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Abstract

This article focuses on the computation of the solutions to periodic cell problems that arise
in a number of homogenization schemes. Formulated in terms of a generic constitutive relation,
encompassing the linear and non-linear cases, a model problem is intended to be discretized on
a Fourier-basis and solved using a Fast Fourier Transform (FFT)-based iterative scheme. Such
a spectral method, which makes use of a uniform grid and global basis functions, has inherent
limitations for correctly capturing any localized features of the solution, such as singularities or
discontinuities. An adaptive method is proposed here to overcome these shortcomings. It relies on
the introduction of a non-homogeneous bijective mapping between the original physical domain and
a computational domain, where the Fourier spectral method will be used to solve a transformed
problem. This makes it possible both to discretize the original equations on a non-uniform grid,
concentrating grid points where necessary to increase computational accuracy, and to maintain the
use of standard FFT schemes. To compute the mapping, an approach based on optimal transport is
proposed and a numerical scheme based on FFT tools is described. A number of adaptive strategies
are then discussed, either based on a priori material-based considerations, or a posteriori using a
preliminary solution. The properties of the transported problem in the computational domain
are described and the applicability, up to minor modifications, of a number of standard iterative
schemes is discussed. A set of numerical examples is included to assess the performances of the
method, both in the case of linear conductivity and for a non-linear elasticity problem, evaluating its
results both qualitatively with full-field comparisons and quantitatively with errors measurements
relatively to the number of iterations, the discretization and the original material contrast. Overall,
these results show that, for a given discretization and compared with a computation on a regular
grid, a systematic gain in accuracy is obtained using the adaptive method on a non-uniform grid.

1 Introduction

1.1 Context and motivations

The macroscopic properties of heterogeneous or microstructured media can efficiently be described
and computed using homogenization methods. When the media are periodic, the numerical homoge-
nization methods based on Fourier discretizations and the use of the Fast Fourier Transform (FFT)
have shown to be very efficient since the seminal work [40, 41]. Here we refer to these approaches as
Fourier spectral methods. Over the years, the latter have been successfully applied to a vast range
of materials, with a variety of microstructure geometries and constitutive laws of the featured con-
stituents. The performances of the underlying iterative algorithms have also been greatly improved to
achieve faster convergence, see the review article [48]. Recently, an effort has been made to investigate
quantitatively the behavior of solutions relatively to the spatial discretization and to establish con-
vergence proofs for these numerical methods, see [2, 59, 49], as well as to develop a posteriori errors
estimators [24].
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In computational homogenization we deal with heterogeneous media that are often composites
materials with discontinuous constitutive properties. This results in sharp material interfaces and,
possibly, geometrical corners that in turn induce discontinuities or singularities in the Partial Dif-
ferential Equation (PDE) solutions. The latter are notoriously difficult to capture accurately using
Fourier spectral methods, which make use of uniform computational mesh or grids. As a consequence,
it may be critical to adapt the computations for such configurations and solutions as a lack of accuracy
in the local fields can in turn impact the accuracy of the targeted homogenized properties.

To tackle the issue of computing singular solutions some mesh adaptation strategies have been
developed in the field of computational mechanics and numerical analysis, including the following:
– h-adaptation, i.e. mesh refinement. In the context of FFT-based computations, where the (trigono-
metric) basis functions are global in nature, such a strategy would be synonymous with global grid
refinement, leading to a very significant, if not prohibitive, increase in computational cost.
– p-adaptation, i.e. increase of the polynomial degree of the approximating basis functions. In the
spirit of the methods investigated here, one could consider the FFT-based implementation of high-
order spectral element methods, see e.g. [9].
Note also the possible use of multi-levels or multi-grids approaches, which have been considered in
[22, 36] in the context of computational homogenization.

In the present study, we turn to the so-called r-adaptation strategy, i.e. remeshing or relocation
methods. A number of them have developed to accurately compute solutions with localized features,
for example when dealing with time-dependent or hyperbolic PDEs as well as in phase-field problems,
to cite but a few examples, see e.g. [4, 10, 11, 21, 23, 28, 27, 26, 42, 50, 57, 60] and the monograph
[25]. Such approaches have also been employed to deal with computations in unbounded media in
order to reduce the numerical errors associated with artificial domain truncations, see [54, 15, 6, 14].
When dealing with Fourier spectral methods some algorithms such as the Non-Uniform Fast Fourier
Transform (NUFFT) can be used to deal with non-equispaced grids, either in space and/or frequency,
see e.g. [20], but were not considered here. Note finally that for analytical homogenization problems
à la Eshelby, the use of conformal maps in infinite domains can be powerful, see [37, Chap. 8], a tool
that relates to the proposed approach.

To our knowledge, no numerical method pertaining to the r-adaptation class has yet been applied
to homogenization problems and the purpose of this article to explore the possible interest of such
a strategy. Therefore, the overarching question in the present study can be stated as: How to im-
prove the accuracy of a numerical solution in FFT-based computational homogenization for a fixed
discretization? In other words, considering a fixed number of degrees of freedom for a microstructure
discretized using an image of N1 × N2 pixels (in 2D, or N1 × N2 × N3 voxels in 3D), we will aim at
achieving improved accuracy compared to a computation on a uniform grid.
To do so, our approach will be twofold:
(i) Compute a geometrical mapping that redistribute the points of a uniform computational grid ac-
cording to a desired density, typically concentrating grid points in the original physical domain where
a greater accuracy is required.
(ii) Transport the PDE considered from the physical domain, by now discretized on a non-uniform
grid, to the computational domain where it can ultimately be solved on a uniform grid, using standard
FFT-based numerical schemes.
First, the geometrical mapping to be used amounts in a change of coordinates associated with trans-
formation rules for differential operators. To define and compute the former, we will consider either
some analytical domain transformations, which are suitable to some specific cases, or a more generic
optimal transport-based numerical method. This type of strategy has already been employed in a
number of studies, although in a different context, as a moving mesh or grid generation technique, see
e.g. [8, 19, 51, 34, 55]. It is based on a formulation of the Monge–Kantorovich mass transfer problem,
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which leads to the non-linear Monge-Ampère equation. In the present work, we propose an algorithm
to solve the latter, which make use of the standard toolbox of FFT-based methods. With this tool at
hand, computing the geometrical mapping requires introducing some source and target point densities,
using suitable user-controlled monitor functions to define the regions of the physical domain where
fewer grid points are needed or, on the contrary, where they should be concentrated. A number of
possible monitor functions are proposed and discussed here, based either on a priori material-based
considerations, e.g. using the detection of material interfaces or geometric singularities, or an a pos-
teriori method based on the gradient of a preliminary solution.
Second, the original PDE considered, which constitutes a generic periodic cell problem central to a
number of homogenization schemes, is transported from the physical domain to the computational
domain. In doing so, the geometrical mapping mixes with the original material parameters and fea-
tured sources terms, which results in a PDE of similar type but now involving a virtual constitutive
relation and virtual source terms. Some properties of the transported cell problem are analyzed and
the use of standard FFT-based numerical schemes is then discussed to solve it, taking into account its
specificities. Focusing first on linear conductivity problems as a proof of concept, we will provide some
numerical examples to illustrate the proposed adaptive method, qualitatively comparing computations
on regular and adapted grids, and then providing some quantitative convergence results. Finally, as a
perspective, we illustrate our approach on a non-linear elasticity problem.

Following the introduction of the prototypical periodic cell problem considered, we expose the
geometrical mapping formalism in Section 2. The grid adaptation strategy is then presented in Sec. 3,
first using analytical transformations and then a more general optimal transport-based approach. An
algorithm is developed for the latter, and a number of candidate monitor functions are investigated to
drive the morphing of the computational grid. The transport of the PDE considered to the computa-
tional domain is detailed and analyzed in Section 4, and the extension of standard FFT-based schemes
to solve the resulting equation is discussed in Sec. 5. The overall approach is finally illustrated by a
set of numerical examples in Section 6, with full-field comparisons and convergence analyses.

1.2 Problem setting

When considering a periodic medium governed by a, possibly non-linear, local constitutive relation
C , then approximating the solution to a static or dynamic governing equation using the two-scale
asymptotic homogenization method [45] leads to a cascade of cell problems posed on the characteristic
periodic cell ΩP ⊂ Rd. These problems all have the same structure and boil down, in acoustics,
electromagnetism or elasticity, to the following generic static problem, see e.g. [17]:

Find u ∈ H1
per(ΩP ) such that


s(x) = C

(
x, g0 + gradu

)
,

div s(x) + h(x) = 0,
〈u〉ΩP

= 0.
(1)

Here, 〈·〉ΩP
is the averaging operator on ΩP defined as

〈u〉ΩP
= 1
|ΩP |

∫
ΩP

u(x) dx. (2)

In (1), the term u is a completely symmetric tensor field whose order is defined by its rank in the
asymptotic expansion of the field approximated asymptotically in ΩP by homogenization, and u
belongs to the Sobolev space H1

per(ΩP ) of ΩP -periodic tensor-valued fields. In addition, g0 and h
are some prescribed tensor terms that originates from the cell problems of lower orders. Note that
the zero mean condition in (1) is meant to ensure the uniqueness of the solution. To fix ideas, in
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conductivity (resp. elasticity) s is the current (resp. stress) field, while when considering a first-order
homogenization approximation then g0 = I with I the identity tensor and h = 0. In this context, a
common formulation of (1) makes use of g0 = ē with ē being a uniform applied macroscopic gradient
(resp. strain) associated with a periodic fluctuation of the scalar potential u (resp. vector displacement
field u).

2 Geometrical mapping

2.1 Mapping of coordinates

The solution u to (1) is known to be not well-behaved in the regions where the constitutive relation
C involves discontinuous parameters, exhibiting large gradients that make it difficult to approximate
accurately on regular grids. Therefore, achieving high-accuracy with a given number of degrees of
freedom, requires an adapted discretization that is non-uniform in space. With this issue in mind,
the points x in (1) are thought of as the points of a non-uniform discretization grid covering the
physical domain ΩP , see Figure 1. Noticeably, the grid in ΩP is possibly deformed, i.e. it might not
be a parallelogram (2D) or a parallelepiped (3D), yet it paves all of Rd periodically. In this context,

<latexit sha1_base64="w5K5yxBY20d547KPZ502QVmD20s="></latexit>

x = '(X)
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Figure 1: Coordinate mapping between the computational domain ΩC discretized on a regular grid and the
physical one ΩP with adapted grid.

we consider a mapping of the periodic cell ΩP to a computational domain ΩC , which is intended to
be discretized using a uniform grid. Doing so, the computations on ΩC can be performed efficiently
using FFT toolboxes. To do so, we introduce an invertible and sufficiently smooth non-homogeneous
transformation ϕ such that

x = ϕ(X). (3)
The gradient of ϕ is the invertible second-order tensor F , which can be represented as the Jacobian
matrix of the transformation, defined locally as:

F (X) = ∂ϕ(X)
∂X

= ∂x

∂X
i.e. Fij = ∂xi

∂Xj
in index notation. (4)

In addition, the Jacobian J of the transformation is defined as

J(X) = detF (X).
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We recall a useful lemma, that is a consequence of the so-called Nanson’s formula for the transport of
elementary surface elements:

Lemma 1. The gradient of the transformation satisfies

Div
(
JF−T

)
= 0,

where Div is the divergence operator relatively to the variable X, so that it holds ∂

Xj

(
JF−1

ji

)
= 0.

