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ECOLOGY

The overlooked contribution of trees outside forests to
tree cover and woody biomass across Europe
Siyu Liu1*, Martin Brandt1*, Thomas Nord-Larsen1, Jerome Chave2, Florian Reiner1, Nico Lang3,
Xiaoye Tong1, Philippe Ciais4, Christian Igel3, Adrian Pascual5, Juan Guerra-Hernandez6,
Sizhuo Li1, Maurice Mugabowindekwe1, Sassan Saatchi7, Yuemin Yue8, Zhengchao Chen9,
Rasmus Fensholt1

Trees are an integral part in European landscapes, but only forest resources are systematically assessed by na-
tional inventories. The contribution of urban and agricultural trees to national-level carbon stocks remains
largely unknown. Here we produced canopy cover, height and above-ground biomass maps from 3-meter res-
olution nanosatellite imagery across Europe. Our biomass estimates have a systematic bias of 7.6% (overestima-
tion; R = 0.98) compared to national inventories of 30 countries, and our dataset is sufficiently highly resolved
spatially to support the inclusion of tree biomass outside forests, which we quantify to 0.8 petagrams. Although
this represents only 2% of the total tree biomass, large variations between countries are found (10% for UK) and
trees in urban areas contribute substantially to national carbon stocks (8% for the Netherlands). The agreement
with national inventory data, the scalability, and spatial details across landscapes, including trees outside
forests, make our approach attractive for operational implementation to support national carbon stock inven-
tory schemes.
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INTRODUCTION
The quantification of wood resources at the national and local scales
is a prerequisite for sustainable management of timber resources,
habitats, and carbon stocks (1–5). Local forest management practice
and planning relies to an increasing extent on national maps of
forests and forest resources, and the accuracy of national carbon
stock estimates may be largely improved by inclusion of such
maps at the regional and national levels (6, 7).

Most countries focus their inventories and mapping on closed
canopy forests (8–10). Trees outside forests are often associated
with scattered dryland trees in arid regions where rainfall is not suf-
ficient for trees to form closed canopies (11). However, in northern
countries, a substantial part of the woody resource may be growing
in hedgerows, gardens, parks, urban areas, grasslands, and agricul-
tural lands. These trees outside forests contribute to carbon storage,
provide resources for local communities, modify the local climate,
are an important part of habitat networks, affect the hydrological
cycle, and thus represent an important economic and social value
(12–14). Many European countries comprise large agricultural and
urban landscapes, and the exclusion of trees outside forests from
systematic carbon stock assessment potentially implies a bias in na-
tional inventories and also affects scientific studies and climate
models using only closed forest areas as input (15, 16). For

example, reports from the United Kingdom have shown that
woody resources provided by trees outside closed canopy forests
can exceed those provided by forests (17).

Consistent monitoring of both forest and non-forest trees at the
national and continental scales remains a challenging endeavor.
This is because contemporary forest maps derived from medium-
resolution (10 to 30 m) satellite imagery usually miss non-forest
trees and do not allow for a clear definition and separation of
forest and non-forest areas (18). Other maps merge all types of
trees under the variable “tree cover” or “forest cover” (19, 20),
and it often remains unclear which size classes of trees and
shrubs are included and which are excluded. Certain guidelines
provide consistent forest definitions, for example, by the United
Nations Food and Agriculture Organization (FAO) (21).
However, the quality and type of data available at the national
and continental scales are often not sufficient to apply the guide-
lines consistently in remote sensing studies. Only few countries
provide a high-quality aerial imagery at the national scale that
allows for an assessment of all forests and trees (22, 23), but the in-
clusion of canopy height data derived from airborne Light Detec-
tion and Ranging (LiDAR) campaigns is decisive, to separate
large trees from shrubs and bushes and to estimate the wood
volume, dry mass, and carbon stocks. This is particularly the case
for managed forest areas, where small and privately owned lots
characterized by different management strategies cause a high
spatial heterogeneity within areas considered as closed canopy
forest (5). High–spatial resolution tree cover maps are not sufficient
for a quantification of wood resources as the tree height is unknown.
Existing global- and continental-scale canopy height (24–26) and
medium-resolution biomass maps (27, 28) from space-borne
sensors largely ignore trees outside forests, providing an incomplete
assessment of resources. National canopy height data at a high
spatial resolution (<5 m) is expensive and often only available for
parts of the country (29), if at all. It thus remains unknown to
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which extent trees outside forests across the European continent
represent a hidden and undervalued resource, as it is the case in
the United Kingdom (17).

To answer this question and to explore the contribution of non-
forest trees to tree cover and woody biomass across Europe, here, we
generate continental-scale maps of forests, woodlands, and trees
outside forests, including their height at 3-m resolution in 2019,
which contains a level of details otherwise only previously accessible
from the use of airborne LiDAR surveys. We retrieve these data
from cost-efficient nanosatellites available at a daily basis and at a
spatial resolution high enough to map large individual trees (>3-m
height) using a deep learning approach where a convolutional
neural network is learned end to end from airborne LiDAR
canopy height reference data across Europe. We trained two deep
learning models from PlanetScope optical imagery at 3-m resolu-
tion: (i) a segmentation model predicting binary canopy/no-
canopy (>3-m height) and (ii) a regression model predicting
canopy height. Tree crowns and their shadows are visible in Planet-
Scope images, representing key features when training deep learn-
ing methods to retrieve canopy heights. Furthermore, we use
inventory data to convert tree cover and height into aboveground
biomass maps including both forest and non-forest tree biomass,
forming the basis for quantifying and comparing forest and non-
forest tree resources across European countries. We further apply
the model trained in Europe to the boreal and temperate zones of
North America to test the scalability of the approach to different
areas evaluated on independent datasets.

RESULTS
A canopy height map at 3-m resolution for Europe
We used 0.7 million km2 of canopy height data from airborne
LiDAR available for Denmark, The Netherlands, Switzerland,
Estonia, Spain, Finland, and Wales (fig. S1B) to train a deep learning
model and predict tree height and binary tree cover from Planet-
Scope imagery in 2019 at 3-m resolution for all Europe (10
million km2; Fig. 1). The training data cover boreal, temperate,
and Mediterranean areas (fig. S1A). Model performance was evalu-
ated on 10,000 km2 of randomly sampled airborne LiDAR data (or-
ganized as 1 km–by–1 km tiles), which was not used for model
training and hyperparameter optimization (Fig. 2 and fig. S2).

