝑓𝑢𝑓 − 𝑝𝑓 (𝜌𝑓 ).

The motion of the bubbles is given by:

𝑢𝑖(𝑡, 𝑥) = �̇�𝑖 +
�̇�𝑖

𝑅𝑖
(𝑥− 𝑐𝑖), on 𝐵𝑖

so that we add the no-slip boundary conditions:{︃
𝑢(𝑡, 𝑐𝑖 ±𝑅𝑖) = �̇�𝑖 ± �̇�𝑖 for 𝑖 = 1, . . . , 𝑁

𝑢(𝑡,±1) = 0.

For the bubble dynamics, we introduce 𝜌𝑖 the density and 𝑚𝑖 the mass of the bubble 𝐵𝑖. Requiring again that
𝑚𝑖 is constant, we obtain that the kinetic energy of the bubble 𝐵𝑖 is given by:

1
2

∫︁
𝐵𝑖

𝜌𝑖

(︃
�̇�𝑖 +

�̇�𝑖

𝑅𝑖
(𝑥− 𝑐𝑖)

)︃2

d𝑥 =
1
2
𝑚𝑖|�̇�𝑖|2 +

1
2

𝑚𝑖𝑅
2
𝑖

3

⃒⃒⃒⃒
⃒ �̇�𝑖

𝑅𝑖

⃒⃒⃒⃒
⃒
2

·

So, following the computations in the 3D case, we propose the following extended Newton laws (note that there
is no rotation here):⎧⎨⎩

𝑚𝑖𝑐𝑖 = Σ𝑓 (𝑐𝑖 + 𝑅𝑖)− Σ𝑓 (𝑐𝑖 −𝑅𝑖),
𝑚𝑖

3
d
d𝑡

[︁
�̇�𝑖𝑅𝑖

]︁
− 𝑚𝑖

3

⃒⃒⃒
�̇�𝑖

⃒⃒⃒2
= 𝑅𝑖[(Σ𝑓 (𝑐𝑖 + 𝑅𝑖) + Σ𝑓 (𝑐𝑖 −𝑅𝑖))− 2Σ𝑖 + 𝜅𝑖],

where the bubble stress tensor is given by:

Σ𝑖 = 𝜇𝑔
�̇�𝑖

𝑅𝑖
− p𝑔

(︂
𝑚𝑖

2𝑅𝑖

)︂
, on 𝐵𝑖.

We note that the second equation simplifies:

𝑚𝑖

3
�̈�𝑖 = [(Σ𝑓 (𝑐𝑖 + 𝑅𝑖) + Σ𝑓 (𝑐𝑖 −𝑅𝑖))− 2Σ𝑖 + 𝜅𝑖].

Below, we assume that 𝜅𝑖 is computed for bubbles thanks to a Laplace–Young law ([16], Chap. VII):

𝜅𝑖 =
𝜅

𝑅𝑖
for some paramater 𝜅 > 0.

Hence, from now on, we drop 𝜅𝑖 in the system and we incorporate the surface-tension effects in the pressure
law p𝑔.
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3. Cauchy theory for 1D compressible bubbly flows

In this section, we address the existence and uniqueness of classical solutions to the 1D compressible bubbly-
flow model that we derived in the previous section. We focus on the particular case of polytropic pressure laws
(in the fluid and in the bubbles). Precisely, we consider the sytem with unknowns (𝜌, 𝑢) and (𝑐𝑖, 𝑅𝑖)𝑖=1,...,𝑁

given by the 1D Navier–Stokes equations:{︂
𝜕𝑡𝜌 + 𝜕𝑥(𝜌𝑢) = 0,

𝜕𝑡(𝜌𝑢) + 𝜕𝑥

(︀
𝜌𝑢2
)︀

= 𝜕𝑥(𝜇𝑓𝜕𝑥𝑢− 𝑝𝑓 (𝜌)),
on (−1, 1) ∖

𝑁⋃︁
𝑖=1

[𝑐𝑖 −𝑅𝑖, 𝑐𝑖 + 𝑅𝑖], (26)

with the boundary conditions: {︃
𝑢(𝑡, 𝑐𝑖 ±𝑅𝑖) = �̇�𝑖 ± �̇�𝑖, for 𝑖 = 1, . . . , 𝑁,

𝑢(𝑡,±1) = 0,
(27)

and complemented with generalized Newton laws:⎧⎪⎨⎪⎩
𝑚𝑖𝑐𝑖 = [𝜇𝑓𝜕𝑥𝑢− 𝑝𝑓 (𝜌)]𝑐𝑖±𝑅𝑖

,

𝑚𝑖

3
�̈�𝑖 = {𝜇𝑓𝜕𝑥𝑢− p𝑓 (𝜌)}𝑐𝑖±𝑅𝑖 − 2

(︃
𝜇𝑔

�̇�𝑖

𝑅𝑖
− 𝑝𝑔(𝑅𝑖)

)︃
,

∀𝑖 = 1, . . . , 𝑁. (28)

In this system, we introduced the physical parameters: 𝜇𝑓 , 𝑝𝑓 (resp. 𝑚𝑖, 𝜇𝑔, 𝑝𝑔) characterizing the fluid properties
(resp. the bubble properties). We emphasize that 𝑚𝑖 stands for the mass of the bubble 𝑖 and can vary between
the bubbles. We also constructed the pressure law with respect to the radius 𝑅𝑖 since, the mass being conserved
and the density constant in the bubbles, the density of each bubble is directly related to its radius. This enables
to incorporate also surface tension effects thanks to a Laplace–Young law for instance. Finally, for a function 𝑓
defined on the fluid domain, we denoted:

[𝑓 ]𝑐𝑖±𝑅𝑖 = (𝑓(𝑐𝑖 + 𝑅𝑖)− 𝑓(𝑐𝑖 −𝑅𝑖)), {𝑓}𝑐𝑖±𝑅𝑖 = (𝑓(𝑐𝑖 + 𝑅𝑖) + 𝑓(𝑐𝑖 −𝑅𝑖)), ∀𝑖 = 1, . . . , 𝑁.

We complete the system with initial conditions:{︃
𝑐𝑖(0) = 𝑐0

𝑖 , �̇�𝑖(0) = �̇�0
𝑖 ,

𝑅𝑖(0) = 𝑅0
𝑖 , �̇�𝑖(0) = �̇�0

𝑖 ,
∀𝑖 = 1, . . . , 𝑁,

{︂
𝜌(0, 𝑥) = 𝜌0(𝑥),
𝑢(0, 𝑥) = 𝑢0(𝑥),

∀𝑥 ∈ (−1, 1) ∖
𝑁⋃︁

𝑖=1

(︀
𝑐0
𝑖 −𝑅0

𝑖 , 𝑐
0
𝑖 + 𝑅0

𝑖

)︀
.

(29)

We state this system formally, but we obviously need that the bubble domains (𝑐𝑖 −𝑅𝑖, 𝑐𝑖 + 𝑅𝑖), 𝑖 = 1, . . . , 𝑁 ,
remain well separated initially and with time-evolution so that all these equations are meaningful.

This section splits into two parts. Firstly, we provide a functional framework for solving (26)–(27)–(28)–(29).
To this aim, we use a Lagrangian formulation with time/mass coordinates and provide a unified formulation of
the fluid+bubble system. We prove the equivalence between the two formulations and we state our main result.
The last subsection is devoted to the proof of our main result.

3.1. Functional setting and main result

We assume that the full system has unit mass. This property does not restrict the generality up to a scaling
of the viscosity and pressure laws.

As classical in the 1D setting, we look for a solution to (26)–(27)–(28) in the time/mass coordinates:(︂
𝑡, 𝑚 =

∫︁ 𝑥

−1

𝜌(𝑡, 𝑧) d𝑧

)︂
(30)
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where 𝜌 is the extension of 𝜌 by 𝜌𝑖 = 𝑚𝑖/2𝑅𝑖 in the bubble domains. Denoting

𝑚±
𝑖 =

∫︁ 𝑐𝑖±𝑅𝑖

−1

𝜌(𝑡, 𝑧) d𝑧, ∀𝑖 = 1, . . . , 𝑁,

and introducing the specific volume 𝑣 = 1/𝜌, our system reads in these new coordinates:⎧⎨⎩
𝜕𝑡𝑣 = 𝜕𝑚𝑢,

𝜕𝑡𝑢 = 𝜕𝑚

(︂
𝜕𝑚𝑢

𝑣
− 𝜋𝑓 (𝑣)

)︂
,

on ℱ0 := (0, 1) ∖
𝑁⋃︁

𝑖=1

[︀
𝑚−

𝑖 , 𝑚+
𝑖

]︀
, (31)

with the boundary conditions: {︃
𝑢
(︀
𝑚±

𝑖

)︀
= �̇�𝑖 ± �̇�𝑖, for 𝑖 = 1, . . . , 𝑁,

𝑢(0) = 𝑢(1) = 0,
(32)

and complemented with generalized Newton laws:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑚𝑖𝑐𝑖 =

[︁𝜇𝑓

𝑣
𝜕𝑚𝑢− 𝜋𝑓 (𝑣)

]︁𝑚+
𝑖

𝑚−𝑖

,

𝑚𝑖

3
�̈�𝑖 =

{︁𝜇𝑓

𝑣
𝜕𝑚𝑢− 𝜋𝑓 (𝑣)

}︁𝑚+
𝑖

𝑚−𝑖

− 2

(︃
𝜇𝑔

�̇�𝑖

𝑅𝑖
− 𝑝𝑔(𝑅𝑖)

)︃
,

∀𝑖 = 1, . . . , 𝑁, (33)

with previous notations for brackets. We also introduced in this system the specific volume pressure law 𝜋𝑓 (𝑣) =
𝑝𝑓 (1/𝑣) for 𝑣 > 0. We point out that, by construction, 𝑚+

𝑖 and 𝑚−
𝑖 are constant and that 𝑚+

𝑖 = 𝑚−
𝑖 + 𝑚𝑖 for

all 𝑖.
In order to handle the previous Lagrangian formulation of our problem, we work with extended unknowns.