The mapping of fields between the two domains is achieved as follows:

Definition 1. Let t be a (tensor) field on ΩP then we associate it with a field T defined on ΩC as

T (X) = t(ϕ(X)) = t(x),

which defines the mapping t = Φ(T ). In the following, lowercase (resp. uppercase) letters will be
employed to denote quantities expressed on ΩP (resp. ΩC) according to the mapping Φ.

In this context, we have the following result, see e.g. [12]:

Lemma 2. If ϕ is an invertible and sufficiently smooth transformation then the mapping Φ is an
isomorphism between the functional spaces W `,p

per(ΩC) and W `,p
per(ΩP ) for any integer ` ≥ 0 and real

number p ∈ [1; +∞[.

2.2 Transformation rules

With the purpose of transporting a given system of PDEs formulated on the physical problem ΩP

to the computational domain ΩC we now address the transformation rules for differential operators.
Considering a generic tensor field t on ΩP , its gradient writes

grad t(x) = ∂t(x)
∂xj

⊗ ej = ∂T (X)
∂Xk

∂Xk

∂xj
⊗ ej = ∂T (X)

∂Xk
F−1
kj ⊗ ej , (5)

Likewise, the divergence operator transforms as

div t(x) = ∂t(x)
∂xj

· ej = ∂T (X)
∂Xk

F−1
kj · ej .

Owing to Lemma 1, the latter term can be rewritten in divergence form, so that it holds:

div t(x) = 1
J

∂

∂Xk

(
T (X)JF−1

kj

)
· ej . (6)

Upon introducing the gradient operator Grad relatively to the variable X, then the chain rules (5)
and (6) can be put in tensor form so as to obtain the following result.

Lemma 3. The gradient and divergence operators transform as

grad t(x) = GradT (X) · F−1 and div t(x) = 1
J

Div
(
T (X) · JF−T

)
.

Note that we have chosen to use Lemma 1 only to transform the divergence operator into a
conservative form as it corresponds to this of the problems considered hereafter. The gradient operator
can also be transformed in a similar manner but it is not particularly useful to do so here.

Remark 1. According to Definition 1, we have T (X) · JF−T = t
(
ϕ(X)

)
· JF−T . In the setting of

finite elastic deformations the latter is sometimes referred to as the Piola transform of the tensor t(x),
see [13].
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3 Grid adaptation strategies
A variety of strategies can be considered to adapt the computational grid to a specific problem through
the choice of a coordinate transformation ϕ. They are usually based on the introduction of a monitor
function that will be used to relate ϕ to the material properties featured in the constitutive relation C ,
i.e. the parameters of the PDE considered, or to the behavior in the physical domain of the solution u
in order to concentrate grids points around singularities or discontinuities. The literature is extensive
on the subject and some guidelines have been proposed to build suitable coordinate transformations,
in particular using the so-called conformity and equidistribution principles, see e.g. [28, 27]. Moreover,
a key issue is the problem of folded grids and mesh tangling, which can result from the distortion of
the computational grid. Reference can be made to the monograph [25] for an overview of efficient
strategies that have been developed in the literature, such as these based on variational approaches or
mechanical models as deforming a mesh can be seen as an elasticity problem, possibly non-linear. For
some specific problems, an analytical mapping of the grid can be relevant. For more general ones, we
propose here a method based on optimal transport theory, whose formulation has a clear interpretation
and whose implementation is both simple and guarantees the generation of a satisfactory adapted grid.
These approaches are described in the next section, followed by a discussion on the choice of monitor
functions.

3.1 Mapping computation

We describe here two strategies to perform the transformation of coordinates to adapt the uniform
computational grid to a given material distribution or to a specific non-smooth solution. A first class
of grid coordinate transformations is based on analytical mappings while a second one is based on the
computation of a solution to an optimal transport problem.

3.1.1 Analytical domain transformation

In this section we focus on a prototypical example where the cell problem (1) is posed in an unbounded
semi-periodic domain, such as ΩP =]−∞,+∞[×[−1/2, 1/2] with periodicity in the direction e2. This
is in particular the case when one deals with the homogenization of periodic microstructured interfaces,
see e.g. [33, 53]. In this context, one typically considers configurations where a set of inclusions is
embedded in a homogeneous matrix and one wants to compute the solution u that is an evanescent
field in the direction where the domain is unbounded, here e1. Although a dedicated method has
recently been proposed in [16], a simple truncation of the computational domain is often used as
the sought field u can be considered negligible away from the inclusions. In this context, domain
truncation errors are unavoidable but they can be reduced if a given bounded computational domain
is mapped to an extended domain where the boundaries are moved (virtually) far away from the
inclusions, see [5].

In this context, an analytical mapping can be employed to transform the computational domain,
see [54, 15, 6, 14]. In the case where ΩP =]−∞,+∞[×[−1/2, 1/2] then, in the direction of periodicity,
one can set x2 = X2 and, in the unbounded direction, define:

x1 = A tan(LX1), x1 = A sinh(LX1), or x1 = A tanh−1(LX1) (7)

among other possible choices, with A and L being some user chosen parameters. This is illustrated
on Figure 2 where a matrix containing a tilted ellipsoidal inclusion, whose parameters are these
considered in [16]. This configuration is described geometrically on a rectangular physical domain,
which is discretized using a non-uniform grid generated analytically using the tanh−1 mapping of the
periodic computational cell [−1/2, 1/2] × [−1/2, 1/2], itself discretized on a uniform grid of N1 ×N2
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pixels, with N1 = 27 + 1 and N2 = 26 + 1. This allows to concentrate computational points near the
inclusion while mapping non-uniformly an extended domain in the x1 direction.

-4 -3 -2 -1 0 1 2 3

-0.4

-0.2

0

0.2

0.4

Figure 2: Non-uniform grid (red/blue) in the physical domain ΩP obtained using an analytical mapping as
in (7). Inclusion and matrix in black/white.

3.1.2 Optimal transport-based grid mapping

Problem formulation. In a more general geometrical setting, we adopt a strategy based on optimal
transport, which provides a rational framework well-suited to the grid adaptation problem. It amounts
in defining some strictly positive source and target densities s and t, respectively in ΩC and ΩP , and
finding the optimal transport map ϕ between them that minimizes a given cost. In the case where
the cost is defined as the discrepancy to the identity map in the L2-norm then this problem can be
interpreted as the Monge–Kantorovich mass transfer problem, see e.g. [46]. When the densities are
smooth, it is well-known [7] that the sought optimal transport map ϕ can be written as the gradient
of a convex potential ψ and is the unique solution to

t
(
x(X)

)
J(X) = s(X) with x = ϕ(X) def= Gradψ(X). (8)

The problem (8) can be simply interpreted as this of finding the (optimal) mapping ϕ that redistributes
the source density s in the computational domain ΩC to the target density t in the physical domain
ΩP . Given the periodic boundary conditions considered, the densities and the Jacobian in (8) must
satisfy some normalization conditions, see e.g. [19]. Indeed, requiring that the measure of the periodic
cell is conserved through the transformation and integrating the transformation rule (8) lead to the
following relations:

|ΩP | =
∫

ΩP

dx =
∫

ΩC

J(X) dX = |ΩC | and
∫

ΩP

t(x) dx =
∫

ΩC

s(X) dX. (9)

Accordingly, the densities must also be such that∫
ΩC

s(X)
t
(
x(X)

) dX = |ΩC |, (10)

which provides a normalization condition that couples s and t with the mapping x = ϕ(X) to be found.

Using that J(X) = det (∂ϕ(X)/∂X), the problem (8) can be directly formulated in terms of the
convex potential ψ, which leads to the Monge-Ampère equation:

t
(

Gradψ(X)
)

det
(
Hψ(X)

)
= s(X), (11)

where H is the Hessian operator, i.e. Hψ(X) = Grad Gradψ(X). The formulation (11) has already
been used in a number of studies as a guideline for developing a moving mesh technique, see e.g.
[8, 19, 51, 34, 55]. The interest of computing the (invertible) mapping ϕ from the convex solution ψ to
the Monge-Ampère equation is that it yields a transformation with a Jacobian satisfiying J(X) > 0,
hence preventing the deformed grid generated to be tangled. The practical computation of the solution
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to (11) remains a key issue. A number of methods have been proposed to do so, see [46], such as simple
fixed-point iterations [3] or time-marching methods that solve some parabolic versions of (11), see [8]
in connection with the grid deformation problem. Here, we have chosen to compute the solution to
the non-linear elliptic equation (11) using a quasi-Newton method adapted from [32, 47].

