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Abstract: Gait, balance, and coordination are important in the development of chronic disease, but
the ability to accurately assess these in the daily lives of patients may be limited by traditional
biased assessment tools. Wearable sensors offer the possibility of minimizing the main limitations of
traditional assessment tools by generating quantitative data on a regular basis, which can greatly
improve the home monitoring of patients. However, these commercial sensors must be validated in
this context with rigorous validation methods. This scoping review summarizes the state-of-the-art
between 2010 and 2020 in terms of the use of commercial wearable devices for gait monitoring in
patients. For this specific period, 10 databases were searched and 564 records were retrieved from
the associated search. This scoping review included 70 studies investigating one or more wearable
sensors used to automatically track patient gait in the field. The majority of studies (95%) utilized
accelerometers either by itself (N = 17 of 70) or embedded into a device (N = 57 of 70) and/or
gyroscopes (51%) to automatically monitor gait via wearable sensors. All of the studies (N = 70)
used one or more validation methods in which “ground truth” data were reported. Regarding the
validation of wearable sensors, studies using machine learning have become more numerous since
2010, at 17% of included studies. This scoping review highlights the current state of the ability of
commercial sensors to enhance traditional methods of gait assessment by passively monitoring gait
in daily life, over long periods of time, and with minimal user interaction. Considering our review of
the last 10 years in this field, machine learning approaches are algorithms to be considered for the
future. These are in fact data-based approaches which, as long as the data collected are numerous,
annotated, and representative, allow for the training of an effective model. In this context, commercial
wearable sensors allowing for increased data collection and good patient adherence through efforts
of miniaturization, energy consumption, and comfort will contribute to its future success.

Keywords: gait; chronic pathology; tracker; wearable; validation; gold standard; machine learning;
systematic review

1. Introduction

Human gait assessments study human movement and aim to quantify gait character-
istics with various spatiotemporal parameters, such as stride speed and length, step length,
cadence, standing, double support, and swing times [1]. Normal gait corresponds to an
individual’s motion pattern, and deviation in gait from this normal pattern can indicate a
change in health status. In this regard, recent works have demonstrated that gait could have
a link to functional health and could be an indicator for the course of chronic disease and,
hence, rehabilitation feedback [2]. For example, [3] demonstrated the value of studying
gait asymmetry in post-stroke patients, [4] identified gait variability as a marker of balance
in Parkinson’s disease, and [5] described changes in gait and balance in the elderly. As a
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result, there is a move towards using gait analysis to aid in patient health assessment and
monitoring.

Traditional methods for gait analysis in patients typically use walk tests as a standard
assessment [6,7]. A walk test is an examination carried out over a fixed duration and/or
distance in order to easily access speed measurements. The most commonly used walk
test is the six-minute walk test (6MWT) [8], which assesses endurance at a comfortable
speed for the subject by measuring the distance walked in 6 min along a straight corridor.
Even though these tests are widely used to establish a link between the gait and physical
state of the patient, important long-term gait longitudinal patterns or transition patterns
from one daily activity to another are not measured and cannot be explored. The ability to
explore these patterns, such as the transition from turning to sitting [9], frequency of falls
[10], or freezing episodes [11] is important because recent literature suggests that they may
be able to inform about a deterioration in the patient’s state of health and, therefore, of
their chronic condition.

Emerging technologies offer the possibility to improve the evaluation of traditional
methods by increasing the quality and the duration of the window of data acquisition
by measuring gait in daily activities over long periods of time. Wearable devices with
embedded sensors allow in particular for the passive collection of various data sets, which
can then be used to develop algorithms to assess gait in real life conditions and over
long periods of time [12,13]. This opens up many perspectives, especially in the case of
chronic diseases where the disease profile varies for each individual and has fluctuating
symptoms. Twenty-four hour home monitoring in a real environment is an ideal solution
for an accurate diagnosis of symptoms as well as good patient compliance [14].

In the past decade, commercial wearable sensors have been used not only in the
consumer market but also in research studies. In particular, wearable sensors are used
in physical activity monitoring for measurements and goal setting [15]. More recently,
a more specific use of these sensors was introduced in research studies in medicine and
rehabilitation [16,17]. Wearable sensors for gait assessment have been primarily conducted
in a lab and with controlled protocols [18], traducing that commercial sensors can be
challenging to deploy and validate. More recently, the testing of the sensors in patient
monitoring has expanded into real-life conditions. Previous research has shown significant
differences in spatiotemporal gait parameters between similar in-lab and in-field studies
[19], illustrating the importance of establishing commercial sensor validity for long-term
patient monitoring and for detecting events and more particularly deviations from normal
human gait.

There are already many reviews on the validation of commercial wearable sensors
available in the literature, and most were interested in monitoring activity on healthy
subjects [15,20–22] while others have taken a descriptive approach centered on a very
specific medical application [18,23,24]. However, few studies focus on the validation
methods, the ground truth used, and how the reference data are annotated. A common
validation method is to use inferential statistics, such as a regression analysis to explore
and model the relationship between sensor and ground truth data. These approaches
typically assume that the relationship between sensor and ground truth data follows a
linear pattern. Linear regression has the advantage of being simple to use and to interpret.
In comparison with these linear methods, the nonlinear methods fit more types of data in
terms of shape and are hence recognized as being more general. Some nonlinear approaches
such as machine learning have the advantage of being less dependent on the assumption
of the model and very recently produced promising results in sensor validation [25,26].
Nonlinearity seems particularly interesting in terms of patient monitoring in order to
integrate networks of several sensors placed at different places on the patient [27,28] and
for high-level tasks (such as the classification of patients into groups according to the
evolution of a disease) [29,30], which requires the integration of various information on
locomotion and control systems involved in complex gait regulation [31,32].
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In this paper, our aim was to conduct a systematic review (i) to determine the statistical
methods currently used for the validation of sensors and (ii) to determine to what extent
machine learning (ML) is used as a statistical method for this validation step.

2. Methods

This scoping review is reported using the Preferred Reporting Items for Systematic
reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) checklist [33].

2.1. Databases

We conducted a literature search of the PubMed, SCOPUS, ScienceDirect, Web of
Science, IEEE Xplore, ACM Digital Library, Collection of Computer Science Bibliographies,
Cochrane Library, DBLB, and Google Scholar (first 50 results) databases for all literature
published between 2010 and 2020.

2.2. Literature Search

The literature search strategy included a combination of keywords to identify articles
that addressed (i) gait assessment/detection, (ii) wearable and connected technology, (iii)
chronic pathology monitoring, and (iv) validation. Keywords included “gait”, “walk”,
“actigraphy”, “actimetry”; “smartphone”, “wearable”, “mobile device”, “IoT”; “chronic
disease”, “rehabilitation”, “medicine”; “validity”, “validation”, “reliability”, and “repro-
ductibility”. The full search term strategy that was used for each database is given in Table
A1 of Appendix A.

2.3. Inclusion Criteria

Only peer-reviewed journals or conference papers were included in this review if they
were published between January 2010 and December 2020 and were written in English. In
addition, eligible articles had to complete all of the following criteria as part of the content
given in the article:

1. The study must be centered on gait or posture analysis (e.g., detect stance and swing
phases, detect the risk of falling, etc.). Studies focusing only on activities or step
counting were excluded.

2. Given the application to remote monitoring in patients, only devices allowing wireless
data flow wer considered. This flow had to have been conducted using bluetooth
between the device and the smartphone to then send data by Wi-Fi to a remote server.
Sensors that temporarily store the data locally and send the data a posteriori when a
Wi-Fi connection is available were also included.

3. The devices had to have been used in a clinical setting for long-term follow-up or
rehabilitation of a chronic pathology. Studies on young or healthy patients and on
animals were excluded.

4. The validity of the sensor and the resulting indicators must have been assessed.
Therefore, a ground truth must be proposed and the study must include at least one
statistical measure (e.g., statistical test, correlation, and mean square error) or one
evaluation metric (e.g., accuracy, F1-score, precision, and sensitivity) to indicate the
performance of the sensor on detecting the associated gait feature.

