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Simple Summary: Leiomyosarcoma (LMS) is thought to be an immune cold tumor that generally
does not respond to immune checkpoint inhibitors (ICIs). To date, there is no validated immune
biomarker used in LMS patients. The tertiary lymphoid structure (TLS) is the only potential predic-
tive biomarker, but rarely present in LMS. Our study is the first study to investigate the immune
biomarker using comprehensive transcriptomic profiling solely focused on tumor immune microenvi-
ronment (TIME) in LMS. Our study identified a subset of LMS with an active (“hot”) tumor immune
microenvironment (TIME) that is consistently associated with several immune signatures validated in
other cancers in the clinical setting. Our study supports the further development of TIME multi-gene
immune signature predictive biomarker that can be embedded in the future prospective clinical trials
to evaluate its clinical utility to select LMS patients for ICIs.

Abstract: Purpose: To investigate the immune biomarker in Leiomyosarcoma (LMS), which is rare
and recognized as an immune cold cancer showing a poor response rate (<10%) to immune check-
point inhibitors (ICIs). However, durable response and clinical benefit to ICIs has been observed in a
few cases of LMS, including, but not only, LMS with tertiary lymphoid structure (TLS) structures.
Patients and methods: We used comprehensive transcriptomic profiling and a deconvolution method
extracted from RNA-sequencing gene expression data in two independent LMS cohorts, the Interna-
tional Cancer Genome Consortium (ICGC, N = 146) and The Cancer Genome Atlas (TCGA, N = 75), to
explore tumor immune microenvironment (TIME) in LMS. Results: Unsupervised clustering analysis
using the previously validated two methods, 90-gene signature and Cell-type Identification by Esti-
mating Relative Subsets of RNA Transcripts (CIBERSORT), identified immune hot (I-H) and immune
high (I-Hi) LMS, respectively, in the ICGC cohort. Similarly, immune active groups (T-H, T-Hi) were
identified in the TCGA cohort using these two methods. These immune active (“hot”) clusters were
significantly associated, but not completely overlapping, with several validated immune signatures
such as sarcoma immune class (SIC) classification and TLS score, T cell inflamed signature (TIS) score,
immune infiltration score (IIS), and macrophage score (M1/M2), with more patients identified by
our clustering as potentially immune hot. Conclusions: Comprehensive immune profiling revealed
a subset of LMS with a distinct active (“hot”) TIME, consistently associated with several validated
immune signatures in other cancers. This suggests that the methodologies that we used in this study
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warrant further validation and development, which can potentially help refine our current immune
biomarkers to select the right LMS patients for ICIs in clinical trials.

Keywords: whole transcriptomic profiling (WTP); leiomyosarcoma (LMS); tumor immune
microenvironment (TIME); immune checkpoint inhibitors (ICIs)

1. Background

Leiomyosarcoma (LMS) is a malignant mesenchymal tumor deriving smooth muscle
differentiation with an estimated incidence of ~10% of all sarcomas [1,2]. This aggressive
malignancy with propensity for systemic spread is associated with high recurrence rates
and a poor overall survival of less than 18 months when it metastasizes [3].

According to tissue origin, subtypes are defined as soft tissue (STLMS) and uterine
(uLMS). uLMS are often hormone receptors-positive cancer [4], and more often exhibit a
distinct gene expression signature, a so-called “BRCAness”, resulting from homologous
recombination deficiency (HRD) [5,6]. In addition, gene expression patterns led to classify
LMS into conventional (c), uterogenic (ut) and inflammatory (i)-LMS, enriched in muscle-
related transcripts, uterine-like gene, and immune markers subsets [7]. iLMS has the
worse prognosis [7]. Whether the LMS classification (in particular iLMS) is associated with
responses to immunotherapy remains to be clarified.

Although the first principles of cancer immunotherapy were evidenced in sarcoma
more than a century ago [8], the numerous breakthroughs in immunotherapy, specifically
through the use of immune checkpoint inhibitors (ICIs), achieved in the last decade drasti-
cally changed the therapeutic landscape and substantially improved the survival of cancer
patients. However, ICIs show disappointing results in adult sarcoma. A recent systemic
review and meta-analysis revealed that ICI led to only 14% of overall objective response
rate (ORR) in sarcomas and to only 0–10% of ORR in LMS (both uterine and non-uterine) [9].
However, durable responses to ICIs have been reported [10,11] and real-world practice
urges the need for predictive biomarker(s) to help appropriate the selection of patients with
LMS eligible to ICIs. This is paramount in LMS considering the unfavorable “risk–benefit
balance” in using ICIs, reporting low ORR in unselected patient population, occasional
serious side effects, and substantial financial costs.

