Evaluative vs explanatory neurofeedback: What is their impact on athletes’ MI-NF performance and cognitive load?

Eléa Rossignol, Pierre Fayol, Margaux Izac, Léa Pillette, Franck Di Rienzo, Etienne Guillaud, Aymeric Guillot, Thomas Michelet, Bernard N’kaoua, Camille Jeunet-Kelway

To cite this version:
Eléa Rossignol, Pierre Fayol, Margaux Izac, Léa Pillette, Franck Di Rienzo, et al.. Evaluative vs explanatory neurofeedback: What is their impact on athletes’ MI-NF performance and cognitive load?. Journées CORTICO 2023, May 2023, Paris, France. hal-04211660

HAL Id: hal-04211660
https://hal.science/hal-04211660
Submitted on 20 Nov 2023
1. Neurofeedback: Aim

Neurofeedback (NF) enables us to be aware of our cerebral activity and find strategies to modify it in order to reach the optimal cerebral activity for a specific cognitive task.

For example: kinaesthetic motor imagery (MI) generates sensorimotor desynchronisation (SMR-ERD) in the sensorimotor cortex.

2. Neurofeedback: Limits

- Mostly not ecological and abstract.
 - Lack of usability, generating:
 - Lack of transferability in real training environments
 - Lack of motivation and usability
 - NF trainings are almost exclusively designed with evaluative feedback.
 - Conceptual reviews declare that [2,3,8]:
 - Explanatory feedback is suited for novice NF users
 - Evaluative feedback is suited for expert users

3. How can we improve NF training design?

- Using virtual reality (VR) to:
 • Immense athletes in their habitual training environment
 • Increase their motivation, embodiment and NF performances [6,7,8]
- Using the most suited feedback for each user depending on their level of expertise (evaluative, explanatory, both)

4. Aim of our study

Based on aforementioned studies results, we will use VR to:

- Identify, for each athlete, neurofeedback characteristics that provide the most relevant information to maximise usability and performance without overloading the athlete.

5. Experimental approach

44 basketball players of different levels (of sport, MI and NF expertise)...

- Doing MI of a specific basketball task (free throw)
- While using:
 - VR (ecological environment + motivation)
 - EEG (NF + SMR recording)
 - Eye tracking system (visual focus on feedback)

...in presence/absence of explanatory/evaluative feedback,

6. Expected results

- MI-NF Performance
- Usability
- Cognitive Load

<table>
<thead>
<tr>
<th></th>
<th>Without Exp.</th>
<th>With Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI-NF Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive Load</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Better MI-NF performance with explanatory NF than without.
- Better MI-NF performance with evaluative NF than without it, what is more when there is no explanatory NF.
- Better usability with explanatory NF than without.
- Better usability with evaluative NF than without, only when there is no explanatory NF.
- Higher cognitive load with explanatory NF than without.
- Higher cognitive load with evaluative NF than without it, what is more when there is explanatory NF.

Globally, we expect the best MI-NF performances and usability with both explanatory and evaluative feedback combined, despite a high associated cognitive load.

7. Let’s talk

- What kind of feedback is the most suitable for users to estimate their NF performance?
- What factors are to be considered in priority to maximise NF learning? E.g., are high MI performances a reliable predictor of long-term learning if associated with high workload and low usability?
- What neurophysiological pattern(s) should be reinforced during MI-based NF trainings?

eléa.rossignol@etu.u-bordeaux.fr