At the pixel level, canopy height was predicted with a low
random error for boreal [root mean square error (RMSE) = 4.33
m and relative RMSE (rRMSE) = 21.7%] and temperate zones
(RMSE = 5.06 m and rRMSE = 27.8%), but the diverse tree structure
of Mediterranean regions results in a higher uncertainty (RMSE =
6.44 m and rRMSE = 32.2%), observed as a more severe underesti-
mation at higher canopies (>30-m height) (Fig. 2A), which can be
partially explained by the uneven distribution of the validation data,
with a lower number of points for higher canopies (Fig. 2B). Aggre-
gating tree cover and height to 1 km–by–1 km grids, we found that
the overall systematic bias (see Materials and Methods for equation)
between our PlanetScope predictions and LiDAR data for areas
outside forests, here defined as trees that we mapped in the
“urban” and “cropland” classes using a global land cover and land
use (GLCLU) dataset (30), was −1.6% for canopy height and −2.6%
for canopy cover. For closed canopy forests, here defined as areas
mapped as forest in the GLCLU dataset, the bias was −1.2% for
canopy height and +0.4% for canopy cover (Fig. 2C). When

comparing two global canopy height products with airborne
LiDAR-derived canopy cover and height, the systematic bias was
high, particularly for trees outside forests: Here, the bias for
canopy height and cover was +15.4 and +231.2%, respectively, for
a fused Sentinel-2– and spaceborne LiDAR [Global Ecosystem Dy-
namics Investigation (GEDI)]–based map at 10-m resolution (26),
while it was −31.3 and −95.8% for canopy height and cover, respec-
tively, for a Landsat- and GEDI-based map at 30-m (Fig. 2D) (24).

Quantification of tree cover outside forests across Europe
To refine the forest versus non-forest area definition in relation to
our dataset, we used the FAO definition (21) to separate forests from
non-forest trees. Here, we aggregated our PlanetScope-based tree
cover and tree height maps into 0.5-ha grid cells. Following the
FAO definition, woody vegetation in 0.5-ha grids where the
canopy cover of trees taller than 5-m height exceeded 10% and
where the land use was not agricultural land or urban according
to (30) was considered as forest. Note that the FAO definition in-
cludes areas of trees that potentially can grow above 5 m, which
cannot be resolved for our map. Conversely, trees in 0.5-ha grids
where the cover of trees taller than 5 m was below 10% or where
the land use was urban or agricultural land were considered as
trees outside forests. Following these definitions, we find that
forests cover 377 million ha, equivalent to 28% of the total land
area shown in Fig. 1. The canopy cover of trees outside forests rep-
resents 16.1 million ha, which is 1% of the total land area and 4% of
the total tree cover. The precise percentage of cover due to trees
outside forests depends on a number of factors including land
cover maps and spatial resolution of the product (fig. S4).

To analyze the spatial distribution of both forest and trees
outside forests, we aggregated our results at the country scale
(Fig. 3, A and B) and to 1° units (Fig. 3C). Results show that
almost half of all countries (44%) have a national forest cover
between 30 and 45%, and trees outside forests contribute less
than 5% to the total tree cover for about half (53%) of the countries.
Northern Europe is mostly covered by forest with limited trees cover
outside forests: Finland, Slovenia, and Sweden have the highest per-
centage of national forest cover (66, 63, and 61%, respectively) and
the lowest contribution of tree cover outside forests to the total tree
cover (1.8, 2.8, and 1.9%, respectively). On the contrary, the least
forested countries (United Kingdom, 12%; The Netherlands, 12%;
and Denmark, 15%) have the highest contribution of tree cover
outside forests to the total tree cover (22.1, 24.5, and 19.5%, respec-
tively). The highest contribution of trees outside forests at 1° grid
scale is found in Western Europe along the coast and Southwestern
Europe (up to 40% in Fig. 3, C and E) where agricultural and resi-
dential areas are concentrated and forest coverage is consequently
low. The histogram results show a roughly even distribution of
forest cover percentage, with most of the trees outside forests ac-
counting for less than 10% of the total tree cover (Fig. 3, D and
E). For forest areas, our results compare well with the national
FAO statistics (fig. S5). Differences can be explained by the slightly
different definitions of forests. For example, the FAO definition in-
cludes areas with shorter trees that can grow taller than 5 m, such as
reforestation and afforestation, which were excluded in our map.

We then quantified tree cover for different land use/cover classes
(Fig. 3F), by aggregating our data into 0.5-ha grids. For Europe as a
whole, we identify 15.5 million ha of trees located outside the
“forest” class of GLCLU, in which half of them are found in
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“dense short vegetation” (hereafter referred to as grassland), with a
median (25 to 75 percentiles) canopy cover of 7.2% (2.1 to 19.2%).
Urban areas have on average the highest canopy cover (12.7%; 4.5 to
26.9%), with an aggregated tree cover of 5.05 million ha. Tree cover
of a total of 2.67 million ha is found in cropland with a rather low
canopy cover percentage per hectare (4.6%; 1.4 to 12.2%). Detailed
statistics are found in table S1.