First, we set:

𝑣(𝑡, 𝑚) =

⎧⎨⎩
𝑣(𝑡, 𝑚), in ℱ0,

2𝑅𝑖

𝑚+
𝑖 −𝑚−

𝑖

, in
(︀
𝑚−

𝑖 , 𝑚+
𝑖

)︀
for 𝑖 = 1, . . . , 𝑁,

and

�̄�(𝑡, 𝑚) =

⎧⎪⎨⎪⎩
𝑢(𝑡, 𝑚), in ℱ0,(︁
�̇�𝑖 − �̇�𝑖

)︁
+ 2�̇�𝑖

𝑚−𝑚−
𝑖

𝑚+
𝑖 −𝑚−

𝑖

, in
(︀
𝑚−

𝑖 , 𝑚+
𝑖

)︀
for 𝑖 = 1, . . . , 𝑁.

In the classical regularity setting for Navier–Stokes equations, we look for a solution such that the velocity-
field 𝑢 has 𝐶𝑡𝐻

1
𝑥∩𝐿2

𝑡 𝐻
2
𝑥 regularity in the fluid domain. Correspondingly, we must have that 𝑣 is 𝑊 1,∞

𝑡 𝐿2
𝑥∩𝐻1

𝑡 𝐻1
𝑥.

On the other hand, the bubbles prescribe that 𝑣 is constant and 𝑢 affine in the intervals (𝑚−
𝑖 , 𝑚+

𝑖 ). Combining
both remarks leads to the following construction of function spaces. We introduce the symbol m which encodes
the list of interval ((𝑚−

𝑖 , 𝑚+
𝑖 ))𝑖=1,...,𝑁 and we denote, for 𝑝 ∈ [1,∞]:

𝐿𝑝
m :=

{︂
𝑣 ∈ 𝐿𝑝((0, 1)) s.t. 𝑣|(𝑚

−
𝑖

,𝑚
+
𝑖 )

is constant ∀𝑖
}︂

,

as well as, for 𝑘 ≥ 1:

H𝑘
m :=

{︂
𝑢 ∈ 𝐻𝑘

0 ((0, 1)) s.t. 𝑢|(𝑚
−
𝑖

,𝑚
+
𝑖 )

is affine ∀𝑖
}︂

.
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We emphasize that, a priori 𝐿2
m and H0

m do not coincide. In particular, contrary to the classical setting, the
differential operator 𝜕𝑚 maps H1

m into 𝐿2
m (and not H0

m). With the above remarks, we will require that a
solution satisfies

𝑣 ∈ 𝐻1
(︀
0, 𝑇 ; 𝐻1(ℱ0)

)︀
∩ 𝐶

(︀
[0, 𝑇 ]; 𝐿2

m

)︀
,

�̄� ∈ 𝐻1
(︀
0, 𝑇 ; 𝐿2(0, 1)

)︀
∩ 𝐶

(︀
[0, 𝑇 ]; H1

m

)︀
∩ 𝐿2

(︀
0, 𝑇 ; 𝐻2(ℱ0)

)︀
.

(34)

We encode then the full system (31)–(32)–(33) into one system in terms of 𝑣, �̄�. Indeed, if
((𝑢, 𝑣), (𝑐𝑖, 𝑅𝑖)𝑖=1,...,𝑁 ) is a solution to (31)–(32)–(33) we first remark that we can compute explicitly 𝜕𝑡𝑣 and
𝜕𝑚�̄� on the bubbles (𝑚−

𝑖 , 𝑚+
𝑖 ). This entails that we have the transport equation:

𝜕𝑡𝑣 = 𝜕𝑚�̄� (35)

on the whole interval (0, 1). Second, given �̄� ∈ H1
m we multiply the momentum equation in (31) with �̄�. After

integration by parts and application of the continuity condition (32) and extended Newton laws (33), we obtain:

d
d𝑡

[︂∫︁ 1

0

�̄��̄�

]︂
+
∫︁ 1

0

(︁𝜇

𝑣
𝜕𝑚�̄�− 𝜋(𝑚, 𝑣)

)︁
𝜕𝑚�̄� = 0 (36)

where:

𝜇 = 𝜇𝑓1ℱ0 + 𝜇𝑔(1− 1ℱ0) 𝜋(𝑚, 𝑣) = 1ℱ0𝜋𝑓 (𝑣) +
𝑁∑︁

𝑖=1

1(𝑚−𝑖 ,𝑚+
𝑖 )𝜋𝑖(𝑣) (37)

with 𝜋𝑖(𝑣) = pg(𝑚𝑖𝑣/2) for 𝑖 = 1, . . . , 𝑁. We point out that, contrary to the Eulerian setting, we cannot
write the pressure law in terms of the indicator functions 1ℱ0 only, since the quantity 𝑚𝑖 is involved in the
computation.

In conclusion, the solutions we are looking for are pairs (�̄�, 𝑣) with the regularity (34) such that 𝑣 > 0 on
(0, 𝑇 ) × (0, 1) and that satisfy simultaneously (35) on (0, 𝑇 ) × (0, 1) and (36) on (0, 𝑇 ) for any �̄� ∈ H1

m. We
perform our construction with viscosity and pressure law of the form (37). In that respect, our main result
reads:

Theorem 1. Consider viscosities (𝜇𝑓 , 𝜇𝑔) ∈ (0,∞) and pressure laws (𝜋𝑓 , (𝜋𝑖)𝑖=1,...,𝑁 ) that are 𝐶1 on (0,∞).
Then, given 𝑣0 ∈ 𝐿∞m ∩ 𝐻1(ℱ0) such that inf(0,1) 𝑣0 > 0 and �̄�0 ∈ H1

m, there exists 𝑇0 > 0 (depending only
on inf(0,1) 𝑣0, ‖𝑣0‖𝐿∞((0,1)), ‖𝑣0‖𝐻1(ℱ0), ‖�̄�0‖𝐻1((0,1))) such that, for arbitrary 𝑇 ∈ (0, 𝑇0), there is a unique pair
(�̄�, 𝑣) satisfying

(i) condition (34) with inf(0,𝑇 )×(0,1) 𝑣 ≥ min 𝑣0/2,
(ii) equations (35) on (0, 𝑇 )× (0, 1), and (36) on (0, 𝑇 ) for any �̄� ∈ H1

m,
(iii) initial condition 𝑣(0, ·) = 𝑣0 and �̄�(0, ·) = �̄�0 on (0, 1).

We provide a proof of this result in the next section. Before going to this content, we note that it implies
existence and uniqueness of solutions to our initial system. Namely, we have the following corollary:

Corollary 1. Consider viscosities (𝜇𝑓 , 𝜇𝑔) ∈ (0,∞), strictly positive masses (𝑚𝑖)𝑖=1,...,𝑁 and pressure laws
(𝑝𝑓 , p𝑔) that are 𝐶1 on (0,∞). Then, assume that initial data (𝑐0

𝑖 , 𝑅
0
𝑖 )𝑖=1,...,𝑁 and (�̇�0

𝑖 , �̇�
0
𝑖 )𝑖=1,...,𝑁 ensure the

non-overlap condition: (︀
𝑐0
𝑖 −𝑅0

𝑖 , 𝑐
0
𝑖 + 𝑅0

𝑖

)︀
∩
(︀
𝑐0
𝑗 −𝑅0

𝑗 , 𝑐
0
𝑗 + 𝑅0

𝑗

)︀
= ∅, ∀𝑖 ̸= 𝑗

𝑅0
𝑖 > 0,

(︀
𝑐0
𝑖 −𝑅0

𝑖 , 𝑐
0
𝑖 + 𝑅0

𝑖

)︀
b (−1, 1), ∀𝑖.

Denoting ℱ0 := (−1, 1) ∖ ∪𝑁
𝑖=1(𝑐0

𝑖 − 𝑅0
𝑖 , 𝑐

0
𝑖 + 𝑅0

𝑖 ), assume also that initial data (𝜌0, 𝑢0) ∈ 𝐻1(ℱ0) × 𝐻1(ℱ0)
satisfy the compatibility conditions:∫︁

ℱ0
𝜌0 +

𝑁∑︁
𝑖=1

𝑚𝑖 = 1, min 𝜌0 > 0,
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𝑢0

(︀
𝑐0
𝑖 ±𝑅0

𝑖

)︀
= �̇�0

𝑖 ± �̇�0
𝑖 , ∀𝑖 = 1, . . . , 𝑁, 𝑢0(±1) = 0.

Then, there exists 𝑇0 > 0 (depending only on inf(0,1) 𝜌0, min 𝑅𝑖, ‖𝜌0‖𝐻1(ℱ0), ‖𝑢0‖𝐻1(ℱ0) and the minimal distance
between bubbles and between bubbles and container boundaries) such that, for any 𝑇 < 𝑇0 there exists a unique
((𝜌, 𝑢), (𝑐𝑖, 𝑅𝑖)𝑖=1,...,𝑁 ) satisfying:

(a) (𝑐𝑖, 𝑅𝑖) ∈ 𝐻2(0, 𝑇 ) with the non-overlap condition on (0, 𝑇 ) :

(𝑐𝑖 −𝑅𝑖, 𝑐𝑖 + 𝑅𝑖) ∩ (𝑐𝑗 −𝑅𝑗 , 𝑐𝑗 + 𝑅𝑗) = ∅, ∀𝑖 ̸= 𝑗,

𝑅𝑖 > 0, (𝑐𝑖 −𝑅𝑖, 𝑐𝑖 + 𝑅𝑖) b (−1, 1), ∀𝑖,

(b) the pair (𝜌, 𝑢) has the regularity:

(𝜌, 𝑢) ∈ 𝐻1

⎛⎝ ⋃︁
𝑡∈(0,𝑇 )

{𝑡} ×

(︃
(−1, 1) ∖

𝑁⋃︁
𝑖=1

(𝑐𝑖 −𝑅𝑖, 𝑐𝑖 + 𝑅𝑖)

)︃⎞⎠
𝜕𝑥𝑥𝑢 ∈ 𝐿2

⎛⎝ ⋃︁
𝑡∈(0,𝑇 )

{𝑡} ×

(︃
(−1, 1) ∖

𝑁⋃︁
𝑖=1

(𝑐𝑖 −𝑅𝑖, 𝑐𝑖 + 𝑅𝑖)

)︃⎞⎠,

(c) (𝜌, 𝑢) satisfies equations (26)–(27)–(28) almost everywhere on their respective set of definitions and initial
condition (29).