Review articles, commentary articles, study protocol articles, and any other articles
without reported results from empirical research were excluded.

2.4. Selection of Articles

The records retrieved from the databases were gathered in CSV files. All duplicate
articles were removed. First, we reviewed the titles and abstracts of all articles (Figure 1).
During this first phase of selection, articles were excluded if they did not describe at least
one wearable device used to automatically assess gait as part of the follow-up of a chronic
pathology, with particular attention paid to the validation of the device. If this information
could not be verified from the title and/or abstract, the article’s full text was reviewed in a



Sensors 2021, 1, 0 4 of 26

further screening phase to determine whether it fit the eligibility criteria. Moreover, if the
abstract indicated that the study was not peer-reviewed, was not written in English, was
not accessible online, or corresponded to a study conducted on animals, it was excluded.
After the initial title/abstract selection process, we evaluated the full text of the remaining
articles. Articles were then excluded if they did not meet the eligibility criteria (Figure 1).
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Figure 1. Diagram of the article-selection process.

2.5. Data Extraction

Three research assistants independently extracted the following study characteristics
from the final set of eligible studies using a custom-made data extraction worksheet. Here
are the different characteristics identified for the analysis of identified papers in the context
of our systematic review:

1. Sample size: the total number of participants for each study.
2. Pathology: the disease monitored in the study.
3. Duration of data collection: how long the participants wore the sensor(s) to collect

data for the study.
4. Condition of data collection: specifies on whether the study was conducted in a

laboratory or in free-living conditions.
5. Number of wearable devices: the total number of wearable devices in which the

sensor’s signal data were used to study the patient’s gait. Any other equipment that
was part of the acquisition system but did not provide data to evaluate the gait was
not included in this count.

6. Type of sensor(s): the type of sensor embedded within the wearable device(s) used to
assess gait.
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7. Device brand(s) and model(s): the specific brand and model of the wearable device(s)
used in the study.

8. Location of device(s): details specific to the placement/location of wearable device(s)
on the patient’s body.

9. Gait indicators measured by the device(s): gait outcomes that were derived from the
signal recorded on the device. In some studies, several gait indicators were extracted
from the raw data.

10. Ground-truth method(s): the method that was used in the study to evaluate the
performance of the device(s) to assess gait.

11. Evaluation metric(s) of the device(s): any evaluation metric, reported either in the
text, a figure, or a table, that described the performance of the wearable device(s)
on assessing gait. Only evaluation metrics that were exclusively used to study gait
were included.

2.6. Summarizing Data and Categories

Mean and standard deviation were calculated for each extracted numerical variable
(sample size, duration of data collection, and number of devices). Frequency tables were
constructed for each extracted categorical variable (pathology, condition of data collection,
sensor types, device brand and model, device location, ground-truth methods, gait features,
and evaluation metrics). Regarding these categorical variables, here are the categories that
we considered and their meanings. These categories are not exhaustive of all possible types
of categories but correspond to those proposed in the context of the included studies.

The devices are categorized according to three types: (i) smartphone, (ii) inertial mea-
surement unit (IMU), and (iii) single sensor.

The device location is categorized according to four levels: (i) superior, if the device
was carried in the hands or on the arms; (ii) inferior, if the device was carried on the legs or
feet; (iii) chest, if the device was carried on the chest or the trunk; and (iv) free location, if the
device was in a pocket or more prone to moving around, or if the its location on the body
was not distinguished.

The ground-truth methods are categorized according to six levels: (i) controls, where
a group of subjects served as a reference; (ii) expert, where the data were analyzed with
regard to annotations made by experts; (iii) med device, where the data were analyzed with
regard to a portable device already used in clinical routine; (iv) medical, where the data
were analyzed with regard to a medical examination/test or clinical score; (v) metrologic,
where other high resolution equipment were used as a reference; and (vi) user annotations,
where the data were analyzed with regard to annotations made by patients during the use
of the device.

The gait features are categorized according to three levels: (i) low, where the analysis
was conducted on raw signals without postprocessing; (ii) medium, where the analysis
was based on statistical descriptors extracted from the signals (mainly statistical moments
or common signal processing features); and (iii) high, where the analysis was based on
descriptors at a high level of representation that disregards the technical characteristics of
the equipment or methods used (e.g., step length, cadence, and number of steps).

Finally, the evaluation methods are categorized according to five levels: (i) descriptive
stat, where evaluation was carried out through descriptive statistics only; (ii) descriptive stat
+ test, where evaluation was carried out through descriptive statistics with statistical tests;
(iii) linear models + stat test, where evaluation was carried out through linear models with
statistical tests; (iv) machine learning, where evaluation was carried out through machine
learning only; and (v) machine learning + stat test, where evaluation was carried out through
machine learning with statistical tests.

3. Results

In this section, we analyze the selected papers by categorizing them following different
criteria in order to extract common patterns and trends.
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3.1. Literature Search

Figure 1 details the entire process of paper selection for this review. The literature
search (made from the queries given in Table A1 of Appendix A) produced 564 research
articles, with 118 duplicates, resulting in 446 articles to be screened. After an initial
screening, which consisted of reviewing all article titles and abstracts, the full content of
102 of these articles was screened in more detail for eligibility. After removing the articles
that did not meet the inclusion criteria detailed in Section 2.3, 70 articles were deemed
eligible for the review [34–103].

The number of studies related to the issue of validation on sensors used for patient
monitoring has significantly increased since 2010, with a number of papers between 2017
and 2020, more than twice the number of papers between 2010 and 2017 (see Figure 2).
Studies using machine learning as a validation method also became more numerous since
2010 [34–36,38,45,53,60,63,68–70,77,79–81,86,95,97], with a stable proportion compared to
the total number of studies per year.

Figure 2. Evolution of the number of papers considering the issue of validation for the use of
commercial wearable devices in chronic disease monitoring, with a distinction between papers using
machine learning (in red) or not (in blue). The percentages given in red represent the proportion of
studies using machine learning.

3.2. Clinical Context

The sample size of the studies ranged from 1 to 130 participants, with a mean of
37.89 participants (SD = 30.68) per study. The duration of data collection in two different
conditions (laboratory or free living) varied and was not always reported with an exact
numerical value or unit. Therefore, in Table 1, we only report the ranges of acquisition
times that go from hours to years. Among the selected studies, as displayed in Figure 3,
33% (N = 25) focused on neurodegenerative diseases [35–37,39,44,50,54,55,57,58,60,61,63,
70,72,77,79–81,86,90,92,94,98,103], 24% (N = 18) focused on orthopedic disorders [34,47,52,
59,65,71,73,75,76,78,83,85,89,91,96,97,99,101], 24% (N = 18) focused on diseases of vascular
origin [40,43,45,48,49,51–53,62,64,67–69,87,91,95,99,102], 8% (N = 6) focused on aging and
associated pathologies [38,56,66,88,91,100], and 4% (N = 3) focused on diseases associated
with poor lifestyle [42,62,74]. Finally, five studies were classified as “others” [41,46,82,84,93]
because they could not be grouped together in an existing group.
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Table 1. Frequency of studies according to conditions of data collection (laboratory or free living) and acquisition time t
(from a few minutes to more than a year).

Acquisition
Time

t < 1 h 1 ≤ t < 24 h 1 ≤ t < 7 d 1 ≤ t < 4 w 1 ≤ t < 12 m t ≤ 1 y

Laboratory
(N = 53)

46 3 0 1 2 1

Free Living
(N =17)

1 1 1 8 3 3

33.3 %

8 % 24 %

24 %

4 %

6.7 %

Pathology : 

Diabete/Obesity/Sedentary Life

Neurodegenerative Diseases

Old�Age

Orthopedic Disorders

Other

Vascular Desease

Figure 3. Pie chart representing the frequency of pathology types in included studies.

