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Scallop patterns forming on erodible surfaces were studied historically using a linear analysis9
of the inner region of a turbulent boundary layer growing on a corrugated wall. Experimental10
observations show a phase shift between the shear stress at the wall and the wall oscillation11
that depends on the wavenumber. An ad-hoc correction applied to the turbulent closure12
and due to Hanratty et al. (Thorsness et al. 1978; Abrams & Hanratty 1985; Frederick13
& Hanratty 1988) was systematically used to recover the reference experimental results.14
In this study, Reynolds-averaged Navier-Stokes (RANS) and direct numerical simulations15
(DNS) were performed and revealed the role of the Boussinesq assumption in the results16
obtained. We show that the Hanratty correction acts as a palliative to the misrepresentation17
of Reynolds stresses due to the use of the Boussinesq hypothesis. The RANS calculations18
based on a turbulence model using a second-order moment closure recovered the expected19
results obtained in the reference DNS calculations, in particular with respect to wall heat20
transfer. The analysis of these results highlights the critical importance of the anisotropy of21
the diagonal Reynolds stresses on the prediction of wall transfer under these conditions and22
their implication in the occurrence of scalloping.23

1. Introduction24

Scallop patterns are found in a large variety of situations, characterizing the interaction of a25
uid and an erodible surface. They are observed on meteorites, and called regmaglyptes (Lin26
&Qun 1987; Claudin & Ernstson 2004), in pipes (Blumberg &Curl 1974; Villien et al. 2001,27
2005), in karst or ice caves (Anderson Jr et al. 1998; Sundqvist et al. 2007; Pitsch et al. 2017)28
or with dunes (Best 2005; Vinent et al. 2019) and sand ripples (Bagnold 1941; Charru et al.29
2013). Many examples of these scallop patterns are listed by Claudin et al. (2017). Thomas30
(1979) gathered several experimental results and provides evidence of a unique scaling of31
the wavelength of the scallops with the boundary layer viscous length. Similar patterns are32
also observed on atmospheric re-entry vehicles. During the reentry phase in hypersonic33
conditions, the windward face of a vehicle is exposed to severe heat uxes due to the34
post-shock environment. Carbon-based thermal protection systems are commonly used to35
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Figure 1: Scallops observed on in-ight and on-ground experiments representative of
hypersonic reentry vehicles. From left to right, nosetips pictures of the TATER

experiment (Hochrein & Wright 1976), on-ground tests using camphor (Larson & Mateer
1968) and teon (Powars 2011) as surrogate material.

guarantee the integrity of the payload. The carbon oxidation and sublimation processes lead36
to the ablation of the heat shield, and under some conditions, scallops may be observed on37
vehicle nosetips. Few in-ight experiments are published (Larson & Mateer 1968; Canning38
et al. 1968), the most important reference being the TATER test (Hochrein & Wright 1976)39
for which scallops about 1 to 4 mm long and a depth 10 times smaller were observed40
on the ablated surface as shown in gure 1. Several on-ground tests (Laganelli & Nestler41
1969; Nestler 1971; Williams 1971; Baker 1972; White & Grabow 1973; Shimizu et al.42
1974; Reineke & Guillot 1995; Mikhatulin & Polezhaev 1996; Powars 2011), involving43
lower heat uxes and using surrogate ablative materials such as camphor or teon, have44
conrmed the formation of scallops. The ablation process depends on the material and may45
imply decomposition or fusion. To study the formation of scallops on reentry vehicles, we46
therefore rely on existing approaches for which several fundamental unresolved issues related47
to turbulence models still remain.48
The occurrence of these patterns on the surface of erodible walls were studied for many49
years by performing linear analyses (Benjamin 1959; Thorsness et al. 1978; Abrams &50
Hanratty 1985; Fourrière et al. 2010; Charru et al. 2013; Claudin et al. 2017). Classically,51
the surface regression rate is assumed to be small enough so that the associated characteristic52
time scale is very large compared to the mean ow characterisic time. The problem is then53
rst reduced to the investigation of an incompressible turbulent boundary layer developing54
over a sinusoidally perturbed static surface. The linear forced response for this ow was55
rst studied by Benjamin (1959) and consists in solving the Orr-Sommerfeld equation for a56
laminar ow. This problem was explored again by Hanratty and co-workers (Thorsness et al.57
1978; Zilker et al. 1977; Abrams & Hanratty 1985; Frederick & Hanratty 1988) providing58
a new insight into the linear response while introducing a slight modication to the Orr-59
Sommerfeld equation and considering turbulent ows. Thorsness et al. (1978) introduced60
a metric function to transpose the equations into the ’boundary-layer coordinate system’61
before the linearization. However, the base ow was moved together with the coordinate62
system and displaced to the new origin. This crucial modication was carefully analyzed and63
discussed by Luchini & Charru (2019). In the present work, we take up the work of Fourrière64
et al. (2010) and Charru et al. (2013) to derive the linear problem. This is equivalent to the65
approach of Hanratty et al. and gives exactly the same results. The equations set and notations66
are reminded in appendix A. Since the ow is supposed turbulent, a closure relation is used67
to model the contribution of Reynolds stresses in the stress tensor τi j . In all the studies cited,68
the Boussineq hypothesis (A 3) is used together with a Prandtl mixing length model.69
Simultaneously to their initial linear analysis, experimental work were conducted by Hanratty70
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et al. (Zilker et al. 1977; Frederick & Hanratty 1988) providing essential data to validate the71
results of the linear analysis. A series of measurements in a turbulent channel ow equipped72
with a wavy wall highlighted a modulation of the wall shear stress phase with respect to73
the wall deformation in a specic wavelength range. The existence of a phase shift between74
the wall shear stress and the wavy wall can be explained by the momentum budget (Charru75
& Hinch 2000). For laminar ows or simply as long as the perturbations are in the viscous76
sublayer, the pressure gradient induced by the wall waviness is responsible for the phase shift.77
For turbulent ows, other contributionsmay come into play, notably the diusion term related78
to the dierence in stresses τxx−τzz . When comparing the experimental observations and the79
linear analysis, Hanratty et al. noticed the failure of the mixing length model. Interestingly,80
by introducing a dependence of the mixing length to a relaxed pressure gradient, noticed C81
hereinafter, Hanratty and co-workers (Thorsness et al. 1978; Abrams & Hanratty 1985) were82
able to reproduce the behavior of the wall shear stress phase. This correction to the mixing83
length was further reformulated by Charru et al. (2013) and Claudin et al. (2017) and used84
successfully.85
To further elucidate how scalloping forms on erodible surfaces, the wall prole is made time86
dependent and is related to a wall ux involved in the transport mechanism controlling the87
wall recession. For sand ripples formation, the particle ux is used and is shown to be lagged88
behind the wall shear stress. The lag of the particle ux has a stabilizing eect that balance89
the inertial destabilising eect of the shear stress. A thorough discussion is given in the90
review by Charru et al. (2013). For dissolution or melting problems, Claudin et al. (2017)91
considered a passive scalar transport equation, representing, for example the concentration92
of a chemical species or the temperature, and the wall prole evolution is controlled by the93
wall normal ux of the scalar transported. The ablation problem on the nosetip of a re-entry94
vehicle can be apprehended in the same way but several issues must be addressed rst, among95
which one is of key importance.96
The correction C proposed by Hanratty is an heuristic model, made to recover measure-97
ment (Zilker et al. 1977) data for the wall shear stress from a mixing length approach.98
However, in order to close the passive scalar transport equation in the approach followed99
by Claudin et al. (2017), the turbulent scalar ux is related to the eddy viscosity based on100
the mixing length and including the correction C. Assuming that C is a valid and sucient101
correction for the turbulent scalar ux closure is far from being trivial and there is no102
exisiting data enabling to validate this model. The choice of the closure is yet a determining103
factor for the assessment of the wall normal ux that controls the surface regression rate.104
To shed light on this point we follow the approach presented by Claudin et al. (2017) for105
the transport of a passive scalar and in § 2 we study the forced response of the energy106
equation for an incompressible uid. At rst, a xed corrugated surface is considered and107
a dedicated mixing length is proposed to model the turbulent scalar ux. The choice of108
the base ow is also discussed in this section to remove doubts about the relevance of the109
validation cases performed. In § 3 DNS computations are carried out to establish some110
validation points to complete the experimental data of Hanratty, notably concerning heat111
ux. Additionally, RANS computations with rst and second order moment closures are112
performed to discuss the inuence of the turbulent closures in the momentum and energy113
equations. In the last § 4, through the analysis of the dierent types of results, we will discuss114
the achievements and some limitations of the Hanratty correction. Finally, a simple wall115
regression model, assuming scale separation between the ablation mechanism and the ow116
response, is presented to try to establish a link with the Thomas correlation. In particular, we117
highlight the key role played by the closure relation for the turbulent heat ux.118