Proof. Consider initial data as in the previous statement and construct

𝜌0 =

(︃
1−

𝑁∑︁
𝑖=1

1(𝑐0
𝑖−𝑅0

𝑖 ,𝑐0
𝑖 +𝑅0

𝑖 )

)︃
𝜌0 +

𝑁∑︁
𝑖=1

𝑚𝑖

2𝑅0
𝑖

1(𝑐0
𝑖−𝑅0

𝑖 ,𝑐0
𝑖 +𝑅0

𝑖 ).

Then set:

𝑚±
𝑖 =

∫︁ 𝑐0
𝑖±𝑅0

𝑖

−1

𝜌0(𝑧) d𝑧, 𝑚0(𝑥) =
∫︁ 𝑥

−1

𝜌0(𝑧) d𝑧.

We note that, by construction 𝑚0 is continuous piecewise 𝐶1 with inf 𝜕𝑥𝑚0 ≥ 𝐶0 > 0. This shows that 𝑚0

realizes a one-to-one mapping between (−1, 1) and (0, 1) with an inverse continuous piecewise 𝐶1 mapping. We
can then fix:

𝑣0(𝑚) =
1

𝜌0(𝑚−1
0 (𝑚))

∀𝑚 ∈ (0, 1).

Under the assumption that 𝜌0 has 𝐻1-regularity outside the bubbles, we get an initial data 𝑣0 ∈ 𝐿∞m ∩𝐻1(ℱ0).
Similarly, we set:

�̄�0(𝑚) = 𝑢0

(︀
𝑚−1

0 (𝑚)
)︀

∀𝑚 ∈ (0, 1) ∖
𝑁⋃︁

𝑖=1

(︀
𝑚−

𝑖 , 𝑚+
𝑖

)︀
.

With the regularity of 𝑢0 and 𝑚−1
0 there holds:

�̄�0 ∈ 𝐻1

(︃
(0, 1) ∖

𝑁⋃︁
𝑖=1

(︀
𝑚−

𝑖 , 𝑚+
𝑖

)︀)︃
.

Furthermore, since initial data are assumed to satisfy the no-slip condition on fluid/bubble interfaces, we have:

�̄�0

(︀
𝑚±

𝑖

)︀
= 𝑢0

(︀
𝑐0
𝑖 ±𝑅0

𝑖

)︀
= �̇�0

𝑖 ± �̇�0
𝑖 .
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Consequently, extending �̄�0 with:

�̄�0(𝑚) =
(︁
�̇�0
𝑖 − �̇�0

𝑖

)︁
+

2
(︀
𝑚−𝑚−

𝑖

)︀
𝑚+

𝑖 −𝑚−
𝑖

𝑅0
𝑖 ∀𝑚 ∈

(︀
𝑚−

𝑖 , 𝑚+
𝑖

)︀
we obtain �̄�0 ∈ H1

m. We have constructed initial data (𝑣0, �̄�0) that match the regularity assumptions of The-
orem 1. We have then at-hand 𝑇 > 0 and (�̄�, 𝑣) that satisfy items (i)–(ii)–(iii). We show now that there is
a correspondence between these solutions and a ((𝜌, 𝑢), (𝑐𝑖, 𝑅𝑖)𝑖=1,...,𝑁 ) satisfying the items (a)–(b)–(c) of our
corollary.

Let consider (𝑣, �̄�) the solution constructed via Theorem 1. Thanks to the transport equation satisfied by
𝑣 and homogeneous boundary conditions for �̄� we have that the mass of 𝑣 is constant on (0, 𝑇 ). We can then
construct:

𝑥(𝑡, 𝑚) = −1 +
∫︁ 𝑚

0

𝑣(𝑡, 𝜁) d𝜁.

With this definition, 𝑥 is piecewise 𝐶1 on (0, 𝑇 )× (0, 1) with:

𝜕𝑡𝑥 = �̄� 𝜕𝑚𝑥 = 𝑣.

In particular, for arbitrary 𝑡 ∈ (0, 1), we have that 𝑥 realizes a 𝑊 1,∞-change of variables with 𝑊 1,∞-inverse
mapping. Actually, for 𝑡 = 0 we can replace 𝜕𝑚𝑥(0, ·) with the initial change of unknowns to realize that
𝑥(0, ·) = 𝑚−1

0 . Since the mass of 𝑣 does not depend on time, we have that 𝑥(𝑡, ·) realizes an homeomorphism
between (0, 1) and (−1, 1) for all 𝑡 ∈ (0, 𝑇 ).

At this point, for 𝑖 = 1, . . . , 𝑁, we fix:

𝑅𝑖 =
1
2

∫︁ 𝑚+
𝑖

𝑚−𝑖

𝑣(𝑡, 𝑚) d𝑚 𝑐𝑖(𝑡) = 𝑐0
𝑖 +

∫︁ 𝑡

0

1
𝑚𝑖

∫︁ 𝑚+
𝑖

𝑚−𝑖

�̄�(𝑠, 𝑚) d𝑚 d𝑠.

We note here that 𝑣 is constant on (𝑚−
𝑖 , 𝑚+

𝑖 ) as well as 𝜕𝑚�̄�. In particular, the 𝐻1(0, 𝑇 ; 𝐿2(𝑚−
𝑖 , 𝑚+

𝑖 ))-regularity
of �̄� implies that 𝑅𝑖 ∈ 𝐻2(0, 𝑇 ). Similarly, we obtain that:

�̇�𝑖 =
1

𝑚𝑖

∫︁ 𝑚+
𝑖

𝑚−𝑖

�̄�(𝑡, 𝑚) d𝑚,

inherits the 𝐻1(0, 𝑇 )-regularity of �̄� so that 𝑐𝑖 ∈ 𝐻2(0, 𝑇 ).
We prove now that the non-overlap condition holds on (0, 𝑇 ). First, since 𝑣 is bounded from above and by

below, we have that 𝑅𝑖 > 0. Second, we fix 𝐵𝑖 = 𝑥((𝑚−
𝑖 , 𝑚+

𝑖 )). Since 𝑥 is an homeomorphism between (0, 1)
and (−1, 1) we obtain that 𝐵𝑖 is an interval and that 𝐵𝑖 ∩𝐵𝑗 = ∅ for 𝑖 ̸= 𝑗 and 𝐵𝑖 b (−1, 1) for all 𝑖. It remains
to prove that 𝐵𝑖 = (𝑐𝑖−𝑅𝑖, 𝑐𝑖 +𝑅𝑖) on (0, 𝑇 ). To this end, let denote 𝑥−𝑖 , 𝑥+

𝑖 the endpoints of 𝐵𝑖. We emphasize
that these are continuous time-dependent functions. We have:

𝑥+
𝑖 − 𝑥−𝑖 =

∫︁ 𝑚+
𝑖

𝑚−𝑖

𝑣(𝑡, 𝜁) d𝜁 = 2𝑅𝑖.

Then, applying the definition of the change of variable, the transport equation for 𝑣 together with the fact that
it is constant on (𝑚−

𝑖 , 𝑚+
𝑖 ) (equal to 2𝑅𝑖/𝑚𝑖) we infer that:

1
2𝑅𝑖

∫︁ 𝑥+
𝑖

𝑥−𝑖

𝑧 d𝑧 =
1

2𝑅𝑖

∫︁ 𝑚+
𝑖

𝑚−𝑖

𝑥(𝑡, 𝜁)𝑣(𝑡, 𝜁) d𝜁 =
1

𝑚𝑖

∫︁ 𝑚+
𝑖

𝑚−𝑖

𝑥(𝑡, 𝜁) d𝜁.
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We can thus differentiate wrt time to yield that:

d
d𝑡

[︃
1

2𝑅𝑖

∫︁ 𝑥+
𝑖

𝑥−𝑖

𝑧 d𝑧

]︃
=

1
𝑚𝑖

∫︁ 𝑚+
𝑖

𝑚−𝑖

𝜕𝑡𝑥(𝑡, 𝜁) d𝜁 =
1

𝑚𝑖

∫︁ 𝑚+
𝑖

𝑚−𝑖

�̄�(𝑡, 𝜁) d𝜁 = �̇�𝑖.

Since we have initially that 𝐵𝑖 = (𝑐0
𝑖 −𝑅0

𝑖 , 𝑐
0
𝑖 + 𝑅0

𝑖 ) we conclude that:

1
2𝑅𝑖

∫︁ 𝑥+
𝑖

𝑥−𝑖

𝑧 d𝑧 = 𝑐𝑖 on (0, 𝑇 ),

and 𝐵𝑖 = (𝑐𝑖 −𝑅𝑖, 𝑐𝑖 + 𝑅𝑖). This concludes the proof of (a).
To obtain (b), we simply argue by change of variables. For 𝑡 ∈ (0, 𝑇 ) and 𝑦 ∈ (−1, 1), we fix:

𝑢(𝑡, 𝑦) = �̄�(𝑡, 𝑥−1(𝑡, 𝑦)) 𝜌(𝑡, 𝑦) =
1

𝑣(𝑡, 𝑥−1(𝑡, 𝑦))
·

By classical change of variable arguments (since 𝑥(𝑡, ·) and 𝑥−1(𝑡, ·) are 𝐿∞𝑡 𝑊 1,∞
𝑥 with norms bounded by sup 𝑣

and inf 𝑣) we obtain then that 𝑢, 𝜌 enjoy the regularity of (b). In particular, we have that:

𝜕𝑥𝑢(𝑡, 𝑥(𝑡, 𝑚)) =
𝜕𝑚�̄�(𝑡, 𝑚)

𝑣(𝑡, 𝑚)
𝜕𝑡𝑢(𝑡, 𝑥(𝑡, 𝑚)) + 𝑢(𝑡, 𝑥(𝑡, 𝑚))𝜕𝑥𝑢(𝑡, 𝑥(𝑡, 𝑚)) = 𝜕𝑡�̄�(𝑡, 𝑚).