3.3. Wearable Sensor Types

As detailed in Table 2, the most frequently used type of wearable device is the Inertial
Measurement Unit (IMU; N = 39) [34,37,44,46,52,54–58,60–63,66,71–73,75,78,79,81–84,87,
88,90–95,97–102], and then, almost equally, the smartphone (N = 18) [38–43,45,47,51,64,68–
70,76,77,86,89,103] and a single sensor (N = 17) [35,36,38,40,48–50,53,59,65,67,69,74,80,85,
96,103]. The majority of studies (N = 56) [34–38,40,43,44,48,49,51–58,60–63,65–67,69–75,77–
85,87–93,95,97–103] used multi-sensor systems (incorporating more than one sensor) to
automatically assess gait in chronic pathologies. On average, 5.78 wearable sensors (SD =
8.43) were used in the studies, with a range of 1 to 64 sensors (see Table 2). As depicted in
Table 3, the most commonly utilized sensor was an accelerometer (95%) either by itself (N
= 17) or embedded into a device (N = 57). The second most frequently used sensor was a
gyroscope (51%) followed by magnetometer (14%) and others (16%).

Figure 4 reports the different brands used for smartphones, sensors, and IMUs. Re-
garding smartphones, Samsung [41,45,51,68,69,77,86,103] and iPhone [40,42,69,76,89] are
the most represented, certainly because of their health applications made for gait recording.
Actigraph is the most commonly used brand for sensors [38,40,48,49,67,71,74,85,96,103].
Regarding the different brands in IMU, there is no particular brand that stands out.



Sensors 2021, 1, 0 8 of 26

Table 2. Criteria related to commercial wearable devices through the 70 selected papers. Abbreviations used in the column
“No. of device(s)”: IMU (Inertial Motion Unit), S (Sensor), and SPHN (Smartphone). Abbreviations used in the column
“Sensor Type(s)”: A (accelerometer), G (gyroscope), M (magnetometer), and O (others).

Author No. of
Device(s)

Sensor
Type(s) Location of Device(s) Sensor Model, Brand

Salarian et al. [90] 7 (IMU) A,G Forearms, shanks, thighs,
sternum Physilogs, BioAGM

Dobkin et al. [53] 2 (S) A Both ankles GCDC, LLC
Kozey-Keadle et al. [74] 2 (S) A Right leg, right side of the hip activPAL, PALF

GT3X, ActiGraph
Munguía-Izquierdo et al. [82] 1 (IMU) A,O Arm SenseWear, Bodymedia

Item-Glatthorn et al. [65] 5 (S) A Chest, thigh, forefoot MiniSun, IDEEA
Grimpampi et al. [61] 1 (IMU) A,G Lumbar spine Freesense, Sensorize

Schwenk et al. [92] 1 (IMU) A,G Chest Physilog, GaitUp
Juen et al. [68] 1 (SPHN) A Pants pocket or fanny pack Galaxy Ace, Samsung
Juen et al. [69] 2 (SPHN and S) A L3 vertebra Galaxy Ace/4, Samsung

Sprint et al. [95] 3 (IMU) A,G Lumbar spine, shank Shimmer3, Shimmer
Capela et al. [43] 1 (SPHN) A,G,M Rear pocket Z10, BlackBerry

Schwenk et al. [93] 5 (IMU) A,G,M Shank, thigh, lower back LegSys, BioSensic
Isho et al. [64] 1 (SPHN) A Torso Xperia Ray SO-03C, Sony

Wuest et al. [102] 8 (IMU) A,G Wrists, shanks, trunk, feet, back Physilog, GaitUp
Raknim et al. [86] 1 (SPHN) A Free (pocket, during phone call,

on the bag during walk)
HTC and Samsung

Ferrari et al. [57] 2 (IMU) A,G Shoes EXLs1 and EXLs3, EXEL
Brinkløv et al. [42] 1 (SPHN) A Pants pocket, jacket pocket Iphone 5C, Apple

El-Gohary et al. [54] 3 (IMU) A,G Lumbar vertebra, feet, ankles Opal, APDM
Ilias et al. [63] 4 (IMU) A,G Upper, lower limbs, wrists, legs Shimmer3, Shimmer

Maqbool et al. [78] 1 (IMU) A,G Shank MPU 6050, InvenSense
Terrier et al. [96] 1 (S) A Right hip wGT3X-BT, ActiGraph
Rogan et al. [88] 1 (IMU) A,G Lateral malleolus RehaWatch, Hasomed
Chiu et al. [47] 1 (SPHN) A Shin Zenfone 2, ASUS

Cheng et al. [45] 1 (SPHN) A Carried in fanny pack Galaxy S5, Samsung
Optimus Zone2, LG

Kobsar et al. [73] 4 (IMU) A,G Foot, shank, thigh, lower back iNEMO, STmicroelectronics
McGinnis et al. [79] 5 (IMU) A Sacrum, thighs, shanks BioStampRC, MC10
Lipsmeier et al. [77] 1 (SPHN) A,G,M,O Hand, trouser pocket, belt Galaxy S3 mini, Samsung

Kleiner et al. [72] 1 (IMU) A,G,M L5 verterbra BTS G-walk, BTS G-Sensor
Carpinella et al. [44] 1 (IMU) A,G,M Sternum MTw, Xsens
Jayaraman et al. [67] 4 (S) A,O Arm, waist, ankle wGT3X-BT, ActiGraph

Metria-IH1, Vandrico
Jang et al. [66] 1 (IMU) A,O Wrist Mi band 2, Xiaomi

Derungs et al. [52] 6 (IMU) A,G,M Wrists, arms, thighs Shimmer3, Shimmer
Mileti et al. [81] 10 (IMU and S) A,G,M,O Feet Mtw, MTw, Xsens
Aich et al. [35] 2 (S) A Knees Fit Meter, Fit.Life

Cheong et al. [46] 1 (IMU) A Wrists Urban S, Partron Co
Ata et al. [40] 2 (SPHN and S) A Hand, hip iPhones SE/6/7/7+, Apple

GT9X, ActiGraph
Kim et al. [70] 3 (SPHN) A,G Waist, pocket, ankle Nexus 5, Google

Vadnerkar et al. [100] 1 (IMU) A,G Feet Shimmer 2r, Shimmer
Rosario et al. [51] 1 (SPHN) A,G Trouser pocket Galaxy S3, Samsung

Lemoyne et al. [76] 1 (SPHN) A Malleolus iPhone, Apple
Dasmahapatra et al. [50] 1 (S) A Belt, pocket, or bra Fitbit One, Fitbit

Schliessmann et al. [91] 2 (IMU) A,G,M Feet RehaGait, HASOMED
GmbH

Ummels et al. [99] 9 (IMU and S) other Leg, belt, wrist

UP24, Jawbone Lumoback,
Lumo Bodytech Moves,
ProtoGeo Oy Accupedo,

Corusen LLC Walking Style
X, Omron

Banky et al. [41] 1 (SPHN) G Galaxy S5, Samsung
Flachenecker et al. [58] 2 (IMU) A,G Shoes Shimmer 3, Shimmer

Gadaleta et al. [60] 3 (IMU) A,G,M L5 lumbar vertebrae, ankles Opal, APDM
Teufl et al. [97] 7 (IMU) A,G Pelvis, both foot, both thighs MTw Awinda, Xsens

Angelini et al. [37] 3 (IMU) A,G L5 lumbar vertebra, ankles MTw Xsens
Opal, APDM

Antos et al. [38] 2 (S and SPHN) A,G Waist, wrist Nexus 5 , Google
wGT3X-BT, Actigraph
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Table 2. Cont.