4

2. Linear forced response119

2.1. Turbulent closure for the linearised momentum equations120

We take up the work by Charru et al. (2013) to solve the linearised momentum equations,121
considering a steady and incompressible uid ow, the corrugated surface being xed in122
time at this stage. The notation and the system of equations are reminded in appendix A.1.123
The study is restricted to the linear response of the ow to the wall undulation, i.e. the124

amplitude ζ0 of the wall deformation is small enough compared to the wavelength
2π
α

with125

α the wavenumber. The non-linear limit is αζ0 ≈ 0.1 (Charru et al. 2013) whereas ow126
separations are expected for αζ0 > 0.3 (Zilker & Hanratty 1979). A dedicated code based127
on a collocation method (Canuto et al. 2006) using Chebyshev polynomials was developed128
to solve the linearised system. The Reynolds stresses are modelled with the help of the129
Boussinesq hypothesis (A 3) and the eddy viscosity νt is deduced from a mixing length130
approach (A 2). Thorsness et al. (1978) rst proved that a correction is required to recover131
the experimental results (Zilker et al. 1977) showing large phase shifts of the wall shear132
stress with respect to the wall undulation in a specic wavenumber range, as illustrated in133
gure 2. The idea is to introduce a dependence to a relaxed pressure gradient for the van134
Driest number A inspired by the work of Loyd et al. (1970) or similarly by that of Cebeci135
& Smith (1974). Since the mixing length l (A 2) depends on the non-dimensional variables,136
the wall normal coordinate η, the Reynolds number R based on the wavenumber α and the137
van Driest number A, the disturbed part of the mixing length l̂ obtained after linearisation138
contains three distinct contributions:139

l̂ = −κ
[
1 − exp


−Rη
A0

 
1 − Rη

A0 +
Rη2
A0


τ̂xz
2

− βC
]

(2.1)140

The rst one due to η is the linearised eect of the geometrical deformation. The second141
reveals the inuence of the wall shear stress disturbance τ̂xz . Finally, the dependence to C142
is brought by the van Driest constant A with β the relative variation of A due to the relaxed143

pressure gradient β =
1
A0

∂A
∂C . A0 = 26 is the standard van Driest constant and β = 35 is144

found to be the value that best ts the measurements (Frederick & Hanratty 1988; Charru145
et al. 2013). The dimensionless correction C is given by a dierential equation that reads:146

γ
∂C
∂x

=
1
u2τ

∂

∂x


τxx −

p
ρ


− C (2.2)147

γ is a constant that determines the length over which the relaxation operates with respect to148

the streamwise gradient of τxx −
p
ρ
. Originally (Thorsness et al. 1978; Frederick & Hanratty149

1988), C was only related to the pressure gradient, with similar results. The dimensionless150
quantity C does not correspond to the whole correction introduced in l̂, but it will be called151
Hanratty’s correction thereafter for brevity. When only the geometrical dependence of l̂ is152
kept, and so the dependence on τ̂xz and C are dropped in eq. (2.1), the turbulence can be153
seen as "frozen" regarding the perturbations. This will be referred to as the frozen turbulence154
assumption in the following. More details on equations (2.1) and (2.2) can be found in the155
supplemental material of the review of Charru et al. (2013).156
Experimental results and those of the linear analyses of the wall shear stress phase157
ψτ = arg(τ̂xz) plotted in gure 2 for wavenumbers in the transitional regime. Indeed, three158
regimes can be distinguished with respect to R and the penetration depth of the perturbation159
δi . The rst regime corresponds to small values of R (R < 100), and, according to Charru160

Focus on Fluids articles must not exceed this page length
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Figure 2: Phase of the wall shear stress in the transitional regime. Filled black circles
denote Hanratty’s experimental results. Solid lines are results of the linear analyses with
the Hanratty correction C (blue) and under the frozen turbulence hypothesis (orange).
Rectangles are results of RANS computations with the k − ω model (orange) and the

EBRSM model (blue). Forced responses in channel ow are plotted with dashed blue lines
for αδ = 2π and β = 40: − − −; αδ = π and β = 45: −. − .−; αδ = π/2 and β = 50:

−.. − ..−. The dashed orange line corresponds to the linear analysis where the Hanratty
correction is o but the dependence to τ̂xz is conserved.

.

& Hinch (2000), δi ∝ δνR1/3 where δν is the viscous length
ν

uτ
. The perturbation is conned161

in the viscous sublayer so that the turbulent closure plays no role in this regime. The162
third regime corresponds to the long wave approximation (R > 10000) for which the ow163
disturbances extend far beyond the viscous region where the Reynolds stresses cannot be164
neglected anymore. As reminded by Charru et al. (2013), velocity measurements conrm165
the linear increase in mixing length with wall distance in the logarithmic region. Therefore,166
in this regime, the results are little aected by the choice of turbulent closure as long as167
the linearity of the eddy viscosity with respect to the wall distance is recovered in the168
logarithmic region of the inner layer. The intermediate regime, i.e. R ∈ [100, 10000], often169
called transitional regime, is far more complex and more challenging. The linear analysis170
with the standard mixing length model, i.e. without the inclusion of correction C, does171
not recover the trend measured, but the use of the Hanratty correction improves the results172
remarkably. The evolution of ψτ with α+ = R−1 from the laminar regime to the fully173
turbulent regime is then faithfully reproduced.174