Proposed algorithm. In the case considered of periodic boundary conditions and positive, smooth
and periodic source and target densities s and t, the problem (11) is rewritten as follows [32]: define
the functional f of periodic (scalar) potentials φ as

f(φ) : X 7→ t
(
X + Gradφ(X)

)
det

(
I +Hφ(X)

)
− s(X), (12)

and find φ such that

f(φ) = 0 with ψ : X 7→ |X|
2

2 + φ(X) convex. (13)

To perform a Newton iteration on the equation (13) we linearize f as

f(φ+ hφ̃) : X 7→
{
t
(
X + Gradφ(X)

)
+ hGrad t

(
X + Gradφ(X)

)
·Grad φ̃(X)

}
{

det
(
I +Hφ(X)

) (
1 + h tr

((
I +Hφ(X)

)−1 ·Hφ̃(X)
))}
− s(X) + o(h).

so that we have f(φ+ hφ̃) = f(φ) + hDf(φ) · φ̃+ o(h) with the functional derivative being such that

Df(φ) · φ̃ : X 7→ t
(
X + Gradφ(X)

)
det

(
I +Hφ(X)

)
tr
((
I +Hφ(X)

)−1 ·Hφ̃(X)
)

+ det
(
I +Hφ(X)

)
Grad t

(
X + Gradφ(X)

)
·Grad φ̃(X). (14)

If we were to implement exact Newton iterations from the full derivative (14), then the second
term would cause some difficulties. Indeed, when the target density t is defined analytically on ΩP

then its derivative can easily be computed. However, t will rather be constructed from a (preliminary)
numerical solution, hence the numerical computation of its derivative will necessitate some interpo-
lations, a process prone to errors. In this context, it has been noted in [47] and further discussed
in [34] that ignoring the dependence of t on φ, i.e. neglecting the second term in (14), often yields
satisfying results. Lastly, for the purpose of the present study, we are rather interested in an efficient
grid adaptation strategy rather than in an accurate algorithm for solving the Monge-Ampère equation
in itself. As a consequence, given φn, we intent to perform quasi-Newton iterations by computing
instead the solution φ̃ to the linearized equation Df(φn) · φ̃ = −f(φn) with the term Grad t being
discarded in (14). After dividing by t and using (12), this leads to finding φ̃ that satisfies:

det
(
I+Hφn(X)

)
tr
((
I +Hφn(X)

)−1 ·Hφ̃(X)
)

= −det
(
I+Hφn(X)

)
+ s(X)
t
(
X + Gradφn(X)

) (15)

In [32], the equation above is discretized using a second order finite-difference scheme and inverted
using the Bi-Conjugate Gradient (BiCG) algorithm. A Fourier-based discretization is rather considered
in [47] but still in association with the BiCG algorithm. Yet, it should be noted that the left-hand
side of the linear elliptic equation (15) can be rewritten as:

det
(
I +Hφn(X)

)
tr
((
I +Hφn(X)

)−1 ·Hφ̃(X)
)

= tr
(
cof

(
I +Hφn(X)

)
·Hφ̃(X)

)
,

where cof(Fn) is the co-factormatrix defined as cof(Fn) = det(Fn)F−Tn for Fn =
(
I+Hφn(X)

)
, which

is invertible and symmetric. As a consequence and as suggested in [46, Chap. 6], the equation (15)
can be put in divergence form. Indeed, according to Lemma 1, the co-factor matrix of the gradient
Fn = Gradϕn(X) of any smooth vector-valued mapping ϕn(X) = X+Gradφn(X) is divergence-free.
Therefore, we have the result that follows.
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Lemma 4. If φn is sufficiently smooth then it holds

det
(
I +Hφn(X)

)
tr
((
I +Hφn(X)

)−1 ·Hφ̃(X)
)

= Div
(
cof

(
I +Hφn(X)

)
·Grad φ̃(X)

)
.

This finally allows us to compute the mapping through Algorithm 1 below.

Algorithm 1. Optimal transport-based mapping computation

Data: Source and target densities s and t
Initialize φ0 = 0
Iterate until convergence:

Solve for φ̃ using PCG:

Div
(
cof

(
I +Hφn(X)

)
·Grad φ̃(X)

)
= −det

(
I+Hφn(X)

)
+ s(X)
t
(
X + Gradφn(X)

)(16)

Compute optimal step p using line search
Define φn+1 = φn + p φ̃

Compute mapping x = X + Gradφn(X)

The equation (16) nicely exhibits a variational structure so that we can solve it using Precon-
ditioned Conjugate Gradient (PCG) iterations, applying the differential operators Grad, Div in the
Fourier space while the product with cof

(
I + Hφn(X)

)
is computed locally in space. The chosen

preconditioner is the inverse of the homogeneous Laplace operator. This preconditioner is known
analytically in the Fourier space where it is diagonal and applied algebraically, see Appendix A.

Note that, to compute the solution φ̃, we complement the equation (16) with a mean-free condition
on φ̃, which is easily imposed in the Fourier space. In addition, for (16) to be well-posed it is required
that the right-hand side integrate to zero over the periodic cell ΩC . This is indeed the case owing to
the normalization conditions (9) and (10). In practice, this solvability condition may be ensured at
each iteration n by renormalizing the right-hand side of (16) according to (10).
Remark 2. Note that cof

(
I + Hφn(X)

)
is symmetric by definition, but for (16) to be well-posed it

is required that it is uniformly positive-definite as well. It is shown in [32, 47] that this is the case
for all n for exact Newton iterations. However, this cannot be guaranteed for the proposed quasi-
Newton scheme and a suitable test must be used to detect a lack of invertibility of

(
I + Hφn(X)

)
and stop the iterations accordingly. Another approach is to ensure ellipticity by regularizing the term
cof

(
I +Hφn(X)

)
as was done in [58].

Remark 3. In the proposed algorithm, convergence is checked by comparing the residual to a given
threshold ε, i.e. iterating until

‖f(φn)‖L2(ΩC)
‖f(φ0)‖L2(ΩC)

≤ ε (assuming the solution is not φ0 = 0).

In the following, we typically set ε = 10−6 for stopping the quasi-Newton iterations and a tolerance
of 10−1 for the inner PCG loop for solving (16). For this internal solver, this loose stopping crite-
rion appears to be sufficient to empirically ensure convergence of the whole quasi-Newton procedure.
Note that when simple CG is used (i.e. without preconditioner), this is no longer true, and a more
demanding tolerance would be needed at this step, typically 10−3 or so. Finally, a relaxation of the
quasi-Newton step can also be used through a line search if necessary, as detailed in Algorithm 1.

To conclude let us underline that the computed transformation satisfies the following property.
Property 1. The geometrical mapping x = ϕn(X) computed using Algorithm 1 is such that its
gradient Fn at the iterate n is given by Fn =

(
I +Hφn(X)

)
, which is symmetric.
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3.2 Monitor functions
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(b) Random circular inclusions

Figure 3: Reference 2D materials distributions.

The choice of monitor functions is a long-standing issue, see [10], which is by essence problem-
dependent and through which several objectives can be sought. For example, monitor functions can be
constructed a priori, based on the material distribution and the expected behavior of the solution, or
a posteriori based on a computed solution, for example on a preliminary non-adapted discretization,
or using an error estimator. In the following, we will not advocate for a particular choice but rather
illustrate different options on the 2D microstructures of Figure 3. The optimal transport-based grid
mapping method described in Section 3.1.2 will be used, with s defined as the uniform unit density
while different monitor functions will be considered to define the target density t in the following.
Note that setting t = 1 while defining the density of the source s from a given objective function does
allow to deform the computational grid, but this leads to qualitatively less satisfying configurations as
the density of the grid, i.e. the position of its points must rather be prescribed in the physical domain.
Remark 4. As the Jacobian J governs the local change of surface (resp. volume in 3D) elements, then
according to the definition (8) of the point densities, starting from a regular grid of pixels of surface
dS, each of them is distorted with a local change in measure that satisfies ds(x) = s(X)/t

(
x(X)

)
dS.

If the regular grid in ΩC is made of square pixels, then the previous relation can be used to get a
rough estimate of the width of the deformed pixels in ΩP if one ignores the distorsion of their geometry.
This argument extends to 3D grids as well.
Remark 5. In the following, the target density will be based on some preliminary computations (see
the details below). These computations are essentially performed in the physical domain ΩP and, for
the objective at hand, it is sufficient to perform them on a regular grid (which may be different from
the computational grid ultimately used for computations in ΩC). Yet, to compute the solution ψ to the
Monge-Ampère equation (11) using the proposed quasi-Newton scheme, it is necessary to interpolate
the density t at the current location of the physical discretization points. Indeed, at a given iteration
n, the equation (16) makes use of t at the points xn = X + Gradφn(X).

Performing this interpolation accurately is necessary for the algorithm to converge well (as well as
using an appropriate scaling of the density function and normalizing it as already discussed). For the
examples considered below, a linear C0 interpolation method gave satisfying results.

3.2.1 A priori material-based adaptation

As the constitutive relation C in (1) typically features piecewise-constant material parameters, a first
idea is to anticipate on the behavior of the solution u by concentrating grid points at material interfaces
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Figure 4: Grid adaptation for the square inclusion based on the detection of interfaces: (a) target density
function t(x), (b) adapted grid (red/blue), (c) close-up.

in the physical domain ΩP . To do so, we propose in the linear case to simply detect the interfaces by
smoothing-out the components of the material field c (using, e.g., a Gaussian filter G) and combine
them all into a single scalar image (using, e.g., the Frobenius norm ‖ · ‖F) as ‖G(c)‖F. To define a
target density function x 7→ t(x) that takes large values at the (smoothed) interfaces we simply define
it from the rescaled and normalized local Euclidean norm of the gradient of the previous quantity, i.e.
‖ grad ‖G(c)‖F‖2(x). This gradient is defined in physical space and, for the purpose considered here,
it is sufficient to compute it in the Fourier domain on a regular grid.

This is illustrated on the examples considered in the figures 4 and 5 where a coarse grid of N ×N
points, with N = 27 + 1, is purposely used for a better visualization. The smoothing function G is a
2-D Gaussian kernel with a width of 3 pixels. The resulting target density function t is minimal in
the homogeneous phases while it takes larger values in the regions neighboring the material interfaces.
These regions are all the more spread out that the smoothing kernel G is wide, which will in turn have
a direct impact on the size of the areas where the grid points are to be concentrated.

In the context of this a priori material-based approach of grid adaptation, alternative objectives
can be considered, such as concentrating points where singularities are expected, typically around
corners or where inclusions are close to touching. Simple target density functions t can be constructed
either analytically or based on simple image processing techniques to do so, some examples of which
are shown in the figures 6 and 7.

Note that, the grids generated when solving the Monge-Ampère equation using the proposed quasi-
Newton iterations do remain periodic. The representative cell is deformed but it still paves the whole
space periodically.
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Figure 5: Grid adaptation for the random circular inclusions problem based on the detection of interfaces:
(a) target density function t(x), (b) adapted grid (red/blue), (c) close-up.
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Figure 6: Grid adaptation for the square inclusion based on the location of corners: (a) analytical target density
function t(x), (b) adapted grid (red/blue), (c) close-up.
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Figure 7: Grid adaptation for the random circular inclusions problem based on the mean distance to the two
closest interfaces: (a) target density function t(x), (b) adapted grid (red/blue), (c) close-up.