Author No. of
Device(s)

Sensor
Type(s) Location of Device(s) Sensor Model, Brand

Compagnat et al. [48] 9 (S) A,O Wrists, ankles, hip, arm, neck GT3x, Actigraph
Sensewear, Body Media

Newman et al. [84] 1 (IMU) A,G Interclavicular notch Opal, APDM
Ullrich et al. [98] 3 IMU A,G Ankles, shoes Shimmer2R, Shimmer
Wang et al. [101] 2 (IMU) A,G Pectoralis major BioStampRC, MC10
Pavon et al. [85] 2 (S) A Ankle GT3x+, ActiGraph

Arcuria et al. [39] 1 (SPHN) A Breastbone Galaxy J3, Samsung
Erb et al. [55] 7 to 16 (IMU) A,G,M,O Wrists, torso, thigh, feet Shimmer, Shimmer

Aich et al. [36] 2 (S) A Knees Fit Meter, Fit. Life
Rubin et al. [89] 1 (SPHN) A,G Pants pocket, belt iPhone 6, Apple

Henriksen et al. [62] 1 (IMU) A,O Wrist M430 AT, Polar

Shema-Shiratzky et al. [94] 1 (IMU) A Lower Back Opal, APDM and AX3,
Axivity

Abdollahi et al. [34] 1 (IMU) A,G Sternum 9DOF Razor IMU, Sparkfun
Kim et al. [71] 2 (IMU) A,G Shoe, ankle GT9X Link, ActiGraph

Lemay et al. [75] 5 (IMU) A,G,O Feet, shanks, sacrum Physilog, GaitUp
Meisel et al. [80] 1 (S) A,O Wrist or ankle E4, Empatica

Fantozzi et al. [56] 5 (IMU) A,G,M Trunk, pelvis, thigh, shank, foot Opal, APDM
Zhai et al. [103] 2 (SPHN and S) A Wrist, pocket Galaxy S4 mini, Samsung

GT3X+, ActiGraph

Revi et al. [87] 3 (IMU) A Shank, thigh, pelvis MTw Awinda, Xsens
Compagnat et al. [49] 2 (S) A Non-paretic hip GT3x, ActiGraph

Furtado et al. [59] 1 (S) A L5 lumbar vertebrae within
the pocket of a belt

AX3, Axivity

Na et al. [83] 5 (IMU) A,G Femur, tibia, pelvis, sacral ridge 3D Myomotion, Noraxon

Table 3. Frequency of devices and sensor types in included studies. The device is the tracker used
by the patient (first column), which may include different sensors that are detailed in the second
column. Note that, since a device can use several sensors, the total number of occurrences in the
second column is much greater than that of the first column.

Device Type Sensor Type

IMU 39 Accelerometer 39 (100%)
Gyroscope 30 (77%)

Magnetometer 8 (20%)
Others 7 (18%)

Sensors 17 Accelerometer 14 (82%)
Gyroscope 1 (0.7%)

Magnetometer 1 (0.7%)
Others 4 (3%)

Smartphones 18 Accelerometer 17 (94%)
Gyroscope 7 (38%)

Magnetometer 2 (11%)
Others 1 (5%)
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Figure 4. Frequencies of the most used brands (number of occurrences > 3) by type of device
(smartphone, sensor, and IMU). Among smartphones, seven papers used Samsung and five used
iPhone (bars in green). Among sensors, eight papers used Actigraph and three used Fitbit (bars
in blue). Finally, among IMUs, seven papers used Shimmer, six papers used Opal, and four used
Physiolog (bars in red).

3.4. Data-Acquisition Conditions

Most of the papers collected their data in laboratory conditions (N = 53) [34–45,47–49,
54,56–58,60,61,63–65,67–73,75,76,78–85,87–92,95,97,99–102], while a smaller part collected
data in free living conditions (N = 17) [46,50,51,59,77,85,86,96,103] (see Table 1).

Regarding the positioning of sensors and/or devices (Table 4), 60% of the studies
placed them on an inferior part of the body [35–37,40,47–49,52–58,60,62,63,67,70,71,73–
76,78–81,83,85,87,88,90–92,95–100,102,103], generally on the feet (N = 14) or on the hips
(N = 6). The chest was also widely used (49%) [34,37–39,44,48,50,54–56,59–61,64,65,67,
70,72,73,75,77,79,83,84,89,90,92–95,97,99,101,102]; 17% of the studies carried out sensor
positioning on the hands and arms [38,40,46,48,52,63,66,67,77,80,82,90,102], while the other
17% used a trouser or jacket pocket [42,43,45,50,51,59,68,70,77,86,89,103]

Table 4. Frequency of sensor locations reported on the patient from the included studies. These
different locations were classified into the four categories described in Section 2.6.

Superior Inferior Chest Free

12 42 34 12

3.5. Gait Indicators

The majority (70%) of studies (see Table 5) used high-level features for gait analysis [35–
37,39,40,43–46,48–51,54–59,62,65–67,71,72,74–78,82–97,99,102], which can be correlated to
the high use of smartphones (in the studies reviewed; see Table 3) that already compute
this type of features on the device.

A significative part of the studies (28%) used medium-level features [34,38,42,45,47,
52,53,59,61,63,64,68–70,73,79,98,101,103], while low-level features (raw data) are much less
exploited (8%) [41,60,61,80,81,100].



Sensors 2021, 1, 0 11 of 26

Table 5. Frequency of features extracted from sensor signal reported from the included studies. These
different features were classified into the three categories described in Section 2.6.

Low Level Medium Level High Level

Total 6 Total 20 Total 49

Magnitude
mean 11 Step length 20

Magnitude
standard
deviation

10 Number of
steps 18

Peak
frequency 9 Cadence 15

Mean
crossing rate 5 Speed 11

3.6. Ground Truth

To evaluate the validity of commercial wearable sensors for gait monitoring in patients,
all of the studies (N = 70) used one or more validation methods in which the “ground
truth” data were reported. As illustrated in Figure 5, about half of the studies (53.3%)
use annotations and the other half (46.7%) use a reference to validate the results from
the sensors. Regarding annotations, most studies use labeling according to two or more
groups of subjects (the vast majority of the time, a group of patients and healthy con-
trols) [35–39,41,44,46,47,50,51,53,54,56,58,59,64,66,71,75–79,81,83–86,90–94,96,97,101–103],
others use annotations made by experts on data from videos or measurements during
the experiment [37,38,40,43,48,52,55,63,67,70,74,80,94,98,100], and four studies [55,64,92,93]
had participants self-report via a log or diary. With regard to the reference with which the
studies compare the data from the sensors, it concerns a metrological device (18.3%) [35,
36,39,41,49,53,54,57,60,61,65,67,72,78,79,83,87,96,97,99] or a medical examination (20.2%)
[34,36,39,44,45,50,51,58,59,68,72,73,75,77,81,84,85,90,95,96,102,103] in equal parts and, to a
lesser extent (8.3%), a third-party portable medical device [40,42,45,49,62,69,82,89,103].

35.8 %

13.8 %

3.7 %

20.2 %

8.3 %

18.3 %
Ground truth methods : 

Controls

Expert annotation

Medical device

Medical examination

Metrologic device

User annotation

Figure 5. Pie chart representing the frequency of different ground-truth methods identified among
the 70 selected papers. These different levels correspond to the categories described in Section 2.6.
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3.7. Evaluation Methods and Metrics

The studies often reported multiple and varied evaluation metrics. All reported
evaluation outcomes and their corresponding evaluation method are included in Table 6
and depicted in Figure 6. The most common evaluation method was descriptive statistics
(61.4%) including or not statistical tests [37,39–41,44,46,48,49,51,54,55,58,59,61,62,65–67,
71,72,74,76,78,82–85,87–92,94,98,99,101–103] where correlations, mean errors, or p-values
are most commonly reported. The other evaluation methods present models either as a
linear model (11.4%) [42,50,52,56,57,73,75,93,96,100] or as a machine learning model (17.2%)
[34–36,38,45,53,60,63,68–70,77,79–81,86,95,97]. Due to the lack of a standardized evaluation
metric across studies, we do not summarize (calculate mean, standard deviation, etc.) the
reported metrics. However, evaluation metric values—as given in the abstract or the
conclusion of the associated studies—are available in Table 6.

Table 6. Evaluation criteria through the 70 selected papers. Abbreviations used in the column “Evaluation method”: stats
(descriptive statistics), stats + test (descriptive statistics + statistical tests), LM + test (linear models + statistical tests), ML
(machine learning), and ML+test (machine learning + statistical tests). Abbreviations used in the column “Evaluation
outcomes”: r (correlation coefficient), R2 (coefficient of determination), ICC (intraclass correlation coefficient), AUC (area
under curve, sen (sensitivity), spe (specificity), IQR (interquartile range), FN (false negatives), FP (false positives), and acc
(accuracy).