175

2.2. On the importance of the choice of the base ow176

Implicitly, all the linear analyses over the years by Thorsness et al. (1978), Abrams&Hanratty177
(1985), Fourrière et al. (2010), Charru et al. (2013), and Claudin et al. (2017) were derived178
from the base ow solution of the inner region of the boundary layer conguration. Actually,179
with the use of Prandtl’s mixing length model (A 2), the linear analysis were made on a semi-180
innite domain covering the viscous sublayer, the buer region and the logarithmic region.181
The obtained perturbation is therefore included in this domain, without any interaction with182
the outer region as long as the upper boundary condition imposes a zero perturbation eld.183
Additionally, the problem is then independent of the friction Reynolds number and only184
depends on the dimensionless wavenumber α+ = R−1. However, the reference experiments185
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Figure 3: Vorticity disturbance proles. Dark blue to light blue lines indicates increased
Reynolds number R = 10, 100, 200, 500, 700, 1000.

of Hanratty et al.were obtained in a rectangular channel of height 2δ with δα = π. Therefore,186
the frictionReynolds number δ+may then inuence theow response to thewall deformation,187
and the validation of the results obtained from Hanratty’s experiments in a channel may be188
questioned. To elucidate this issue, we consider a modied version of our code with a mixing189
length model adapted to channel ow conguration and using the Nikuradse formula:190

l = δ


0.14 − 0.08


1 − z

δ

2
− 0.06


1 − z

δ

4 
1 − exp


−
√
τxz z
νA


(2.3)191

For αδ = π, corresponding to Hanratty’s experiments, similar results (gure 2) are obtained192
with both versions of the code when β is increased to 45 in the channel conguration.193
Considering the existing dispersion for the experiments, both results are satisfactory. When194
αδ is lowered or increased by a factor of 2, the magnitude β of the Hanratty correction C195
must be modied accordingly to recover the experimental data. There is a real inuence196
of the friction Reynolds number on the results but it can be compensated by adjusting197
β. It is nevertheless important to note that both versions of the code with the respective198
mixing length models (A 2) and (2.3) provide close results for R < 500 (α+ > 0.002) for a199
common reference value β = 35, whatever the values of αδ. Therefore, the dependence to200
the friction Reynolds number δ in the transitional regime is small and the linear responses201
obtained by considering the inner region of a boundary layer can be legitimately compared202
to measurements or computations obtained in channel ow congurations. The results203
presented below have all been produced by the code based on the inner boundary layer204
region to be consistent with previous studies.205

206

2.3. The role of the vorticity207

Another remarkable aspect in the evolution of the wall shear stress phase is the inuence of208
the vorticity. The penetration depth δi depends on the Reynolds number R and its denition209
(Charru & Hinch 2000) is given by the vorticity disturbance $ = û,η − iŵ at the wall (see210
appendix A). The penetration depth must not be seen as the distance to the wall where the211
perturbation is not zero but a measure of the distance over which the vorticity acts. Actually,212
the perturbation elds for the velocity and the pressure are not zero above δi but the vorticity213
is. Figure 3 depicts the normalized vorticity proles for R ∈ [10, 1000]. Vorticity peaks,214
almost independent of R, are clearly visible around z+ = 7 before the proles tend to zero.215
The disturbance eld can be divided into a vortical region, near the wall, and a non-vortical216
region far from the wall. In the non-vortical region, the phases of the perturbations are nearly217
constant and without osets from the corrugated wall. Below, the induced vorticity impacts218
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on the proles and phase shifts appear. The vortical region has a determining inuence on219
the evolution of ψτ .220

2.4. Turbulent closure for the linearised energy equation221

To tackle dissolution or melting problems, Claudin et al. (2017) introduced an additional222
transport equation for a passive scalar in the linear analysis. The model was intended to be223
applicable to a wide range of applications using a Robin boundary condition at the wall. In the224
present context, in order to compare results of the linear analysis to numerical Navier-Stokes225
simulations, the considered passive scalar is the total enthalpy associated with the linearised226
energy equation (A 10). Again, for the sake of comparison with numerical simulations, the227
boundary condition at thewall is aDirichlet type conditionwhere the enthalpy is imposed. For228
large values of wall heat ux, the dissipation can be neglected and the energy equation (A 10)229
reduces to an advection-diusion equation identical to the dissolution equation considered230
by Claudin et al. (2017). The model (A 10) is representative of ablative materials for which,231
in the context of re-entry vehicles, the surface regression may be directly related to the energy232
equation or to an oxidizer concentration transport equation (White & Grabow 1973).233
The main dierence with Claudin et al. (2017) lies in the closure relation for the turbulent234
scalar ux, which here is the turbulent heat ux (A 11). Claudin et al. (2017) considered that235
the mixing length for the turbulent scalar ux, denoted lθ , can be simply taken equal to l. For236
this study, a more general form (Cebeci & Smith 1974) for lθ is retained by separating the237
damping functions for the velocity and the enthalpy:238

lθ = κz

1 − exp


− z

√
τxz

νA

1/2 
1 − exp


− z

√
τxz

νAθ

1/2
(2.4)239

The mixing length disturbance l̂θ is given by:240

l̂θ = −κ

1 − exp


−Rη
A0

1/2 (
1 − exp

(
−Rη
A0
θ

))1/2

×

1 +

1
2

exp

− Rη

A0


1 − exp


− Rη

A0

 Rη
A0 − Rη2

A0


τ̂xz
2

− βC


+
1
2

exp

− Rη

A0
θ


1 − exp


− Rη

A0
θ


(
Rη
A0
θ

− Rη2
A0
θ


τ̂xz
2

− βθC − θ
τ̂xz
2

)

(2.5)241

The introduction of a second damping function in eq. (2.4) makes it possible to introduce an242
additional correction to l̂θ in eq. (2.5). From Cebeci & Smith (1974), we have A0

θ = 30. Aθ243

is made dependent on τ̂xz with a coecient θ =
2
A0
θ

∂Aθ

∂τ̂xz
. The dependence of Aθ on C is244

taken identical to that of A in eq. (2.1) and in the following we take βθ = β = 35. The results245
obtained with the model retained by Claudin et al. (2017) are recovered when A0

θ = A0 = 26246
and θ = 0.247

3. Navier-Stokes computations248

3.1. RANS computations249

To enlighten the impact of the turbulent closure on the forced response, several RANS250
(Reynolds Averaged Navier-Stokes) computations were performed. The numerical procedure251
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is based on the second order compressible nite volume code named CEDRE (Aupoix et al.252
2011; Scherrer et al. 2011), developed at ONERA and designed for unstructured grids. The253
computational domain is a 2D periodic channel where αδ = π. In order to respect Hanratty’s254
experimental conditions, the sinusoidal prole was only applied on the bottomwall. Constant255
and homogeneous source terms were added to reproduce the mean pressure gradient and to256
balance the energy budget. A constant temperature was imposed as a boundary condition at257
the walls so that the induced uxes compensate the energy source term. The source terms258
were designed to respect as much as possible the incompressibility assumption. The density259
uctuations were found to be three to four orders of magnitude below the velocity and260
pressure uctuations. Eight congurations with various values of the kinematic viscosity ν261
were explored, corresponding to R ≈ {100, 150, 200, 300, 400, 500, 700, 1000} covering the262
transitional regime.263
Two turbulence models were used to analyse the impact of the order of the Reynolds stresses264
closure. On the one hand, computations with the k −ωmodel (Menter 1994) were performed265
to characterize the inuence of the Boussinesq hypothesis (A 3) while, on the other hand,266
the EBRSM (Elliptic Blending Reynolds Stress Model) turbulence model (Manceau &267
Hanjalić 2002; Manceau 2015) was retained to obtain representative results of second268
moment closure. The Boussinesq hypothesis is expected to have a signicant impact on269
the streamwise momentum balance (A 1) through the term τxx − τzz in the transitional270

regime. With the Boussinesq hypothesis u′2 − w′2 is made proportional to
∂u
∂x

which is271

not true with second order models. In particular, the exact production term for u′2 − w′2 is272