3.2.2 A posteriori solution-based adaptation

Instead of constructing the monitor function based on a priori considerations on the material properties
distribution, the solution-based strategy aims at improving a posteriori a solution to (1) on a given
discretization and given some specific source terms. There is an extensive literature on the subject,
see e.g. [4, 10, 11, 21, 23, 25, 28, 27, 26, 42, 50, 57, 60]. In particular, some efficient methods have been
developed based on variational approaches, dealing with the minimization of energy-like quantities.
As in the previous section, we explore here simple, yet practical, ideas.
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Figure 8: Grid adaptation for the square inclusion based on the computation of a preliminary solution u:
(a) Euclidean norm ‖ gradu‖2(x), (b) target density function t(x), (c) adapted grid (red/blue), (d) close-up.

Consider first the solution u to the problem (1) with C linear, using h = 0 and a loading arbitrarily
defined as g0 = (1, 0) for the sake of the example. This solution can be computed on a preliminary
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regular coarse grid in ΩP (which, again, can be different from the computational grid ultimately used
in ΩC). This solution is relatively smooth, unlike its gradient, which can be computed in Fourier
space. Then, a target density function can be computed from there by smoothing the local Euclidean
norm of the gradient G‖ gradu‖2(x), and applying a suitable scaling and normalization. An adapted
grid obtained for each of the two examples of Figure 3 is shown in the figures 8 and 9.
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Figure 9: Grid adaptation for the random circular inclusions problem based on the computation of a preliminary
solution u: (a) Euclidean norm ‖ gradu‖2(x), (b) target density function t(x), (c) adapted grid (red/blue),
(d) close-up.

This approach is expected to be more adapted to the problem (1) at hand in the sense that it makes
use of the actual singularities of the solution for the loading considered. Unsurprisingly, it leads to
deformed grids that are similar to the ones obtained using the a priori material-based approach when
the target density function was defined relatively to the singular points of the geometry (i.e. corners
or regions where inclusions are close to touching). Nevertheless, only a subset of such geometrical
singularities may actually be involved in the a posteriori solution-based approach as a specific loading
is considered. Note also, that the latter strategy readily allows for an iterative adaptive approach to
be used (see Section 5.2.2). In addition, a posteriori error estimators, such as these proposed in [24]
could advantageously be used at this step.

4 Computational domain formulations
Now that we have some tools to compute mappings between a uniform grid in the computational
domain ΩC and adapted ones in the physical domain ΩP , it remains to transport the PDE considered
from ΩP to ΩC where it will be solved numerically. This is addressed in this section, first in the
generic case and then in the linear conductivity and elasticity cases where we highlight some additional
properties.

4.1 Transported cell problem

Owing to Lemma 2 and to the transformation rules of Lemma 3 then the generic cell problem (1)
when transported from ΩP to ΩC writes as:

Find U ∈ H1
per(ΩC) such that


S(X) = C

(
ϕ(X),G0 + GradU · F−1),

Div
(
S(X) · J(X)F−T (X)

)
+ J(X)H(X) = 0,

〈U〉ΩC
= 0.

(17)

In the above problem, the transformed averaging operator 〈·〉ΩC
is defined as

〈U〉ΩC
=
(∫

ΩC

J(X) dX
)−1 ∫

ΩC

U(X)J(X) dX. (18)
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The problem (17) features the original constitutive relation C , evaluated at the image point x = ϕ(X),
combined with the gradient of the transformation, and similarly for the equilibrium equation. In an
effort to have a method that is as little intrusive as possible, it is useful to rewrite (17) in a form close
to that of (1) by introducing a virtual constitutive equation and some virtual source terms. This is
straightforward to do so, and the final result is stated in the form of the following property.

Property 2. The transported cell problem is given by:

Find U ∈ H1
per(ΩC) such that


S̃(X) = C̃

(
ϕ(X), G̃0 + GradU

)
Div S̃(X) + H̃(X) = 0
〈U〉ΩC

= 0,
(19)

where the overall stress S̃ writes in terms of the virtual constitutive relation C̃ defined as

C̃
(
ϕ(X),E

)
= C

(
ϕ(X),E · F−1) · J(X)F−T (X). (20)

In addition, (19) features some virtual source terms defined as

G̃0(X) = G0(X) · F (X) and H̃(X) = J(X) ·H(X). (21)

The problem (19) is the one to be solved on a regular grid in ΩC . In this form, standard tools can
be employed to do so, provided that the constitutive relation and the source terms are modified to
take into account the transformation of the grid. To shed light on the resulting overall behavior, we
provide further details in the linear case in the next section.

Remark 6. If Algorithm 1 were to be used to compute the geometrical mapping ϕ then the associated
transformation gradient F in Property 2 would be symmetrical, see Property 1. In addition, some
simplifications occur if the normalization conditions (9) and (10) are met. Nevertheless, we prefer to
keep F and its transposed in the final formulation of the problem and keep it as general as possible.

4.2 Properties in the linear case

In the physical configurations of interest here, the constitutive relation writes in the linear case as

C
(
x, e

)
= c(x)e(x) (22)

where c is either a second- or fourth-order tensor-valued field, which is positive-definite, bounded above
and symmetric, i.e. cT = c. In conductivity (resp. elasticity), c is the second-order conductivity (resp.
fourth-order elasticity) tensor. As such, c is everywhere diagonalizable, i.e. there exist some strictly
positive scalars λj(x) and tensors kj(x), which are symmetric in the elasticity case, such that the
following decomposition holds locally:

c(x) =
∑
j

λj(x)kj(x)⊗ kj(x), (23)

where the index j is summed from one up to jmax that depends on the dimension d and the nature
of the problem considered (for conductivity problems jmax = d while in elasticity jmax = d(d+ 1)/2).
The scalars λj(x) > 0 are the (possibly multiple) eigenvalues of the constitutive tensor c(x) while
kj(x) are the associated eigentensors. The eigentensors associated with distinct eigenvalues λj(x) are
orthogonal for the standard Euclidean scalar product. In elasticity, the relation (23) is known as the
Kelvin decomposition, see [35]. In this context, one can establish the following property.
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Property 3. In the linear case, the overall stress S̃ entering the transported cell problem (19) writes
as

S̃(X) = C̃(X)
(
G̃0 + GradU

)
, (24)

in terms of the virtual linear constitutive tensor C̃ defined as

C̃(X) =
∑
j

JΛj(X)
(
Kj(X) · F−T

)
⊗
(
Kj(X) · F−T

)
,

using the transformation rule of Definition 1 with the associated upper-case letters notation.

Proof. Given the linear constitutive relation (22), then from the virtual constitutive equation (20) of
the transported problem one can establish the following algebraic identities

S · JF−T =
(
C(X)

(
G0 + GradU · F−1)) · JF−T ,

=
((
C(X) · F−T

)(
G0 · F + GradU

))
· JF−T ,

=
(∑

j

JΛj(X)
(
Kj(X) · F−T

)
⊗
(
Kj(X) · F−T

))
︸ ︷︷ ︸

def= C̃(X)

(
G0 · F︸ ︷︷ ︸
def= G̃0

+ GradU
)
.

(25)

In (25) we have made use of the notation convention associated with the mapping of Definition 1.
In addition, we have also employed the Kelvin decomposition (23) where, at least in elasticity, the
symmetry of the eigentensors Kj(X) = kj(x) is used at the last line.

In Property 3 one has defined a virtual local constitutive tensor C̃(X) that combines both the
actual material properties at the image point x = ϕ(X), owing to Λj(X) = λj(x) and Kj(X), and
the geometrical contribution of the grid mapping, owing to the terms J(X) and F (X). In addition,
as Λj(X) > 0 from the original tensor c(x) being positive-definite, and since J > 0 with F being
invertible, then one immediately obtains from Property 3 the following corollary.

Corollary 1. The virtual constitutive tensor C̃(X) is positive-definite.

In the next two subsections we further investigate the symmetry properties of these terms in the
conductivity and elasticity cases.

4.2.1 Conductivity

In the conductivity case, the unknown in (1) is a scalar potential u and c is a positive-definite and
symmetric second-order tensor. As a consequence, the cell problem (19) transposed on ΩC retains
the same form as the original problem with the virtual second-order conductivity tensor C̃ satisfying
C̃ij(X) = J(X)Cpq(X)

(
F−T (X)

)
pi

(
F−T (X)

)
qj

as the eigentensorsKj(X) are first-order tensors. In
tensor form it holds:

C̃(X) = J(X)F−1(X) ·C(X) · F−T (X). (26)

In addition, if we set the source as g0(x) = ē ∈ Rd then its virtual counterpart writes

G̃0(X) = G0(X) · F (X) = F T (X) · ē.

The symmetry of the original second-order conductivity tensor c(x) yields the following property.

Corollary 2. The virtual conductivity tensor C̃ defined by (26) is symmetric, i.e. C̃ij(X) = C̃ji(X)
holds locally.
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4.2.2 Elasticity

In conductivity, the system (19) features a virtual constitutive tensor that is symmetric so that the
transported problem retains the same structure as the original one. In the elasticity case, the coor-
dinate mapping procedure is the same but it will be seen that this yields equations with a slightly
modified structure. This is well-known in the field of transformation theory, in particular when applied
to cloaking [38, 43], and this question will be returned to hereafter.

In the elasticity case, the unknown in (1) is a vector-valued displacement field U and c is the
fourth-order elasticity tensor with major and minor symmetries, i.e.

cijk` = ck`ij = cij`k = cjik`.

Therefore, the transported problem (19) writes in terms of the fourth-order virtual constitutive tensor
C̃(X) defined with indices as

C̃ijk`(X) = J(X)Cipkq(X)
(
F−T (X)

)
pj

(
F−T (X)

)
q`
, (27)

as the eigentensors Kj(X) are second-order tensors in this case. In addition, if we choose the source
term as g0(x) = ē ∈ Rd×dsym then its virtual counterpart G̃0 is not necessarily symmetric and is given
in index notation by (

G̃0(X)
)
k`

=
(
G0(X)

)
km

(
F (X)

)
m`

= ēkm
(
F (X)

)
m`
.

Remark 7. For comparison with the conductivity case, it can be noted that, given the symmetries of
the elasticity tensor C(X) = c(x), one has:

C̃ijk`(X) = J(X)
(
F−1(X)

)
jp
Cpikq(X)

(
F−T (X)

)
q`
.

Similarly, owing to the symmetry of ē, the transported source term can be rewritten as(
G̃0(X)

)
k`

=
(
F T (X) · ē

)
`k
.

Despite the apparent similarity of the transported problem (19) compared with the original problem
(1), unlike the conductivity case there is a key difference in elasticity due to a lack of symmetry of the
virtual elasticity tensor C̃. This is more precisely stated in the property below.