To conclude with (c), we first reproduce the change of variables above to yield that outside the (𝑐𝑖−𝑅𝑖, 𝑐𝑖+𝑅𝑖)
there holds

1
𝜌(𝑡, 𝑦)2

(𝜕𝑡𝜌(𝑡, 𝑥) + 𝑢(𝑡, 𝑥)𝜕𝑥𝜌(𝑡, 𝑥)) = −𝜕𝑡𝑣(𝑡, 𝑥−1(𝑡, 𝑦))
𝜕𝑥𝑢(𝑡, 𝑦)
𝜌(𝑡, 𝑦)

= 𝜕𝑚�̄�(𝑡, 𝑥−1(𝑡, 𝑦)),

and thus we have:
𝜕𝑡𝜌 + 𝜕𝑥(𝜌𝑢) = 0 on (−1, 1) ∖

⋃︁
(𝑐𝑖 −𝑅𝑖, 𝑐𝑖 + 𝑅𝑖).

Finally, we can plug in (36) any �̄� ∈ 𝐶∞𝑐 (ℱ0). Equation (36) then implies that we have:

𝜕𝑡�̄� = 𝜕𝑚

(︁𝜇𝑓

𝑣
𝜕𝑚�̄�− 𝜋𝑓 (𝑣)

)︁
on (0, 1) ∖

⋃︁
(𝑚−

𝑖 , 𝑚+
𝑖 )

and, by change of variable:

𝜕𝑡(𝜌𝑢) + 𝜕𝑥(𝜌𝑢2) = 𝜕𝑥(𝜇𝑓𝜕𝑥𝑢− 𝑝𝑓 (𝜌𝑓 )) on (−1, 1) ∖
⋃︁

(𝑐𝑖 −𝑅𝑖, 𝑐𝑖 + 𝑅𝑖).

Furthermore, by taking arbitrary �̄� that is affine on (𝑚−
𝑖 , 𝑚+

𝑖 ) we get (33) and, after change of variable (28).
Thanks to the existence part of Theorem 1 we have finally the existence part of our corollary.

The proof of uniqueness follows the same line. From a candidate solution ((𝜌, 𝑢), (𝑐𝑖, 𝑅𝑖)𝑖=1,...,𝑁 ) we construct
the extension:

𝜌(𝑡, 𝑥) = 𝜌(𝑡, 𝑥)

(︃
1−

𝑁∑︁
𝑖=1

1(𝑐𝑖−𝑅𝑖,𝑐𝑖+𝑅𝑖)

)︃
+

𝑁∑︁
𝑖=1

𝑚𝑖

2𝑅𝑖
1(𝑐𝑖−𝑅𝑖,𝑐𝑖+𝑅𝑖)

and construct the change of variable 𝑚 as in the formula (30). A similar analysis as previously yields that 𝑚 is
a 𝑊 1,∞-homeomorphism between (−1, 1) and (0, 1) with 𝑊 1,∞ inverse. We construct then:

𝑣(𝑡, 𝜁) =
1

𝜌(𝑡, 𝑚−1(𝑡, 𝜁))
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and

�̄�(𝑡, 𝜁) =

⎧⎪⎨⎪⎩
𝑢
(︀
𝑡, 𝑚−1(𝑡, 𝜁)

)︀
, if 𝜁 ∈ (0, 1) ∖

⋃︁
(𝑚−

𝑖 , 𝑚+
𝑖 ),(︁

�̇�𝑖 − �̇�𝑖

)︁
+

2�̇�𝑖(𝜁 −𝑚−
𝑖 )

(𝑚+
𝑖 −𝑚−

𝑖 )
, in

(︀
𝑚−

𝑖 , 𝑚+
𝑖

)︀
.

With the regularity of (b) we obtain with similar computations as in the previous part of the proof that

�̄� ∈ 𝐻1

(︃
(0, 𝑇 )×

(︃
(0, 1) ∖

𝑁⋃︁
𝑖=1

(𝑚−
𝑖 , 𝑚+

𝑖 )

)︃)︃
𝜕𝑚𝑚�̄� ∈ 𝐿2

(︃
(0, 𝑇 )×

(︃
(0, 1) ∖

𝑁⋃︁
𝑖=1

(︀
𝑚−

𝑖 , 𝑚+
𝑖

)︀)︃)︃
.

In particular, there holds:
�̄� ∈ 𝐻1(0, 𝑇 ; 𝐿2(0, 1)) ∩ 𝐿2(0, 𝑇 ; 𝐻2(ℱ0)),

and thus �̄� ∈ 𝐶([0, 𝑇 ]; 𝐻1(0, 1)−𝑤). To obtain continuity for the strong topology, we prove now that ‖�̄�‖𝐻1((0,1))

is continuous. For this, we remark that we already have continuity of the 𝐿2-norm and of the 𝐻1-norm of the
restriction to the bubbles. So, we focus on the ‖𝜕𝑥�̄�‖𝐻1((𝑚+

𝑖 ,𝑚−𝑖+1))
, for 𝑖 ∈ {1, . . . , 𝑁 − 1} (computations on

(0, 𝑚−
1 ) and (𝑚+

𝑁 , 1) are similar).
We fix 𝑖 and 0 < 𝑡1 < 𝑡2 < 𝑇. By a multiplier argument and computation of the traces of 𝜕𝑡�̄� on 𝑚+

𝑖 , 𝑚−
𝑖+1,

we infer:

1
2

[︃∫︁ 𝑚−𝑖+1

𝑚+
𝑖

|𝜕𝑚�̄�(𝑡2, 𝜁)|2 −
∫︁ 𝑚−𝑖+1

𝑚+
𝑖

|𝜕𝑚�̄�(𝑡1, 𝜁)|2
]︃

=
∫︁ 𝑡2

𝑡1

[𝜕𝑡�̄�(𝑡, ·)𝜕𝑚�̄�(𝑡, ·)]𝑚
−
𝑖+1

𝑚+
𝑖

−
∫︁ 𝑡2

𝑡1

∫︁ 𝑚+
𝑖

𝑚−𝑖

𝜕𝑡�̄�(𝑡, 𝜁)𝜕𝑚𝑚�̄�(𝑡, 𝜁) d𝜁

=
∫︁ 𝑡2

𝑡1

[︁(︁
𝑐𝑖+1 − �̈�𝑖+1

)︁
𝜕𝑚�̄�

(︀
𝑡, 𝑚−

𝑖+1

)︀
−
(︁
𝑐𝑖 + �̈�𝑖

)︁
𝜕𝑚�̄�

(︀
𝑡, 𝑚+

𝑖

)︀]︁
−
∫︁ 𝑡2

𝑡1

∫︁ 𝑚+
𝑖

𝑚−𝑖

𝜕𝑡�̄�(𝑡, 𝜁)𝜕𝑚𝑚�̄�(𝑡, 𝜁) d𝜁.

Hence, introducing:

𝜑𝑖(𝑡, 𝑚) =
(︁
𝑐𝑖 + �̈�𝑖

)︁
+

(𝑐𝑖+1 − 𝑐𝑖)−
(︁
�̈�𝑖+1 + �̈�𝑖

)︁
𝑚−

𝑖+1 −𝑚+
𝑖

(︀
𝑚−𝑚+

𝑖

)︀
∀𝑚 ∈

[︀
𝑚−

𝑖 , 𝑚+
𝑖

]︀
we obtain finally that:

1
2

[︃∫︁ 𝑚−𝑖+1

𝑚+
𝑖

|𝜕𝑚�̄�(𝑡2, 𝜁)|2 −
∫︁ 𝑚−𝑖+1

𝑚+
𝑖

|𝜕𝑚�̄�(𝑡1, 𝜁)|2
]︃

=
∫︁ 𝑡2

𝑡1

∫︁ 𝑚+
𝑖

𝑚−𝑖

𝜕𝑚𝜑𝑖(𝑡, 𝜁)𝜕𝑚�̄�(𝑡, 𝜁) +
∫︁ 𝑡2

𝑡1

∫︁ 𝑚+
𝑖

𝑚−𝑖

𝜑𝑖(𝑡, 𝜁)𝜕𝑚𝑚�̄�(𝑡, 𝜁)

−
∫︁ 𝑡2

𝑡1

∫︁ 𝑚+
𝑖

𝑚−𝑖

𝜕𝑡�̄�(𝑡, 𝜁)𝜕𝑚𝑚�̄�(𝑡, 𝜁) d𝜁.

At this point we argue that 𝜑𝑖 ∈ 𝐿2(0, 𝑇 ; 𝐻1(𝑚+
𝑖 , 𝑚−

𝑖+1)) because of the time-regularity of the 𝑐𝑖 and 𝑅𝑖. Since
we also have

𝜕𝑡�̄�, 𝜕𝑚�̄�, 𝜕𝑚𝑚�̄� ∈ 𝐿2
(︀
(0, 𝑇 )×

(︀
𝑚+

𝑖 , 𝑚−
𝑖+1

)︀)︀
,

the latter identity entails that:

lim
𝑡1−𝑡2→0

[︃∫︁ 𝑚−𝑖+1

𝑚+
𝑖

|𝜕𝑚�̄�(𝑡2, 𝜁)|2 d𝜁 −
∫︁ 𝑚−𝑖+1

𝑚+
𝑖

|𝜕𝑚�̄�(𝑡1, 𝜁)|2 d𝜁

]︃
= 0.
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We conclude that �̄� ∈ 𝐶([0, 𝑇 ]; H1
m). Hence, up to restrict 𝑇 , we have that (�̄�, 𝑣) satisfies item (i) of Theorem 1.

