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A Navigation-Based Evaluation Metric for Probabilistic
Occupancy Grids: Pathfinding Cost Mean Squared Error

Jean-Baptiste Horel1, Robin Baruffa1, Lukas Rummelhard1, Alessandro Renzaglia2 and Christian Laugier1

Abstract— While robotics increasingly relies on occupancy
grids for environment perception, the lack of specifically-
designed metrics leads existing research to employ Image Qual-
ity Assessment (IQA) metrics and topological evaluations, which
were primarily designed for binary occupancy grids. While
appropriate as a first approximation, not taking into account
the particular nature and usage of probabilistic occupancy grids
limits the accuracy of their evaluation. In this paper, we propose
the PathFinding Cost Mean Squared Error (PFC-MSE), a new
probabilistic occupancy grid comparison metric designed to
incorporate their main usage and attributes. Emulating grid-
based navigation methods, the metric defines the difference
between two grids as the measured spread between the naviga-
tion behavior their use induces, which emphasizes variations in
general topology over local cell-value fluctuations. Experimental
results on 10,000 driving scenes exhibit the relevance of the
approach in quantifying grid disparities compared to existing
approaches.

I. INTRODUCTION
First introduced in [1], Occupancy Grids (OG) provide a

probabilistic representation of the environment as perceived
by robotic systems. This representation plays a crucial role
in constructing an accurate model of the environment, ef-
fectively capturing the uncertainty inherent to the sensors
and the perception systems. They allow the system to create
a discrete and rasterized internal representation of the en-
vironment in order to detect and localize elements such as
pedestrians, vehicles, drivable space, and static obstacles. In
the robotic field, OGs are used for a wide range of navigation
tasks such as Automated Driving Systems (ADS), Advanced
Driver-Assistance System (ADAS), collision avoidance, lo-
calization and mapping. To optimize, test and validate OG
inference models for a specific application, a metric capable
of assessing the adequacy of the environment perception
must be employed, quantitatively comparing the inferred OG
to an aimed Ground Truth (GT) OG of the environment.

In the literature, most publications rely on general-purpose
metrics derived from the computer vision literature such
as Intersection Over Union (IoU), Mean Squared Error
(MSE) and Cross-Entropy [2], [3], [4]. These IQA metrics,
measuring visual resemblance between two OGs, may not
be the best indicators that the inferred OG will lead to the
desired navigation behavior. The selection of an appropriate
perception assessment metric should rely on the aimed use
case of the robotic platform.

In this paper, we introduce the PathFinding Cost MSE
(PFC-MSE) metric, an ego-centric similarity metric capable
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of evaluating the similarity between two probabilistic OGs
by simulating the behavior of a navigation algorithm. The
main postulate being that if a navigation algorithm generates
similar trajectories using both the GT and the inferred OG,
the two are alike for navigation purposes. Unlike existing
metrics that often perform pixelwise comparison, PFC-MSE
is sensitive to inference errors perturbing the behavior of the
pathfinding algorithm, while being insensitive to errors that
do not. Using a 10,000 scenes driving dataset with inferences
and GT OGs, we analyze its behavior and compare it to
existing metrics.

II. STATE OF THE ART

Existing works using probabilistic OGs usually focus
on quantitative measurements such as computation time,
algorithmic complexity and theoretical advantages but lack
a quantitative similarity measurement between two OGs [5].
Due to the scarcity of established probabilistic OG metrics in
the literature, we were prompted to explore related research
fields in search of relevant existing works. Existing OG met-
rics can be categorized as Image Quality Assessment-based,
localization-based, geometry-based, and topology-based.