Corollary 3. For all invertible transformation gradient F (X), the virtual elasticity tensor C̃(X)
defined by (27) has the major index symmetry, i.e. C̃ijk` = C̃k`ij holds locally.
In addition, C̃(X) holds the minor symmetries C̃ijk` = C̃ij`k = C̃jik` if and only if F (X) = αI with
α ∈ R locally.

Proof. The major symmetry of C̃ is an immediate consequence of this of the original elasticity tensor
C. Indeed, one has

C̃ijk`(X) = J(X)Cipkq(X)
(
F−1(X)

)
jp

(
F−1(X)

)
`q

= J(X)Ckqip(X)
(
F−1(X)

)
`q

(
F−1(X)

)
jp

= C̃k`ij(X).

Now, assuming that C̃ has the minor symmetries, i.e. that C̃ijk`(X) = C̃ij`k(X), entails

Cipkq(X)
(
F−1(X)

)
jp

(
F−1(X)

)
`q

= Cip`q(X)
(
F−1(X)

)
jp

(
F−1(X)

)
kq
.
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Using that
(
F−1(X)

)
pj

=
(
F−T (X)

)
jp

and multiplying the above equation by
(
F T (X)

)
jm

gives

Cimkq(X)
(
F−1(X)

)
`q

= Cim`q(X)
(
F−1(X)

)
kq
.

Using that C−1 : C = Isym4 with Isym4 being the symmetric fourth-order identity tensor with com-
ponents

(
Isym4

)
ijk`

= 1
2(δikδj` + δi`δjk), then multiplying the equation above by

(
C−1(X)

)
abim

finally
leads to

δak
(
F−1(X)

)
`b

+ δbk
(
F−1(X)

)
`a

= δa`
(
F−1(X)

)
kb

+ δb`
(
F−1(X)

)
ka
.

In the identity above, all the indices are independent and free with a, b, k, ` ∈ {1, . . . , d}. Now, let
examine different cases:
– if a = k and b = `, but k 6= ` then

(
F−1(X)

)
kk

=
(
F−1(X)

)
``
,

– if a = b = k 6= ` then
(
F−1(X)

)
`k

= 0,
so that one get that F−1(X) = 1

αI with α ∈ R. The reciprocal holds trivially.

As a consequence, the transported stress field defined in the computational domain ΩC is not
symmetric. This result is already known from transformation theory, see e.g. [43], which makes the
problem (19) of the form of Cosserat elasticity [18]. This type of formulation is also encountered in large
strain elasticity. Moreover, the unknown in this problem is now the full gradient of U , rather than its
symmetric part only. This will have some consequences for the numerical strategies aiming at solving
the transported problem. Yet, it should be noted that the conservation of the major symmetry for
C̃(X) ensures that the bilinear form associated with the weak formulation of (19) remains symmetric
(hence the corresponding stiffness matrix in a finite element formulation).

Remark 8. A way to preserve all the symmetries of the elasticity tensor is to modify Definition 1
when transforming the unknown u to (1), by applying to it a linear gauge transformation related to
F , see [43, 38]. Doing so, the equation can be put in a transformation invariant form. However, it
did not appear necessary for our purposes.

5 FFT-based computations of the transported problem

5.1 Preliminary considerations

To solve the problem (19) formulated on the uniformly discretized computational domain ΩC then
standard FFT-based approaches can be adopted, namely fixed-point or gradient-based algorithms, see
[41, 29, 1, 56] and the references therein. The notable point here is that, even in the linear case if
the original constitutive tensor c(x) is isotropic, then the use of the coordinate transformation ϕ is
likely to produce a virtual tensor field C̃(X) that is anisotropic. Hence, the algorithm employed to
solve (19) may need to be adapted to take this into account. In particular, for the iterative methods
that rely on the introduction of a homogeneous comparison medium C0, the latter has to be suitably
chosen to ensure convergence in this context. Moreover, even if the original constitutive properties are
piecewise-constant, if the coordinate mapping varies continuously in space (which is likely to be the
case in practice), then the overall properties in the transported problem would exhibit both smooth
variations and discontinuities, inherited from ϕ and C , respectively, as already discussed. Lastly, if
there are regions where the coordinate transformation ϕ induces severe distortions to the grid then the
Jacobian J(X) will have extreme values at these locations (as it quantifies local volumetric changes),
leading thus to very large or small values of the local properties in ΩC (in such a case, the associated
virtual material would therefore exhibit high contrasts). Lastly, the Green’s tensor featured in the
volume integral equation on which FFT-based methods are based on must be adapted to the specific
symmetries of the virtual constitutive tensor. These questions are returned to in the next sections.
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5.2 Iterative schemes

Here, we describe some iterative schemes to solve the problem (19) formulated on the reference uniform
grid ΩC , in the linear case (24) first and then in the non-linear one. The linear conductivity and
elasticity problems being formally of the same nature, we expose here the main ideas behind the
structure of the numerical schemes needed and, without loss of generality, we set H = 0. The
Green’s tensors to be used specifically in the conductivity and the elasticity cases will be detailed in
Appendix A.

Remark 9. The following schemes solve for GradU directly rather than for U itself. As a conse-
quence, no use will be made of the normalization condition 〈U〉ΩC

= 0 of (19).

5.2.1 Green’s tensor and fixed-point scheme

We now describe formally the fixed-point approach for completeness. Let C0 denote a homogeneous
comparison medium and define

S̃(X) = C0 GradU(X) + T̃ (X) with T̃ (X) = C̃(X)G̃0(X) + δC̃(X) GradU(X), (28)

with δC̃(X) =
(
C̃(X)−C0

)
. Using (28) into (19), i.e. with T̃ acting as a source term, implies that

U can formally be written as

U(X) = −
[
DivC0 Grad

]−1 Div T̃ (X),

where the inverse is to be taken on a suitable subspace, see [37]. Therefore, the gradient of U can be
found through the application of the Green’s operator, which is defined as follows.

Definition 2. The periodic gradient Green’s operator Γ̃0 : L2
per(ΩC) → L2

per,0(ΩC) is the non-local
linear operator formally defined as:

Γ̃0 T (X) = Grad
[
DivC0 Grad

]−1 DivT (X), (29)

where L2
per(ΩC) is the space of ΩC-periodic, not necessarily symmetric, tensor-valued fields that are

square-integrable, and L2
per,0(ΩC) its subspace of zero-mean tensors.

Accordingly, substituting the expression for T̃ back into the equation for U above yields:

GradU(X) = −
[
Γ̃0
(
C̃G̃0 + δC̃ GradU

)]
(X), (30)

The equation (30) is then solved by the following fixed-point scheme for all point X of a uniform grid
discretizing ΩC :

GradU (0)(X) = 0,

GradU (n+1)(X) = GradU (n)(X)−
[
Γ̃0C̃

(
G̃0 + GradU (n)

)]
(X),

(31)

provided that C0 has been chosen so as to ensure convergence, see [41]. Typically, assuming that C̃
would in general be anisotropic then one can choose C0 as the closest isotropic tensor that ensures
convergence [39] or as an equally suitable uniform anisotropic tensor. As is well known, the larger the
contrast in C̃ the larger the number of iterations required to converge. This can however be controlled
by scaling and normalizing the point densities s and t featured in the Monge-Ampère equation (11).
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As is common practice, when applying the iterative scheme (31), the actions of the differential op-
erators are computed through Γ̃0 locally in Fourier space whereas the (virtual) constitutive properties
C̃ are applied locally in the (transformed) space ΩC . The expression of the periodic gradient Green’s
tensor Γ̃0 in the Fourier space will be detailed in Appendix A. It must also be noticed that the scheme
(31) has been established using the following property.

Property 4. The periodic gradient Greens’s tensor Γ̃0 in Definition 2 satisfies the formal projection
property: [

Γ̃0C0 GradU
]
(X) = GradU(X). (32)

The identity (32) is well-known in the standard cases involving fully symmetric constitutive prop-
erties and symmetrized gradients. It will be further discussed in Appendix A for the specific forms of
the Green’s tensor Γ̃0 involved in this study.

5.2.2 Adaptive approach

When solving (31), two approaches can be adopted. Either the coordinate transformation ϕ is fixed so
that C̃ and G̃0 are given and C0 (and thus Γ̃0) is defined once for all, or ϕ changes with the iterations
(e.g. so as to adapt to the computed solution which may be singular) so the previous quantities would
change accordingly. In such a case, (31) is rewritten as

GradU (0)(X) = 0,

GradU (n+1)(X) = GradU (n)(X)−
[
Γ̃(m)

0 C̃(m)
(
G̃

(m)
0 + GradU (n)

)]
(X).

(33)

In (33) the terms C̃(m), G̃(m)
0 , and the chosen reference medium C

(m)
0 (and hence Γ̃(m)

0 ) may typically
be modified at the iterations m of a loop exterior to the fixed-point iterations, once convergence has
been reached. They can also change with n, for example if ϕ is modified at each fixed-point iteration
with m = n, or a subset thereof, provided that convergence can be achieved.

5.2.3 Gradient-descent algorithms

For some time already, iterative fixed-point algorithms such as (31) tend to be substituted by gradient-
descent methods. The latter are based on a variational formulation equivalent to the local problem
considered. As the problem (19) in the linear case (24) involves a symmetric constitutive tensor C̃
both in the conductivity and elasticity cases (i.e. with major index symmetry in the elasticity case),
then they can be associated with a quadratic energy functional J defined as

J (E∗) = 1
|ΩC |

∫
ΩC

1
2
(
G̃0(X) +E∗(X)

)
C̃(X)

(
G̃0(X) +E∗(X)

)
dX (34)

defined over the functional space

H =
{
E∗ : ∃W ∈ H1

per(ΩC) such that E∗ = GradW
}
,

and with G̃0 being given. Therefore, (19) with (24) is formally equivalent to the minimization problem

GradU = arg min
E∗∈H

J (E∗).

As it has been done in previous studies, see e.g. [29, 1], the gradient ∇J [E∗] of J at E∗ ∈ H can be
computed whenH is endowed with the energetic scalar product defined by the symmetric reference ten-
sor C0 as the (symmetric and positive-definite) bilinear form

(
E

(1)
∗ ,E

(2)
∗
)
7→ 1
|ΩC |

∫
ΩC
E

(1)
∗ C0E

(2)
∗ dX.
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Upon using the (major) symmetry of C̃ it can be seen that ∇J [E∗] is solution of

Div
(
C0∇J [E∗](X)− C̃(X)

(
G̃0(X) +E∗(X)

))
= 0.