We can then reproduce the computations in the introduction of this section to yield that (𝑣, �̄�) satisfies also the
item (ii) and that it satisfies the item (iii). We apply now the uniqueness part of Theorem 1 to yield that (𝑣, �̄�)
is the solution provided by Theorem 1. This concludes the proof. �

3.2. Proof of Theorem 1

We conclude this section by providing a proof of Theorem 1 on the basis of a standard perturbation approach.
In the whole section we fix a 𝑁 -uplet 𝑚1, . . . ,𝑚𝑁 of strictly positive masses and

𝑣0 ∈ 𝐿∞m ∩𝐻1(ℱ0), �̄�0 ∈ H1
m,

such that inf(0,1) 𝑣0 > 0. We construct solutions as a fixed-point of a mapping 𝒞 : (𝑣, �̃�) ↦→ (𝑣, �̄�) on some
sufficiently small time-interval (0, 𝑇 ). Precisely, we fix 𝑇 > 0. Given 𝐾 ∈ (0,∞) we denote by 𝑆𝑇 [𝐾] the set of
pairs (�̄�, 𝑣) satisfying (34) with �̄�(0, ·) = �̄�0, 𝑣(0, ·) = 𝑣0 and

1
2

inf
(0,1)

𝑣0 ≤ inf
(0,𝑇 )×(0,1)

𝑣 ≤ sup
(0,𝑇 )×(0,1)

𝑣 ≤ 2 sup
(0,1)

𝑣0

sup
(0,𝑇 )

‖𝑣‖𝐿2((0,1)) + sup
(0,𝑇 )

‖𝑣‖𝐻1(ℱ0) ≤ 2
(︁
‖𝑣0‖𝐿2((0,1)) + ‖𝑣0‖𝐻1(ℱ0)

)︁
∫︁ 𝑇

0

‖𝜕𝑡𝑣‖2𝐿∞((0,1)) ≤ 2𝐾2

sup
(0,𝑇 )

‖�̄�‖2𝐻1((0,1)) +
∫︁ 𝑇

0

‖𝜕𝑚𝑚�̄�‖2𝐿2(ℱ0)
≤ 𝐾2.

With standard arguments, we have that, whatever the values of 𝑇 > 0 and 𝐾 ∈ (0,∞), the set 𝑆𝑇 [𝐾] is a
convex complete metric space when endowed with the distance:

𝑑𝑆((𝑣1, �̄�1), (𝑣2, �̄�2)) = sup
(0,𝑇 )

(︁
‖𝑣1 − 𝑣2‖𝐿2((0,1)) + ‖�̄�1 − �̄�2‖𝐿2((0,1))

)︁
+

(︃∫︁ 𝑇

0

‖𝜕𝑚(�̄�2 − �̄�1)‖2𝐿2(0,1)

)︃ 1
2

.

Below, we endow 𝑆𝑇 [𝐾] with this topology. Now for fixed 𝐾 ∈ (0,∞) we define 𝒞 on 𝑆𝑇 [𝐾] as follows. Given
(𝑣, �̃�) ∈ 𝑆𝑇 [𝐾], we compute (𝑣, �̄�) := 𝒞[(𝑣, �̃�)] in two steps. First 𝑣 is the solution to{︂

𝜕𝑡𝑣 = 𝜕𝑚�̃� on (0, 𝑇 )× (0, 1)
𝑣(0, ·) = 𝑣0 on (0, 1).

(38)

Then, we compute �̄� by solving the weak formulation:⎧⎪⎨⎪⎩
d
d𝑡

[︂∫︁ 1

0

�̄��̄�

]︂
+
∫︁ 1

0

(︁𝜇

𝑣
𝜕𝑚�̄�− 𝜋(𝑚, 𝑣)

)︁
𝜕𝑚�̄� = 0 for all 𝑤 ∈ H1

m,

�̄�(0, ·) = �̄�0 on (0, 1).
(39)

We recall here that 𝜇 and 𝜋 are defined by (37).
With these conventions, our proof reduces to the following proposition:

Proposition 2. There exists a constant 𝐶0
∞ depending only on sup(0,1) 𝑣0, inf(0,1) 𝑣0 and the physical parameters

of the system such that, defining

𝐾0 =
[︁
𝐶0
∞

(︁
‖�̄�0‖2𝐻1((0,1)) + 1

)︁]︁ 1
2

(40)

there exists 𝑇0 > 0 such that 𝒞 realizes a contraction on 𝑆𝑇0 [𝐾0].
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We split the proof of this proposition into two lemmas whose proofs are detailed below.

Lemma 1. Let 𝐾0 > 0 be fixed. There exists 𝑇0 > 0 (depending only on 𝐾0, inf(0,1) 𝑣0, ‖𝑣0‖𝐿2((0,1)), ‖𝑣0‖𝐻1(ℱ0)

and ‖�̄�0‖𝐻1((0,1))) such that, given 𝑇 < 𝑇0 the following statements hold true.

(a) For any (𝑣, �̃�) ∈ 𝑆𝑇 [𝐾0], there exists a unique

𝑣 ∈ 𝐶([0, 𝑇 ]; 𝐿2
m) ∩𝐻1

(︀
0, 𝑇 ; 𝐻1(ℱ0)

)︀
.

solution to (38).
(b) Moreover the solution 𝑣 satisfies:

– the uniform bounds:

1
2

inf
(0,1)

𝑣0 ≤ inf
(0,𝑇 )×(0,1)

𝑣 ≤ sup
(0,𝑇 )×(0,1)

𝑣 ≤ 2 sup
(0,1)

𝑣0,

sup
(0,𝑇 )

‖𝑣‖𝐿2((0,1)) + sup
(0,𝑇 )

‖𝑣‖𝐻1(ℱ0) ≤ 2
(︁
‖𝑣0‖𝐿2((0,1)) + ‖𝑣0‖𝐻1(ℱ0)

)︁
,

– the control from above: ∫︁ 𝑇

0

‖𝜕𝑡𝑣‖2𝐿∞((0,1)) ≤ 2
⃒⃒
𝐾0
⃒⃒2

.

(c) Furthermore, for any pairs (𝑣1, �̃�1) ∈ 𝑆𝑇 [𝐾0] and (𝑣2, �̃�2) ∈ 𝑆𝑇 [𝐾0] we have (with obvious notations)

sup
(0,𝑇 )

‖𝑣2 − 𝑣1‖𝐿2((0,1)) ≤
1
4

(︃∫︁ 𝑇

0

‖𝜕𝑚(�̃�2 − �̃�1)‖2𝐿2((0,1))

)︃ 1
2

.

Lemma 2. There exists a constant 𝐶0
∞ (depending only on sup(0,1) 𝑣0, inf(0,1) 𝑣0 and physical parameters) and

𝑇0 > 0 (depending only on inf(0,1) 𝑣0, ‖𝑣0‖𝐿2((0,1)), ‖𝑣0‖𝐻1(ℱ0) and ‖�̄�0‖𝐻1((0,1))) for which, fixing 𝐾0 by (40)
and 𝑇 < 𝑇0, the following statements hold true.

(a) For any (𝑣, �̃�) ∈ 𝑆𝑇 [𝐾0] there exists a unique

�̄� ∈ 𝐻1
(︀
0, 𝑇 ; 𝐿2((0, 1))

)︀
∩ 𝐶

(︀
[0, 𝑇 ]; H1

m

)︀
∩ 𝐿2

(︀
0, 𝑇 ; 𝐻2(ℱ0)

)︀
solution to (39).

(b) Moreover the solution �̄� satisfies:

sup
(0,𝑇 )

‖�̄�‖2𝐻1((0,1)) +

(︃∫︁ 𝑇

0

‖𝜕𝑚𝑚�̄�‖2𝐿2((0,1))

)︃
≤ 𝐶0

∞

(︁
‖�̄�0‖2𝐻1((0,1)) + 1

)︁
.

(c) Furthermore, for all pairs (𝑣1, �̃�1) ∈ 𝑆𝑇 [𝐾0] and (𝑣2, �̃�2) ∈ 𝑆𝑇 [𝐾0] we have (with obvious notations)

sup
(0,𝑇 )

‖�̄�2 − �̄�1‖𝐿2((0,1)) +

(︃∫︁ 𝑇

0

‖𝜕𝑚(�̄�2 − �̄�1)‖2𝐿2((0,1))

)︃ 1
2

≤ 1
4

sup
(0,𝑇 )

‖𝑣2 − 𝑣1‖𝐿2((0,1)).

Proposition 2 yields as a straightforward combination of these two lemmas. So, we end up this section with
the proof of these lemmas.

Proof of Lemma 1. To begin with, we consider Lemma 1. We pick 𝑇 > 0. We shall comment on the smallness
of 𝑇 which will fix 𝑇0 in order that (a), (b) and (c) hold simultaneously.
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We start with (a) and (b). For this, we fix (𝑣, �̃�) in 𝑆𝑇 [𝐾0]. Equation (38) is integrated straightforwardly:

𝑣(𝑡, 𝑚) = 𝑣0 +
∫︁ 𝑡

0

𝜕𝑚�̄�(𝑡, 𝜁) d𝜁.

Since 𝑣0 ∈ 𝐿∞m ⊂ 𝐿2
m and, by differentiation, 𝜕𝑚�̄� ∈ 𝐶([0, 𝑇 ]; 𝐿2

m), there holds 𝑣 ∈ 𝐶([0, 𝑇 ]; 𝐿2
m). Furthermore,

we have 𝑣0 ∈ 𝐻1(ℱ0) and, by differentiation again, 𝜕𝑚�̄� ∈ 𝐿2(0, 𝑇 ; 𝐻1(ℱ0)), so that 𝑣 ∈ 𝐻1(0, 𝑇 ; 𝐻1(ℱ0)). In
conclusion, 𝑣 satisfies the expected regularity. This completes the proof of (a).

We proceed with estimates. Below we introduce 𝐶∞ that depends on the physical parameters of the system
only. It may vary between lines. First, since 𝑣 is constant on the (𝑚−

𝑖 , 𝑚+
𝑖 ) and 𝐻1 on the complement, we have

that 𝑣(𝑡, ·) is piecewise continuous for all 𝑡 > 0 and thus bounded from below. Then, we compute inf 𝑣(𝑡, ·) by
considering differently 𝑚 ∈ (𝑚−

𝑖 , 𝑚+
𝑖 ) and 𝑚 ∈ ℱ0. First, when 𝑚 ∈ (𝑚−

𝑖 , 𝑚+
𝑖 ), since 𝑣(𝑡, ·) is constant, there

holds:

inf
(0,1)

𝑣0 −
1

√
𝑚𝑖

∫︁ 𝑇

0

‖𝜕𝑡𝑣‖𝐿2((0,1)) ≤ 𝑣(𝑡, 𝑚) =
1

𝑚𝑖

∫︁ 𝑚+
𝑖

𝑚−𝑖

𝑣(𝑡, 𝜁) d𝜁 ≤ sup
(0,1)

𝑣0 +
1

√
𝑚𝑖

∫︁ 𝑇

0

‖𝜕𝑡𝑣‖𝐿2((0,1)).