A. Image Quality Assessment (IQA)

Many state-of-the-art perception algorithms are compared
on benchmark datasets using metrics derived from computer
vision such as IoU, MSE and cross-entropy [2], [5]. These
metrics are often pixel-to-pixel comparison between the GT
and the inference OG. If the inference is slightly offset,
rotated or deformed, as it is often the case on real robotic
systems, these metrics may yield a totally different result.
Multi-scale approaches such as Gaussian Pyramid and IW-
SSIM methods tackle this problem by calculating similarity
at different resolutions [6], [7]. Instead of comparing images
in the spatial domain, some IQA metrics compare the images
in the frequency or wavelet domain, which capture the
frequency local distributions of the image [6]. IQA metrics
are often purpose-built to emulate human vision quality as-
sessment. These vision-based metrics are not necessarily the
best for OG assessment as two OGs can visually look similar
but lead to a drastically different behavior in the decision
making algorithms [2]. Human vision is more sensitive to
localized narrow-band distortion [8], while for navigation
use-cases, low-frequency distributions are often more im-
portant to capture the overall environment topology. Metric
such as SSIM and CW-SSIM are purposely insensitive to
luminance and low contrast changes [8]. Using these metrics
on probabilistic OGs would ignore the mean probability of



the OG and only evaluate the relative variation of probability.
Furthermore, while manipulated data structures are similar
(i.e. matrices) in images and OGs, the information stored in
each cell/pixel are either occupancy probability or luminance,
representing distinct concepts. Applying IQA metrics on
probabilistic OGs does not allow taking into account the
specific meaning of the representation.

B. Localization-based metrics

Mapping algorithms generate a binary 2D map of the en-
vironment for path planning and localization purposes. In the
context of mapping algorithms, most authors postulate that
a correct inference is one that leads to a precise localization
of the robot [9], [10], [11]. A localization algorithm, such
as Monte-Carlo Localization (MCL), locates the robot in
the 2D map using sensor readings. The positional error is
calculated with respect to the real world measurement of the
robot position and used for performance assessment. This
approach is widely used in the Simultaneous Localization
and Mapping (SLAM) literature and the standard localization
metric is the Root Mean Squared Error (RMSE) between the
GT trajectory and the inferred trajectory [9]. This approach
has the advantage of working without the need for a GT map,
which is often hard to obtain [10]. On the other hand, it is
limited to a single trajectory and therefore cannot capture the
entirety of the environment topology.

C. Geometry-based metrics

Geometry-based metrics have been proposed to evaluate
the accuracy of maps for localization and planning purposes.
Some approaches compare the positions of corner features
in both the GT and the inferred map. [12], [13], [14] also
present such a geometrical feature-based metric, the latter
proposing to use the SIFT algorithm to generate geometrical
features. These approaches work best for structured environ-
ment where a purpose-built feature extractor can be used.
Performing the error calculation using a limited number of
geometrical features inherently leads to a loss of information.
Parts of the OG that might be relevant for navigation may
be ignored altogether.

D. Topology metrics

A different approach consists in evaluating the similarity
of two maps using topology graphs. In [15], a topological
skeleton generated from the inferred OG is overlaid on top
of the GT to count the number of vertices that are false
positives and false negatives. However the authors did not
present a generic method to generate the skeleton graphs.
Similarly, [16] introduces the use of Voronoi diagrams to
generate topological graphs for both the OG and inference.
Both graphs are compared using the number of matching
vertices between both graphs, the global and relative error
in the location of graph vertices. As the final comparison
between two OGs is performed using a finite number of
vertices, this method suffers from the same information-loss
shortcomings as the geometry-based metrics. Only points

far away from obstacles are evaluated, and the close-to-
obstacle ones are purposely ignored, even though they could
be critical for navigation. Not relying on a unique topological
graph, [17] compared the length of trajectories generated
using the A* pathfinding algorithm in order to compare
the navigation behavior between hexagonal tiled OGs and
squared tiled OGs. While topological approaches are relevant
for navigation-based metrics, they are designed for indoor
binary OGs, which are different from the probabilistic ego-
centered use-case.

III. METHODOLOGY

The objective of our new navigation-oriented metric is
to address the limitations identified in existing methods.
PFC-MSE is specifically designed to assess the similarity
between OGs by considering the behavior of an ego vehicle
navigating through these grids. Our metric evaluates the
similarity between the GT OG, an aimed representation of
the environment surrounding the ego vehicle (Figure 1a),
and the inference of this environment made by the vehicle
perception system (Figure 1c). Both grids are represented
using a single channel probabilistic OG where each cell
represents the likelihood of it being occupied by an obstacle.
Figure 1 illustrates intermediate steps of the metric evaluation
process. PFC-MSE is computed using the following steps:

1) For each OG we find its shortest-path tree, composed
of all the shortest paths from the ego position to every
cell of the OG (some example of paths are drawn in
red in Figure 1b and 1d).