Author Ground-Truth
Method

Gait
Descriptors

# of
Descriptors

Evaluation
Method Evaluation Outcomes

Salarian et al. [90] controls, medical high 20 stats + test p-value < 0.023

Dobkin et al. [53] controls,
metrologic medium 8 ML + test r = 0.98

Kozey-Keadle et al. [74] expert high 3 stats R2 = 0.94
Munguía-Izquierdo et al. [82] med device high 1 stats + test r = 0.87–0.99

Item-Glatthorn et al. [65] metrologic high 6 stats + test ICC = 0.815–0.997

Grimpampi et al. [61] metrologic low,
medium 3 stats + test r = 0.74–0.87

Schwenk et al. [92] controls, user high 9 stats + test AUC = 0.77, sen/spe =
72%/76%

Juen et al. [68] medical medium 8 ML acc = 89.22–94.13%
Juen et al. [69] med device medium 9 ML error < 10.2%

Sprint et al. [95] medical medium,high 18 ML + test r = 0.97
Capela et al. [43] expert high 10 stats time difference = 0.014 s

Schwenk et al. [93] controls, user high 6 LM + test p-value < 0.022
Isho et al. [64] controls, user medium 3 ML + test AUC = 0.745

Wuest et al. [102] controls, medical high 13 stats + test p-value < 0.02
Raknim et al. [86] controls high 2 ML acc = 94%
Ferrari et al. [57] metrologic high 4 LM + test error = 2.9%

Brinkløv et al. [42] med device medium 6 LM + test R2 = 0.45–0.60

El-Gohary et al. [54] metrologic,
controls high 7 stats + test r = 0.592–0.992

Ilias et al. [63] expert medium 152 ML + test r = 0.78–0.79

Maqbool et al. [78] metrologic,
controls high 1 stats time difference = 50 ms

Terrier et al. [96] controls, medical high 4 LM + stats R2 = 0.44
Rogan et al. [88] metrologic high 6 stats + test p-value < 0.05
Chiu et al. [47] controls medium 1 stats + test p-value < 0.027

Cheng et al. [45] med device,
medical medium,high 10 ML NA

Kobsar et al. [73] medical medium 38 LM + test acc = 74–81.7%

McGinnis et al. [79] metrologic,
controls medium 32 ML + test speed difference = 0.12–0.16

m/s
Lipsmeier et al. [77] controls, medical high 6 ML + test p-value < 0.055

Kleiner et al. [72] metrologic,
medical high 1 stats time difference = 0.585 s

Carpinella et al. [44] medical, controls high 5 stats + test r = −0.367–0.536
Jayaraman et al. [67] expert, metrologic high 3 stats + test p-value < 0.05

Jang et al. [66] controls high 5 stats + test p-value < 0.02
Derungs et al. [52] expert medium 8 LM + test sen/spe = 80%/94%

Mileti et al. [81] controls, medical low 3 ML + test AUC = 0.48–0.98

Aich et al. [35] metrologic,
controls high 28 ML acc = 88%
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Table 6. Cont.

Author Ground-Truth
Method

Gait
Descriptors

# of
Descriptors

Evaluation
Method Evaluation Outcomes

Cheong et al. [46] controls high 1 stats + test p-value < 0.04
Ata et al. [40] expert, med device high 3 stats R2 = 0.9–0.92
Kim et al. [70] expert medium 8 ML sen/spe = 93.8%/90.1%

Vadnerkar et al. [100] expert low 1 LM + test acc = 84%, sen/spe =
75.9%/95.9%

Rosario et al. [51] controls, medical high 2 stats + test r = 0.472
Lemoyne et al. [76] controls high 5 stats + test p-value < 0.05

Dasmahapatra et al. [50] controls, medical high 6 LM + test p-value < 0.05
Schliessmann et al. [91] controls high 4 stats + test p-value < 0.05

Ummels et al. [99] metrologic high 1 stats + test r = −0.02–0.33

Banky et al. [41] metrologic,
controls low 3 stats + test r=0.8

Flachenecker et al. [58] controls, medical high 8 stats + test r = −0.583–0.668

Gadaleta et al. [60] metrologic low 24 ML bias = −0.012–0.000, IQR =
0.004–0.032

Teufl et al. [97] metrologic,
controls high 10 ML + test acc = 0.87–0.97

Angelini et al. [37] expert, controls high 14 stats + test p-value < 0.05
Antos et al. [38] expert, controls medium 56 ML + test acc = 0.90–0.95

Compagnat et al. [48] expert high 2 stats + test p-value < 0.05
Newman et al. [84] controls, medical high 9 stats + test p-value < 0.05

Ullrich et al. [98] expert medium 7 stats + test sen/spe = 98%/96%
Wang et al. [101] controls medium 1 stats + test p-value < 0.05
Pavon et al. [85] controls, medical high 3 stats + test p-value < 0.16

Arcuria et al. [39] metrologic,
controls, medical high 1 stats + test r = −0.72–0.91

Erb et al. [55] user, expert high 2 stats + test FN = 35%, FP = 15%

Aich et al. [36] metrologic,
controls, medical high 5 ML acc = 88.46%

Rubin et al. [89] med device high 1 stats + test R2 = 0.72
Henriksen et al. [62] med device high 4 stats r = 0.446–0.925

Shema-Shiratzky et al. [94] controls, expert high 5 stats + test p-value < 0.05
Abdollahi et al. [34] medical medium 920 ML acc = 60–75%

Kim et al. [71] controls high 5 stats + test p < 0.05
Lemay et al. [75] medical, controls high 6 LM + test r = −0.49–0.498
Meisel et al. [80] expert low 6 ML + test acc = 43%

Fantozzi et al. [56] controls high 14 LM + test NA

Zhai et al. [103] med device,
controls, medical medium 14 stats + test r = 0.43–0.605

Revi et al. [87] metrologic high 8 stats R2 = 0.90–0.93
Compagnat et al. [49] med device high 1 stats + test r = 0.44–0.87

Furtado et al. [59] metrologic,
controls, medical medium,high 10 stats + test p-value < 0.024

Na et al. [83] metrologic,
controls high 6 stats + test p-value < 0.04

A closer look at the studies using ML highlights that machine learning-based ap-
proaches are often used for high-level validation tasks (see Table 7), such as distinguishing
between different groups of patients or stages of disease progression [34–36,45,68,70,80,
86,97]. This is an important point because ML aims to generalize a model to patients not
included in the initial data set. Another point to emphasize, as illustrated in Table 8, is
that studies using machine learning as a validation method incorporate a large number of
variables (the complete raw signal or a collection of different sensors) [34,60,63,70,77,80,81].
This is not the case in studies using statistical methods that work with a few dozen variables
at the maximum and often in a uni-variate way two by two [37,56,59,90,102,103].
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Table 7. Selection of papers that use machine learning methods in validation. Abbreviations used in the column “Model
type”: SVM (support vector machine), GPR (gaussian process regression), NN (neural network), RF (random forest),
LSTM (long short time memory), HMM (hidden markov model), kNN (k-nearest neighbors), CNN (convolutional neural
network), ROC (receiver operating characteristic), and LDA (linear discriminant analysis). Abbreviations used in the column
“Outcome”: r (correlation coefficient), NRMSE (normalized root mean square error), RMSE (root mean square error), AUC
(area under curve), sens (sensitivity), spe (specificity), and IQR (interquartile range). Studies that use raw data as input have
a number of descriptors that correspond to the number of sensors and/or axes multiplied by the length of the recorded data.
This is noted (*n) in the table.