Pxx − Pzz = −4u′2 ∂u
∂x

− 2u′w′

∂u
∂z

− ∂w

∂x


and suggests a dependence on the shear stress273

u′w′ for the growth of u′2 − w′2. At the rst order with respect to the wall oscillation, the274

production term Pxx −Pzz is not only ruled by the pressure induced velocity gradient
∂u
∂x

but275

also by the shear stress −u′w′. The objective of the computations is to highlight the eects276
of these dierences on the evolution of ψτ with respect to R.277

The closure relations for the turbulent heat uxes u′ih′ completely dier between k − ω and278
EBRSM models. The standard approach associated with eddy viscosity models such as the279
k−ωmodel is to make use of a simple gradient diusion hypothesis (SGDH) with a turbulent280
thermal diusivity including a constant turbulent Prandtl number Prt , in a similar manner to281
equation (A 11) for the mixing lenght model of the linearized problem. In all the following282
k−ω computations, Prt is set to 0.9. In the context of second ordermodels, several approaches283
can be contemplated but the most commonly employed model relies on the generalized284
gradient diusion hypothesis (GGDH) with the relation taken from Daly & Harlow (1970)285

−uih′ = cθξtu′iu
′
j

∂h
∂xj

. The turbulent time ξt deduces from the turbulent kinetic energy and286

its dissipation. The EBRSM model was run with the classical value cθ = 0.22, close to that287

recommended by Dehoux et al. (2017). The choice for the closure relation of u′ih′ has a288
considerable inuence on the enthalpy perturbation eld and the wall heat ux φw . A close289
look to the expressions of the streamwise component u′h′ for both models SGDH and GGDH290
reveals the inuence of shear stress u′w′. The GGDH closure relation for a non-parallel291

bidimensional ow gives u′h′
GGDH

= −cθξtu′2
∂h
∂x

− cθξtu′w′ ∂h
∂y

≈ u′h′
SGDH− cθξtu′w′ ∂h

∂y
292

since ξtu′2 ∝ νt . The shear stress is known to be aected by the wall deformation which293
means that, at the rst order, the turbulent heat ux will thus behave dierently between the294
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SGDH and the GGDH models. In the transitional regime, the wall heat ux φw depends295
on the contribution of the turbulent heat ux in the energy budget and ultimately its phase296
ψφ with respect to the corrugated wall will be inuenced by the choice of the closure relation.297

298

3.2. DNS computations for validation299

The experimental data of Hanratty et al. do not allow a comprehensive examination of300
all the aspects regarding the perturbations due to the wall waviness. There is no available301
data on heat transfer at the wall. For applications, the analysis of the energy budget is302
determining since the wall regression is most often driven by transfers at the wall that can be303
represented without any loss of generality by heat transfer as reminded in § 2.4. To access304
such data, DNS (Direct Numerical Simulations) were conducted with the spectral dierence305
Navier-Stokes solver named JAGUAR (Chapelier et al. 2016) and developed at ONERA and306
CERFACS. The code is designed to handle triangle (Veilleux et al. 2022a) or tetrahedral307
elements (Veilleux et al. 2022b) but all the presented computations were performed with a308
4th-order discretisation scheme using hexahedral elements. Time integration is made with309
a low-dissipation low-dispersion 6th-order Runge-Kutta scheme. The computational domain310

is [0, 3λ] × [0, 6δ] × [ζ0 cos(αx), δ] with αδ =
π

2
. The streamwise extend of the domain is311

12δ ≈ 4πδ that ts the usual requirements for periodic channel ow simulations. A constant312
source term is added on the momentum equation that sets the friction velocity uτ . The wall313
temperature is kept constant and the level of the mean heat ux on the wall is determined314
by the balance with the viscous and turbulent dissipation. As a consequence the wall heat315
ux is φw = ρu2τUb, with Ub the bulk velocity, providing rather low values of φ∗w = U+

b
.316

Two mesh resolutions are used depending on the targeted Reynolds number. The numbers of317
solution points are 240 × 240 × 160 ≈ 9M and 320 × 320 × 240 ≈ 24M . With a 4th-order318
discretisation, the mean y+ values in the wall cells are found to stay between 0.25 and 0.5.319
The friction Reynolds numbers δ+ range from 150 to 500 with R ∈ {100, 150, 200, 300}.320
Here again, the velocity eld is nearly divergence-free and the density uctuations are several321
orders of magnitude lower than the velocity and pressure perturbations. The amplitude of the322
wall ripple is chosen to give ζ+0 ∈ [2.9, 6.6] ensuring linear behaviours with αζ0 always less323
than 0.03.324
These DNS congurations cannot be directly considered as a complementary material to325
the experimental results of Hanratty et al. since αδ is twice as small in the computations326
as in the experiments. However, it was shown in § 2.2 that for R < 500 the phase shift ψτ327
is hardly aected by this change in the product αδ. This choice for αδ is a compromise328
between representativeness and cost. The main purpose of these simulations is to serve329
as a reference for RANS computations and the linear analyses, especially concerning the330
heat transfer. For this reason, RANS computations were also performed with strictly similar331
conditions. All computations used air as uid with perfect gas assumptions and given the332
temperature levels encountered, the specic heat capacity Cp can be reasonably considered333
constant. The computed temperature elds are directly comparable to the enthalpy elds. We334

note θ the temperature dierence with the wall and θ+ =
θ

θτ
the associated dimensionless335

variable where θτ =
−φw
ρCpuτ

is the friction temperature. Mean velocity proles 〈u+〉 (gure 4)336

compare favorably between the dierent computations for all Reynolds numbers, even though337
the k − ω model underestimates the proles in the buer layer. The reference data of Hoyas338
& Jiménez (2008) obtained in non-deformed channels are also depicted to prove the validity339
of the DNS computations presented here. Second moments also agree between the two DNS340
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Figure 4: Mean velocity (blue) and temperature (orange) proles. Empty symbols (◦,)
are DNS results while solid lines (EBRSM) and dashed lines (k − ω) presents RANS

computations. The full black symbol () are DNS results from Hoyas & Jiménez (2008) at
Reτ = 180 and Reτ = 550 respectively.