2) Both OGs are transformed into cost grids using the
cumulative costs of the paths from their respective
shortest-path trees (e.g. Figure 1b and Figure 1d).

3) An intermediate distortion grid is computed by per-
forming the cell-wise absolute error between both cost
grids (e.g. Figure 1e).

4) The metric is evaluated by computing the MSE of the
distortion grid weighed by the disjunctive probability
of free occupancy on both grids.

A. Shortest-path tree and cost grid

Using Dijkstra’s pathfinding algorithm [18], the shortest-
path tree of an OG is computed starting from the ego
vehicle position. For the pathfinding algorithm to generate
meaningful paths, the free cells should have a positive
minimal cost. The cell values are interpolated between 1 and
a scaling parameter ratio.

Gridscaled = (ratio− 1)×Grid+ 1 (1)

The pathfinding is allowed to cross any cell, even occupied
ones. The ratio parameter impacts how detours are made to
avoid occupied cells. With a ratio of 100, crossing 100 free
cells is more cost-effective than crossing one occupied cell.
Its impact and the value we have chosen for our experiments
will be discussed later in section IV-A.

The OG is then interpreted as an oriented graph where
each cell is linked to its 4 adjacent cells and 4 diagonal
cells. The edge costs are the euclidean distance between the



(a) Ground Truth (GT) (b) GT cost grid (c) Inference (d) Inference cost grid (e) Distortion grid

Fig. 1: Illustration of the metric evaluation process. 1a and 1b are the Ground Truth (GT) and its cost grid, 1c and 1d are
the inference and its cost grid. Examples of paths are drawn in red on both cost grid. The resulting distortion grid 1e is the
pixel-wise absolute error between both cost grids, it is also weighed by the disjunctive probability of free occupancy on the
GT or the inference. PFC-MSE, IoU and MSE scores can be found in Table I scene 2.

cells, it allows diagonal movements on the OG. Given two
cells c1 and c2 of the OG, the cost of the oriented edge from
c1 to c2 is the occupancy of c2 multiplied by the distance
between the cells:

cost(c1 → c2) = Gridscaled(c2) ||c2 − c1||2 (2)

Dijkstra’s algorithm is applied on the obtained graph using
the cell representing the ego vehicle cego as the starting node.
For each cell c of the OG we obtain the shortest path from
cego to c:

Path(c) = (c0, c1 . . . cL)

with c0 = cego and cL = c
(3)

Examples of paths on a GT and an inference are drawn in
red in Figure 1.

The value of each cell from the cost grid is the total cost
of the path leading to it, taken from the shortest-path tree.
These costs are computed from scaled grid values that were
scaled for the pathfinding, then they are scaled back so that
they correspond to occupancy values. Therefore, the total
cost of a path is the sum of the occupation probability of
each cell along it, in other words the quantity of occupation
crossed by the path.

Gridcost(c) =

∑L−1
i=0 cost(ci → ci+1)− L

ratio− 1
(4)

The transformation from a probabilistic OG to a cost grid
is bijective, meaning no information is lost when using cost
grids as proxies to compare two OGs.

B. Distortion measurement

To measure the distortion between two OGs, we compute
the pixel-wise absolute error between their respective cost
grids. Each cost grid cell value is then weighed by the
disjunctive probability of the cell being free either on the
GT OG or on the inference OG. This distortion grid is an
intermediate representation of the differences between both
OGs and is later pooled using MSE and normalized by the
probabilistic weighing, to evaluate the score of the metric.

The cost grids of two identical OGs are the same as all
the shortest paths and their costs would be the same. Thus,
no differences can be observed from their cost grids and the

norm of their distortion grid is zero. For two similar grids
with small dissimilarity like in Figure 1, the differences in
the grids will be passed on the cost grids and the distortion
grid in two ways:

1) The final cost of a path is that of the destination
cell. A dissimilarity on this cell will directly create
a difference of cost between the path from the GT and
the path from the inference. On the distortion grid,
this difference will be localized at the cell where the
dissimilarity is.