Author Task Model Type Training
Size

# of
Descriptors Outcome

Dobkin et al. [53] Speed prediction Naive Bayes NA 24 r = 0.98
Juen et al. [68] Healthy/patient SVM 10–20 8 accuracy = 89.22–94.13%

Juen et al. [69] Speed prediction
Distance prediction

GPR
NN
SVM

24 60 error rate = 2.51%
error rate = 10.2%

Sprint et al. [95] FIM motor score
prediction

SVM
RF

19 18 NRMSE = 10–30%

Raknim et al. [86] Step length estimation
Before/after PD

SVM 1 2 accuracy = 98%
accuracy = 94%

Ilias et al. [63] Motor function
prediction SVM 6 152 RMSE = 0.46-0.70

r = 0.78–0.79

Cheng et al. [45] 3 pulmonary
severity stages SVM 22–25 10 NA

McGinnis et al. [79] Walking speed SVM 16 32 RMSE = 10–20%
Lipsmeier et al. [77] Activities LSTM 44 6 (*n) accuracy = 98%

Mileti et al. [81] 4 gait phases HMM 1–11 3 (*n) AUC = 0.48–0.98 sens=
80–100% spe = 70–90%

goodness Index = 10–40%

Aich et al. [35] Healthy/patient

SVM
Decision tree
Naive Bayes

kNN

36 28 accuracy=91.42% sens/spe
= 90.9%/91.2%

Kim et al. [70] Walking/freezing CNN 29 8 (*n) f1-score = 91.8 sen/spe =
93.8%/90.1%

Vadnerkar et al. [100] Gait quality
ROC

decision
boundary

8 1 accuracy = 84% sen/spe =
75.9%/95.9%

Gadaleta et al. [60] Right/left foot
events CNN 138 24 (*n) bias = −0.012–0.000 IQR =

0.004–0.032
Teufl et al. [97] Healthy/patient SVM 40 10 accuracy = 87–97%

Antos et al. [38] With/without
assistance

RF SVM
Naive Bayes

Logistic
regression

LDA

1–13 56 accuracy = 90–95%

Aich et al. [36] Healthy/patient
kNN SVM

Naive Bayes
Decision tree

62 10 accuracy = 88.5% sens/spe
= 92.9%/90.9%

Abdollahi et al. [34] Risk of disability SVM
Perceptron 93 920 accuracy = 60–75%

Meisel et al. [80] Seizure/healthy LSTM 68 6 (*n) accuracy = 43%
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Figure 6. Pie chart representing the percentage of papers using different levels of evaluation identified
among the 70 selected papers. These different levels correspond to the categories described in Section
2.6.

Table 8. Frequency of studies using less than 10 descriptors, between 10 and 100 descriptors and
more than 100 descriptors for the validation of both statistical and ML methods.

Number of Studies <10 10–100 >100

Statistical 43 8 0

ML 3 9 7

3.8. Summary of Key Findings

This scoping review included 70 studies related to the validation of commercial
wearable sensors to automatically monitor gait in patients published between 2010 and
2020. The majority of studies (95%) used accelerometers either by itself (N = 17 of 70)
or embedded into a device (N = 57 of 70), and/or gyroscopes (51%) to automatically
monitor gait via wearable sensors. Labeling according to two groups (group of patients
and healthy controls) was the most frequently used method (N = 39 of 70) for annotating
ground-truth gait data, followed by annotations made by experts on data from videos
or measurements during the experiment (N = 15 of 70) and patient self-reports (N = 4
of 70). The references against which the sensor data were compared were a metrological
device and a medical examination in equal parts and, to a lesser extent, a third-party
portable medical device. Finally, studies using machine learning as a validation method
have become more numerous since 2010, at 17% of included studies.

4. Discussion

Gait monitoring of patients during daily life using commercial wearable sensors is a
growing field and offers novel opportunities for future public health research. However,
despite their rapid expansion, the use of commercial wearable sensors remains contested
in the medical community: objections concern the quality of the data collected as well as
the reliability of the technologies in a clinical context where the pathologies are diverse
and sometimes combined [104]. Previous literature reviews on the validation of wearable
sensors were interested in monitoring activity on healthy subjects [15,20–22] or have often
placed a focus on a very specific medical application [18,23,24]. No review to date has
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focused on studies using wearable devices in a very general way to automatically detect gait
in patients in their daily life and via machine learning, which is an approach increasingly
used to learn a recognition task from data. By examining the validation methods and
performances of wearable devices and sensors that automatically monitor patient gait,
several major trends and challenges can be identified.

4.1. Trends and Challenges

Acquisition context. Most of the first studies were restricted to the laboratory envi-
ronment and over short acquisition times (of the order of a few minutes). The first papers
to report sensor validation in a free living environment were in 2011 [53,74]. As seen in
Table 9, from 2017, studies of this type become more frequent [46,50–52,55,59,62,66,77,86,
94,96,98,103] due to changes in the sensors, which are detailed in the following section.

Table 9. Data acquisition criteria through the 70 selected papers. Abbreviations used in the column “Duration of data
collection”: min (t <1 h), hours (1 ≤ t < 24 h), days (1 ≤t< 7 days), weeks (1 ≤ t < 4 weeks), months (1 ≤t<12 months),
and year (t ≥ 1 year). Finally, the cohort size is given as the number of patients.

Author Year Pathology Cohort
Size

Duration of
Data

Collection

Condition Data
Collection

Salarian et al. [90] 2010 Parkinson 12 min Laboratory
Dobkin et al. [53] 2011 Stroke 12 min (Lab),

days (FL)
Both

Kozey-Keadle et al. [74] 2011 Obesity 20 hours Free living
Munguía-Izquierdo et al. [82] 2012 Fibromyalgia 25 min Laboratory

Item-Glatthorn et al. [65] 2012 Osteoarthritis 26 min Laboratory
Grimpampi et al. [61] 2013 Hemiplegia/Parkinson 24 min Laboratory

Schwenk et al. [92] 2014 Dementia 77 days Free living
Juen et al. [68] 2014 Lung disease 30 min Laboratory
Juen et al. [69] 2014 Lung disease 25 min Laboratory

Sprint et al. [95] 2015 Diverse 20 min Laboratory
Capela et al. [43] 2015 Lung disease 15 min laboratory

Schwenk et al. [93] 2016 Cancer 22 hours laboratory
Isho et al. [64] 2015 Stroke 24 min Laboratory

Wuest et al. [102] 2016 Stroke 26 min Laboratory
Raknim et al. [86] 2016 Parkinson 1 years Free living
Ferrari et al. [57] 2016 Parkinson 14 min Laboratory

Brinkløv et al. [42] 2016 Diabete 27 min Laboratory
El-Gohary et al. [54] 2017 Multiple sclerosis 52 min Laboratory

Ilias et al. [63] 2017 Parkinson 19 min Laboratory
Maqbool et al. [78] 2017 Amputee 2 min Laboratory
Terrier et al. [96] 2017 Chronic Pain 66 weeks Both
Rogan et al. [88] 2017 Old Age 23 min Laboratory
Chiu et al. [47] 2017 Ankle instability 15 min Laboratory

Cheng et al. [45] 2017 Cardiopulmonary
disease 25 min Laboratory

Kobsar et al. [73] 2017 Osteoarthritis 39 months Laboratory
McGinnis et al. [79] 2017 Multiple sclerosis 30 min Laboratory
Lipsmeier et al. [77] 2018 Parkinson 44 months Free living

Kleiner et al. [72] 2018 Parkinson 30 min Laboratory
Carpinella et al. [44] 2018 Diverse 30 min Laboratory
Jayaraman et al. [67] 2018 Spinal Cord Injury 18 hours Laboratory

Jang et al. [66] 2018 Old Age 22 years Free living
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Table 9. Cont.