Replacing 𝜕𝑡𝑣 with the time-evolution equation, we infer that:

inf
(0,1)

𝑣0 − 𝐶∞𝑇𝐾0 ≤ 𝑣(𝑡, 𝑚) ≤ sup
(0,1)

𝑣0 + 𝑇𝐶∞𝐾0.

On ℱ0, we apply the embedding 𝐻1 →˓ 𝐿∞ to yield:

|𝑣(𝑡, 𝑚)− 𝑣0(𝑡, 𝑚)| ≤ 𝐶∞

∫︁ 𝑇

0

(︁
‖�̃�‖𝐻1((0,1)) + ‖𝜕𝑚𝑚�̃�‖𝐿2(ℱ0)

)︁
≤
√

𝑇𝐶∞𝐾0,

up to assume that 𝑇 < 1. Consequently, for 𝑇 sufficiently small wrt 𝐾0 we obtain that:

1
2

inf
(0,1)

𝑣0 ≤ inf
(0,𝑇 )×(0,1)

𝑣 ≤ sup
(0,𝑇 )×(0,1)

𝑣 ≤ 2 sup
(0,1)

𝑣0.

Then, we have:

‖𝑣(𝑡, ·)‖𝐿2((0,1)) ≤ ‖𝑣0‖𝐿2((0,1)) +
∫︁ 𝑡

0

‖�̄�‖H1
m
≤ ‖𝑣0‖𝐿2((0,1)) + 𝑇𝐾0

‖𝑣(𝑡, ·)‖𝐻1(ℱ0)
≤ ‖𝑣0‖𝐻1(ℱ0)

+
∫︁ 𝑡

0

‖𝜕𝑚�̄�‖𝐻1(ℱ0)
≤ ‖𝑣0‖𝐻1(ℱ0)

+
√

𝑇𝐾0.

Hence, fixing 𝑇 sufficiently small wrt 𝐾0 we obtain:

‖𝑣(𝑡, ·)‖𝐿2((0,1)) + ‖𝑣(𝑡, ·)‖𝐻1(ℱ0)
≤ 2
(︁
‖𝑣0‖𝐿2((0,1)) + ‖𝑣0‖𝐻1(ℱ0)

)︁
∀𝑡 ∈ (0, 𝑇 ).

Then, with similar computation as in the previous derivation of 𝐿∞-bounds, we use that 𝑣 is constant on any
(𝑚−

𝑖 , 𝑚+
𝑖 ) to bound as follows:∫︁ 𝑇

0

‖𝜕𝑡𝑣‖2𝐿∞((𝑚−𝑖 ,𝑚+
𝑖 )) ≤

1√
𝑚𝑖

∫︁ 𝑇

0

‖�̃�‖2𝐻1((0,1)) ≤ 𝐶∞𝑇
⃒⃒
𝐾0
⃒⃒2

∫︁ 𝑇

0

‖𝜕𝑡𝑣‖2𝐿∞(ℱ0)
≤
∫︁ 𝑇

0

‖�̃�‖2𝐻2(ℱ0)
≤ (1 + 𝑇 )

⃒⃒
𝐾0
⃒⃒2

.
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This entails finally that, up to choose again 𝑇 sufficiently small wrt 𝐾0 we have:∫︁ 𝑡

0

‖𝜕𝑡𝑣‖2𝐿∞((0,1)) ≤ 2|𝐾0|2.

This completes the proof of (b).
Finally, consider (𝑣1, �̃�1) and (𝑣2, �̃�2) in 𝑆𝑇 [𝐾0]. We have then:

𝑣1(𝑡, 𝜁) = 𝑣0(𝜁) +
∫︁ 𝑡

0

𝜕𝑚�̃�1(𝑠, 𝜁) d𝑠 𝑣2(𝑡, 𝜁) = 𝑣0(𝜁) +
∫︁ 𝑡

0

𝜕𝑚�̃�2(𝑠, 𝜁) d𝑠

so that:

sup
(0,𝑇 )

‖𝑣2 − 𝑣1‖𝐿2((0,1)) =
√

𝑇

(︃∫︁ 𝑇

0

‖𝜕𝑚(�̃�2 − �̃�1)‖2𝐿2((0,1))

)︃
.

Hence, we get the expected property up to take
√

𝑇 sufficiently small again. This completes the proof
of (c). �

Proof of Lemma 2. The proof of Lemma 2 deserves a little more details since the mapping (𝑣, �̃�) → �̄� is non-
linear.

First, we obtain existence of (a) and (b) via a Galerkin method. Indeed, we remark that H1
m is a closed

subspace of 𝐻1
0 ((0, 1)) and, as such, is a separable Hilbert space. We can then introduce a linearly independent

family (�̄�𝑘)𝑘∈N that is total in H1
m. Without restriction, we can assume that �̄�𝑘 is smooth for arbitrary 𝑘.

Given 𝑃 ∈ N, we say that �̄�𝑃 is a 𝑃 -approximate solution, if �̄�𝑃 ∈ 𝐶([0, 𝑇 ]; ⟨�̄�1, . . . , �̄�𝑃 ⟩) satisfies:⎧⎪⎨⎪⎩
d
d𝑡

[︂∫︁ 1

0

�̄�𝑃 �̄�

]︂
+
∫︁ 1

0

(︁𝜇

𝑣
𝜕𝑚�̄�𝑃 − 𝜋(𝑚, 𝑣)

)︁
𝜕𝑚�̄� = 0 for all �̄� ∈ ⟨�̄�1, . . . , �̄�𝑃 ⟩,

�̄�𝑃 (0, ·) = P𝑃 [�̄�0].

In this system, we denote P𝑃 the projection (for the 𝐻1
0 (0, 1) scalar product) on ⟨�̄�1, . . . , �̄�𝑃 ⟩. Decomposing

�̄�𝑃 on the basis �̄�1, . . . , �̄�𝑃 we remark that the construction of �̄�𝑃 reduces to a finite-dimensional (linear)
differential system. We have then existence and uniqueness of a 𝑃 -approximate solution for arbitrary 𝑃 ∈ N.

We prove now estimates satisfied by the 𝑃 -approximate solutions for arbitrary 𝑃 ∈ N. We introduce below the
symbol 𝐶0

∞ for a constant that depends only on the initial quantities sup 𝑣0, inf 𝑣0 and the physical parameters
of the system. It may vary between lines.

First, we remark that the system solved by �̄�𝑃 can be rewritten:

𝜕𝑡�̄�𝑃 − 𝜕𝑚Q𝑃

[︁𝜇
𝑣

𝜕𝑚�̄�𝑃 − 𝜋(𝑚, 𝑣)
]︁

= 0 (41)

where Q𝑝 : 𝐿2((0, 1)) → ⟨𝑤1, . . . , 𝑤𝑃 ⟩ is the (continuous) linear mapping defined by the duality formula:∫︁ 1

0

Q𝑝[�̃�]𝜕𝑚�̄� =
∫︁ 1

0

�̃�𝜕𝑚�̄� ∀(�̃�, �̄�) ∈ 𝐿2((0, 1))× ⟨�̄�1, . . . , �̄�𝑃 ⟩.

In particular, we can multiply (41) with �̄�𝑃 . This entails that:

1
2

d
d𝑡

[︂∫︁ 1

0

|�̄�𝑃 |2
]︂

+
∫︁ 1

0

𝜇

𝑣
|𝜕𝑚�̄�𝑃 |2 =

∫︁ 1

0

𝜋(𝑚, 𝑣)𝜕𝑚�̄�𝑃 .

By a standard Cauchy–Schwarz inequality, we conclude that:

1
2

sup
(0,𝑇 )

∫︁ 1

0

|�̄�𝑃 |2 +
min(𝜇𝑓 , 𝜇𝑔)

2‖𝑣‖𝐿∞((0,1))

∫︁ 𝑇

0

∫︁ 1

0

|𝜕𝑚�̄�𝑃 |2 ≤ ‖�̄�0‖2𝐻1((0,1)) +
∫︁ 𝑇

0

∫︁ 1

0

𝑣|𝜋(𝑚, 𝑣)|2

𝜇
·
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Here we argue that 𝜋 is continuous on (0, 1)× (0,∞). Consequently, since 𝑣 is bounded from above and below
by a constant depending only on initial data, 𝑣(𝑚), 𝜋(𝑚, 𝑣(𝑚)) is also bounded on (0, 𝑇 )× (0, 1) by a constant
depending only on initial data. We obtain then that:

1
2

sup
(0,𝑇 )

∫︁ 1

0

|�̄�𝑃 |2 +
min(𝜇𝑓 , 𝜇𝑔)

4‖𝑣0‖𝐿∞((0,1))

∫︁ 𝑇

0

∫︁ 1

0

|𝜕𝑚�̄�𝑃 |2 ≤
1
2
‖�̄�0‖2𝐻1((0,1)) + 𝑇𝐶0

∞. (42)

We multiply now (41) with 𝜕𝑡�̄�𝑃 ∈ 𝐶([0, 𝑇 ]; ⟨�̄�1, . . . , �̄�𝑃 ⟩). We infer that:∫︁ 1

0

|𝜕𝑡�̄�𝑃 |2 +
∫︁ 1

0

𝜇

𝑣
𝜕𝑚�̄�𝑃 𝜕𝑚𝜕𝑡�̄�𝑃 =

∫︁ 1

0

𝜋(𝑚, 𝑣(𝑚))𝜕𝑚𝑡�̄�𝑃 .

On the left-hand side, we have:∫︁ 1

0

𝜇

𝑣
𝜕𝑚�̄�𝑃 𝜕𝑚𝜕𝑡�̄�𝑃 =

1
2

d
d𝑡

[︂∫︁ 1

0

𝜇

𝑣
|𝜕𝑚�̄�𝑃 |2

]︂
+
∫︁ 1

0

𝜇

2𝑣2
𝜕𝑡𝑣|𝜕𝑚�̄�𝑃 |2

whilst we rewrite the right-hand side:∫︁ 1

0

𝜋(𝑚, 𝑣(𝑚))𝜕𝑚𝑡�̄�𝑃 =
d
d𝑡

[︂∫︁ 1

0

𝜋(𝑚, 𝑣)𝜕𝑚�̄�𝑃

]︂
−
∫︁ 1

0

𝜕2𝜋(𝑚, 𝑣)𝜕𝑡𝑣𝜕𝑚�̄�𝑃 .