LMS belongs to sarcoma with complex karyotype associated with copy-number alter-
ations (CNAs). In contrast to its counterpart sarcoma subtype driven by a pathognomonic
genomic alteration (often translocations), higher PDL1 expression, immune infiltrates, and
antigen presentation is observed [12]. For example, ~40–70% LMS express PDL1 [13–15],
but no association with improved survival [14] nor ICIs response was reported [3,16].
Predictive biomarkers for ICIs include tumor mutational burden (TMB) and microsatel-
lite instability (MSI). TMB is globally low (median TMB:1.5–2.5 mutations/Mb, with less
than 1% harboring >20 mutations/Mb) in STS (with the only exception of cutaneous an-
giosarcoma related to UV exposure) [17]. In addition, MSI is generally extremely low (<1%),
if not absent, in adult sarcoma [18,19]. Furthermore, compared with other CNAs-driven
sarcoma such as undifferentiated pleomorphic sarcoma, LMS is rather poorly infiltrated
by CD8 T cells and has high macrophage (M) M2/M1 (immune suppressive/immune pro-
moting) ratio [20–23], which both characterized tumor immune microenvironment (TIME)
with immune cold phenotype.

Most studies exploring prognostic and predictive immune biomarkers in adult sar-
coma are limited in sample size (<100) and/or merge dissimilar histological subtypes
therefore exposing limits in result interpretation, balancing statistical power and preserva-
tion of inherent specificities related to biological complexity and heterogeneity in sarcoma.
Current knowledge faces conflicting results and high controversy in the field [24].

To date, the characterization of TIME revealed one single potential predictive im-
mune biomarker, the sarcoma immune high subclass E (SIC E), sharing characteristics
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with tertiary lymphoid structure (TLS) as shown in the B cell lineage signature. SIC E
predicted response to the ICIs pembrolizumab in adult STS in SARC028 study [25] and
results were further confirmed prospectively in the PembroSarc study [26]. Three inde-
pendent cohorts with various types of cancer treated with ICIs revealed that the presence
of mature TLS was associated with better survival, regardless of CD8 T cell infiltrates or
PDL1 expression [27]. This highlights the importance of improved TIME characterization
to provide a potential predictive biomarker in selecting patients that are potentially better
responders to immunotherapy. SIC E is currently used in several ongoing ICIs clinical
trials in sarcoma (NCT02406781 and NCT04095208). According to this novel immune-
based classification, LMS mainly belongs to SIC A (“immune desert”) or B (“immune
low”) subclass with only a few showing TLS [25]. Therefore, LMS is considered as one
of the “coldest” sarcoma histology subtypes and generally reported low ORR in clinical
trials [9,28,29]. In addition, TLS, as immune biomarker, may not be sufficient to appro-
priately select LMS patients as candidates for ICIs. The PembroSarc study showed only
one patient responder to pembrolizumab out of the six LMS patients with TLS-positive
tumors [26].

We used comprehensive transcriptomic profiling and a deconvolution method ex-
tracted from RNA-sequencing gene expression data from two independent LMS cohorts,
International Cancer Genome Consortium (ICGC), N = 146; and Cancer Genome Atlas
(TCGA), N = 75) to explore the landscape of TIME in the single sarcoma subtype. LMS Im-
mune profiling and clustering data were therefore associated with clinical factors, outcomes,
and recently reported TIME signatures correlated with ICIs response in pan-cancer and/or
a specifically dedicated sarcoma model, including SIC classification and TLS score [25–27],
T cell inflamed signature (TIS) score [30–32], and immune infiltration score (IIS) [33]. Our
main goal was to identify TIME recurrent patterns with potential integrative immune
biomarker identification in LMS to facilitate access to LMS patients to immunotherapy
clinical trial and ultimately provide a clinical tool to appropriately select LMS patients who
would be better responders to ICIs.

2. Materials and Methods
2.1. Patient Samples

ICGC samples were prospectively collected as part of the International Cancer Genome
Consortium (ICGC) program by the French Sarcoma Group. Clinico-pathological data and
patient information are summarized in Table 1. All cases were centrally reviewed by expert
pathologists of the French Sarcoma Group according to the World Health Organization
guidelines and to the Fédération Nationale des Centres de Lutte Contre le Cancer (FNCLCC)
grading system [1,34]. All patients provided written informed consent.

Table 1. Patient and tumor characteristics were described in ICGC (N = 111 patients) and TCGA co-
horts (N = 74 patients). Please note that the denominator for percentage calculation for last 3 roles, first
metastatic site, locoregional treatment for metastatic disease, and systemic treatment for metastatic
disease is the numbers of patients with metastatic disease (N = 62), not the numbers of whole cohort
(N = 111) in ICGC cohort. * represents that 3 patients had neoadjuvant chemotherapy, 16 patients
had adjuvant chemotherapy, 3 patients had chemotherapy with palliative intent due to the extent of
primary disease. ** represents that 2 patients had neoadjuvant radiotherapy. *** represents that 13 pa-
tients had debulking surgery, 3 patients had cryotherapy, 5 patients had radiofrequency treatment,
9 patients had radiotherapy either alone or combined with any of aforementioned treatments.