Quantifying aboveground biomass across Europe
To quantify the woody resources into aboveground biomass, we
used plot-based National Forest Inventory (NFI) data (fig. S13)
and airborne LiDAR canopy height model (CHM) data from
Denmark (31) to establish allometric relationships between above-
ground biomass and canopy height, both averaged at the plot level
(n = 11,296). Separate relationships were derived for broadleaf forest
(n = 7232; bias = −8.8%), coniferous forest (n = 3768; bias = −6.8%),
mixed forest (n = 7536; bias = −9.9%), and plots with sparse tree
cover (n = 409; bias = −5.9%) (fig. S6) using a previously published
forest-type map from 2018 (32) for the separation (see Materials and

Methods). We aggregated aboveground biomass to the hectare level
(100 m by 100 m) including both forest and non-forest trees (Fig. 4).
The overall uncertainty is the combined uncertainty due to the
canopy area and height prediction and to the height to biomass con-
version and was quantified by comparing our final aboveground
biomass product (after application of the allometric conversion
on PlanetScope canopy height and cover data) with field measured
biomass from the Danish (n = 3451) and Spanish (n = 1706) NFI
data at the plot scale and the country scale (n = 30). At the plot scale,
the correlation was moderate [correlation coefficient (r) = 0.53 and
bias = −23% for Denmark; and r = 0.50 and bias = −25% for Spain]
(fig. S7, C and D), which was expected because of a large uncertainty
related to both satellite and field data, such as geolocation and image
quality errors. These errors were found to be not systematic, as dem-
onstrated by a comparison of statistics aggregated to the country
scale, both from NFI and satellites. Here, the systematic bias was
−10% (underestimation) for Denmark and +5% (overestimation)
for Spain, which can be explained by the fact that clear-cut areas
and young tree plantations are part of the national statistic but are

Fig. 1. PlanetScope-based canopy height map for Europe at 3-m resolution for 2019. (A) Spatial distribution of average canopy height aggregated to 1-km reso-
lution for visualization purpose. (B) PlanetScope imagery example in Switzerland displayed as near-infrared, red, and green false color composite. (C) Corresponding
canopy height models (CHMs) from airborne LiDAR at 0.5-m resolution. (D) Same area as (B) but showing the PlanetScope-based canopy height prediction at 3 m. The
land basemaps in (C) and (D) are fromGoogleMaps satellite imagery (Imagery 2022 CNES/Airbus, Landsat/Copernicus, Maxar Technologies, Map data 2022). The land and
ocean base map in (A) is from www.naturalearthdata.com.
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not mapped in our product. The bias was +7.6% over 30 countries
with a Pearson correlation of 0.98 (Fig. 5D and fig. S9A). The rela-
tively even distribution of the error across countries demonstrates
the transferability of the approach beyond Denmark. A previously
published state-of-the-art biomass map from (28) had a larger bias
of +17.3% when compared against country statistics. Aggregated to
1 km–by–1 km scale, our map compares reasonably well with exist-
ing products (fig. S8) (27, 28, 33), with the advantage of including
information on non-forest trees (Fig. 4).

Following the FAO forest definition, European forests have an
overall aboveground biomass of 35.2 Pg, and trees outside forests
represent only 0.8 Pg, which is a proportion of 40:1. By further ag-
gregating our biomass maps into forest types and biomes, we found
that broadleaf and coniferous forests in the temperate zone have a
biomass density of 140.4 (84.8 to 195.8) Mg/ha and 110.1 (50.4 to
174.6) Mg/ha, respectively (Fig. 5, A and B). Using the global land
use and land cover class (GLULC) classification, our results reveal
that trees in urban areas have a total biomass of 0.22 Pg with a
median biomass density of 5.6 (2.5 to 13.2) Mg/ha, trees in crop-
lands have 0.11 Pg with a median biomass density of 3.8 (1.9 to

8.5) Mg/ha, and trees in grassland have 0.29 Pg with a median
biomass density of 4.6 (2.1 to 11.1) Mg/ha. Overall, 44.6% of the
tree biomass outside forests is found in grasslands, 34.0% in
urban areas, and 16.2% in croplands (Fig. 5C).

At the country scale, we ranked the top five countries having the
highest contribution of non-forest trees for different GLULCs to the
national biomass stocks. Ireland was ranked first, with 16.5% of the
tree biomass located outside forests, followed by the United
Kingdom (14.8%), The Netherlands, which has 8.2% of its national
biomass located in urban areas, and Denmark (9.7%) (Fig. 5C). We
found a negative relation between the total tree cover percentage
and the biomass contribution by trees outside forest (Table 1).
The Netherlands stands out with both the highest tree cover
outside forest (24.6%) and a high biomass contribution in percent-
age (12.2%). France has the largest total biomass (2388.2 Tg), while
the tree biomass outside forests is only of 77.2 Tg.

Beyond Europe
To test the scalability of our approach, we applied the tree cover seg-
mentation and canopy height prediction to the boreal and

Fig. 2. Evaluation of canopy height and cover. (A) Residuals at 3 m by 3 m between aerial CHM and our PlanetScope-based predictions, grouped in 5-m height
intervals. (B) Number of evaluation points used in (A). See fig. S1 for biome zones (62). (C and D) Violin plots of canopy height and canopy cover for airborne LiDAR-
based CHMs, PlanetScope predictions (this study), a Sentinel-2–based product from (26), and a Landsat-based product from (24) aggregated to 1 km–by–1 km samples
(that were not used for training and parameter optimization) divided into forest areas (n = 4772) (C) and non-forest areas (n = 5228) (D). Forests and non-forest areas are
defined by the GLCLU dataset. Two-tailed Pearson correlation and bias are calculated between the airborne LiDAR-based CHM samples and the other products (all
aggregated to 1 km by 1 km). See corresponding scatter plots in figs. S2 and S3. The horizontal blue line is the median and the violins show the data distribution.
Pixel-level height distribution of trees outside forests is shown in fig. S12. See Materials and Methods for the bias calculation.
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temperate zones of North America and tested the performance with
a fully independent LiDAR dataset (1000 km2 at 1-m resolution)
that was never seen during training and parameter optimization
(Fig. 6). Errors were found to be comparable to the European test
datasets if aggregated to 1 km–by–1 km samples [coefficient of de-
termination (R2) = 0.71, bias = −15.7%, and rRMSE = 20% for
height regression; and R2 = 0.88, bias = +2%, and rRMSE =
28.6% for tree cover segmentation]. At 3 m by 3 m, the overall
RMSE was higher than in Europe (6.5 m). Note that a conversion
to biomass would requires region-specific calibrations with local
field data, which is beyond the scope of this study.

DISCUSSION
Trees outside forests in Europe have always been overlooked, and
only the United Kingdom has so far conducted a systematic assess-
ment of their resources (17). They conclude that, in many areas, the
carbon stored in non-forest trees exceeds the forest carbon stocks,
which would imply that current carbon stock assessments include a
large bias.