We conclude thus that:

d
d𝑡
ℰ1[�̄�𝑃 ] +

∫︁ 1

0

|𝜕𝑡�̄�𝑃 |2 = −
∫︁ 1

0

𝜕𝑡𝑣
(︁
𝜕2𝜋(𝑚, 𝑣)𝜕𝑚�̄�𝑃 +

𝜇

2𝑣2
|𝜕𝑚�̄�𝑃 |2

)︁
(43)

where:

ℰ1[�̄�𝑃 ] :=
∫︁ 1

0

𝜇

2𝑣
|𝜕𝑚�̄�𝑃 |2 +

∫︁ 1

0

𝜋(𝑚, 𝑣)𝜕𝑚�̄�𝑃 .

In this latter quantity, we can again use an 𝐿∞-bound for 𝑣𝜋(𝑚, 𝑣). Introducing a standard Minkowski inequality,
we derive that:

ℰ1[�̄�𝑃 ] ≥
∫︁ 1

0

𝜇

4𝑣
|𝜕𝑚�̄�𝑃 |2 −

sup(0,1) 𝑣|𝜋(𝑚, 𝑣)|2

min(𝜇𝑓 , 𝜇𝑔)
≥
∫︁ 1

0

𝜇

4𝑣
|𝜕𝑚�̄�𝑃 |2 − 𝐶0

∞.

At this point, we bound the right-hand side RHS of (43) as follows:

RHS ≤ ‖𝜕𝑡𝑣‖𝐿∞((0,1))

(︃∫︁ 1

0

𝑣|𝜕2𝜋(𝑚, 𝑣)|2

2𝜇
+

(︃
1 +

⃦⃦⃦⃦
1
𝑣

⃦⃦⃦⃦
𝐿∞((0,1))

)︃∫︁ 1

0

𝜇

2𝑣
|𝜕𝑚�̄�𝑃 |2

)︃
≤ 𝐶0

∞‖𝜕𝑡𝑣‖𝐿∞((0,1))(1 + ℰ1[�̄�𝑃 ]).

This entails that:
d
d𝑡

[1 + ℰ1(�̄�𝑃 )] ≤ 𝐶0
∞‖𝜕𝑡𝑣‖𝐿∞((0,1))(1 + ℰ1[�̄�𝑃 ])∫︁ 1

0

|𝜕𝑡�̄�𝑃 |2 ≤ 𝐶0
∞‖𝜕𝑡𝑣‖𝐿∞((0,1))(1 + ℰ1[�̄�𝑃 ]).

(44)

Integrating the first inequality with a standard Gronwall lemma, we obtain, with the control on 𝜕𝑡𝑣,

ℰ1[�̄�𝑃 ] ≤ (ℰ1[P𝑃 (𝑢0)] + 1) exp

(︃
𝐶0
∞

∫︁ 𝑇

0

‖𝜕𝑡𝑣‖𝐿∞((0,1))

)︃
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≤ (ℰ1[P𝑃 (𝑢0)] + 1) exp
(︁
𝐶0
∞
√

𝑇𝐾0
)︁
.

Hence taking 𝑇 sufficiently small wrt 𝐾0, we can bound the exponential in the latter right-hand side by 2.
Recalling the above bound for ℰ1[�̄�𝑃 ], we conclude that:

1
2

∫︁ 1

0

|𝜕𝑚�̄�𝑃 |2 ≤ 𝐶0
∞

(︁
1 + ‖�̄�0‖2𝐻1((0,1))

)︁
.

Integrating now the second inequality of (44) we obtain that:∫︁ 𝑇

0

∫︁ 1

0

|𝜕𝑡�̄�𝑃 |2 ≤ 𝐶0
∞

(︁
1 + ‖�̄�0‖2𝐻1((0,1))

)︁
.

Combining (42) with the two latter inequalities, we obtain that, for 𝑇 sufficiently small (depending only on the
norm of initial data), we have:

sup
(0,𝑇 )

‖�̄�𝑃 ‖2𝐻1((0,1)) +
∫︁ 𝑇

0

(︁
‖𝜕𝑚�̄�𝑃 ‖2𝐿2((0,1)) + ‖𝜕𝑡�̄�𝑃 ‖2𝐿2((0,1))

)︁
≤ 𝐶0

∞

(︁
‖�̄�0‖2𝐻1(ℱ0)

+ 1
)︁
.

The sequence �̄�𝑃 is then bounded in

𝐻1
(︀
(0, 𝑇 ); 𝐿2((0, 1))

)︀
∩ 𝐿∞

(︀
0, 𝑇 ; 𝐻1((0, 1))

)︀
∩ 𝐿∞

(︀
(0, 𝑇 ); H1

m

)︀
.

We can thus extract a weak converging sequence. The limit �̄� enjoys then the inequality:

sup
(0,𝑇 )

‖�̄�‖2𝐻1((0,1)) +
∫︁ 𝑇

0

‖𝜕𝑡�̄�‖2𝐿2((0,1)) ≤ 𝐶0
∞

(︁
‖�̄�0‖2𝐻1((0,1)) + 1

)︁
and, by standard argument (since the problem is linear in �̄�) is a solution to (39). In particular, extending the
weak formulation to time-dependent �̄�, which have compact support in ℱ0, we obtain that �̄� satisfies

𝜕𝑡�̄� = 𝜕𝑚

(︁𝜇𝑓

𝑣
𝜕𝑚�̄�− 𝜋𝑓 (𝑣)

)︁
on (0, 𝑇 )×ℱ0.

Consequently, we have:

𝜇𝑓

𝑣
𝜕𝑚�̄�− 𝜋𝑓 (𝑣) ∈ 𝐿2

(︀
0, 𝑇 ; 𝐻1(ℱ0)

)︀
and thus 𝜕𝑚�̄� ∈ 𝐿2(0, 𝑇 ; 𝐿∞(ℱ0))

with (because 𝑣 is bounded by initial data):∫︁ 𝑇

0

‖𝜕𝑚�̄�‖2𝐿2((0,1)) ≤ 𝐶0
∞

(︁
‖�̄�0‖2𝐻1(ℱ0)

+ 1
)︁
.

We rewrite then the pde on ℱ0 as:

𝜕𝑚𝑚�̄� =
𝑣

𝜇𝑓

(︁
𝜕𝑡�̄� + 𝜋′𝑓 (𝑣)𝜕𝑚𝑣 +

𝜇𝑓

𝑣2
𝜕𝑚𝑣𝜕𝑚�̄�

)︁
on (0, 𝑇 )×ℱ0.

With the above regularity of �̄� and the assumed regularity of 𝑣 we conclude that �̄� ∈ 𝐿2(0, 𝑇 ; 𝐻2(ℱ0)) with∫︁ 𝑇

0

‖𝜕𝑚𝑚�̄�‖2𝐿2(ℱ0)
≤ 𝐶0

∞

(︃∫︁ 𝑇

0

‖𝜕𝑡�̄�‖2𝐿2((0,1)) + 𝑇 sup
(0,𝑇 )

‖𝑣‖2𝐻1(ℱ0)
+ sup

(0,𝑇 )

‖𝑣‖𝐻1(ℱ0)

∫︁ 𝑇

0

‖𝜕𝑚�̄�‖2𝐿∞(ℱ0)

)︃
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and we have finally: ∫︁ 𝑇

0

‖𝜕𝑚𝑚�̄�‖2𝐿2(ℱ0)
≤ 𝐶0

∞

(︁
‖�̄�0‖2𝐻1(ℱ0)

+ 1
)︁
,

when 𝑇 < 1. This concludes the proof of the existence part of (a) and (b). Uniqueness in (a) will follow from
the contraction estimate below.

To obtain uniqueness and (c), we consider (𝑣1, �̃�1) and (𝑣2, �̃�2) in 𝑆𝑇 [𝐾0] and �̄�1, �̄�2 associated solutions to
(39). In particular, taking the difference between the weak-formulations for �̄�1 and �̄�2 we have that �̄� = �̄�2− �̄�1

satisfies �̄�(0, ·) = 0 with

d
d𝑡

[︂∫︁ 1

0

�̄��̄�

]︂
+
∫︁ 1

0

𝜇

𝑣1
𝜕𝑚�̄�𝜕𝑚�̄� +

∫︁ 1

0

(︂
𝜇

(︂
1
𝑣1
− 1

𝑣2

)︂
𝜕𝑚�̄�2 − (𝜋(𝑚, 𝑣1)− 𝜋(𝑚, 𝑣2))

)︂
𝜕𝑚�̄� = 0 (45)

for all �̄� ∈ H1
m. By a standard approximation procedure, we extend this weak formulation to

�̄� ∈ 𝐶
(︀
[0, 𝑇 ]; 𝐻1((0, 1))

)︀
∩𝐻1

(︀
0, 𝑇 ; 𝐿2((0, 1))

)︀
so that we can test with �̄� = �̄�. This entails:

1
2

d
d𝑡

[︂∫︁ 1

0

|�̄�|2
]︂

+
∫︁ 1

0

𝜇

𝑣1
|𝜕𝑚�̄�|2 =

∫︁ 1

0

(︂
𝜇

(︂
1
𝑣2
− 1

𝑣1

)︂
𝜕𝑚�̄�2 − (𝜋(𝑚, 𝑣2)− 𝜋(𝑚, 𝑣1))

)︂
𝜕𝑚�̄�.

At this point, we note that, if 𝑣1 = 𝑣2, the right-hand side vanishes which entails that �̄� = 0. This proves the
uniqueness part of (a).