Author Year Pathology Cohort
Size

Duration of
Data

Collection

Condition Data
Collection

Derungs et al. [52] 2018 Hemiparesis 11 weeks Free living
Mileti et al. [81] 2018 Parkinson 26 min Laboratory
Aich et al. [35] 2018 Parkinson 51 min Laboratory

Cheong et al. [46] 2018 Cancer 102 months Free living
Ata et al. [40] 2018 Artery disease 114 min Laboratory
Kim et al. [70] 2018 Parkinson 32 min Laboratory

Vadnerkar et al. [100] 2018 Old Age 16 min Laboratory
Rosario et al. [51] 2018 Cardiac disease 66 months Free living

Lemoyne et al. [76] 2018 Hemiplegia 1 min Laboratory
Dasmahapatra et al. [50] 2018 Multiple Sclerosis 114 weeks Free living
Schliessmann et al. [91] 2018 Diverse 41 min Laboratory

Ummels et al. [99] 2018 Diverse 130 years Laboratory
Banky et al. [41] 2019 Diverse 35 hours Laboratory

Flachenecker et al. [58] 2019 Multiple sclerosis 102 min Laboratory
Gadaleta et al. [60] 2019 Parkinson 71 min Laboratory

Teufl et al. [97] 2019 Arthroplasty 20 min Laboratory
Angelini et al. [37] 2019 Multiple sclerosis 26 min Laboratory

Antos et al. [38] 2019 Old Age 20 min Laboratory
Compagnat et al. [48] 2019 Stroke 35 min Laboratory

Newman et al. [84] 2020 Brain injury 12 min Laboratory
Ullrich et al. [98] 2020 Parkinson 128 min Both
Wang et al. [101] 2020 Post Sternotomy 22 min Laboratory
Pavon et al. [85] 2020 Disability 46 days Laboratory

Arcuria et al. [39] 2020 Cerebellar ataxia 40 min Laboratory
Erb et al. [55] 2020 Parkinson 34 weeks Free Living

Aich et al. [36] 2020 Parkinson 48 min Laboratory
Rubin et al. [89] 2020 Diverse 78 min Laboratory

Henriksen et al. [62] 2020 Obesity 16 years Free living
Shema-Shiratzky et al. [94] 2020 Multiple Sclerosis 44 min Both

Abdollahi et al. [34] 2020 Chronic pain 94 min Laboratory
Kim et al. [71] 2020 Amputation 17 min Laboratory

Lemay et al. [75] 2020 Spinal cord injury 18 min Laboratory
Meisel et al. [80] 2020 Epilepsy 69 months Laboratory

Fantozzi et al. [56] 2020 Old Age 9 min Laboratory
Zhai et al. [103] 2020 Multiple Sclerosis 67 min (Lab),

weeks (FL)
Both

Revi et al. [87] 2020 Stroke 5 min Laboratory
Compagnat et al. [49] 2020 Stroke 26 min Laboratory

Furtado et al. [59] 2020 Amputation 34 hours (Lab),
weeks (FL)

Both

Na et al. [83] 2020 Osteoarthritis 39 min Laboratory

Sensors. In this review, we observe that early research efforts attempted to find
improvements for gait monitoring in patients by experimenting with new sensor types
and/or sensor locations. The first paper to report the validation of a wearable sensor
for monitoring gait in patients was in 2010 [90], but it did not become more prevalent
until 2017, during which nine other papers on this subject were published [45,47,54,63,
73,78,79,88,96]. Over time, research efforts have focused on refining validation protocols,
whether in terms of the number of sensors or their locations, with emphasis on two major
criteria: the ability of sensors to capture gait patterns and the practicality of everyday
life. As seen in Tables 3 and 2, the majority of studies (95%) used accelerometers and/or
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gyroscopes, typically embedded within an IMU or smartphone. This observation highlights
the emergence of commercial wearable devices as a practical and user-friendly modality
for gait monitoring in daily life. In addition to user adoption, commercial wearable devices
also have engineering advantages, such as a compact format with suitable computing and
power resources. If it is a single sensor, it is usually worn near the center of gravity, in a
pocket [42,43,45,50,51,77,86], or on the chest [39,44,64,84,92] or pelvis [59,61,65,72,94,96].

Another trend that emerges from Table 2 is the fact that several sensors were used
together and generally at various on-body locations [37,48,52,54–56,60,63,65,67,70,73,75,
79,83,87,90,93,95,97–99,102]. However, using a multi-sensor system introduces several
challenges, including the integration of different sampling rates and signal amplitudes,
and how to align signals from multiple devices and, therefore, different clock times. De-
spite these challenges, the multi-sensor approach offers high potential for the real-time
monitoring of gait, where multi-sensor fusion can provide context-awareness (e.g., if the
patient stays mainly at home or leaves home from time to time) and can contribute to the
optimization of power (e.g., a low-power sensor can trigger a higher-power sensor only
when necessary).

Ground truth. Our review indicates that 53% of the included studies use annotations.
As seen in Figure 5, there is still a strong reliance on annotations by groups of individ-
uals (56% ; mainly a group of patients versus a group of healthy subjects) followed by
annotations made by experts on data from videos or measurements during the experiment
(21%) and patient self-report (0.05%). These last two annotation methods are surely less
numerous because they can be very costly and time-intensive and are also of questionable
quality because maintaining logs is a process that is very burdensome to the participant and
ultimately relies on their memory. This fact has namely led to the emergence of initiatives
in terms of intelligent annotation [105].

Another trend in ground-truth validation is increasingly in favor of using a reference
(46%) because of the confidence established from visually confirming the gait pattern
being detected: this can be a metrological device (18%), a medical examination (20%), or a
third-party portable medical device (8%). However, in this case, the data are not annotated
and therefore do not allow for the use of conventional machine learning approaches.
At best, the medical examination allows for a regression task to be carried out, which
however, from a machine learning point of view, is more difficult. In general, comparisons
are limited to traditional statistical tools such as correlations or difference tests [35,39–
42,49,53,54,59,61,62,65,67,72,77–79,82–84,87–90,95,97,99,103].

Machine learning. The combination of machine learning algorithms and wearable
sensors for gait analysis has shown promising results in validating the extraction of complex
gait patterns [34–36,38,45,53,60,63,68–70,77,79–81,86,95,97,100].

As seen in Table 7, researchers have used machine learning on sensor data for different
tasks: regression for continuous labelled data (speed, step length, or distance) [53,69,79,86]
and classification of discrete labelled data such as groups of patients [35,36,38,45,68,80,
86,97] or medical functional scores [34,45,63,95,100]. Classification, less commonly used
for the validation of sensors, aims for higher-level analyses, namely to identify a robust
methodology able to monitor patients in time while at the same time discriminating
between a pathological and physiological gait, or the evolution of the disease studied on
the basis of gait movements.

The types of machine learning algorithm families have evolved over time, with stan-
dard approaches being used before 2017 and the appearance of deep learning approaches
with automatic feature extraction without human intervention for the first time in 2018
[77], which are unlike most traditional machine learning algorithms. It should be noted
that, in the context of the papers studied in this review [60,70,77,80], these approaches
concern studies with a significant number of patients (≥30) or/and relatively long acquisi-
tion times [77,80] in order to guarantee a sufficiently representative and realistic sample.
Other studies based on machine learning preferred more standard approaches with a small
number of expert features if their samples were more limited regarding the number of
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patients [38,63,68,69,79,81,86,95,100] or the acquisition time [34–36,45,97]. Comparing the
results of the different studies in terms of performance seems, at this stage, to be a difficult
task because, as stated previously, it depends on the complexity of the task to be performed
and on the complexity of the machine learning algorithm implemented.

Finally, it should be mentioned that machine learning also has drawbacks, with the
first being the computational time required to train a model [106]. This is justified for
complex analysis tasks such as classification or significant performance increases for a
regression task. Moreover, ML may require the adjustment of hyperparameters that may
demand theoretical knowledge in optimization. Finally, ML tends to be more difficult to
interpret for a clinician who looks for the most relevant parameters to analyze the gait
patterns of patients. However, it should be noted that recent initiatives have been carried
out to demystify these two points [107,108].
4.2. Recommendations

Advanced inertial sensors, including accelerometers and gyroscopes, are commonly
integrated into smartphones and smart devices nowadays. Therefore, it is very convenient
and cheap to collect inertial gait data to achieve gait monitoring with high accuracy. Most
existing validation methods ask the person to walk along a specified road (e.g., a straight
lounge) and/or at a normal speed. Obviously, such strict requirements heavily limit its
wide application, which motivates us to give some recommendations for future work in
this context.

Data acquisition. A first step would be to precisely define validation protocols—by
consulting the medical staff—adapted to the study of chronic pathologies. Indeed, many
studies only validate sensors for a given medical application without having tested them
outside the laboratory, on a very limited number of patients, and over a relatively short
time window (at most a few hours). The protocol to be defined should therefore impose
experimentation constraints closer to the daily life of patients, namely the data should be
acquired at home, on a sufficient number of patients, and over a sufficiently long acquisition
period (several weeks or even months).