As a consequence, owing to Property 4, we finally obtain:

∇J [E∗](X) =
[
Γ̃0 C̃(G̃0 +E∗)

]
(X). (35)

With the gradient of the energy functional J at hand then the transported local problem (19) in the
linear case (24) can be solved efficiently using (accelerated) gradient-descent algorithms. In some of
the numerical examples that follow, we will make use of the Conjugate Gradient (CG) method.

5.3 Non-linear problems

When the original constitutive relation C is non-linear, then computing the solution to the transported
problem (19) can be done as in [41] through fixed-point iterations of the form:

GradU (n)(X) and S̃(n) being known,

GradU (n+1)(X) = GradU (n)(X)−
[
Γ̃0 S̃

(n)
]
(X),

S̃(n+1)(X) = C̃
(
ϕ(X), G̃0 + GradU (n+1)).

(36)

This scheme is a straightforward extension of (31) to the non-linear case. Note that gradient-based
algorithms could also be used to solve (19) in non-linear cases, but we will not go into further details
here.

6 Numerical examples of adaptive computations
As already discussed in Section 5.1 the virtual constitutive properties C̃ (or C̃ ) are likely to be of
larger contrast compared with the original properties C (or C ), a property induced by the mapping
ϕ. Consequently, an iterative scheme such as those described in Section 5.2 will certainly be slower to
converge than the same scheme on a given regular grid, but the overall objective is to achieve better
accuracy for this discretization in the bargain. For a detailed account on iteration and discretization
errors, as well as on convergence criteria, the reader is referred to [24]. In addition, there is a third type
of numerical errors that are those associated with the approximation of the microstructure geometry.
In practice, these errors are most of the time discarded from the analysis as they are notoriously
difficult to estimate since what can serve as an exact (possibly analytical) reference geometry is often
not accessible. However, in the configurations of Figure 3 considered here, the microstructure is defined
analytically. Moreover, the square inclusion problem in Fig. 3a is correctly described on a regular grid.
As a consequence, for the transformations that do not respect the orthogonality of the grid on the
matrix-inclusion interface for this geometry, such as in the figures 4 and 8 then the corresponding
transported problems would be associated with a geometrical error. In this very specific case, this
downside has to be weighed against the expected gain in accuracy.

These questions will be investigated in this section by comparing computations of original prob-
lems (1) on regular grids with their transported versions in Property 2 on adapted non-uniform grids.
For full-field comparisons, the solutions to the transported cell problems (19) will be transported
back from the computational domain ΩC to the physical domain ΩP . The computation of effective
properties will also serve as an overall metric to assess the performances of the proposed adaptive
method. For the sake of conciseness, we have chosen to present in detail only a representative subset
of numerical results, leaving aside in particular the notoriously complex question of the choice of the
monitor function, discussed in section 3.2, see [10] and the references therein on this matter.
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6.1 Periodic microstructured interface

First, we consider the periodic interface configuration for which the linear unit cell problem is posed
on the semi-infinite domain ΩP =]−∞,+∞[×[−1/2, 1/2] which we approximate using the analytical
mapping of Figure 2. The matrix and the inclusion are isotropic with conductivities 1 and z = 10
respectively. The anisotropic virtual conductivity tensor C̃(X) associated with the chosen analytical
mapping is diagonal, with components shown in Figure 10.
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Figure 10: Virtual conductivity tensor in the computational domain ΩC for the periodic interface problem and
the analytical mapping of Fig. 2.

In this setting, the FFT-based computation of the transformed problem (19) are performed using
fixed-point iterations on a grid of 129 × 65 = 8385 pixels. Given the diagonal form of the virtual
conductivity tensor, we defined the homogeneous comparison medium C0 also as anisotropic and
diagonal, with components computed according to the standard rule in [41]. This departs slightly
from the discussion in Section 5.2 but improved convergence.

The homogenization of the periodic interface problems is associated with a set of four effective
parameters, which we refer to as B1, B2 and C1, C2, by convention with the notations in [52] and
[16]. Comparison is made with both a reference Finite Element (FE) solution computed using P2
triangular elements with 80556 nodes, and a FFT-based solution computed on a regular rectangular
grid of 129 × 65 pixels whose spatial extent is identical to this of Figure 2. The results are reported
in Table 1.

Reference FE solution FFT with regular grid FFT with analytical mapping
B1 -0.480 -0.469 -0.483
B2 -0.179 -0.167 -0.174
C1 0.179 0.167 0.174
C2 -2.129 -2.038 -2.127

Table 1: Effective interface parameters.

First, this illustrates that the proposed adaptive Fourier spectral method on a non-uniform grid
is operational. Second, it yields satisfying results regarding the computation of effective parameters.
Indeed, for the case considered here, a maximum relative error of 2.5 · 10−2 overall is obtained using
the adaptive computation compared with the reference FE solution, with nearly 10 times less degrees
of freedom. Meanwhile, the FFT-based computation on a regular grid yields a maximum relative error
of 6.4 · 10−2 compared to the FE solution, thereby illustrating the benefit of the proposed method.
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6.2 2D periodic media and linear conductivity case

In this section we present full-field comparisons for the two cases considered in Fig. 3. The conductivity
in the isotropic inclusion (or the set thereof) is set to z = 10 while it is equal to 1 in the matrix. The
solution to the problem (1) with h = 0 and an imposed macroscopic gradient g0 = (1, 0) is computed
using a relatively coarse discretization of N ×N pixels with N = 27 + 1 for visualization, using either
a conventional regular discretization or the proposed adaptive method. In each case, the CG method
is employed, using the computed gradient (35) for the C0-based energetic scalar product.

Square inclusions. We investigate first the square inclusion problem of Figure 3a, in association
with the mapping of Figure 6, which concentrates grid points near the inclusion corners where sin-
gularities can be expected. The use of analytical Gaussian distributions to define the target density
function t(x), see Fig. 6(a), allows to maintain the position of the matrix-inclusion interface and thus
to better preserve the phase fraction through the transformation. Yet, the resulting virtual conduc-
tivity tensor C̃(X) in (26) is fully anisotropic and its components are plotted in Figure 11. This is
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Figure 11: Virtual conductivity tensor in the computational domain ΩC for the square inclusion problem and
the analytical mapping of Fig. 6.

the actual conductivity tensor that is used in the transported problem (19), which is solved in ΩC on
a regular grid. Note that, while the inclusion remains a perfect square, the virtual tensor C̃ becomes
fully anisotropic, with different diagonal elements and a non-zero out-of-diagonal one, and the (virtual)
material contrast increases due to the local changes in the metric.
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Figure 12: Square inclusion: comparison of the first component of the solution gradu(x) to (1) in ΩP computed
using (a) a regular grid and (c) the adapted grid of Fig. 6, with close-ups in (b) and (d), respectively.

For comparison between the two types of grid, the associated first components of gradu in the phys-
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ical domain ΩP are plotted in Figure 12. A qualitative agreement is found between the two computed
solutions. Nonetheless, despite an identical number of degrees of freedom, the corner singularities are
better resolved using the adapted computational grid in Fig. 12(c-d). Quantitative comparisons can
be found in Section 6.3.

Random circular inclusions. The geometry of the random circular inclusions in Figure 3b is
now considered. An adapted grid is computed using the solution-based approach that results in
Fig. 9. Doing so, grid points are concentrated in the regions where a preliminary solution computed
on a regular grid exhibits strong gradients. The components of the resulting virtual conductivity
tensor C̃(X) are shown in Figure 13. As in the previous case, full anisotropy and an increase in the
(virtual) material contrast are once again obtained, but here the inclusions are also distorted in the
computational domain ΩC due to the heterogeneity of the mapping.
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Figure 13: Virtual conductivity tensor in the computational domain ΩC for the random circular inclusions
problem and the solution-based mapping of Fig. 9.

The solution to (1) is then computed, both on a regular grid in Fig. 14(a-b), and on the adapted
grid in Fig. 14(c-d). While these two simulations are comparable for this configuration as well, the
adapted computation is qualitatively more satisfying, with a solution being smoother than the one
computed on the regular grid at the same discretization, and with discontinuities being better captured.
Quantitative comparisons and convergence analysis are investigated in the next section.
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Figure 14: Random circular inclusions: comparison of the first component of the solution gradu(x) to (1) in ΩP

computed using (a) a regular grid and (c) the adapted grid of Fig. 9, with close-ups in (b) and (d), respectively.
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6.3 Convergence results

In this section, we investigate more quantitatively the effect of using the adaptive grid to compute the
solution of the problem considered and, in the end, to compute homogenized parameters. As was done
in [2] and [24], we distinguish between the iteration error associated with the behavior of the employed
iterative scheme, see Section 5.2, and the discretization error. The results that follow correspond to
the computations just described in Section 6.2. Finally, we also investigate the influence of the original
material contrast on the accuracy of the proposed method.

6.3.1 Iteration error

First, we quantify the convergence behavior of different solution methods for solving the problem at
hand. In the figures 15 and 16, the iteration error is plotted as a function of the iteration number n
for computations performed either on a regular grid or on an adapted one. The material contrast is
set to z = 10 and the discretization corresponds to N = 27 + 1. Two iterative schemes are confronted,
namely fixed-point iterations and the Conjugate Gradient (CG) method, while the associated iteration
errors are computed using the norm of the equilibrium equation and of the residual, respectively, with
a stopping criterion ε = 10−6. These measures of the iteration error correspond to those classically
used with each class of methods, but they are not necessarily mutually comparable. We have also
included the iteration error associated with the quasi-Newton steps for solving the Monge-Ampère
equation using Algorithm 1, which is used to produce the adapted grid.
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Figure 15: Square inclusion: comparison of the iteration errors in solving the PDE considered using a regular
grid or the shown adapted grid (see Fig. 6), as functions of the iteration number n (in log-log scale). The
corresponding fields computed using CG are shown in Fig. 12.

The convergence behavior in the square inclusion case is highlighted in Figure 15 and this of the
random circular inclusions configuration in Figure 16. As already discussed, the adaptive method
solves the transported problem (19) that features a virtual material with a contrast larger than in
the original problem (1). As an expected consequence, the computations performed on adapted grids
take more iterations to converge. In this context, the use of an efficient gradient-based algorithm
such as the CG method allows to recover satisfying performances. Note that this corresponds to the
computations in Section 6.2. The additional iteration cost must be put in balance with the expected
gain in accuracy that can be achieved using the proposed method, which will be quantified in the next
paragraph. Note finally that, for the configurations considered, the iteration error associated with the
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quasi-Newton steps for solving the Monge-Ampère equation (11) is comparable to or less than this of
the problem at hand itself, given that each of them only requires few inner PCG iterations with the
tolerance ε = 10−1 considered, see Remark 3.
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Figure 16: Random circular inclusions: comparison of the iteration errors in solving the PDE considered using
a regular grid or the shown adapted grid (see Fig. 9), as functions of the iteration number n (in log-log scale).
The corresponding fields computed using CG are shown in Fig. 14.