For the proof of the contraction estimate, we use again that 𝑣1 and 𝑣2 are bounded from above and by below
by a constant that depends on initial data only. We can then bound the right-hand side:

RHS ≤ 1
2

∫︁ 1

0

𝜇

𝑣1
|𝜕𝑚�̄�|2 + 2

(︃∫︁ 1

0

𝜇
𝑣1(𝑣2 − 𝑣1)2

(𝑣2𝑣1)2
|𝜕𝑚�̄�2|2 +

∫︁ 1

0

𝑣1

𝜇
|𝜋(𝑚, 𝑣2)− 𝜋(𝑚, 𝑣1)|2

)︃

≤ 1
2

∫︁ 1

0

𝜇

𝑣1
|𝜕𝑚�̄�|2 + 2𝐶∞0

(︁
1 + ‖𝜕𝑚�̄�2‖2𝐿∞((0,1))

)︁
‖𝑣2 − 𝑣1‖2𝐿2((0,1))

where we applied that 𝜋(𝑚, ·) ∈ 𝐶1 for all 𝑚 ∈ (0, 1) with:

sup
(0,1)

‖𝜕2𝜋(𝑚, ·)‖𝐿∞(inf(0,1) 𝑣0/2,2 sup(0,1) 𝑣0) ≤ 𝐶∞0 < ∞.

Consequently, we obtain:

1
2

sup
(0,𝑇 )

‖�̄�‖2𝐿2((0,1)) +
min(𝜇𝑓 , 𝜇𝑔)
4 sup(0,1) 𝑣0

∫︁ 𝑇

0

∫︁ 1

0

|𝜕𝑚�̄�|2 ≤ 𝐶∞0

∫︁ 𝑇

0

‖𝜕𝑚�̄�2‖2𝐿∞((0,1)) sup
(0,𝑇 )

‖𝑣2 − 𝑣1‖.

To conclude, it is sufficient to prove that we can make∫︁ 𝑇

0

‖𝜕𝑚�̄�2‖2𝐿∞((0,1))

as small as we want by taking 𝑇 sufficiently small. For this, we remark first that, on any (𝑚−
𝑖 , 𝑚+

𝑖 ), since �̄�2 is
affine, we have:

|𝜕𝑚�̄�2(𝑡, 𝑚)| ≤ 1
𝑚𝑖

∫︁ 𝑚+
𝑖

𝑚−𝑖

|𝜕𝑚�̄�2| ≤ 𝐶∞0 ‖𝜕𝑚�̄�2(𝑡, ·)‖𝐿2((0,1)).
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While, on ℱ0 we apply a refined Sobolev estimate which guarantees again that:

|𝜕𝑚�̄�2(𝑡, 𝑚)|2 ≤ 𝐶0
∞‖𝜕𝑚�̄�2‖2𝐿2(ℱ0)

+ ‖𝜕𝑚�̄�2‖𝐿2(ℱ0)
‖𝜕𝑚𝑚�̄�2‖𝐿2(ℱ0)

.

Consequently, we have, for any 𝑡 ∈ (0, 𝑇 ):

‖𝜕𝑚�̄�2(𝑡, ·)‖2𝐿∞((0,1)) ≤ 𝐶0
∞‖𝜕𝑚�̄�2‖2𝐿2((0,1)) + ‖𝜕𝑚�̄�2‖𝐿2((0,1))‖𝜕𝑚𝑚�̄�2‖𝐿2(ℱ0)

and thus, with the control from above yielding from (b) of this lemma (applied to �̄�2), we conclude:

∫︁ 𝑇

0

‖𝜕𝑚�̄�2(𝑡, ·)‖2𝐿∞((0,1)) ≤ 𝐶0
∞

⎛⎝𝑇 sup
(0,𝑇 )

‖𝜕𝑚�̄�2‖2𝐿2((0,1)) +
√

𝑇 sup
(0,𝑇 )

‖𝜕𝑚�̄�2‖𝐿2((0,1))

(︃∫︁ 𝑇

0

‖𝜕𝑚𝑚�̄�2‖2𝐿2(ℱ0)

)︃ 1
2
⎞⎠

≤ 𝐶0
∞
√

𝑇
(︁

1 + ‖�̄�0‖2𝐻1((0,1))

)︁
,

when 𝑇 < 1. We can thus make the right-hand side of this inequality as small as we want by taking 𝑇 sufficiently
small. This concludes the proof. �

Appendix A. Proof of Proposition 1

In this appendix we provide a proof of the proposition:

Proposition A.1. Let 𝑋 ∈ R3 and 𝑅 > 0. If 𝑢 ∈ 𝐻1(𝐵(𝑋, 𝑅)) satisfies

𝐷(𝑢)− 1
3

div 𝑢I3 = 0 on 𝐵(𝑋, 𝑅) (A.1)

then 𝑢 ∈ 𝐶∞(�̄�(𝑋, 𝑅)). If we assume furthermore that:

(𝑢(𝑥)− 𝑢(𝑋)) · 𝑛 = 𝑐𝑠𝑡𝑡, on 𝜕𝐵(𝑋, 𝑅)

there exists (𝑉, 𝜔, Λ) ∈ R3 × R3 × R such that:

𝑢(𝑥) = 𝑉 + 𝜔 × (𝑥−𝑋) +
Λ
3

(𝑥−𝑋), ∀𝑥 ∈ 𝐵(𝑋, 𝑅).

Proof. Without restriction, we assume that 𝑋 = 0 and 𝑅 = 1 so that 𝐵(𝑋, 𝑅) = 𝐵(0, 1) =: 𝐵. Furthermore,
up to a convolution argument that we sketch below, we first consider that 𝑢 ∈ 𝐶∞(𝐵).

Under the assumption of our theorem, we have that:

∇𝑢(𝑥) =

⎛⎝ 𝜆 𝜆12 𝜆13

−𝜆12 𝜆 𝜆23

−𝜆13 −𝜆23 𝜆

⎞⎠
where 𝜆 = 1/3 div 𝑢 and 𝜆𝑖,𝑗 = 𝜕𝑖𝑢𝑗 . Let focus on 𝜆12 to sart with. Following the method of Lemma 1.1, Chapter
1 from [23], we have that:

𝜕1𝜆12 = 𝜕12𝑢1 = 𝜕2𝜆𝜕2𝜆12 = 𝜕22𝑢1 = −𝜕12𝑢2 = −𝜕1𝜆

and:

𝜕3𝜆12 = 𝜕32𝑢1

=
1
2

(𝜕32𝑢1 − 𝜕31𝑢2)
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=
1
2

(𝜕2(𝜕3𝑢1 + 𝜕1𝑢3)− 𝜕1(𝜕3𝑢2 + 𝜕2𝑢3))

= 0.

Eventually 𝜆12 does not depend on 𝑥3 and its perpendicular gradient is the gradient of 𝜆. We have thus that
𝜕1𝜆, 𝜕2𝜆 do not depend on 𝑥3 and satisfy:

𝜕11𝜆 + 𝜕22𝜆 = 0.

Arguing similarly with 𝜆13 and 𝜆12 we infer that there exists 3 functions 𝜆1, 𝜆2, 𝜆3 such that:

𝜕𝑖𝜆(𝑥) = 𝜆𝑖(𝑥𝑖) + 𝑐𝑠𝑡𝑡

that solve:
𝜕𝑖𝜆𝑖(𝑥𝑖) + 𝜕𝑗𝜆𝑗(𝑥𝑗) = 0 ∀𝑖 ̸= 𝑗.

Then, there exists three constants (𝑎1, 𝑎2, 𝑎3) for which:

𝜆(𝑥) = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑐𝑠𝑡𝑡 ∀𝑖.

Eventually, we obtain that :

∇𝑢(𝑥) =

⎛⎝𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 𝑎2𝑥1 − 𝑎1𝑥2 𝑎3𝑥1 − 𝑎1𝑥3

𝑎1𝑥2 − 𝑎2𝑥1 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 𝑎3𝑥2 − 𝑎2𝑥3

𝑎1𝑥3 − 𝑎3𝑥1 𝑎2𝑥3 − 𝑎3𝑥2 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3

⎞⎠+ 𝑐𝑠𝑡𝑡

and thus, with 𝑎 = (𝑎1, 𝑎2, 𝑎3) we have:

𝑢(𝑥) = 𝑢𝑎(𝑥) + 𝑢aff(𝑥), where 𝑢𝑎(𝑥) = (𝑎 · 𝑥)𝑥− 𝑎
|𝑥|2

2

and 𝑢aff is an affine mapping. In particular, we have that 𝑢 ∈ 𝐶∞(𝐵).
Let now make precise the convolution argument. If 𝑢 ∈ 𝐻1(𝐵) satisfies (A.1) and 𝜀 < 1/2 a convolution

𝑢𝜀 of 𝑢 with an approximation of identity having support in 𝐵(0, 𝜀) will satisfy (A.1) on 𝐵(0, 1 − 𝜀) and be
smooth on 𝐵. Reproducing the previous arguments, we construct 𝑎(𝜀) ∈ R3 and an affine mapping 𝑢

(𝜀)
aff so that

𝑢𝜀 = 𝑢𝑎(𝜀) + 𝑢
(𝜀)
aff on 𝐵(0, 1− 𝜀). However, we see that there exists a constant 𝐶 for which

|𝑎𝜀| = 𝐶

∫︁
𝐵(0,1/2)

|div 𝑢𝜀|2

while 𝑢
(𝜀)
aff is controlled by the skew-symmetric part of 𝑢𝜀 and the mean of 𝑢𝜀 on 𝐵(0, 1/2). Eventually, we obtain

that, when 𝜀 → 0 we have 𝑎(𝜀) → 𝑎 in R3 and 𝑢
(𝜀)
aff → 𝑢aff in the set of affine mappings with

𝑢 = 𝑢𝑎 + 𝑢aff on 𝐵.

Next, we realise that

𝐷(𝑢𝑎)− 1
3

div(𝑢𝑎)I3 = 0

so that the same property holds for 𝑢aff . Combining this information with the fact that 𝑢aff is affine, we obtain
the existence of 𝑉, 𝜔, Λ so that:

𝑢aff(𝑥) = 𝑉 + 𝜔 × (𝑥−𝑋) +
Λ
3

(𝑥−𝑋).

At this point, we note that, on 𝜕𝐵, there holds:

(𝑢(𝑥)− 𝑢(0)) · 𝑛 = Λ + 𝑢𝑎(𝑥) · 𝑥 = Λ +
𝑎 · 𝑥

2
which can be constant if and only if 𝑎 = 0. This ends the proof. �



2862 M. HILLAIRET, H. MATHIS AND N. SEGUIN

Acknowledgements. The first author acknowledges support of the Institut Universitaire de France and project
“SingFlows” ANR-grant number: ANR-18-CE40-0027. This paper was finished while M.H. was benifiting a “subside
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