2) A dissimilarity on a cell impacts the shortest path
tree and the cost of the paths. New shortest paths
can emerge on the inference that are different from
the GT paths. Depending on the dissimilarity, the
paths can make detours to avoid a cost increase or
to benefit from a cost decrease. The shortest paths can
also remain the same but with changed costs. Overall,
this difference will be localized on the distortion grid
at the destination cell of the paths impacted by the
dissimilarity.

This gives several properties to our PFC-MSE metric.
Firstly, dissimilarities are not only measured on cells having
different values but also on the costs of paths impacted by
the dissimilarity. It allows us to not only measure local
distortions, but also evaluate the topological differences
between the GT and the inference from a pathfinding point
of view. Secondly, cells crossed by more paths are given
more importance. A cell further away from the ego-vehicle
will be crossed by a smaller number of paths overall and
will therefore have less impact on the final score. In specific
cases such as Figure 1e, the cost of the paths downstream
of the bottleneck depends on the cell values crossed in the
bottleneck. Therefore, using pathfinding allows us to not only
measure the localized differences between two OGs, but also
measure the impact of this differences on the topology of the
OGs and on the navigation behavior.

The final evaluation of PFC-MSE is performed by com-
puting the squared norm of the distortion grid weighed by
the probability of free occupancy of the cell. The probability
weighting gives more importance to costs of cells that are
free either on the GT or the inference.



Fig. 2: Correlation graph between PFC-MSE and IoU. Each
point corresponds to an evaluation from the 10,000 scenes
dataset. Being based on MSE, best scores of PFC-MSE are
close to zero. The highlighted points are the 8 scenes shown
in Table I. Scenes 1, 2 and scene 3, 4 have similar IoU and
MSE. Scenes 5, 6 and scenes 7, 8 have similar PFC-MSE.

PFC-MSE(GT, I) =

∑
c wc||GTcost(c)− Icost(c)||2∑

c wc

with wc = p(c = free) = 1−GT (c)I(c)

(5)

When evaluating metrics for classification tasks, the con-
fusion matrix is often used as a standard analysis tool.
OG inference is a classification problem where occupied
space is the negative condition and free space is the positive
condition. PFC-MSE evaluation is based on true positives,
false positives and false negatives which are the cells on
which the navigation task is performed. The probabilistic
weighting is close to zero when a cell is classified as
occupied on both OGs, therefore PFC-MSE gives little to
no importance to true negatives (cells correctly classified).
On the other hand, the emphasis is on the cells classified as
free on the GT or on the inference, which are true positives,
false positives and false negatives.

IV. EXPERIMENTS

To evaluate the effectiveness of our metric and com-
pare it against others, we conducted experiments using the
Nuscene dataset [3]. This dataset includes a large number of
scenes from diverse driving scenarios, such as crowded urban
streets, highways, and rural roads. Different sensor readings
are included, such as 6 cameras, LIDAR and radar point-
clouds. We generated inference OGs using LIDAR-Aided
Perspective Transform Network (LAPTNet-FPN) [4]. It is a
machine learning model that combines LIDAR and camera
data to generate semantic grids for different classes (vehicles,
pedestrians, drivable area, etc. ) in the Bird-Eye-View (BEV)
frame. BEV networks usually apply a threshold to produce
binary inferences used for IoU evaluation. Since we are

interested in probabilistic OGs, we removed this threshold
so that the inference has continuous values. We combine the
vehicles, pedestrians and drivable area segmentation masks
generated by LAPTNet-FPN to reconstruct a free or occupied
space representation of the environment. Figure 1a shows
an example of a GT OG from Nuscene and Figure 1c
the corresponding OG inference generated using LAPTNet-
FPN. We have generated 10,000 combinations of GT and
inferences with a size of 200x200 cells and a resolution
of 0.5m per cell, equating to a total perception area of
100x100m around the ego vehicle [4]. For each scenes, we
evaluated PFC-MSE, IoU and MSE. Since IoU only works
on binary OGs, we used the same threshold of 0.5 as done
by LAPTNet-FPN [4].