Here, we show that, at the continental scale, trees outside forests
do not play a critical role for the national aboveground carbon
stocks of many Northern European countries. However, this is
because of the dominant role of forest landscapes. We found the
total amount of carbon in non-forest trees (0.37 Pg) is about the

Fig. 3. Quantification of tree cover outside forests across Europe. (A) Total forest area in million hectares and the percentage of surface area at the country scale. (B)
Trees outside forest (TOF) area in million hectares and the percentage of total tree cover at the country scale. (C) Percentage of forest (size of the circle) and TOFs (color of
the circle) cover for 1° by 1° grids. (D) Forest cover percentage histogram at 1° by 1° as shown in (C). (E) TOF cover percentage histogram at 1° by 1° as shown in (C). (F)
Canopy cover of different GLCLU landscape types: The boxplots show the canopy cover percentage per hectare, and the bars denote the total canopy cover area per class.
For the boxplots, the start of the horizontal line represents the minimum value; vertical lines represent first quartile, median, and third quartile values, respectively; and
the end of the horizontal line represents the maximum value.
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same (0.30 Pg) as was previously found in billions of African
dryland trees over the arid and semiarid African Sahel, also with
comparable carbon density values (1.9 to 2.8 Mg/ha versus 1.5
Mg/ha in semiarid area) (34). This implies that trees outside
forests are not only an overlooked resource in dryland area (11),
but they are equally important for European landscapes.

We also found that there are several countries and regions where
the tree cover outside forests exceeds 20% of the national tree cover
(Fig. 3B). In particular, urban areas can have a relatively high tree
cover, and their contribution to the national aboveground biomass
can be considerable. In addition, at the subnational scale, many
areas have a large proportion of trees outside forests (Fig. 3C),
and excluding them causes a substantial bias in local carbon
budgets. Moreover, trees outside forests are not only valuable for
their carbon stock, and a systematic identification of their location
could be an integral part of annual monitoring and planning
schemes related to biodiversity, microclimate, habitats, landscape
values, and hydrological cycles (12, 13).

Our canopy cover, height, and biomass products provide a level
of detail that was previously only possible with airborne data from
LiDAR, which are costly and rarely available at the national level.
Airborne LiDAR-derived maps of woody resources are not available
at the continental scale, and spaceborne LiDAR from GEDI (35) is
only available at a point scale and not over multiple years. Further-
more, GEDI and also the soon-to-be-launched BIOMASS mission

Fig. 4. Aboveground biomass estimation using PlanetScope. (A) PlanetScope-based canopy height map at 3-m resolution. (B) Biomass density estimation based on
(A) derived from allometry equation at 30 m by 30 m in kilograms per square meter. (C) Biomass density per hectare aggregated from (B) in megagrams per hectare. The
base map is from Google Maps satellite imagery (Imagery 2022 CNES/Airbus, Landsat/Copernicus, Maxar Technologies, Map data 2022).

Table 1. Country statistics of tree cover and biomass. Ten example
countries sorted by the total tree cover percentage. Full country statistics
are provided in table S1. The class trees outside forests were defined
following the FAO definition.

Country Total tree
cover (%

of
country)

Tree cover
outside

forests (%
of total)

Total
biomass
in Tg

Tree
biomass
outside

forests in Tg
(% of total)

Ireland 10.5% 19.7% 36.65 3.24 (8.8%)

United
Kingdom

14.1% 22.1% 264.29 26.29 (9.9%)

The
Netherlands

14.8% 24.6% 47.32 5.79 (12.2%)

Denmark 16.9% 19.5% 63.47 4.74 (7.5%)

Ukraine 20.1% 11.4% 1534.2 53.2 (3.5%)

France 34.6% 9.7% 2388.2 77.2 (3.2%)

Germany 36.1% 10.0% 2264.3 65.4 (2.9%)

Italy 38.6% 7.5% 1501.3 37.6 (2.5%)

Estonia 50.3% 3.0% 259.3 2.7 (1.0%)

Finland 67.8% 1.7% 1726.2 9.76 (0.6%)
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do not cover the northern parts of the world (36). Previous studies
combined sparse GEDI data with Landsat (24) or Sentinel-2 (26) to
generate global-scale canopy height maps, and, although these
perform well in forests, they have a large bias in non-forest areas
(Fig. 2, C and D). Moreover, the major strength of deep learning
with 3-m resolution nanosatellite imagery lies in the fact that the
model can learn features from the visible tree crown structure,
which is often less clear in Sentinel-2 (10-m) or Landsat (30-
m) images.

Our maps could be operationally integrated in national carbon
stock inventory schemes. First, the spatial resolution allows to iden-
tify individual tree crowns and makes it possible to align the satellite
image with field plot data, which can be useful to reduce variances
when upscaling plot data on, e.g., carbon stocks to the national
scale. Using different canopy height-to-biomass conversions for
different forest and non-forest types account for the bias caused
by the forest understory, which is undetected by classic aerial
surveys. Aggregating our biomass maps to the national scales
shows a good alignment with national NFI statistics (bias of 7.7%
overestimation for 30 countries) (5), although NFI plot-level data
were only available for Denmark. Second, while the imagery is

not free of charge, it is cheaper than aerial imagery, making it fea-
sible to be acquired annually at the national scales. The daily global
coverage facilitates cloud-free mosaics of different periods of the
year, and, once a model is trained, it has potential to be applied
each year on an operational basis without further need of LiDAR
data. Our example of North America demonstrates the geographical
robustness of our models over trained biomes, but canopy height
estimations in dry and tropical areas require further work. Third,
LiDAR and aerial imagery differ between countries with regard to
spectral, spatial, and temporal resolution, making it difficult to
create biomass maps that are consistent between countries and
years at the continental scale. Although this was not demonstrated
in this study, PlanetScope-based maps have a certain consistency in
space and time (37, 38), allowing for large-scale and multiyear
biomass assessments. Fourth, integrating trees outside forests in na-
tional inventories is not only interesting from a carbon stock per-
spective but also allows to quantify a variety of ecosystem services
provided by these trees. A previous study used submeter LiDAR and
aerial images to quantify the tree cover outside forests in Denmark,
yielding the same proportion as this study (20%) (39), confirming
the reliability of the PlanetScope-based map for the mapping of