Figure 5: Proles of velocity perturbations at stations x/λ = 0.0 (blue), x/λ = 0.2
(purple), x/λ = 0.4 (green), x/λ = 0.6 (orange) and x/λ = 0.8 (red). Symbols are DNS
results, solid lines presents the RANS computations with the EBRSM model while the

dashed lines stand for the k − ω results.

dataset. The DNS mean temperature proles are well reproduced by the EBRSM model341
while the k − ω model tends to underpredict the proles above the linear region.342

4. Analysis and discussion343

4.1. Inuence of the turbulent closures on RANS computations344

The narrow dierences on the mean quantities visible in the gure 4 actually hide more vast345
discrepancies on the perturbation elds, which increase with the Reynolds numberR. Proles346
of the velocity and temperature perturbation elds were extracted at several streamwise347

location
x
λ
and plotted in gure 5 and gure 6. The amplitude of the perturbation are divided348

by a factor 2whenR is doubled, in accordance with the linear expansion (A 4) stating that any349

quantity q is such that
q+ − 〈q+〉

ζ+0
∝ α+ = R−1. It is immediately apparent that the EBRSM350

model compares better to the DNS results than the k − ω model. The agreement is better351
for velocity perturbations than for temperature perturbations where a noticeable dierence352
exists below z+ = 20. Despite a good overall trend, the perturbation proles presented by353
the k − ω model are lagged behind those of DNS with smaller amplitudes. The higher the354
Reynolds number, the larger the lag. Another notable point that emerges from these gures is355

Rapids articles must not exceed this page length
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Figure 6: Proles of temperature perturbations. The legend is identical to that of gure 5.
.

that the ordering between the proles is modied from the center of the channel to the wall.356
These gures 5 and 6 again illustrate the division between vortical and non-vortical regions.357
Around the center of the channel, the phase of the perturbed eld is not altered with respect to358
the wall and the ordering between proles is aligned with the wall locations, i.e. in-phase or359
anti-phase, depending on the sign of the perturbation. Conversely, near the wall, the ordering360
is modied by the phase of the perturbed eld. Moreover, DNS and RANS calculations have361
also revealed a perturbation peak on the velocity proles around z+ = 10, consistent with362
the vorticity peak revealed by the linear analysis (gure 3). A similar peak is also visible363
on the temperature proles, but less pronounced due to the high levels of perturbations364

observed in the non-vortical region. The wall shear stress disturbances
τ+w − 〈τ+w〉

ζ+0
of gure 7365

corroborate the previous observations with k − ω predictions delayed compared to those of366
DNS while the EBRSMmodel provides better agreement. For the wall heat ux disturbances367
φ+w − 〈φ+w〉

ζ+0
presented in gure 7, the k − ω model underestimates the amplitudes and is not368

able to recover the phase shift. The EBRSMmodel greatly improves the results but the phase369
shift on φw is a bit overpredicted. The RANS results for the wall shear stress phase ψτ are370
also reported in gure 2. The closure relations of the RANS computations are manifestly371
responsible of the prediction accuracy and the results evidence the failure of the Boussinesq372
hypothesis as expected. Even though the wall deformation is very small ensuring a linear373
behavior of the perturbation, the ow eld is heavily aected by the turbulent modelling.374
The error is even more pronounced on the perturbed temperature eld and the wall heat ux.375
As explained above, the good behavior of the EBRSM model compared to the k − ω model376

is essentially due to the the representation between the Reynolds stress dierence u′2 − w′2.377

Figure 8 shows the mean and disturbed proles of u′2
+ − w′2 +

and −u′w′ + obtained with378
the EBRSM calculations and compared to those from the DNS for R = 300. Although the379

forced response does not match that yielded by DNS, the prole of u′2 −w′2 at leading order380
is in good agreement with DNS results, while for k − ω calculations (not shown here) the381

normalized stress dierence at the leading order is 〈u′2 + − w′2 +〉 = 4〈νt
∂u
∂x

〉 = 0. Figure 8382

also indicates that the perturbations due to the wall on the diagonal stress dierence u′2−w′2383

is four to ve times larger than that induced on the shear stress−u′w′ +. It results that the term384
∂τxx − τzz

∂x
has a magnitude ve times smaller than that of the term

∂τxz
∂z

in the streamwise385
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Figure 7: Wall shear stress (left / blue color) and wall heat ux disturbances (right / orange
color) at R = 150 (top) and R = 300 (bottom). Symbols are DNS results. Solid lines are
the RANS computations with the EBRSM model and the dashed lines represent the

computations with the k − ω model.

Figure 8: (left) Mean proles of the Reynolds stress dierence u′2
+ − w′2 +

(blue) and
the shear stress −u′w′ + (orange) for R = 300. Symbols are the DNS results and lines

stand for the EBRSM computations. Corresponding forced responses proles
u′2

+ − w′2 + − 〈u′2 + − w′2 +〉
ζ+0

(middle) and
−u′w′ + + 〈u′w′ +〉

ζ+0
(right) at several

stations x/λ. Lines and symbols are those used in gure 5.

momentum equation (A 1). In the end, the
∂τxx − τzz

∂x
term contributes to about 20% in the386

budget of the momentum equation at the rst order, showing its critical importance. The387
RANS results are now used to further examine the results of the linear analysis and assess388
the eect of the Hanratty correction C on the prediction of the phase shift of the wall shear389
stress and the wall heat ux.390

4.2. Achievements and limitations of the Hanratty correction391

Previous work by Abrams & Hanratty (1985), Charru et al. (2013) and Claudin et al. (2017)392
proved the eectiveness of correction C in recovering the wall shear stress phase evolution393
with respect to the wavenumber (solid blue line in gure 2). Although very ecient, this394
correction suers from two main limitations. The rst one is related to the application of395
the correction in the mixing length model. RANS computations highlighted the failure of396
the Boussinesq hypothesis to predict the stress dierence τxx − τzz , which is then of the397
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Figure 9: Amplitude of the wall shear stress perturbation. The lled black circles are
measurements of Hanratty et al.. Square symbols are the RANS computations with the

EBRSM (blue) and the k − ω (orange) models respectively. The solid lines are the results
of the linear analysis with the Hanratty correction (blue) and when the frozen turbulence

assumption is used (orange).

order of the perturbation O(αζ0), in the streamwise momentum equation (A 1). However,398
the Hanratty correction acts on the shear stress τxz through the modication of the mixing399
length. In other words, the Hanratty correction does not correct the problematic term but400
balances the streamwise momentum equation, and in that sense it can viewed as an ad-hoc401
palliative to the failure of the Boussinesq hypothesis. The second limitation comes from the402
use of a relaxed pressure gradient to drive the correction C. RANS and DNS calculations403
have evidenced the role of the mean vorticity of the ow in creating the turbulent stresses that404
ultimately lead to the observed phase shift in the wall shear stress. But, the pressure gradient405
does not enter the vorticity equation and is not a relevant variable to control turbulence.406
Furthermore, the pressure gradient is not involved in the Reynolds stress transport equations407
which does not prevent the EBRSM computations from correctly reproducing the phase408
shift of the wall shear stress. Despite these limitations, the Hanratty correction is very useful409
and eective for linear analyses.410
A further demonstration of the positive impact of the correction C is shown in gure 9411
where the amplitudes of the wall shear stress disturbance are presented. In the linear analysis412