We experimented with different values of ratio (10, 50,
100, 200) and found no meaningful differences. We used a
ratio of 100, meaning a path will cross an occupied cell if
it does not have a possible detour crossing less than 100 free
cells. We find this choice relevant as our OGs have a size of
200x200 and the ego vehicle is at the center.

A. PFC-MSE behavior

In this section we illustrate and analyse the behavior of
PFC-MSE. Table I showcases a subset of eight scenes chosen
from our dataset illustrating the GT alongside its respective
inference generated by LAPTNet-FPN and their IoU, MSE
and PFC-MSE scores.

1) Topological errors: Scene 2 from Table I illustrates
how PFC-MSE evaluates topological errors. An incorrect
inference classification leads to an important modification
of the environment topology by incorrectly blocking access
to a section of the road. On the GT, paths going to this road
section only cross free space, thus their cost are low, (cf.
Figure 1b), while on the inference, the paths cross occupied
cells, thus increasing their costs (cf. Figure 1b). Even if cells
are well classified on the inference, their respective paths
accumulate errors from upstream cells as displayed by the
distortion grid Figure 1e and Table I scene 2. PFC-MSE
penalizes topological errors by evaluating how the navigation
leading to cells downstream of the errors is disturbed.

2) Distance from the ego position: Scenes 2, 7 and 8
in Table I illustrate how errors close to the ego position
are accentuated in the PFC-MSE score. For each distorsion
grid, gradients of error start at the closest misclassification
from the ego position and increase while moving away from
the ego position. Paths with destinations closer to the ego
position cross less misclassified cells and thus show few
distortion. Paths going further accumulate more error as they
cross more misclassified cells. In other words, the outermost
cells will influence only few paths, while cells closer to the
ego position will affect all paths going downstream.

3) Uncertainty: On the binary GT, paths avoid occupied
cells whenever possible by taking detours through free space.
However, paths on the inference OG may need to cross cells
with uncertain classification, leading to an increased cost.
Scenes 5 and 6 from Table I show how uncertainty causes
slight distortions to paths crossing the areas of uncertainty.



Sc Ground Truth Inference Distortion Sc Ground Truth Inference Distortion

1 2

IoU: 0.882 MSE: 0.012 PFC-MSE: 0.838 Max distortion: 5.021 IoU: 0.882 MSE: 0.023 PFC-MSE: 163.4 Max distortion: 41.47

3 4

IoU: 0.948 MSE: 0.017 PFC-MSE: 0.081 Max distortion: 4.191 IoU: 0.947 MSE: 0.012 PFC-MSE: 8.863 Max distortion: 16.90

5 6

IoU: 0.952 MSE: 0.015 PFC-MSE: 2.565 Max distortion: 9.234 IoU: 0.758 MSE: 0.078 PFC-MSE: 2.658 Max distortion: 12.61

7 8

IoU: 0.771 MSE: 0.073 PFC-MSE: 268.8 Max distortion: 56.81 IoU: 0.436 MSE: 0.387 PFC-MSE: 301.5 Max distortion: 65.86

TABLE I: Collection of eight scenes extracted from our dataset, showing the Ground Truth (GT) alongside the corresponding
inference and distortion grid for each scene. The two sets of scenes 1-2 and 3-4 have similar IoU and MSE scores while
differing in their PFC-MSE score. The two sets of scenes 5-6 and 7-8 have similar PFC-MSE but different IoU and MSE
scores. For IoU higher is better, while for PFC-MSE and MSE lower is better. Distortions grids are weighed by the occupancy
probability. The color scales is specific to each grid, the maximum value of the distortion grid (the darkest cell value) is
shown to account for the color scale.

When a possible detour around an uncertain area is possible,
the distortion caused is low. However if no detour exists,
crossing the uncertain area leads to a greater distortion.