Fig. 5. Aboveground tree biomass across tree types, land use/cover and countries. (A) Total tree biomass for different forest and land use/cover types; the color
reflects the biomes. (B) Same as (A) but for biomass density. (C) Top five countries with the highest contribution of non-forest tree biomass to the national biomass stocks,
as well as distribution of biomass among land use/cover classes. (D) Country-level biomass comparison between PlanetScope-based estimations and FAO statistics (5).
Forests are defined by GLULC and divided into broadleaf and coniferous using a previously published forest-type map from 2018 for countries in the European Economic
Area (EEA) and the PROBA-V forest-type map (2019) for countries outside the EEA (Belarus, Moldova, Russia, Ukraine) (32). For more countries, see fig. S9.
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non-forest trees. For the United Kingdom, we found the fraction of
urban trees outside forest cover to be 20.2%, which is in general
agreement with the 16.5% reported in the U.K. NFI (17). Moreover,
the overall forest cover percentage found for the United Kingdom
(12%) is in line with previous reports (17, 40, 41).

A drawback of the presented method is the requirement of large
amounts of airborne LiDAR for training and validation, as well as
NFI data for converting canopy cover and height into biomass,
which now limits the applicability primarily to the Global North.
Although our map has shown robustness across Europe, the gener-
alization to North America yields comparable results when aggre-
gated at 1-km resolution, but the performance at the 3-m pixel level
drops. Nevertheless, fine-tuning on some reference data from a pre-
viously unknown region of interest will likely close the performance
gap. The conversion of height and cover into biomass can potential-
ly be improved by more region-specific field data, but using allome-
tric equations from the Spanish NFI data showed that the equations
established from the Danish NFI data are robust (see Materials and
Methods). In semiarid regions, small trees form a complex matrix of
low vegetation, representing more challenging conditions for accu-
rate predictions of the deep learning–based model. We confirm this

with higher error values in the Mediterranean zone (Fig. 2A and fig.
S3), where our map should be used with caution. The inclusion of
additional LiDAR data from mixed vegetation types, as well as semi-
arid and arid regions, will improve future versions of the model. Ac-
knowledging these current shortcomings, recent development of
state-of-the-art methods from the field of machine learning com-
bined with cost-efficient nanosatellite imagery with a spatial resolu-
tion below 5 m opens a previously unknown research avenue toward
improved monitoring of national tree resources, both in and outside
forests. This could allow the systematic integration of trees outside
forests into local, regional, and global carbon budgets, national in-
ventories, climate models, and carbon credit programs and improve
the management of tree resources in countries characterized by pre-
dominantly non-forest landscapes. While this study concludes that
the impact on national statistics of most European countries will not
be marked due to the dominant role of forests, we also show that the
amount of carbon stored in European non-forest trees is compara-
ble to dryland areas, where trees outside forests are dominating the
landscapes (34).

Fig. 6. Canopy height estimation for the boreal and temperate zones in North America. (A) Canopy height aggregated to 1-km resolution. (B) Scatter plot of canopy
height from aerial CHM and PlanetScope predictions in test areas [red boxes in (A)] using canopy height averaged over 1 km–by–1 km sample sites (n = 1036). (C) Same as
(B) but for canopy cover percentage. (D to F) Zoom-in examples of canopy height predictions in urban (D), cropland (E), and grassland (F) areas at 3-m resolution. The land
base map in (D) to (F) is from Google Maps satellite imagery (Imagery 2022 CNES/Airbus, Landsat/Copernicus, Maxar Technologies, Map data 2022). The land and ocean
base map in (A) is from www.naturalearthdata.com.
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MATERIALS AND METHODS
Summary
We used CHMs from airborne LiDAR data across Europe to train
two deep learning models: a segmentation model predicting binary
canopy/no-canopy (for trees taller than 3-m height) and a regres-
sion model predicting canopy height, both from PlanetScope
optical imagery at 3-m resolution. The canopy map was used as a
mask, and canopy height was only predicted within areas identified
as tree cover. We included a GEDI- and Sentinel-2–based canopy
height map from (26) as an additional model input, in both the
training and prediction processes, providing a priori knowledge
on the height distribution of forest areas. We observed that this im-
proved the underestimation of tall forest trees and that, in case of
temporal or spatial mismatches (e.g., clear-cuts and trees outside
forests), the prediction followed the PlanetScope image overruling
the information from the GEDI/Sentinel-2 map. Here, it is impor-
tant to mention that the map from (26) severely overestimates trees
in sparsely vegetated areas, which, however, did not affect our result
becausewe applied a binary canopymap at 3 m as mask (fig. S4). We
used Danish NFI data to establish allometric relationships between
plot-based aboveground biomass and height (>1.3 m) from aerial
CHMs averaged over the field plot. The relationship between
canopy height and biomass was then used to convert canopy
height and cover predicted from PlanetScope imagery into
biomass at 30-m resolution (same as NFI plot), which was lastly ag-
gregated to the hectare level. We did not use the field measured
height but the average vegetation height from the LiDAR data per
plot because it comes closest to our predicted height. We also did
not use PlanetScope predicted height because of alignment uncer-
tainties with the field plots at 3-m resolution. The lack of publicly
available GPS-referenced field plots covering the entire continent
makes it impossible to train a model that can predict biomass di-
rectly from PlanetScope imagery.