the wall shear stress uctuation
τ+w − 〈τ+w〉

ζ+0
is given by ατ̂xz(0) according to eq. (A 4).413

Calculations of the linear response with C and, to a lesser extent, the EBRSM results, follow414
the measurements remarkably well, while the k −ω and results of the linear analysis without415
the Hanratty correction move further apart as α+ decreased.416
We now focus on the use of the Hanratty correction in the closure relation for turbulent heat417
ux of the linearised energy equation detailed in § (2.4). In the mixing length disturbance418
l̂θ (2.5), C is considered twice with respect to the two van Driest numbers A and Aθ . An419
additional dependence on τ̂xz was introduced for the van Driest number Aθ . Best agreements420
were obtained with θ = 4. The results of the linear analysis for the evolution of the phase421
of the wall heat ux ψφ with respect to α+ are shown in gure 10 and compared to RANS422
computations. Results corresponding to the original model proposed by Claudin et al. (2017)423
(Aθ = 26 and θ = 0) are also reported in gure 10. Values of ψφ are shifted from 180o424
when the sign of φ∗w is changed. When |φ∗w | is large enough, practically when |φ∗w | > 100,425
the dissipation term û of the equation for the mean enthalpy (A 14) is almost negligible426
and the equation is symmetrical with respect to φ∗w . The Navier-Stokes computations427
with the k − ω model provide values of ψφ in good agreement with the linear analysis428
obtained with the frozen turbulence assumption, consistently with the observation made on429
ψτ in gure 2. Results equivalent to those of Claudin et al. (2017) provide overestimated430
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Figure 10: Wall heat ux disturbance phase ψφ as a function of the wavenumber α+. Blue
symbols are the phase computed with the EBRSM model for φ∗w = 400 (^) and

φ∗w = −400 (). The orange square symbols are the results obtained with the k −ω model.
The solid lines are the corresponding results of the linear analysis with (blue line) all

correction activated (A = 26, Aθ = 30, β = 35, θ = 4) and with (orange line) the frozen
turbulence hypothesis (A = 26, Aθ = 30, β = 0, θ = 0). The black dashed line presents
the results corresponding to the approach followed by Claudin et al. (2017) for lθ (A = 26,

Aθ = 26, β = 35, θ = 0). The thin horizontal dashed line correspond to ψφ = −90o.

Figure 11: Amplitude of the wall heat ux perturbation. Square symbols are the RANS
computations with the EBRSM (blue) and the k − ω (orange) models respectively. The
solid and dashed lines are the results of the linear analysis. The blue lines correspond to
results of the linear approach with φ∗w = 400 (dashed) and φ∗w = −400 (solid). The orange
line presents the analysis performed with the frozen turbulence assumption. The dashed

black line are the results obtained with Aθ = A0
θ
= 26 and θ = 0.

phase values of about 40o whereas with A0
θ = 30 and especially θ = 4, the linear431

forced responses match those of the EBRSM computations. This means that the Hanratty432
correction has a benecial impact on l̂θ but it is not sucient. An additional correction433
on Aθ , with θ = 4, is required to recover the results obtained with the EBRSM computations.434

435
In gure 11 the comparison of the amplitude of the wall heat ux disturbance points436

out several divergences. The disturbances of the wall heat ux
φ+w − 〈φ+w〉

ζ+0
obtained in the437

linear analysis, i.e. −α f̂ (0), are smaller than those of the RANS computations. The results438
produced by the k −ω model and the results of the linear analysis with the frozen turbulence439
assumption exhibit almost the same trends whereas the EBRSMmodel and the linear analysis440
results diverge as α+ decreases. This may be due to the closure relation used for the turbulent441

heat uxes −u′ih′. The EBRSM model uses the GGDH assumption while the linear analysis442

makes use of a SGDH hypothesis and is impacted by the Hanratty correction C in l̂θ (2.5).443
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The results obtained with A0
θ = 26 and θ = 0 are not better. For the energy equation, the444

Hanratty correction is not able to compensate the approximationmade in the modelling of the445
turbulent heat uxes. This is not surprising since C was implicitly designed to correct only446
for the misrepresentation of the Reynolds stresses. Although imperfect, the linear analysis447
using the model described in § 2.4 for the energy equation allows a good prediction of ψφ.448

However, it was not possible with this type of closure (2.5) for l̂θ to also obtain a satisfying449
prediction of the wall heat ux amplitude.450

4.3. Linear stability of an ablative surface451

The surface elevation is now a function of time ζ(x, t) = ζ0e(σwt + iωwt + iαx) and is452
assumed to be ruled by the ablation process and controlled by the wall heat ux. For moving453
surfaces, the critical layer, below which the ow propagates more slowly than the surface,454
has a crucial importance on the ow dynamics (Belcher & Hunt 1998). For our reentry455

applications (see appendix B), the surface speed
ωw

α
is low compared to the friction velocity.456

In this slow waves regime (
ωw

αuτ
. 15) the critical layer is thin and plays no signicant457

dynamical role. In other words, only the temporal growth rate σw matters and controls the458
surface regression in direction z.459
The model detailed in the appendix A.2 can be applied to dissolution or melting problems460
since the energy equation produces similar results to the advection-diusion equation used461
by Claudin et al. (2017) when |φ∗w | is large. Any solid surface can be decomposed into a462
series of sinusoidal proles and the linear response of the ow will be the combination of463
the responses for each wavenumber. The surface regression is assumed to be proportional to464
the wall ux (Claudin et al. 2017). Dropping the homogeneous part of the ux, the evolution465

of the elevation at the rst order is ruled by
∂ζ

∂t
= −ru3τζ0α | f̂ (0)|e


iαx + iψφ


, with r a466

constant proportionality factor (s2/m2), controlling the regression rate. The temporal growth467
rate of the surface elevation is then governed by the real part of the dispersion relation, i.e.468
σw = −ru3τα | f̂ (0)| cos


ψφ


. Function σw(α) changes sign when |ψφ | crosses the horizontal469

line ψφ = 90o. In the case of a negative wall heat ux, the horizontal line ψφ = −90o is470
plotted in gure 10. When the Boussinesq hypothesis is used without Hanratty correction471
in the linear analysis and for the computations with the k − ω model, ψφ is always less472
than −90o and σw remains negative for all wavenumbers α+. For the EBRSM results or for473
the linear responses, involving the correction C, σw becomes positive for α+ ≈ 0.006. All474
wavenumbers below α+ ≈ 0.006 are unstable, in the range of wavenumbers covering the475
transitional regime. However, the growth rate σw quickly decreases as α+ decreases, mainly476
due to its proportionality with α. In gure 12, growth rates σw (normalised) obtained in477
the RANS computations and in the linear analysis are depicted with respect to α+. In the478
k − ω computations and in the linear analysis with the frozen turbulence assumption, the479
growth rates are always negative. Both models predict stable modes regardless of α+. But480
the EBRSM model and the linear approach show an unstable region where σw > 0 and the481
presence of a peak. The wavenumber associated with this peak indicates the most unstable482
mode for which the surface time growth rate is the highest. The error in the prediction of the483
amplitude of the wall heat ux with the linearized model using eq.(2.5) for the closure of the484
turbulent heat ux leads to a shift in the position of the peak. The linear analysis indicates a485
peak at α+ = 2.4 × 10−3 (R = 417) whereas it is found at α+ ≈ 4 × 10−3 (R = 250) by the486
EBRSM model. The location of the peak is almost independent of φ∗w and is not modied487
by the sign of φ∗w as long as |φ∗w | > 100. The Prandtl number Pr has a limited inuence on488
the peak position in the linear approach. The same tendency is expected in Navier-Stokes489
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Figure 12: Normalised growth rate
σwφw
rρ

with respect to α+ in logarithmic and linear

scales. Square symbols are the RANS computations with the EBRSM (blue) and k − ω
(orange) models. The corresponding dashed lines are splines computed from the data. The

solid lines are the results of the linear approach with (orange) and without the frozen
turbulence assumption.