Patient/Tumor Characteristics ICGC Cohort (N = 111) TCGA Cohort (N = 74)

Age
Median (min–max) 64 (22–85) 60 (33–90)

Gender
Female 84 (75.7%) 40 (54.1%)
Male 27 (24.3%) 34 (45.9%)
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Table 1. Cont.

Patient/Tumor Characteristics ICGC Cohort (N = 111) TCGA Cohort (N = 74)

Tumor Size (cm)

Not available
≤5 27 (24.3%)

>5 and ≤10 43 (38.7%)
>10 40 (36%)

Unknown 1 (0.9%)

Tumor Grade (/FRSCC)
1 14 (12.6%) 3 (4.1%)
2 38 (34.2%) 54 (73%)
3 52 (46.8%) 17 (23%)

Unknown 7 (6.3%) 0 (0%)

Tumor Location

24 (32.4%)
50 (67.6%)

Limb 20 (18%)
Internal trunk 56 (50.5%)

Trunk wall 10 (9%)
Head and neck 5 (4.5%)
Gynecological 16 (14.4%)

Others 4 (3.6%)

Tumor Depth
Not availableSuperficial 8 (7.2%)

Deep 103 (92.8%)

Tumor Multifocality
Not availableNo 108 (97.3%)

Yes 3 (2.7%)

Surgery
Not availableYes 110 (99.1%)

NA 1 (0.9%)

Re-resection

Not available
No 96 (86.5%)
Yes 9 (8.1%)

Unknown 6 (5.4%)

Surgical Margin

Not available
R0 68 (61.3%)
R1 32 (28.8%)
R2 1 (0.9%)

Not evaluable/Unknown 10 (9%)

(Neo)Adjuvant chemotherapy
Not availableNo 92 (82.9%)

Yes * 19 (17.1%) *

(Neo)Adjuvant Radiotherapy
Not availableNo 73 (65.8%)

Yes ** 38 (34.2%) **

Local Recurrence
No 99 (89.2%)
Yes 12 (10.8%)

Metastatic Recurrence
No 49 (44.1%) 40 (54.15)
Yes 62 (55.5%) 34 (45.9%)
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Table 1. Cont.

Patient/Tumor Characteristics ICGC Cohort (N = 111) TCGA Cohort (N = 74)

Metastatic Site (first)

Not available

Lung only 27 (43.5%)
Liver only 10 (16.1%)

Lung, liver, and others 7 (11.3%)
Peritoneum 5 (8.1%)

Bone 3 (4.8%)
Skin/Soft tissue/Lymph node 9 (14.5%)

Brain only 1 (1.6%)

Locoregional treatment for metastatic
disease

Not availableNo 41 (66.1%)
Yes *** 21 (33.9%) ***

2.2. Whole Transcriptome Sequencing (WTS)

Total RNA from frozen primary tumor surgical samples of the ICGC cohort was
extracted and sequenced using Illumina paired-end HiSeq2000 technology (Illumina Inc.,
San Diego, CA, USA). Detailed RNA extraction, library preparation, sequencing protocols,
and data analysis were previously described [35]. TCGA RNA-seq HTSeq count data were
downloaded using TCGA biolinks [36] R package (version 2.22.4) on September 2021.

In both cohorts, HTseq raw counts were transformed in Transcript Per Million using
hg38 UCSC RefSeq gene models.

2.3. Bioinformatics and Statistical Analysis

RNAseq expression data of LMS primary tumor samples, 149 samples issued from the
ICGC cohort (including multiregional tumor samples from the same tumor in 22 patients)
and 74 samples from the TCGA cohort, were used for bioinformatic analysis. These related
transcriptomic data matrices used two independent methodologies. The first subset used
a so-called 90-gene signature method, considering the expression levels of previously
characterized 93 genes related to immune checkpoint protein and membrane markers
(ICP-MM) of immune cells, representative of TIME landscape [37]. This gene signature
included genes considered as key markers in the immune populations such as natural killers
(NKs), monocytes/macrophages, neutrophils and cytotoxic T cells, positive and negative
immune checkpoint protein including the known druggable targets such as PDL1, PDL2,
CTLA4, TIGIT, IDO, LAG-3, TIM-3, and key molecules involved in immune regulation.
The complete list is presented in our previous publication [37]. The 3 genes KIR2DS1,
KIR2DS2, and KIR2DL2 were not found in the current RNAseq expression matrix and
therefore removed from the analysis.