Data
PlanetScope imagery
We used PlanetScope imagery from Planet Labs available via a re-
search license. The images are available daily for the entire globe
with approximately 3-m pixel resolution and four multispectral
bands: red, green, blue, and near infrared. We generated yearly 1°
by 1° tiles of mosaics from around 100,000 image scenes for the
study area from 2019. Each mosaic tile consists of roughly 100
high-quality cloud-free scenes and was selected within a time
window according to the Moderate Resolution Imaging Spectrora-
diometer (MODIS) phenology product (42). The selected time
window started 25 days before “senescence” and ends 10 days
before “midgreendown,” which reflects late summertime in
Europe, where all woody vegetation still has green leaves and
visible crown structure. For areas with frequent cloud cover, the
time window was progressively extended toward earlier dates until
the whole tile was fully covered with scenes. To reduce differences
resulting from the mosaicking scenes collected from different
sensors and times, we applied a histogram matching to Landsat
and Sentinel-2 surface reflectance images from the same date
range to produce homogeneous mosaics (38).
Airborne LiDAR canopy height maps
We collected publicly available airborne LiDAR CHM data in
Europe and the United States, with full country coverage for

Denmark (0.4 m-resolution merged from 2016 to 2021, in total
43,000 km2), Estonia (1-m resolution from 2011 to 2017, in total
45,000 km2), The Netherlands (0.2-m resolution from 2018, in
total 41,000 km2), and Spain (2.5-m resolution from 2008 to
2015, in total 500,000 km2). Other samples were available for
patches in Finland (1-m resolution from 2019, in total 50,000
km2), Switzerland (0.5-m resolution merged from 2017 to 2020,
in total 20,000 km2), and Wales (1 m-resolution from 2015, in
total 10,000 km2) (fig. S1B). Some data were provided as CHM,
others as raw cloud points, which were converted to Digital
Terrain Model (DTM) and Digital Surface Model (DSM) used to
calculate CHMs via LAStools (43). CHM data represent the top
canopy height in the pixel area but, sometimes, include the height
from buildings and short herbaceous and bush vegetation. Here, we
used the building footprints from Microsoft (44) and Open Street
Map (45) to mask buildings. We further visually compared Planet-
Scope imagery and the corresponding CHM and decided for a 3-m
height threshold to separate tree crowns from shrubs, bushes, and
grasses. Woody plants below this threshold were not clearly visible
in the PlanetScope images.
Training sample generation
To adjust airborne CHM with PlanetScope images, we reprojected
the PlanetScope imagery to match the aerial data Universal Trans-
verse Mercator (UTM) projection and resampled the aerial CHM to
the spatial resolution of PlanetScope data (3 m) by reserving
maximum values (filling small gaps in forests in the aerial CHM,
which are not visible in PlanetScope imagery). We applied a weight-
ed sampling strategy to the aerial CHM data, according to collection
year, mean height, tree cover percentage (area > 3 m), forest type
[coniferous or broadleaf (32)], and dominating land use/cover
classes, to control the training data distribution fitting into the
model and to minimize possible mismatches between data
sources caused by acquisition time differences (fig. S11). The final
dataset contains 100,000 samples, each 328 × 328 pixels correspond-
ing to 1 km–by–1 km ground spacing, where 10% was used for val-
idation, 10% as test dataset, and 80% for training the model.

Mapping tree cover and height using deep learning
We used the U-Net architecture (46) with an EfficientNet-B4 back-
bone (47) for both the tree cover segmentation and the tree height
regression tasks (fig. S10). The modified U-Net has proven to be
able to delineate tree canopies in very high resolution imagery
(11, 38, 48). EfficientNets have shown to perform well with small
parameter size by a predesigned network depth, width, and resolu-
tion. Because we need to deploy our model to the continental scale
at 3-m resolution, we chose the EfficientNet-B4 as the trade-offs
between performance and predicting (training) time. A key objec-
tive of our work was to assess tree resources outside forests as accu-
rately as possible, and the crown size of such trees is often just a few
pixels in our PlanetScope imagery. In the decoder, we replaced the
simple two convolutional layers in the U-Net by residual blocks
(49), which have been demonstrated to improve the model perfor-
mance for segmenting small objects (50). Furthermore, spatial and
channel squeeze and excitation blocks were integrated in the
decoder to build attention mechanisms (51). The deep learning
framework is built on an open-source segmentation library (52).

Mismatches between aerial CHM and PlanetScope data were
sometimes observed in forested areas, when the images were not ac-
quired from the same date. These inconsistencies cumulatively
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contribute to a substantial proportion of loss in the regression, re-
sulting in an unstable training progress and large uncertainties in
the tree height estimations. Therefore, we first segmented the tree
canopies, which were then used to mask the non-forested areas
for minimizing the regression loss (fig. S10).
Tree crown segmentation
We set a 3-m height threshold to the aerial CHM data and converted
it into a reference binary (tree or background) map. The four-band
input data from PlanetScope were augmented by random cropping,
flipping, and brightness distortion and then normalized channel-
wise based on training dataset statistics before feeding into the
model. We used the focal Tversky loss (53) as loss function for
the segmentation model, and the alpha and beta parameters in
the Tversky index (54) penalizing false positives and false negatives
were set to 0.4 and 0.6, respectively. The focal parameter was set to
1.2, which incentivizes the model to focus on harder examples
(when the Tversky index < 0.5), especially for the cases where scat-
tered trees or tree lines do not exactly overlap between PlanetScope
and aerial CHM data. We used Adam (55) as optimizer with an
initial learning rate of 0.0001 and then reduced the learning rate
by a factor of 0.1 when the metric has stopped improving for 30
epochs. Model training stopped when the learning rate reached 1
× 10−7. In our study, each epoch of training took approximately
0.5 hour on a GeForce RTX 3090 GPU. The model achieved conver-
gence after 180 epochs. Subsequently, the trained model was then
used to predict a binary tree/non-tree cover map at 3-m for the
entire study area. Notably, for each tile (1° by 1°), the prediction
process took only 3 to 5 min.
Tree height regression
We used the same network architecture and training strategy as for
the segmentation task, with an inverse sample–frequency weighting
smooth–L1 loss function to mitigate the underestimation that is
often observed for tall trees (26). The regression loss was only cal-
culated for areas that overlap between the segmentation tree mask
and the aerial CHM (>3 m). While this largely eliminated uncer-
tainties from mismatches between the two data sources, the
model still underestimated taller forests, possibly resulting from
unclear training data. For example, coniferous forests vary optically
only little in PlanetScope image but can have different heights in the
CHM, depending on their location. As a consequence, whenever the
model encounters this situation, it conservatively predicts interme-
diate values. One solution is to encode geo-information into the
model (50) or include as input data (26). However, this would
require a more homogeneous distribution of the reference data.
We thus included a GEDI/Sentinel-2–based height map from (26)
as auxiliary data (additional input band) to provide prior knowledge
to the model about the forested areas, resulting in a total of five
bands for the tree height regression task. For the regression task,
both the training and prediction times are comparable to tree seg-
mentation. However, the model required a longer time to converge.