computations. The peak is moved to higher values of α+ as Pr is increased and for example490
when Pr = 100 the peak is located at α+ = 4.2 × 10−3.491
Thomas (1979) presented evidence in support of the hypothesis that the scalloping of soluble492
surfaces may be attributed to wall turbulence. By analysing bed morphologies where scallops493
occur, he showed that the longitudinal wavelength of the bedform is a multiple of the494
viscous length δν providing α+ ≈ 6 × 10−3. The proportionality between these quantities495
was demonstrated over a range exceeding four decades of length and covering a wide variety496
of situations from the corrosive dissolution of steel (Schoch 1968; Schoch et al. 1969,497
1970a,b; Schuster 1971; Heimsch et al. 1978), brass (Sick 1972) and copper (Knutsson et al.498
1972), the plastic shear of bitumen (Brauer 1963) and aluminium (Brunton 1966) and the499
rippling of colloidal-particle deposits in a water main (Wiederhold 1949; Seiferth & Krüger500
1950). In the context of atmospheric re-entry vehicles, the wavelength found in the TATER501
experiment (Hochrein & Wright 1976) aligns with the Thomas correlation. The orders of502
magnitude provided in appendix B justify the use of the linear approach (A.1 and A.2) to503
study this type of ow, particularly with respect to compressibility eects. The location of the504
most unstable mode with the EBRSM computations or with the linear approach are closed to505
the value found in the Thomas correlation, conrming the role of turbulence in the occurrence506
of scallops. It is nevertheless premature to draw general conclusions from these results. Only507
the linear response was examined, with a high degree of hypothesis on the ow that restricts508
the scope of the approach. Further verication is needed to extend the approach to dierent509
types of erodible surfaces where scallops are observed. Non linear eects, notably related to510
ow separations may also interfere in the scalloping formation (Charru et al. 2013). This will511
certainly require further experimental or numerical data for validation. The results presented512
are a rst step towards explaining the value of the slope of the Thomas correlation.513

5. Conclusion and perspectives514

The scallops observed on re-entry blunt bodies are similar to that encountered in many515
applications, the characteristic scale of which is given by the Thomas correlation of viscous516
boundary layer length. The study of these scallops was historically based on a linear analysis517
of the disturbances generated by a xed wall corrugation on the inner region of a turbulent518
boundary. The success of this approach relies in particular on the use of the Hanratty519
correction, without understanding the underlying mechanisms requiring the intervention of520
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this correction. Using RANS and DNS numerical simulations, an in-depth analysis of the521
perturbations generated by the corrugated wall has allowed to clarify the implications of522
the dierent terms of the Navier-Stokes equations and to better understand the role of the523
Hanratty correction.524
It is found that the disturbance proles can be separated into two distinct regions. Away525
from the wall, the vorticity perturbation is zero and the velocity and temperature proles are526
in phase with the wall undulation. In the vicinity of the wall, the vorticity disturbance527
is signicant and a phase shift with respect to the wall is observed on the various528

perturbed quantities. The vorticity creation is directly related to the contribution u′2 − w′2529
in the streamwise momentum equation. RANS computations using the k − ω and EBRSM530
models, confronted with reference results from DNS, highlight the failure of the Boussinesq531
hypothesis in this context. The results for the velocity disturbances show that the k − ω532
calculations, which are based on the Boussinesq hypothesis, are not able to reproduce533
the DNS data correctly, unlike the EBRSM calculations, which are fairly accurate. The534
dierences between the DNS results and the k − ω computations are even greater for the535
temperature proles. The use of a SGDH closure for turbulent heat uxes further increases536
the errors. In contrast, the EBRSM calculations, which use a GGDH closure, show very good537
agreement with the DNS calculations, notably for the parietal heat ux.538
A comparative study of results from the linear analysis andRANS results highlights the role of539
the Hanratty correction. The latter serves in fact to compensate for the poor representation of540
the Reynolds stresses in the equations and coming from the use of the Boussinesq hypothesis.541
The Hanratty correction was designed to act eectively on the momentum equation. Its542
indirect use in the energy equation does not make it possible to obtain the expected results543
for wall heat transfer. In particular, the phase shift and the amplitude of the wall heat ux544
uctuation are poorly predicted by the linear approach, even with the Hanratty correction,545
unless a supplementary correction is also added in the mixing length governing the turbulent546
heat ux closure. Finally, the study of wall regression under the eect of an ablative ux is547
carried out. The surface elevation is supposed to be ruled by the wall heat ux and its growth548
rate, apart from the homogeneous contribution of the leading order, is governed by the phase549
shift and amplitude of the wall heat ux disturbance.When the Boussinesq hypothesis is used550
without compensation, the linearized problem is unconditionally stable. But, in the linear551
approach using the Hanratty correction and in the RANS EBRSM computations, the growth552
rate of the surface elevation is found to be positive for α+ > 0.006 in the transitional regime.553
The most unstable mode is found for α+ = 2.4 × 10−3 in the linear analysis and around554
α+ = 4 × 10−3 in the EBRSM computations. The dierence in location results from the555
errors made on the phase and amplitude in the linear analysis because of the used turbulent556
closure relations. These values of the dimensionless wavenumber are close to that given557
by the Thomas correlation providing a rst indication on the mechanisms involved in the558
occurrence of the scallops in the linear phase.559
Many questions are still open and studies are needed to evaluate the inuence of compress-560
ibility, regression models including possible chemical reactions, real gas eects, roughness561
eects and nally non-linear interactions. In parallel, as suggested in gure 1, a 3D linear562
analysis taking into account surface curvature eects could provide additional information563
on the three-dimensional nature of scallops.564
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Appendix A.566

A.1. The momentum equations567

We consider the bidimentional Reynolds averaged Navier-Stokes equations for a steady568
incompressible ow. The Reynolds average , that reduces to a time averaging under the569
assumption of ergodicty, is used to study the mean quantities. In the following, the symbol570
 is dropped for mean quantities but kept for the second order moments. We note ′ the571
uctuations around the Reynolds average. We also introduce the spatial average 〈〉 =572
1
λ

∫ λ

0 dx. The equations set read:573

u
∂u
∂x

+ w
∂u
∂z

=
∂

∂x


τzz −

p
ρ


+
∂τxz
∂z

+
∂

∂x
(τxx − τzz)

u
∂w

∂x
+ w

∂w

∂z
=

∂

∂z


τzz −

p
ρ


+
∂τxz
∂x

(A 1)574

The sinusoidal wall prole is of the form ζ(x) = ζ0eiαx with ζ0 the amplitude and α the575
wavenumber. The linear expansion is made with respect to the small parameter αζ0. The576

dimensionless variable η = αz and the Reynolds number R =
uτ
αν

are dened from the wall577

normal coordinate z, the kinematic viscosity ν and the friction velocity uτ =

√
〈τxz〉
ρ

.578

At the leading order on smooth at walls, the only remaining Reynolds stress in the equation579
is the shear stress u′w′ and then the turbulent closure is made with a Prandtl mixing length580
model l coupled with a van Driest damping function. It reads:581

l = κz

1 − exp


− z

√
τxz

νA


(A 2)582

with A the vanDriest number. The total stress τi j are deduced from theBoussinesq hypothesis:583