The second method referred to as Cell-type Identification By Estimating Relative
Subsets of RNA Transcripts (CIBERSORT) was a previously validated analytical tool using
the expression profiles of 547 genes distinguishing a set of 22 immune cells (naïve and
memory B cells, plasma cells, CD8 T cells, naïve CD4 T cells, resting memory CD4 T cells,
activated memory CD4 T cells, follicular helper T cells, regulatory T cells,
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δ T cells, resting
and activated NK cells, monocytes, macrophages (M0 macrophages, M1 macrophages,
M2 macrophages), resting and activated dendritic cells, resting and activated mast cells,
eosinophils and neutrophils) to derive a signature matrix that can be applied to deconvolute
mixed samples in order to determine relative proportions of immune cells in TIME [38].
CIBERSORT algorithm was performed using the immunedeconv R package (version 2.0.4)
and CIBERSORT R script provided by CIBERSORT authors in both relative and absolute
modes. CIBERSORT computes a p-value for each sample to provide a statistical significance
of the deconvolution across all cell types. Statistical analysis considered p-value < 0.05 as
significant. Unsupervised hierarchical clustering and heatmap analysis were performed
using Euclidean distance and the ward grouping function within R-bioconductor. For
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each heatmap, we determined the number of clusters empirically by looking at various
clustering statistics such as average silhouette and gap statistics. In addition, CIBERSORT
absolute abundance scores as well as T cell proportional scores (Treg was excluded) were
calculated to generate an immune infiltration score (IIS). The M1/M2 macrophage score for
each sample was derived by calculating the mean expression (RPKM) of these ten genes
(CXCL11, IDO1, CCL19, CXCL9, PLA1A, LAMP3, CCR7, APOL6, CXCL10, and TNIP3).

Wilcoxon, Kruskal–Wallis, and Fisher’s exact tests were performed to analyze the
association between immune clusters defined by the 90-gene signature method and CIBER-
SORT analysis, respectively, and previously published immune signatures including SIC
classification, TLS score, characterized by the expression of TLS-associated B cell specific
chemokine CXCL13 [25–27], TIS score [30–32], IIS score [33], macrophage score [39], as
well as clinical factors including age, sex, tumor size, location, grade, HRD score, and
various LMS variables. Distant metastasis-free survival (DMFS) as well as overall survival
(OS) were estimated using the Kaplan–Meier (KM) method. Subgroup comparisons were
performed using log-rank tests. All statistical analyses were performed by software R v4.1.2
(R Foundation for Statistical Computing, Vienna, Austria).

2.4. Data Availability

ICGC RNA-seq data are available on Gene Expression Omnibus under accession
GSE71121. RNA-seq raw files (FastQ) on sequence read archive under accessions: SRP057793
and SRP059588 [35]. TCGA RNA-seq data are accessible from TCGA biolinks [36,40,41].

3. Results
3.1. Patient/Tumor Characterization in the ICGC/TCGA Cohorts

The ICGC and TCGA cohorts included 111 and 74 patients, respectively. Median age at
diagnosis was 64 years in the ICGC cohort and 60 years in the TCGA cohort. The proportion
of females was predominant in the ICGC cohort (75.7%) but similar to males in the TCGA
cohort (54.1%). Most tumors were grade 2 (34.2%) and 3 (46.8%) in the ICGC cohort and
mainly grade 2 (73%) tumors were reported in the TCGA cohort. The most frequent tumor
location was internal trunk in both ICGC (N = 56, 50.6%) and TCGA (N = 50, 67.6%) cohorts,
then limb (N = 20, 18%) in the ICGC cohort and (N = 24, 32.4%) in the TCGA cohort. Other
locations including gynecological (N = 16, 14.4%), trunk wall (N = 10, 9%), head and neck
(N = 5, 4.5%), and others (N = 4, 3.6%) were only recorded in the ICGC cohort but not in
the TCGA cohort. Further information regarding other tumor characteristics, treatments,
and clinical outcome were missing in TCGA cohorts. In the ICGC cohort, most tumors
were deep (92.8%), single (97.3%), and resected (99.1%) with either R0 (61.3%) or R1 (28.8%)
resection margin. All treatment and clinical outcome information were described in Table 1.
It should be noted that none of the patients in both cohorts were exposed to ICIs.

3.2. Unsupervised Clustering Revealed a Small Subset (~15%) of LMS with Active (“Hot”) TIME
with Combined 90-Gene Signature and CIBERSORT Methods

As specified above, the ICGC cohort (N = 146 tumor samples), included 22 patients
with multiple tumors (between 2 and 6; 3 samples data not available) based on the 90-gene
signature method, 37.6% (N = 56) tumor samples were clustered into group I-H (“hot”),
while 60.4% (N = 90) were clustered to group I-C (“cold”) (Figure 1A). By visualization of
a heatmap (Figure 1A), group I-H had a significantly higher gene expression of ICP-MM
of immune cells than group I-C; therefore, representing active TIME. The same cohort
explored with the CIBERSORT method only included 87 tumor samples after filtering
deconvolution results with significant p-value, 18.4% (N = 16) tumor samples were clustered
into group I-Hi (“High”), 19.5% (N = 17) in group I-M (“Medium”), and 62.1% (N = 54)
in group I-L (“Low”) (Figure 1B). The I-H cluster was enriched with NK activated cells,
M1 Macrophage, CD8 T cells, T follicular helper, plasma cells, and B memory cells, all of
which are representative of active TIME and associated with ICIs response based on our
knowledge to date. To note, 87.5% (N = 14/16) of tumor samples in I-H cluster identified by
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the 90-gene signature method significantly overlapped with group I-Hi cluster identified
by CIBERSORT method (Figure 1C, p = 0.02), compared with smaller proportion in I-M
(47%; N = 8/17) and I-L (55%; N = 27/54) clusters, showing a partial concordance of
these two active immune signatures (group I-H and I-Hi) derived from two independent
methodologies. From this analysis, 16.1% (N = 14/87) tumor samples had active (“hot”)
TIME based on a combination of two methods.