6.3.2 Discretization error

In this section we investigate the convergence properties of the adaptive computations relatively to the
discretization parameter N , the 2D computational grid being of N ×N pixels. The material contrast
is set to z = 10 and the CG method is used for these computations. We use the effective parameters
as quantitative metrics to assess the performance of the proposed method. To compute the effective
properties, we make use of their energetic definition, which has been proven to converge faster than
the field-based version using the iterative schemes described in Section 5.2, see [2, Section 4.2]. To do
so, consider the effective energy Weff defined as

Weff(g0) = min
e∗=gradw

〈
w(x, g0 + e∗)

〉
ΩP

(37)

in terms of the local energy density w associated with the problem (1) considered. For the adaptive
computation, the averaged energy in the equation above is directly computed in the computational
domain ΩC using the transformation rules:

〈
w(x, g0 + gradw)

〉
ΩP

= 1
|ΩP |

∫
ΩP

w(x, g0 + gradw) dx

= 1
|ΩC |

∫
ΩC

w(ϕ(X),G0 + GradW · F−1)J(X) dX.
(38)

From (37) and (38) one can then extract some effective parameters depending on the choice of the
applied macroscopic gradient g0.

For the square inclusion configuration of Figure 3a, the effective parameter is known analytically,
see [44]. Yet, as we have chosen to work with discretization parameters N that are odd for parity
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Figure 17: Square inclusion: comparison of the relative errors on the effective parameter computed using a
regular grid (a) and adapted ones (b,c,d), as functions of the discretization parameter N (horizontal axis is in
log base 2 scale). For the grids (a,b) and N = 27 + 1, see fields comparison in Fig. 12.

reasons in the FFT-based setting, we rather use a computation on a regular and sufficiently fine grid,
with N = 212 + 1, as a reference for the evaluation of numerical errors. On Figure 17, we compare
the relative errors in the effective parameter associated with a macroscopic gradient g0 = (1, 0), for
computations performed on regular grids and on ones that have been adapted using the analytical
mapping of Figure 6 already discussed (dark blue curve). Therefore, the case N = 27 + 1 corresponds
to the computations in Section 6.2. While convergence is observed as expected for both approaches,
it is remarkable here that the accuracy obtained using the proposed adaptive method at a given dis-
cretization N is comparable to the one obtained on a regular grid twice as fine, i.e. with discretization
2N . This must be put in relation with the grid density considered in the adaptive computation (Fig. 6)
where the highest value allows for a reduction of the pixel size by slightly more than two in the corner
regions. This confirms the interest of the proposed approach for improving the accuracy at a given
number of degrees of freedom. For completeness, we have also included the relative errors associated
with the other adapted grids considered in the sections 3.2.1 and 3.2.2, see grids (c,d) and light blue
curves. Better accuracies are also obtained for these other grid adaptation strategies.

A convergence analysis relatively to the discretization parameter is also performed in the random
circular inclusions case. Here again, errors are computed relatively to a simulation on a regular grid
with N = 212 + 1 pixels. The obtained results are synthesized in Figure 18 where, for the geometry
considered, the adaptive method is deployed using the solution-based approach that leads to Figure 9
(dark blue curve) and which has been investigated previously. For this mapping, a systematic gain
in accuracy is highlighted in Fig. 18 using the adapted grid compared to the regular one. While the
improvement of the relative error on the effective parameter is slightly less than in the square inclusion
case studied previously, it nonetheless corresponds here to a reduction between 14% to 49% for the
discretizations considered, making the proposed approach interesting to improve the overall quality
of the simulation. For completeness, the convergence behavior has also been quantified for the other
mappings of the sections 3.2.1 and 3.2.2, see grids (c,d) and light blue curves. In such cases, precision
gains are nearly systematic and sometimes quite significant.

Finally, let us remark that in the figures 17 and 18 the gain in accuracy as a function of the
discretization is not always monotonic for the different mappings considered. This could be due
to the fact that the grid adaptation has been automatized to produce theses graphs, which could
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Figure 18: Random circular inclusions: comparison of the relative errors on the effective parameter computed
using a regular grid (a) and adapted ones (b,c,d), as functions of the discretization parameter N (horizontal
axis is in log base 2 scale). For the grids on the left and N = 27 + 1 see fields comparison in Fig. 14.

sometimes lead to suboptimal results. While these figures highlight the overall satisfying behavior
of the proposed approach, the adaptive solution method must by essence be fine-tuned to a given
configuration of interest to get the best performances.

6.3.3 Effect of the material contrast

Finally, we investigate here the effect of the original material contrast in the accuracy of the proposed
adaptive method. Comparisons are made in this section between computations on regular and adapted
grids, with a fixed discretization of N = 27 +1 and using the CG method. The conductivity contrast z
is varied in the range [10−3, 103] and the associated relative errors are computed relatively to reference
computations on a regular grid with N = 212 + 1, and shown in the figures 19 and 20.

First, in the square inclusion configuration in Figure 19, the error associated with the analytical
mapping of Figure 6 is shown as a dark blue curve, so that the case z = 10 corresponds to the
computations in Section 6.2 and to the errors obtained for N = 27 + 1 in the figures 17. We observe a
constant improvement in accuracy over the whole contrast range investigated. The results associated
with the other mappings are also shown, see grids (c,d) and light blue curves. In these cases, the
evolution of the improvement is less monotonic but it is significant and particularly good in the case
of the refinement at the matrix-inclusion interface, see grid (c). Similarly to the results of the previous
section, optimizing the adaptive computation to a specific configuration might improve the overall
performance behavior.

The random circular inclusion case is investigated in Fig. 20, again with the dark blue curve cor-
responding to the solution-based strategy, which lead to Fig. 9. Therefore, when z = 10, comparisons
can be made with the results in Section 6.2 and in Figure 18 for N = 27 + 1. The errors for the other
grid adaptation strategies are also shown, i.e. grids (c,d) and light blue curves. Overall, a constant
improvement in accuracy is obtained as a function of the contrast for the different adaptive grids
considered. For this configuration as well, refining at the matrix-inclusions interfaces leads to the best
results, see grid (d).
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Figure 19: Square inclusion: comparison of the relative errors on the effective parameter computed using a
regular grid (a) and adapted ones (b,c,d), as functions of the material contrast z (in log-log scale). For the grids
on the left and z = 10, see fields comparison in Fig. 12.

6.4 Example of a non-linear elasticity problem

Finally, this section investigates an example in non-linear elasticity. We consider a deformation theory
of plasticity, in the form of a non-linear elasticity model based on a secant elasticity modulus that
depends on a yield stress σ0, which is compatible with the format of the constitutive relation C in (1).
More precisely, the material is chosen as a set of purely elastic isotropic inclusions embedded in an
isotropic elastic and perfectly plastic matrix. Therefore, we define the second-order stress tensor s
through:

s(x) ≡ C
(
x, ε

)
= κ(x) tr(ε(x))I + 2µs(ε(x))εd(x), (39)

in terms of the strain field ε = 1
2
(

gradu+ graduT
)
and its deviatoric counterpart εd = ε− tr(ε)I/3.

In addition, in (39), κ(x) is the bulk modulus and µs(ε(x)) is a secant shear modulus defined as

µs(ε(x)) =


µ(x) if εeq(x) < σ0(x)

3µ(x)
σ0(x)

3εeq(x) if εeq(x) ≥ σ0
3µ(x) ,

(40)

where the equivalent strain is given by εeq(x) =
√

2
3ε

d(x) : εd(x). In (40), µ is the local elastic shear
modulus, and it is understood that σ0 can be taken as infinite in the material phases that are purely
elastic.

We consider the random circular inclusion case, with the geometry of Figure 3b discretized on a
grid with N = 27 + 1. We define the elasticity moduli in (39) through the Young’s modulus E and the
Poisson’s ratio ν, with E = 400GPa and ν = 0.3 in the elastic inclusions, while E = 60GPa, ν = 0.2
and σ0 = 20MPa in the elastoplastic matrix. The unit cell is subjected to an applied macroscopic
strain g0 = 5 · 10−3 diag(1,−1, 0), which is applied gradually over a fictitious time interval discretized
in 100 steps, see [41].
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Figure 20: Random circular inclusions: comparison of the relative errors on the effective parameter computed
using a regular grid (a) and adapted ones (b,c,d), as functions of the material contrast z (in log-log scale). For
the grids on the left and z = 10, see fields comparison in Fig. 14.

Grid adaptation. As can be expected with the perfectly plastic behavior in the configuration
considered, the deformation will tend to localize in the matrix to form slip bands, with angle ±π/4
to the direction of the applied traction. To increase the accuracy of the computation, we choose the a
posteriori solution-based approach of Section 3.2.2, with a monitor function defined from a preliminary
solution computed on a regular grid. More specifically, the target density function t(x) is computed
from a smoothed and rescaled version Gεeq(x) of the associated equivalent strain field. The application
of the proposed optimal transport-based Algorithm 1 leads to the results shown in Figure 21, where
the regions with a higher density of grid points in ΩP overlay the slip bands.
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Figure 21: Grid adaptation for the non-linear elasticity problem in the random circular inclusions case, based
on the computation of a preliminary solution u: (a) Equivalent strain εeq(x), (b) target density function t(x),
(c) adapted grid (red/blue), (d) close-up.

Convergence and full-field comparisons. The transported non-linear problem (19) is then solved,
by applying at each (fictitious) time step, the fixed-point algorithm (36) to compute the full displace-
ment field, with a stopping criterion set as ε = 10−4. A comparison of the equivalent strains computed
on the regular and adapted grids is then shown in Figure 22. While these fields agree qualitatively,
which validate in the non-linear case the overall approach proposed, the computation performed on
the adapted grid is found to be better resolved in the regions of high strains.
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Figure 22: Random circular inclusions in the non-linear elasticity case: comparison of the equivalent strain
εeq(x) (in log scale) associated with the solution to (1) with (39–40) in ΩP computed using (a) a regular grid
and (c) the adapted grid of Fig. 21, with close-ups in (b) and (d), respectively.
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Figure 23: Random circular inclusions in the non-linear elasticity case: comparison of the iteration errors in
solving the PDE considered using a regular grid or the shown adapted grid (see Fig. 21), as functions of the
cumulative iteration number n (in log-log scale) for fixed-point iterations. The loading is applied linearly over
100 steps. The corresponding computed fields are shown in Fig. 22.