It would also be necessary to define within the protocol which types of sensors would
be more suitable according to the studied pathology, how many sensors would be necessary,
and where to place them on the patient [18]. There is a clear trade-off between the accuracy
of the recorded data and the invasiveness of the portable system: the greater the number
of sensors and the more varied they are placed on different parts of the patient’s body,
the more accurate the measurements will be, but this is at the expense of a practical,
accommodating, and portable use.

Data collection and processing. Today, most sensors record a lot of data about their
users. However, most wearable devices do not have the memory and computing power to
process and analyze all of the recorded signals. Faced with this problem, two solutions are
generally considered: either the system uses only a part of the recorded data to provide
accurate indicators (throwing away a massive amount of potentially interesting data)
[109,110] or the system stores and analyzes all raw data on the cloud [111,112]. The latter
option is often problematic because the traditional architecture is centralized and offers
little protection against potential cyber attacks. Centralizing raw data on a server poses
some risk, especially if the data is sent to an external server, as it facilitates access to
malicious attackers. A more reliable and secure alternative regarding the collection and
processing of data would therefore be to process the raw inertial signal on the user’s
smartphone and to transfer only relevant features unlinked to the identity of users to the
cloud [113,114]. Finally, the mobile clients associated with wearable devices have to send
a lot of data to a centralized server for training and model inference. This is especially
difficult due to user billing plans and user privacy. Thus, very recently, decentralized
architectures dedicated to machine learning have emerged [115].

Validation. It is mandatory to ensure that sensor recordings are accurate and sen-
sitive enough for medical diagnosis and prognosis. This is crucial to ensure not only
the generalizability of a sensor within a target population but also its ability to measure
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day-to-day variability data, which can be corroborated with disease symptoms. To this end,
data acquired by commercial wearable sensors should be systematically compared to data
acquired by reference medical devices (i.e., reliable gold standard systems, medical scores,
or groups of subjects). Machine learning approaches make it possible to loosen the strict
framework of acquisition protocols but must ensure that the data set collected for training
is large, labelled, and realistic. Deep approaches, which automatically select features from
data, offer very interesting perspectives given that feature extraction is a task that can take
teams of data scientists years to accomplish. It augments the powers of small expert teams,
which by their nature do not scale.

Statistical models versus ML. Statistical models are designed for inference about the
relationships between variables within the data and are designed for data with a few dozen
input variables and small sample sizes. On the other hand, machine learning models are
designed to make the most accurate predictions possible. Statistical models can make
predictions, but predictive accuracy is not their strength. Indeed, no training and test
sets are necessary. Furthermore, machine learning aims to build a model that can make
repeatable predictions in a high-dimensional space without formulating a hypothesis on
the underlying data generation mechanism. ML methods are particularly useful when the
number of input variables exceeds the number of samples [116]. Hence, using machine
learning in a validation task highly depends on the purpose of the study. To prove that a
sensor is able to respond to a certain kind of stimuli (such as a walking speed), a statistical
model should be used. Conversely, to predict from a collection of different sensors whether
a patient is affected by a certain grade of a disease affecting the musculoskeletal system,
machine learning is probably the best approach. Indeed, this multi-dimensional space (one
or more for each sensor) is in fact difficult to interpret and therefore to analyze. The ML
model would then probably be a neural network or a random forest in order to take into
account the nonlinearities resulting from the complex relationship between the physical
sensors and the classification output.

5. Conclusions

The field of gait monitoring in patients is still emerging, and the accuracy of com-
mercial wearable sensors still depends on careful constraints during data acquisition.
Collecting data in daily life is considerably more challenging than conducting research
in a laboratory. In free-living conditions, continuous control of the sensors, participants,
and hardware or software is lost. Therefore, successful sensor deployment requires really
robust algorithms. If the objective is to be able to monitor the gait completely freely over
a long period of time, precision must be valued. Considering this review of the last 10
years in the field, validation takes an increasingly important place in the literature, with
the number of studies having gradually increased since 2010. In these studies, a significant
part of the validation was based on traditional statistical approaches (75%) with a stable
contribution of machine learning-based approaches (25%). Machine learning approaches
are algorithms that should be considered for the future. These are in fact data-based ap-
proaches, which, as long as the data collected are numerous, annotated, and representative,
allow for the training of an effective model. It should be noted that commercial wearable
sensors allowing for increased data collection and good patient adherence through efforts
of miniaturization, energy consumption, and comfort will contribute to its future success.
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Appendix A. Extraction from Databases

Table A1. Search term strategy.

Database Search String Records

ACM [[Abstract: gait] OR [Abstract: actimetry] OR [Abstract: actigraphy] 17
OR [Abstract: walk]] AND [[[Abstract: smartphone] OR [Abstract: wearable]

OR [Abstract: iot]] AND [[Abstract: “chronic disease”] OR [Abstract: rehabilitation]
OR [Abstract: medicine]] AND [[Abstract: validity] OR [Abstract: reliability]

OR [Abstract: reproductibility or validation] OR [Publication Title: gait]
OR [Publication Title: actimetry] OR [Publication Title: actigraphy]
OR [Publication Title: walk]] AND [[Publication Title: smartphone]

OR [Publication Title: wearable] OR [Publication Title: iot]
AND [Publication Title: “chronic disease”] OR [Publication Title: rehabilitation]

OR [Publication Title: medicine]] AND [[Publication Title: validity]
OR [Publication Title: reliability] OR [Publication Title: reproductibility or validation]]

AND [Publication Date: (01 January 2010 TO 31 October 2020)]
Cochrane ((gait OR actimetry OR actigraphy OR walk) AND (smartphone OR wearable OR iot) AND 15

(“chronic disease” OR rehabilitation OR medicine) AND (validity OR reliability OR
reproductibility OR validation)) in Title Abstract Keyword—between Jan 2010 and

October 2020

DBLB (gait | walk | actimetry) (smartphone | device | iot) (valid | rehabilitation) 31

IEEE Xplore ((gait OR actimetry OR actigraphy OR walk) AND (smartphone OR wearable OR iot) 54
AND (“chronic disease” OR rehabilitation OR medicine) AND (validity

OR reliability OR reproductibility or validation))

PubMed ((gait OR actimetry OR actigraphy OR walk) 52
AND (smartphone OR wearable OR iot) AND

(“chronic disease” OR rehabilitation OR medicine) AND
(validity OR reliability OR reproductibility or validation))

Filters: from 2010–2020

Scholar title:(gait smartphone “wearable device” rehabilitation validity) 1010

ScienceDirect ((gait OR actimetry) AND (smartphone OR iot) AND 3
#1 (“chronic disease” OR medicine) AND

(validity OR validation))

ScienceDirect ((gait OR walk) AND (smartphone OR wearable) AND 10
#2 (rehabilitation OR medicine) AND

(validity OR reliability))

ScienceDirect ((gait OR walk) AND (smartphone OR iot) AND 1
#3 AND (“chronic disease” OR medicine) AND

(validity OR validation))

ScienceDirect ((gait OR walk) AND (smartphone OR wearable) AND 16
#4 AND (rehabilitation OR medicine) AND

(validity OR validation))

ScienceDirect ((gait OR actimetry OR walk) AND 12
#5 (smartphone OR wearable OR iot) AND

rehabilitation AND validation)
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Table A1. Cont.

Database Search String Records

SCOPUS TITLE-ABS-KEY((( gait OR actimetry OR actigraphy OR walk ) 155
AND ( smartphone OR wearable OR iot ) AND

( “chronic disease” OR rehabilitation OR medicine ) AND
( validity OR reliability OR reproductibility OR validation)))

AND PUBYEAR ≥ 2010 AND PUBYEAR ≤ 2020

Web of
Science (TS = ((gait OR actimetry OR actigraphy OR walk) 148

AND (smartphone OR wearable OR iot) AND (“chronic disease” OR
rehabilitation OR medicine) AND (validity OR reliability OR

reproductibility OR validation))) AND LANGUAGE: (English)
AND DOCUMENT TYPES: (Article) Indexes=SCI-EXPANDED,

SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI,
CCR-EXPANDED, IC Timespan=2010-2020
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