The TCGA cohort showed similar results (N = 74). The 90-gene signature method
clustered 25.7% (N = 19) tumor samples into group T-H (“hot”), which represents active
TIME, and 74.3% (N = 55) into group T-C (“cold”) (Figure 2A). CIBERSORT (N = 54 after
filtering deconvolution results with significant p-value) clustered 25.9% (N = 14) into group
T-Hi (“high”), which represents active TIME, 20.4% (N = 11) into group T-M (“medium”)
and 53.7% (N = 29) into group T-L (“low”) (Figure 2B). The majority of tumor samples in
group T-Hi (78.6%, N = 11/14) compared with the smaller proportion in group T-M (9%;
N = 1/11) and T-L (20.7%; N = 6/29), significantly overlapped with T-H cluster (Figure 2C,
p = 0.0001). This overlapping analysis revealed that 11/74 (14.8%) tumor samples had
active (“hot”) TIME based on both methods.
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Figure 1. In ICGC cohort, unsupervised hierarchical clustering and heatmap analysis revealed ICGI
hot (I-H) and ICGC cold (I-C) clusters using the 90-gene signature method (A) and ICGC-immune
high (I-Hi), ICGC-immune medium (I-M), and ICGC-immune low (I-L) clusters using the Cell-type
Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) method (B). I-H
cluster had significantly higher gene expression of immune checkpoint protein and membrane
markers (ICP-MM) and I-Hi cluster enriched with active immune cells such as CD8 T cells, Natural
killer (NK) active cells, B naïve and memory cells and M1 macrophages, both of which reflected “hot”
tumor immune microenvironment (TIME). Polygon graph demonstrates significant overlap between
these two “hot” TIME clusters (C). TLS: tertiary lymphoid structure; PD-L1: program death receptor
L1; IIS: immune infiltration score; TIS: T cell inflamed signature score; M1-M2_sig: macrophage score;
TMB: tumor mutational burden; MSI: microsatellite instability.
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Figure 2. In TCGA cohort, unsupervised hierarchical clustering and heatmap analysis revealed
TCGA-hot (T-H) and TCGA-cold (T-C) clusters using the 90-gene signature method (A) and TCGA-
immune high (T-Hi), TCGA-immune medium (T-M) and TCGA-immune low (T-L) clusters using the
Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) method (B).
T-H cluster had significantly higher gene expression of immune checkpoint protein and membrane
markers (ICP-MM) and T-Hi cluster enriched with active immune cells such as CD8 T cells, Natural
killer (NK) active cells, B naïve and memory cells and M1 macrophages, both of which reflected “hot”
tumor immune microenvironment (TIME). Polygon graph demonstrates significant overlap between
these two “hot” TIME clusters (C). ICP-MM: immune checkpoint protein and membrane markers;
LMS: leiomyosarcoma; cLMS: conventional LMS; iLMS: inflammatory LMS; uLMS: uterogenic LMS;
TLS: tertiary lymphoid structure; PD-L1: program death receptor L1; SIC: sarcoma immune class; IIS:
immune infiltration score; HRD: homologous recombination deficiency; TIS: T cell inflamed signature
score; M1-M2_sig: macrophage score; TMB: tumor mutational burden; MSI: microsatellite instability.

3.3. Immune Clusters Identified through 90-Gene Signature and CIBERSORT Methods Were
Associated with Other Immune Signatures

In the ICGC cohort, group I-H and I-Hi clusters, considered as active TIME, were
significantly associated with TLS score (both p < 0.001)), TIS score (both p < 0.001), IIS score
(p < 0.001; p = 0.0025, respectively), high PD-L1 level (p = 0.018 and p < 0.001, respectively),
as well as high macrophage score (p < 0.001) (Figure 3A–J). Similarly, group T-H and T-Hi
clusters, representing active TIME in the TCGA cohort, were significantly associated with
TLS score (p < 0.001 and p = 0.0019, respectively), TIS score (p < 0.001 and p = 0.00072,
respectively), and IIS score (p < 0.001 and p = 0.00086, respectively) and high macrophage
score (p < 0.001 and p = 0.0011, respectively) (Figure 4A–J).
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group T-H and T-Hi clusters (Figure 2A,B). Furthermore, the majority of tumor samples 
in the T-Hi cluster were either sub-classified in SIC E (56%) or SIC D (33%), each consid-
ered as immune high classes [25]. This contrasts with the 0% SIC E and 19% SIC D in the 
T-C cluster (Supplemental Table 1A). Similarly, 43% SIC E was in T-Hi cluster versus 0% 
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methods reflect an active TIME. 