For a more quantitative analysis, we report in Figure 23 the iteration errors associated with the
computations of the solution on a regular grid and on the adapted grid, reminding that the stopping
criterion for the inner fixed-point iterations has been set at ε = 10−4. The numerical cost associated
with the resolution of the Monge-Ampère equation using Algorithm 1, with a tolerance set at ε = 10−6

as previously, is also included for comparison. First, it can be seen that, in this non-linear elasticity
case, the ratio between the cost for adapting grid and that of computing the solution to the problem
at hand itself is more favorable than in the linear case, which argues in favor of including this pre-
processing in standard numerical tools. As of the computation of the solution to the transported
problem, a larger number of fixed-point iterations is required compared to regular grid computations,
since the contrast in the virtual material has increased, as already discussed in the linear case. This
drawback can be counterbalanced by using a faster iterative scheme, such as the CG as was done
previously or an accelerated gradient-based algorithm, see the review article [48].

If more iterations are required to achieve convergence using the adapted grid, it nevertheless enables
to compute a more accurate approximation of the solution. While a qualitative full-field comparison
was exposed in Figure 22, we report in Table 2 the values of the final mean stress 〈s11〉 in the direction
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Ref. reg. grid N = 29 + 1 Reg. grid N = 27 + 1 Adapt. grid N = 27 + 1
〈s11〉 (MPa) 11.5177 11.5242 11.5229
Relative error – 5.63 · 10−4 4.51 · 10−4

Table 2: Mean stresses in the direction of the applied loading and errors relative to the first column.

of the applied loading obtained at convergence. A reference FFT-based solution is computed on a
fine regular grid with N = 29 + 1 to compare the solutions obtained with N = 27 + 1 on the regular
and adapted grids. By comparison with the reference solution, the relative errors show a reduction
by nearly 20% using the adaptive computations. This is consistent with the improvements already
observed in the linear cases investigated, which, in the context of this study, constitutes an initial
proof of concept. This is all the more valuable in the non-linear case, as increasing the discretization
parameter N bears a much higher numerical cost than in the linear case.

7 Conclusion
In this work we have proposed an adaptive Fourier spectral method to perform computations of peri-
odic cell problems on non-uniform grids. This type of problem is central to homogenization schemes
but it can also be encountered in different contexts, making our approach possibly relevant in other
fields. The key points of this study are the following:
1. A coordinate mapping is introduced as a bijective application between the physical domain, where
the original equation is formulated, and the computational domain, where it is intended to be solved
numerically. The associated transformation rules are classical, noting in particular the choice made to
not apply a gauge transformation to the unknown field itself. This process has some connections with
Lagrangian formulations of large-strain elasticity problems, but here the coordinate mapping has no
physical meaning.
2. Proper computation of this mapping is then the first key ingredient to the method. While analytical
transformations are relevant in some cases (as illustrated), a robust numerical scheme will most often
be needed. To this end, we turned to an approach based on optimal transport, to determine a trans-
formation that maps a source density of grid points, likely to be the uniform one in the computational
domain, to a target density, designed to be non-uniform in the physical domain. This amounts in
finding the mapping whose Jacobian satisfies a non-linear Monge-Ampère equation.
3. This equation for the mapping is solved using a quasi-Newton method, using tools that are readily
available in most FFT-based numerical platforms.
4. A second important aspect of the method is the definition of the target point density, which allows
control of the (non-uniform) spatial distribution of grid points in the physical domain. Rather, than
advocating a specific choice, we chose to investigate a number of options, either on the basis of a priori
material-based considerations, or a posteriori using a preliminary solution computed on a non-adapted
grid. This illustrates the variety of possibilities for the adaptive process.
5. The original problem is then transported from the physical domain to the computational one.
Expressing the latter in divergence form reveals a virtual constitutive relation and some virtual source
terms, which combine those in the original equation with the Jacobian matrix of the transformation.
As a consequence, the original tensor symmetries are modified, which is analyzed in further details in
the linear case.
6. Proper computation of the solution to the transported problem in the computational domain is
then addressed, by showing that standard FFT-based schemes on a regular grid are applicable, namely
fixed-point iterations or gradient-based algorithms. A minor modification of the Green’s tensor must
nonetheless be made by using a non-symmetrized version. In addition, the contrast in the virtual
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constitutive relation would be larger than in the original material, slowing down the convergence of
iterative schemes. This drawback can however be compensated by the use of a fast gradient algorithm,
a topic that has been the subject of much developments recently.
7. A set of numerical examples are included, illustrating the use of an analytical mapping and the pro-
posed optimal transport-based algorithm. In addition, a variety of monitor functions are explored to
adapt the grid to different microstructures. The effect of the grid adaptation is discussed, qualitatively
with full-field comparisons of solutions computed on a regular grid or adapted ones, and quantita-
tively through convergence analyses regarding both the number of iterations, the discretization and
the original material contrast. These numerical results show that a systematic gain in precision is
achieved using the adaptive method, both in the linear and non-linear cases studied.

To conclude, the proposed adaptive Fourier spectral method can be used to improve the accuracy
of a numerical approximation computed on a regular grid, provided that the monitor function is ad-
equately defined. It easily amenable to common FFT-based platforms as it is minimally intrusive:
its implementation only necessitates (i) the computation of the Monge-Ampère equation, a problem
set in divergence form, (ii) the introduction of the virtual constitutive relation and source terms, and
(iii) a minor modification of the Green’s tensor.

This study raises a number of questions that could be the subject of future work. First, the
choice of the monitor function can be investigated more quantitatively. In particular, the use of a
posteriori error estimators seems particularly relevant, see [24]. Second, the transported cell problem
features non-fully symmetric tensors, which was not an obstacle for our purposes. Yet, the interest
of a fully symmetric formulation could be questionned [38]. Moreover, as the transported problem
ultimately solved on a regular grid exhibits larger contrasts compared to the original material, the
competing advantages of the various fast gradient methods could be analyzed for this purpose. Finally,
quantifying the improvements achieved by the proposed method could be studied from a numerical
analysis standpoint, in particular by understanding the effect of the grid morphing in the Fourier
domain.

Acknowledgements: Fruitful discussions with Stéphane Bourgeois, Djaffar Boussaa, Hervé Moulinec
and Pierre Suquet are gratefully acknowledged.

A Green’s tensor symmetry properties
To compute the periodic gradient Green’s operator of Definition 2, the inverse is computed algebraically
in Fourier space. The construction of Γ̃0 from (29) is done through the introduction of the Fourier
transform in space, which we denote as T̂ (ξ) = F [T ](ξ) for any tensor field T , with ξ being the
Fourier variable. The cases where C0 is a conductivity or elasticity tensor are examine below.

A.1 Conductivity case

Let us first examine the conductivity case (26). Since the featured virtual constitutive tensor C̃ is
symmetric then we are in a standard case where the second-order Green’s tensor is defined in the
Fourier domain with components

(̂̃Γ0(ξ)
)
ij

= ξi ξj(
C0
)
k`
ξk ξ`

∀ξ 6= 0. (41)
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Note that one can set ̂̃Γ0(0) = 0 as the iterative schemes write in terms of the gradient of the periodic
field U , the former being thus of zero mean. Given (41) then the scheme (31) makes use of([

Γ̃0 S̃
(n)
]
(X)

)
i

= F−1
[(̂̃Γ0

)
ij

̂̃
S

(n)
j

]
(X) with S̃

(n)
j (X) =

(
C̃(X)

)
jp

((
G̃0(X)

)
p

+ ∂U (n)

∂Xp
(X)

)
.

As a consequence, Property 4 holds trivially, i.e.
[
Γ̃0C0 GradU

]
(X) = GradU(X).

A.2 Elasticity case

In the elasticity case, because of the symmetry properties in Corollary 3, the situation is slightly
different and the Green’s tensor must be adapted accordingly compared to the standard case. Note
that what we describe next is similar to the formalism employed for computations at large strains,
see [30, 31].

When solving (19) with (27) in the Fourier domain through the introduction of a reference homo-
geneous tensor C0, with major index symmetry, one arrives at a fourth-order Green’s tensor defined
with components(̂̃Γ0(ξ)

)
ijk`

= ξj
(
K−1

0 (ξ)
)
ik
ξ` with

(
K0(ξ)

)
ik

=
(
C0
)
ipkq

ξp ξq (42)

for all non-zero spatial frequency ξ. Again, one can set ̂̃Γ0(0) = 0.

Property 5. The second-order tensor K0 defined in (42) is symmetric, hence the associated Green’s
tensor ̂̃Γ0 satisfies the following index symmetries:(̂̃Γ0

)
ijk`

=
(̂̃Γ0

)
kji`

=
(̂̃Γ0

)
i`kj

.

Proof. From the definition (42) and using the major index symmetry of C0 then one has(
K0
)
ik

=
(
C0
)
ipkq

ξp ξq =
(
C0
)
kqip

ξq ξp =
(
K0
)
ki
.

This entails the symmetry of
(̂̃Γ0

)
ijk`

on the indices i, k while this on j, ` immediately follows from
the term ξjξ` in the definition of the former.

In this context, to make the terms in (31) more explicit, one must note that([
Γ̃0 S̃

(n)
]
(X)

)
ij

= F−1
[(̂̃Γ0

)
ijk`

̂̃
S

(n)
k`

]
(X)

with S̃
(n)
k` (X) =

(
C̃(X)

)
k`pq

((
G̃0(X)

)
pq

+ ∂U
(n)
p

∂Xq
(X)

)
.

Finally, using the previous identity, one can show that the projection identity (32) also holds in the
elasticity case. Indeed, one has([

Γ̃0C0 GradU
]
(X)

)
ij

= F−1
[(̂̃Γ0

)
ijk`

(
C0
)
k`pq

iξq Ûp
]
(X)

= F−1
[
ξj
(
K−1

0 (ξ)
)
ik
ξ`
(
C0
)
k`pq

iξq Ûp
]
(X)

but ξ`
(
C0
)
k`pq

ξq =
(
K0(ξ)

)
kp

so that
(
K−1

0 (ξ)
)
ik
ξ`
(
C0
)
k`pq

ξq = δip. Therefore, we obtain([
Γ̃0C0 GradU

]
(X)

)
ij

= F−1
[
iξj Ûi

]
(X) = ∂Ui

∂Xj
(X),

which establishes the projection Property 4 in the elasticity case.
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