Allometry for biomass estimation
Allometric equations provide aboveground biomass estimates from
related tree measurements, such as stem diameter at breast height,
canopy height, or crown diameter (56). We associated plot-level
biomass derived from species-specific equations and field measured
stem diameters with airborne LiDAR CHM (>1.3 m) averaged over
the same plots (56, 57). The plot-based aboveground biomass in-
cludes trees of all sizes above 1.3 m including understory, and

relating the total aboveground biomass value per plot with the
average canopy height derived from airborne LiDAR (for all areas
with woody vegetation > 1.3 m, following the NFI definition) auto-
matically corrects for the bias from undetectable understory. The
regression equation in the log-log space can be described as

InðAGBDÞ ¼ αþ β� InðHÞ þ ε ð1Þ

where AGBD is the aboveground biomass density (in kilograms per
square meter), H is the average canopy height for woody vegetation
taller than 1.3 m for the NFI plot area from the aerial CHM, α and β
are the regression coefficients, and ɛ is normally distributed error
term with zero mean and standard deviation σ, that is, ɛ ~ N (0,
σ2). When back-transforming Eq. 1, we corrected for logarithmic
bias using the Baskerville correction (58).

Plot-level biomass data were from the Danish NFI (n = 11,296)
collected between 2012 and 2021 (31). Each plot was a circle with a
radius of 15 m, where averaged tree height, estimated aboveground
biomass, and forest fraction were provided. To remove misaligned
plots, we filtered plots where the forest cover difference was more
than 30% but kept data regardless of the collection year, assuming
that dynamics are averaged out by the large number of plots. We
derived forest-type–specific relationships using the Copernicus
forest map from 2018 (32) to classify the plots in broadleaved
forest (bf ), coniferous forest (cf ), mixed forest (mf), and areas of
sparse tree cover (nf), which are plots that fall outside of the areas
mapped as forest in the Copernicus forest-type map (fig. S6). We
acknowledge that the class representing the non-forest trees (nf )
is not ideal, because the Danish NFI does not systematically
measure trees outside forests and other wooded lands. However,
here, we assume that plots being located in areas of sparse tree
cover and having a low biomass are most representative for non-
forest areas. Because the NFI biomass data include all trees taller
1.3 m and not only those visible from an aerial perspective and in
the PlanetScope images (typically >3-m height and 10-m2 crown
size), the different relationships include understory or small trees,
which indirectly correct for the bias of missing small trees in the
PlanetScope-based tree height predictions. This fact makes it im-
portant to have a separated equation for trees outside forests,
which typically have a lower amount of understory. The equations
and the number of NFI plots are as follows

AGBDbf ¼ exp½� 2:427� �H1:794 � exp½0:1342=2�
ðNbf ¼ 7232Þ

ð2Þ

AGBDcf ¼ exp½� 1:652� �H1:547 � exp½0:1522=2�
ðNcf ¼ 3768Þ

ð3Þ

AGBDmf ¼ exp½� 2:243� �H1:728 � exp½0:1182=2�
ðNmf ¼ 7536Þ

ð4Þ

AGBDnf ¼ exp½� 2:227� �H1:742 � exp½0:3052=2�
ðNnf ¼ 409Þ

ð5Þ

We used 20% of the plots randomly selected for each type to
derive error metrics shown in fig. S6. Overall, the equations
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showed a reasonable performance with a relative low bias (averaged
R2 = 0.62, bias = −8.7%, and RMSE = 5.43 kg/m2).

Plot-level aboveground biomass in kg was then estimated as

AGB ¼ ðTCP=100Þ � 900� AGBD ð6Þ

where TCP is predicted tree cover percentage aggregated in 30 m–
by–30 m resolution (rasterized NFI plot size). AGBD is obtained
from Eqs. 2 to 5 according to the dominant forest type within the
plot area. The aboveground biomass at 30-m resolution was lastly
aggregated to the hectare level, containing both forest and non-
forest information (Fig. 4).

Evaluation
We randomly selected 10% of the CHM dataset (10,000 1 km–by–1
km samples) as independent test dataset, which was not used for
training and to optimize the model parameters during training,
neither for the tree cover segmentation nor for the tree height re-
gression tasks. We evaluated our results at pixel level (3 m by 3
m) using the intersection over union (IoU), which quantifies how
well the predicted boundaries align with the ground truth boundar-
ies, for the segmentation and the RMSE for tree height regression
and aggregated to 1 km–by–1 km grids using the relative systematic
error (bias %, Eq. 7); positive bias represents an overall overestima-
tion, and negative bias represents an overall underestimation (56)

bias ¼
1
N

XN

i¼1

Ypred � Y true

Ytrue

� �

� 100 ð7Þ

and the rRMSE in percentage described in Eq. 8

rRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1

Ytrue � Ypred

Ytrue

� �2
v
u
u
t � 100 ð8Þ

Tree cover segmentation
Overall, our model achieved an IoU of 0.692 on the test dataset (n =
10,000 plots of 1 km by 1 km). Further evaluation revealed a good
alignment between our tree cover map and the tree cover map from
aerial CHM data (using a 3-m height threshold) with overall R2

values of 0.92 but with variation across biomes (fig. S2E). Trees
can be segmented more precisely in both boreal (R2 = 0.97, bias =
−1.0%, and rRMSE = 13.5%) and temperate zones (R2 = 0.99, bias =
−0.8%, and rRMSE = 18.5%) than in the Mediterranean zone (R2 =
0.39, bias = −8.2%, and rRMSE = 89.8%), which is likely due to two
reasons: First, a limited amount of training data was usable from
Spain because of the large temporal gap between PlanetScope
imagery and the available aerial CHM data, which is from 2012.
Second, the method of using a constant height threshold to generate
the tree mask is not fully functional in diverse vegetation structures
consisting of trees and shrubs. For areas with trees outside forest,
our predictions compared with aerial CHM data achieve an
overall bias = −2.4% and rRMSE = 36.6% (fig. S3 and Fig. 2D).
We also calculated a confusion matrix comparing Danish NFI
plots (n = 13,638) classified as either forest or no forest with our
data following the FAO definition, showing a very high agreement
with an overall accuracy of 0.96 (fig. 7A).
Tree height regression
We evaluated our tree height model by a residual analysis between
reference height from the test dataset and the corresponding pre-
dicted tree height at pixel level (3-m resolution) (Fig. 2A). The