Figure 3. In ICGC cohort, immune “hot” clusters (I-H (identified by 90-gene signature method) and
I-Hi (identified by CIBERSORT method)), were strongly associated with high TLS score (A,F), TIS
score (B,G), IIS score (C,H), PDL1 level (D,I), and macrophage score (E,J). TLS: tertiary lymphoid
structure; TIS: T cell inflamed signature score; IIS: immune infiltration score; PD-L1: program death
receptor L1; M1-M2_sig: macrophage score.
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Figure 4. In TCGA cohort, immune “hot” clusters (T-H (identified by 90-gene signature method) and
T-Hi (identified by CIBERSORT method)) were strongly associated with high TLS score (A,F), TIS
score (B,G), IIS score (C,H), PDL1 level (D,I), and macrophage score (E,J). TLS: tertiary lymphoid
structure; TIS: T cell inflamed signature score; IIS: immune infiltration score; PD-L1: program death
receptor L1; M1-M2_sig: macrophage score.

In the TCGA cohort, group T-H cluster, but not group T-Hi cluster, was statistically
associated with PD-L1 level (p = 0.0034 and p = 0.18, respectively) (Figure 4D,I). In the TCGA
cohort, additional data regarding TMB, MSI, and SIC classification were available [25]. To
note, the TCGA cohort showed one case with high TMB and one case with MSI in group
T-H and T-Hi clusters (Figure 2A,B). Furthermore, the majority of tumor samples in the
T-Hi cluster were either sub-classified in SIC E (56%) or SIC D (33%), each considered as
immune high classes [25]. This contrasts with the 0% SIC E and 19% SIC D in the T-C
cluster (Supplemental Table S1A). Similarly, 43% SIC E was in T-Hi cluster versus 0% in
T-M cluster and 14% in T-L cluster (Supplemental Table S1B). All these data consistently
and strongly support that group T-H and T-Hi clusters derived from two independent
methods reflect an active TIME.

3.4. Intra-Tumor Homogeneity of TIME Signatures

We explored intra-tumor heterogeneity in terms of immune signature. In the ICGC
cohort, 22 patients had multiple regions sampled and sequenced within the same tumor
(2 tumor samples, N = 11; three tumor samples, N = 8; four tumor samples, N = 2, six tumor
samples, N = 1). While the majority of multiregional tumor samples from the same tumor
showed similar immune signature, as reflected by their close distance, some heterogeneity
was observed in 4 out of 22 patients (Supplemental Figure S1). For example, patient LMS
103 (blue color) had two tumor samples in the same immune cluster I-H but relatively
distant from each other. Patient LMS 9 (orange color) had two tumor samples in distinct
immune clusters. Patient LMS 102 (purple color) has three tumor samples (R1/2/3). R1
and R3 were in same immune cluster I-H but fairly distant from each other, whereas R2
was in distinct immune cluster I-C. LMS 18 patient (gray color) had three tumor samples
(R1/2/3), including two (R1 and R2) in the same immune cluster I-H and close together
but the third sample (R3) located slightly distant from these first two despite location in the
same immune cluster I-H.

3.5. Correlation of Immune Clusters with Clinical Factors, Molecular Classifiers and Survival

There was no significant association between immune clusters (I-H and T-H) defined
by the 90-gene signature method and clinical factors, sites of metastasis or LMS already
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known classifiers in both ICGC and TCGA cohorts (Supplemental Tables S2A and S3A).
However, we report association between immune clusters defined by CIBERSORT method
and clinical factors. For instance, the immune cluster T-Hi seemed to associate with iLMS in
the TCGA cohort (Supplemental Table S3B red arrow). There was no significant association
between immune clusters and HRD score in the TCGA cohort (Supplemental Table S3B).

Lastly but importantly, we examined if immune clusters can predict survival in ICI-
naïve LMS patients. No statistical significance between immune clusters and survival
outcomes (DMFS and OS) regardless of the method used (90-gene signature and CIBER-
SORT) in both ICGC and TCGA cohorts (Supplemental Figures S2 and S3).

4. Discussion

Through comprehensive immune profiling in two independent and relatively large
sample size cohorts, related to a single histology sarcoma type, we showed that a subset of
LMS patients had active TIME, consistently associating with previously published immune
signatures related to ICIs response, and which have been validated in other cancer types.
The current methods support further use of multigene immune signature to improve and
refine immune biomarkers to select LMS patients potentially better responders to ICIs.

PDL1 is the most studied predictive biomarker for ICIs in a variety of major cancer
types including lung, breast, and gastroesophageal cancers but appeared not to predict
survival or response to ICIs in LMS [14,42]. Our results showed inconsistent association
between immune hot or high clusters, and high PDL1 level, which may suggest that PDL1
level alone may not be a suitable predictive biomarker for ICIs in LMS, with the caveat that
only PDL1 RNA levels were evaluated in our study. Other druggable immune checkpoint
proteins such as CTLA4, TIGIT, IDO, LAG-3, and TIM-3, which are more frequently
expressed in karyotypically complex sarcomas such as LMS than in their counterpart
(karyotypically simple sarcomas), may be of relevant use; however, the prognostic and
predictive value of these biomarkers have not been successfully demonstrated in sarcoma
so far [43].