τi j = 2 (ν + νt ) Si j −
1
3
kδi j (A 3)584

where νt and k are the eddy viscosity and turbulent kinetic energy, respectively. For a mixing585
length model, the turbulent kinetic energy is related to l through the relation k = χ2l2 |S |2.586
|S | = 

2Si jSi j is the norm of the strain rate tensor Si j and χ a phenomenological constant587
between 2 and 3 that may be found for boundary layers from Bradshaw’s relation (Bradshaw588
et al. 1967).589
All quantities in eq. (A 1) are expressed in wall units using uτ and ν. The + sign commonly590
used to designate variables expressed in wall units are dropped for the sake of conciseness and591
clarity in eq. (A 4), (A 7), (A 8) and (A 9). The mixing length l is made dimensionless using592
the wavenumber α. Any dimensionless quantity q is then decomposed in a homogeneous593

part and a disturbed part only depending on η such that q(x, z) = 〈q〉(η) + αζ0q̂(η)eiαx .594
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More explicitly, for the velocity and Reynolds stress elds the decomposition reads:595

u = 〈u〉 + αζ0ûeiαx

w = αζ0ŵeiαx

τxz = 1 + αζ0τ̂xzeiαx

τzz − p/ρ = −p0/ρ − 1
3 χ

2 + αζ0τ̂peiαx

τzz = − 1
3 χ

2 + αζ0τ̂zzeiαx

τxx = − 1
3 χ

2 + αζ0τ̂xxeiαx

(A 4)596

We note τ̂p the disturbance for the dierence τzz − p/ρ including the pressure contribution.597
For the mixing length, we have:598

αl = 〈l〉 + αζ0 l̂eiαx (A 5)599

The expression of l̂ is given by eq.( 2.1). The Hanratty correction is found after linearisation600
of eq. (2.2) which becomes:601

(R + γ) C = i

τ̂xx − τ̂zz − τ̂p


(A 6)602

The mean velocity prole 〈u〉 is solution of the equation:603

〈l〉2〈u〉2,η + R−1〈u〉,η = 1 (A 7)604

where ,η denotes the derivative with respect to η.605
At the rst order, the system for the disturbed eld reads:606

û,η = −iŵ +
τ̂xz − 2〈l〉〈u〉,η2 l̂
R−1 + 2〈l〉2〈u〉,η

ŵ,η = −iû

τ̂t,η =


i〈u〉 + 4

〈u〉,η


û + 〈u〉,ηŵ + iτ̂p

τ̂n,η = −i〈u〉ŵ + iτ̂xz

(A 8)607

The associated four boundary conditions are:608

û(0) = −〈u〉,η(0) = −R
ŵ(0) = 0

ŵ(∞) = 0

τ̂xz(∞) = 0

(A 9)609

A.2. The energy equation610

We consider the energy equation written for the total enthalpy ht = h +
u2

2
+
w2

2
.611

∂ f
∂z

=
∂

∂x


ν

Pr
∂h
∂x

− u′h′ + uτxx + wτxz − uht

 
ν

Pr
∂h
∂z

− w′h′ + uτxz + wτzz − wht


= 0

(A 10)612
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where the ux f is given by f = −

ν

Pr
∂h
∂z

− w′h′ + uτxz + wτzz − wht


.613

The turbulent heat ux −h′w′ is modelled with a simple gradient diusion hypothesis using614
the eddy viscosity νt = l2 ∂u∂z and the turbulent Prandtl number Prt .615

− h′w′ =
l2θ
Prt

∂u
∂z

∂h
∂z

(A 11)616

Themixing length lθ is given by eq. (2.4) in section § 2.4. It is thenmade dimensionlesswith617
the wavenumber α. The enthalpy and ux are made dimensionless with uτ and we note φ∗w =618
φw

ρu3τ
the dimensionless wall heat ux. Again the+ sign is dropped in eq. (A 12), (A 14), (A 15)619

and (A 16). All these quantities are decomposed in a homogeneous part and a disturbed part620
as follows:621

h = 〈h〉 + αζ0 ĥeiαx

f = 〈 f 〉 + αζ0 f̂ eiαx
(A 12)622

and623

αlθ = 〈lθ〉 + αζ0 l̂θeiαx (A 13)624

The mean enthalpy 〈h〉 is deduced from:625 (
〈lθ〉2〈u〉,η

Prt
+

R−1

Pr

)
〈h〉,η + 〈u〉 + φ∗w = 0 (A 14)626

while the perturbations ĥ and f̂ are ruled by:627

ĥ,η =

[
f̂ + ŵ


〈h〉 + 1

2
〈u〉2


−

τ̂xz 〈u〉 −

1
3
χ2ŵ + û


− 〈h〉,η

Prt


2〈lθ〉 l̂θ 〈u〉,η +


û,η + iŵ

 〈lθ〉2
]

(
〈lθ〉2〈u〉,η

Prt
+
R−1

Pr

)

f̂,η =

(
i〈u〉 + 〈lθ〉2〈u〉,η

Prt
+
R−1

Pr

)
〈h〉 + 3

2
i〈u〉2û + iû〈h〉 − i


τ̂xx 〈u〉 −

1
3
χ2û + ŵ


(A 15)628

The associated boundary conditions are:629

ĥ(0) = −〈h〉,η(0)

f̂ (∞) = 0
(A 16)630

Appendix B.631

The in-ight experimental tests TATER are described in Hochrein & Wright (1976) and632
the aerothermodynamical design procedure, including comparisons with measurements, is633
detailed in McAlees &Maydew (1985). Scallops formed on the nosetip of these experiments634
during the ascension phase but the conditions encountered are representative of ablation635
mechanisms occuring on thermal protection system employed on re-entry vehicles. To636
complete the data presented by Hochrein &Wright (1976) and McAlees &Maydew (1985),637
Navier-Stokes computations were ran. The complete ight trajectory was simulated taking638
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into account the ablation that occurs on the nosetip of the vehicle and real gas eects. For639
the part of the ight during which the ablation occurs, the orders of magnitude of dierent640
quantities obtained in the inner region of the boundary are presented below, justifying the641
hypothesis used in the present study.642
Because of the detached shock located upstream, the conical part of the nosetip faces a643
weakly supersonic ow with a Mach number at the edge of the boundary layer Me around644
1 − 2. Within the inner region of the boundary layer the Mach number is below unity and645
the density varies by 20% around a mean value of 6 kg/m3. Therefore, the compressibility646
eects are not so pronounced and considering the linear analysis of an incompressible uid647
in such a case can be viewed as a rst approach. The friction velocity is about 50m/s and the648
viscosity is estimated at ν = 1.2 × 10−5 m2/s2 at the wall. The surface regression (McAlees649
& Maydew 1985) last about 11 s and the maximal regression speed is about 2 mm/s. The650
maximum wall heat ux is φw ≈ 50MW/m2 which gives φ∗w ≈ 70.651
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