B. Correlation between PFC-MSE and other metrics

We have decided to compare PFC-MSE against IoU and
MSE as they are the most widely used metrics in the
literature. Figure 2 shows the correlation between PFC-MSE
and the IoU. The correlation between PFC-MSE and MSE
is not shown as we observed a strong correlation between
IoU and MSE in our dataset, therefore making it redundant.
PFC-MSE increases exponentially therefore we represented
it using a logarithmic scale. We have observed no correlation
between PFC-MSE and metrics such as IoU, MSE, SSIM,
Gaussian Pyramid MSE, Gaussian Pyramid SSIM, CW-
SSIM [8] and IW-SSIM [19]. This lack of correlation shows
that PFC-MSE is not a surrogate of existing metrics and

exhibits an original behavior.

C. Comparison with existing metrics

Table I shows 8 scenes from our dataset illustrating the
comparison with IoU and MSE and highlighting the benefits
of PFC-MSE.

1) Similar IoU - Different PFC-MSE: All three metrics
give good scores to scenes 1 and 3 as the cell-wise error
between the inference and the GT is low and the topology
accurate. However, PFC-MSE behaves very differently in
scenes 2 and 4 due to the changes in topology, impacting
navigation on the OGs. PFC-MSE penalizes the incorrectly
blocked road on the left of the OGs in scene 2 and the
blocked road at the bottom of the OGs in scene 4. Compared
to IoU and MSE, PFC-MSE is able to measure how the error
changes the topology and how it disturbs navigation on the
grid, independently of the cell-wise errors. Thus, PFC-MSE



penalizes more scenes 2 and 4.
2) Similar PFC-MSE - Different IoU: PFC-MSE evalu-

ates similarly scenes 5 and 6 from Table I but their IoU
scores are different. In scene 5, the square area on the left of
the OG, despite being well classified as unoccupied, shows
significant distortions. At first glance, Scene 6 shows more
uncertainty and misclassifications. However, these errors
have little impact on the topology of the OG. PFC-MSE
therefore gives a better score than IoU and MSE. While
uncertain inferences disrupt navigation and lead to increased
costs, they are not as detrimental as classification errors that
impact the access to free space areas.

PFC-MSE evaluates scenes 7 and 8 as equally inaccurate,
while IoU and MSE evaluation give high scores to scene 7.
Scene 7 contains an inference error resulting in the isolation
of an area of free space that, although disconnected from
the rest, is drivable space and should have been classified as
such. The erroneously classified areas in scene 8, despite the
scene having a significantly larger free space, is comparable
in proportion to the errors observed in scene 7. This indicates
that the extent of errors in scene 8, relative to the free space
area, is similar to that of scene 7.

Through these examples, we show how PFC-MSE differs
from other metrics and is more suited to compare proba-
bilistic OGs with navigation in mind. By design, it is able
to assert how differences between two OGs will change the
navigation behavior of a vehicle and penalizes it.

V. CONCLUSION

This paper introduces PathFinding Cost MSE (PFC-MSE),
a new navigation-based metric for occupancy grid simi-
larity evaluation. This metric addresses the limitations of
existing metrics by evaluating the differences of pathfinding
behaviour between the ground truth and the inference occu-
pancy grids. Unlike other techniques, it takes into account the
occupancy probability of each cells. Using a 10,000 scenes
dataset, we confirmed that our metric is sensitive to changes
in topology while being insensitive to other perturbations that
do not significantly alter the navigation algorithm. Inference
errors closer to the ego vehicle get more penalized than far
away ones since they influence fewer trajectories. We showed
that PFC-MSE is not correlated to other metrics, serving
as compelling evidence that PFC-MSE exhibits a distinct
behavior while taking into account the particular nature and
usage of probabilistic OGs.

Two limitations arise from our work that could be ad-
dressed in future research. Firstly, Dijkstra pathfinding al-
gorithm is insufficient for emulating navigation behaviors
constrained by a kinematic or a geometrical model. Using
cost from the graph-based shortest path as the only criterion
for choosing the optimal path is a simplified approach.
Incorporating the smoothness of the generated trajectory
could be a valuable improvement to further shorten the gap
between the emulated navigation and the real-world system.

Secondly, PFC-MSE is limited to single channel prob-
abilistic OGs. It currently does not account for multiple

classes of occupancy (e.g. static, dynamic and unknown).
The addition of these new classes would require managing
classification errors with weights depending on the type
of misclassification (e.g. a pedestrian misclassified as a
crosswalk is worse than a car misclassified as a bus).
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