The presence of tumor infiltrating lymphocytes (TILs), in particular CD8+ cytotoxic T
cells, has been shown to correlate with better survival, and more importantly, the likelihood
of response to ICIs in many tumor types, including STS due to their roles in an active TIME.
On the contrary, T regulatory cells (Treg) represent a suppressive TIME and correlate with
poor survival and resistance to ICIs [44]. The immune hot/high clusters identified in our
study (I-H/I-Hi in the ICGC cohort and TCGA cohort) enriched with CD8 + T cells are
correlated with high IIS score indicative of active T cell infiltration. However, no studies to
date have reported a prognostic or predictive value of T cell infiltration as a sole biomarker
in LMS [24].

Similarly to other karyotypically complex sarcomas, LMS are heavily infiltrated by
tumor-associated macrophages, more abundant than TILs [20]. They can be polarized
to classic macrophages (M1 expressing CD163+) and promote inflammatory TIME, or to
M2 expressing CD68+ macrophages contributing to immune escape and considered as
immune suppressive [45]. M2 phenotypes are frequently found in LMS and high level
of M2 or M2/M1 ratio has been associated with worse clinical outcome in LMS, but not
consistently in sarcoma in general [20,24,46]. More importantly, macrophage score (M1/M2)
was recently reported to independently predict ICIs response [39]. Our results showed
hot/high immune clusters (I-H and I-Hi in the ICGC cohort, and T-H and T-Hi in the
TCGA cohort) defined by two independent methods (90-gene signature and CIBERSORT
methods) associated with high macrophage score, suggesting that the current methods can
be useful to identify a subset of LMS patients who can potentially benefit from ICIs and
warrant further development.

The potential role of B cells as prognostic and predictive biomarker for ICIs in sarcoma
has been recently evidenced by Petitprez et al. [25]. Using a transcriptomic analysis
of TIME cell population, measuring the expression of eight immune and two stromal
cell populations, the authors categorized STSs into five distinct sarcoma immune classes
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(SIC) including TIME immune low (Classes A and B), highly vascularized (Class C), and
immune high (Classes D and E). The most inflamed SIC E immune class enriched with
cytotoxic T cell and B cell lineage signatures (and characterized by the presence of TLS)
was associated with a high response to pembrolizumab across all sarcoma subtypes [25].
It should be underlined that TLS was almost absent in the LMS samples [25]. However,
our study demonstrated that the immune hot clusters (I-H and T-H in the ICGC and
TCGA cohort, respectively) and the immune high clusters (I-Hi in the ICGC cohort and
T-Hi in TCGA cohort, respectively) were significantly associated with the most highly
inflamed SIC E immune class (Supplemental Table S1), and with the TLS score, reflecting
the expression of TLS-associated B cell specific chemokine CXCL13 (Figures 3A,F and 4A,F).
The results suggest that these current methods may improve sensitivity in the detection
of active TIME compared with TLS alone. To note, the presence of TLS is currently used
as a stratifying biomarker in several ongoing clinical trials (NCT02406781; NCT04095208).
Standardized methods to assess TLS positivity need to be further specified, and positivity
is currently entrusted to well-trained sarcoma pathologist experts; as previously reported
with many other immunohistochemistry biomarkers such as Ki67, inter- and intra-observer
variability cannot be excluded. In addition, TLS may not be a sufficient immune biomarker
to identify LMS patients who may benefit from ICIs. The PembroSarc study showed only
one responder to pembrolizumab out of the six LMS patients for whom TLS-positive
tumors have been identified [26]. Therefore, the predictive value of multigene signatures in
patients with TLS-positive tumors need to be further investigated.

Multi-gene expression signatures reflect the overall TIME, containing a large variety of
immune cell types including T cells, B cells, and macrophages. The robustness of the multi-
gene expression approach is demonstrated by the consistency and significant association
in the classification of immune high subgroups, such as SIC in sarcoma [25] as well as
in other tumor types. Another example is the tumor inflammation signature (TIS) score,
quantifying 18 specific T cell and interferon gamma (IFN
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) signaling pathways-related
genes with key roles in coordinating and orchestrating an active but suppressive adaptive
immune response in TIME [30–32]. TIS has been validated as predictive factor for clinical
benefit to ICIs in various solid malignancies such as melanoma, head and neck cancer,
gastrointestinal cancer, ovarian and triple negative breast cancer, but only in sarcoma so
far [30–32]. Our results show that immune hot clusters (group I-H in the ICGC and TCGA
cohort) and the immune high clusters (group I-Hi in the ICGC cohort and TCGA cohort)
were significantly associated with TIS score and contribute to further support the potential
predictive value of the methods used in this study.