model performance varied across biomes and canopy height
ranges yet was closely related to the data distribution (Fig. 2B). In
general, the model did not show a considerable saturation for taller
canopies, yielding an RMSE of 5.4 m and an mean absolute error of
4.2 m. We found similar metrics as for the segmentation across
biomes at plot-level evaluation, with R2 = 0.82, bias = −2.4%, and
rRMSE = 17.9% for the boreal zone; R2 = 0.9, bias = −1.6%, and
rRMSE = 14.5% for the temperate zone; and R2 = 0.45, bias =
−20.1%, and rRMSE = 35.4% for the Mediterranean zone (fig.
S2D). All slopes below the diagonal line indicated a slight underes-
timation, consistent with the pixel-level evaluation (Fig. 2A). As for
trees outside forests, we obtained a bias of −1.6% and rRMSE of
26.4% (fig. S3A). We further evaluated our top height estimation
with field measured plot scale height from Danish NFI data (n =
3451) (fig. S7B), showing an underestimation bias of 9%.
North America
To test the generalization of our model, we then predicted tree cover
and height for the boreal and temperate zone of North America and
compared the results to aerial CHMs that were not used for either
training or validation of the model parameters. Here, we acquired
around 1000 km2 of airborne LiDAR CHMs at 1-m resolution from
(59) and generated 1036 samples with 1 km–by–1 km ground
spacing following the same data processing procedure as described
in the previous section. These evaluations show that our model can
be deployed to a comparable landscape without a considerable loss
of performance (R2 = 0.71, bias = −15.7%, and rRMSE = 20% for
height regression; and R2 = 0.88, bias = +2%, and rRMSE = 28.6%
for tree segmentation) (Fig. 6).
Evaluation of the allometry
We used NFI data from Spain (fig. S13), mostly located in the region
of Extremadura (768 plots) measured in 2016 and 2017, and the
province of Leon in the northwestern part of Spain (1162 plots),
measured in 2019. The Spanish NFI measurements represent an im-
portant remeasurement campaign on which existing NFI plot loca-
tions have been remeasured with upgraded global navigation
satellite system equipment to improve the geolocation of plot
centers in existing and new plots (60). Airborne laser scanning
data were collected in Leon from October 2019 to May 2020 and
in Extremadura from October 2018 to July 2019, which largely
match with the NFI measurements. In addition, we used 1284
plots that include a diverse mosaic of Mediterranean evergreen
and broadleaf forests (61). We implemented the same procedure
as applied in Denmark, to derive allometric equations using only
the Spanish NFI data

AGBDbf ¼ exp½� 3:1218� �H2:072 � exp½0:2892=2�
ðNbf ¼ 2213Þ

ð9Þ

AGBDcf ¼ exp½� 2:161� �H1:693 � exp½0:2942=2�
ðNcf ¼ 506Þ

ð10Þ

AGBDnf ¼ exp½� 1:608� �H1:479 � exp½0:4462=2�
ðNnf ¼ 397Þ

ð11Þ

Using these equations, we estimate 1120.7 Tg biomass for Spain,
which is very close to the estimates using the equations from the
Danish NFI data (1139.8 Tg). This consistency gives confidence
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in the robustness and ability to generalize our allometric models,
which were originally developed and validated in Denmark.
Biomass estimations
The errors from canopy cover, height, and the allometric equations
propagate to the final biomass estimation, so we evaluated the un-
certainty on the biomass maps in three ways. First, we compared the
predicted biomass at field plot level with estimations from the
Danish NFI for 3451 selected plots, resulting in an overall bias of
−23% (fig. S7C). Because NFI data were collected in forest areas,
this error is affected by the underestimation of very tall trees,
where biomass densities can reach 300 Mg/ha (fig. S7C) and possi-
ble geolocation uncertainties between the PlanetScope images and
the NFI plot locations recorded by a handheld GPS. Second, we
compared our biomass estimation with other global biomass prod-
ucts (27, 28, 33). The GEDI biomass product (33) does not cover our
entire research area, so we randomly sampled 4000 points (fig. S8),
resulting in a bias of 1.8%. The biomass map from (28) shows good
correlation with ours but with a higher bias (bias = 11.3% and r =
0.83). The biomass map from (27) shows an overall underestimation
(bias = −37.9% and r = 0.82). Third, we further compared the Plan-
etScope-based biomass maps aggregated to the national scale with
FAO country statistics (Fig. 5D and fig. S9A) (5): The overall bias
over all 30 countries was 7.6%. Our biomass estimates reached
similar levels but were slightly higher than the FAO statistics for
most countries, which could result from trees outside forests that
are typically not included in national inventory reports. The total
bias for (28) and (27) at the country scale was calculated as +17.3
and +49.9%.

Environmental and auxiliary data
We used a GLCLU map from 2019 at 30 m (30) including forests,
urban areas, cropland, and grassland to analyze trees outside forests
and trees in different landscapes. We also used global canopy height
products based on Sentinel-2 from 2020 at 10-m resolution (26) and
another product based on Landsat from 2019 at 30-m resolution
(24) for comparison. Both products use GEDI spaceborne canopy
height data that were extrapolated with Sentinel-2 and Landsat, re-
spectively. The GEDI/Sentinel-2–based canopy height map was also
used to assist the height regression task. The Copernicus forest-type
map based on Sentinel-2 data from 2018 at 10-m resolution and a
PROBA-V–based forest-type map from 2019 at 100 m (32) were
used to separate forests into coniferous and broadleaved forest
across Europe. We further used the GEDI L4B biomass density
product from 2020 available at 1-km resolution (33) and state-of-
the-art global biomass density products from 2017 (28) and 2020
(27) at 100 m for biomass comparisons. We used biome data
from (62) aggregated into three main biome zones (fig. S2).

Supplementary Materials
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