It is notable that 39 genes are common in the methods currently used (90-gene signa-
ture; 547 gene CIBERSORT). The most appropriate gene sets should be further refined to
best differentiate “hot” versus “cold” TIME in LMS. Further focus on the genes amenable
to testing approaches in FFPE tissue would contribute to an easier translation into clinical
practice, such as Nanostring and support clinical utility of these multi-gene signature
assays. In addition, it is essential to validate these multi-gene signature in a clinical setting.

It is interesting to note that the multi-gene immune signatures included only a minority
of overlapping genes compared with other studies. For example, only four genes are
common (CD3e, granzyme, LAG3, and IDO1) between the TIS score and 90-gene signature
method. In addition, few overlapping genes were used in SIC classification and the two
current methods. Furthermore, CXCL13 used for the TLS score was exclusively included
in CIBERSORT method, not in the 90-gene signature. Despite few overlapping genes, a
significant association of these immune signatures is reported, and hints that TIME may be
identified as active using different methodologies selecting distinct sets of genes involved
in immune regulation, but ultimately merging into a common biological feature, and an
activated but suppressive adaptive TIME can be modulated by ICIs. Interestingly, different
assays involving non-overlapping genes can have similar predictive values represent a
potent tool in a single tumor type, which is not rare in oncology. For example, the three
validated prognostic and predictive RNA-based multigene assays including OncotypeDx
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(21 gene assay), Mammoprint (70 gene assay), and Prosigna (50 gene assay) are used
in the clinic to predict the efficacy of adjuvant chemotherapy in early stage hormone
receptor-positive HER2-negative breast cancer [47]. However, the sensitivity, specificity,
and concordance in immune signatures to characterize TIME and predict response to ICIs
in a particular tumor type (i.e., LMS) requires further clinical validation.

The only immune biomarker that can potentially predict better overall survival to
date in sarcoma is the presence of TLS (as B cell lineage signature), initially discovered
in sarcoma, and subsequently validated in pan-tumor model. However, its use was only
reported in patients treated with ICIs [25–27]. Since none of the patients in ICGC and TCGA
cohorts were treated with ICIs, it may not be a surprise that immune cluster did not predict
survival in LMS ICIs-naïve patients (Supplemental Figures S2 and S3). The heterogeneity
of disease characteristics and treatments may also affect survival outcome. Therefore, it
appears critical to further investigate the prognostic value of such immune clusters in LMS
patients treated with ICIs in the near future.

Despite the intra-tumor homogeneity of the immune signature observed in the majority
of the cases, some intra-tumor heterogeneity was noted. We cannot assert, however, that
the heterogeneity observed reflected different underlying tumor biology or resulted from
technical and preanalytical variability. Additionally, whether immune signatures change
across disease course and at recurrence or metastasis is an open issue. With only three
paired primary and metastatic tumor samples from the ICGC cohort, the sample size
limited any further analysis.

The main limitation of our study is that we are unable to validate the predictive value
of immune clusters generated from multi-gene signature methods in a cohort of LMS
patients previously treated with ICIs. Such investigation will be conducted prospectively
in a forthcoming study. Interestingly, our recently published study showed that LMS
responder to ICI with stable disease for over 10 months had the highest IIS score [33],
whereas LMS non responder to ICI had relatively low IIS score based on CIBERSORT
analysis [33]. In parallel to further characterization of the immune clusters for these two
patients, a large LMS cohort is needed to further validate the predictive value of these
multi-gene immune signature approaches.

5. Conclusions

To date, to overcome the lack of clinical predictive immune biomarkers, and consid-
ering that PDL1, TMB, and MSI are not useful in sarcoma, and in particular LMS, the
promising predictive immune biomarker of TLS currently under clinical investigation
requires expertise from sarcoma pathologists and inter- and intra-observer variability may
not be precluded. Novel predictive immune biomarkers in LMS are therefore highly re-
quired. Our study demonstrated that RNAseq-based transcriptomic profiling is useful
to identify a subset of LMS with active TIME. With further validation in a clinical cohort
of patients treated with ICIs, such multi-gene immune signature approaches may help to
refine current immune biomarkers to select subset of LMS patients who may benefit from
ICIs in clinical trials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15143705/s1, Supplemental Table S1: A: Strong association
was observed between immune “hot” clusters and Sarcoma Immune high Subclass E (SIC E) in TCGA
cohort. Supplemental Table S2: The correlation between immune clusters and clinical factors in ICGC
cohort. Supplemental Table S3: The correlation between immune clusters and clinical factors in TCGA
cohort. Supplemental Figure S1. Immune signatures were mostly homogenous across different tumor
regions of the same patient’ tumor in ICGC cohort. Supplemental Figure S2: Immune signatures did
not predict survial outcomes in ICGC cohort. Supplemental Figure S3: Kaplan-Meier (KM) curves
demonstrated that immune clusters regardless of methods (90 gene signature and CIBERSORT) used
did not predict distant-metastasis free survival (DMFS) (A and C) as well as overall survival (OS) (B
and D) in TCGA cohort.
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