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About the role of the Hanratty correction in the linear response of a turbulent ow bounded by a wavy wall

Scallop patterns forming on erodible surfaces were studied historically using a linear analysis of the inner region of a turbulent boundary layer growing on a corrugated wall. Experimental observations show a phase shift between the shear stress at the wall and the wall oscillation that depends on the wavenumber. An ad-hoc correction applied to the turbulent closure and due to Hanratty et al. (Thorsness et al. 1978; Abrams & Hanratty 1985; Frederick & Hanratty 1988) was systematically used to recover the reference experimental results.

In this study, Reynolds-averaged Navier-Stokes (RANS) and direct numerical simulations (DNS) were performed and revealed the role of the Boussinesq assumption in the results obtained. We show that the Hanratty correction acts as a palliative to the misrepresentation of Reynolds stresses due to the use of the Boussinesq hypothesis. The RANS calculations based on a turbulence model using a second-order moment closure recovered the expected results obtained in the reference DNS calculations, in particular with respect to wall heat transfer. The analysis of these results highlights the critical importance of the anisotropy of the diagonal Reynolds stresses on the prediction of wall transfer under these conditions and their implication in the occurrence of scalloping.

Introduction

Scallop patterns are found in a large variety of situations, characterizing the interaction of a uid and an erodible surface. They are observed on meteorites, and called regmaglyptes (Lin & Qun 1987;Claudin & Ernstson 2004), in pipes (Blumberg & Curl 1974;Villien et al. 2001Villien et al. , 2005)), in karst or ice caves (Anderson Jr et al. 1998;Sundqvist et al. 2007;Pitsch et al. 2017) or with dunes (Best 2005;Vinent et al. 2019) and sand ripples (Bagnold 1941;Charru et al. 2013). Many examples of these scallop patterns are listed by Claudin et al. (2017). Thomas (1979) gathered several experimental results and provides evidence of a unique scaling of the wavelength of the scallops with the boundary layer viscous length. Similar patterns are also observed on atmospheric re-entry vehicles. During the reentry phase in hypersonic conditions, the windward face of a vehicle is exposed to severe heat uxes due to the post-shock environment. Carbon-based thermal protection systems are commonly used to † Email address for correspondence: francois.chedevergne@onera.fr Abstract must not spill onto p.2 guarantee the integrity of the payload. The carbon oxidation and sublimation processes lead to the ablation of the heat shield, and under some conditions, scallops may be observed on vehicle nosetips. Few in-ight experiments are published (Larson & Mateer 1968;Canning et al. 1968), the most important reference being the TATER test (Hochrein & Wright 1976) for which scallops about 1 to 4 mm long and a depth 10 times smaller were observed on the ablated surface as shown in gure 1. Several on-ground tests (Laganelli & Nestler 1969;Nestler 1971;Williams 1971;Baker 1972;White & Grabow 1973;Shimizu et al. 1974;Reineke & Guillot 1995;Mikhatulin & Polezhaev 1996;Powars 2011), involving lower heat uxes and using surrogate ablative materials such as camphor or teon, have conrmed the formation of scallops. The ablation process depends on the material and may imply decomposition or fusion. To study the formation of scallops on reentry vehicles, we therefore rely on existing approaches for which several fundamental unresolved issues related to turbulence models still remain.

The occurrence of these patterns on the surface of erodible walls were studied for many years by performing linear analyses (Benjamin 1959;Thorsness et al. 1978;Abrams & Hanratty 1985;Fourrière et al. 2010;Charru et al. 2013;Claudin et al. 2017). Classically, the surface regression rate is assumed to be small enough so that the associated characteristic time scale is very large compared to the mean ow characterisic time. The problem is then rst reduced to the investigation of an incompressible turbulent boundary layer developing over a sinusoidally perturbed static surface. The linear forced response for this ow was rst studied by Benjamin (1959) and consists in solving the Orr-Sommerfeld equation for a laminar ow. This problem was explored again by Hanratty and co-workers (Thorsness et al. 1978;Zilker et al. 1977;Abrams & Hanratty 1985;Frederick & Hanratty 1988) providing a new insight into the linear response while introducing a slight modication to the Orr-Sommerfeld equation and considering turbulent ows. Thorsness et al. (1978) introduced a metric function to transpose the equations into the 'boundary-layer coordinate system' before the linearization. However, the base ow was moved together with the coordinate system and displaced to the new origin. This crucial modication was carefully analyzed and discussed by Luchini & Charru (2019). In the present work, we take up the work of Fourrière et al. (2010) and Charru et al. (2013) to derive the linear problem. This is equivalent to the approach of Hanratty et al. and gives exactly the same results. The equations set and notations are reminded in appendix A. Since the ow is supposed turbulent, a closure relation is used to model the contribution of Reynolds stresses in the stress tensor τ i j . In all the studies cited, the Boussineq hypothesis (A 3) is used together with a Prandtl mixing length model.

Simultaneously to their initial linear analysis, experimental work were conducted by Hanratty et al. (Zilker et al. 1977;Frederick & Hanratty 1988) providing essential data to validate the results of the linear analysis. A series of measurements in a turbulent channel ow equipped with a wavy wall highlighted a modulation of the wall shear stress phase with respect to the wall deformation in a specic wavelength range. The existence of a phase shift between the wall shear stress and the wavy wall can be explained by the momentum budget (Charru & Hinch 2000). For laminar ows or simply as long as the perturbations are in the viscous sublayer, the pressure gradient induced by the wall waviness is responsible for the phase shift. To further elucidate how scalloping forms on erodible surfaces, the wall prole is made time dependent and is related to a wall ux involved in the transport mechanism controlling the wall recession. For sand ripples formation, the particle ux is used and is shown to be lagged behind the wall shear stress. The lag of the particle ux has a stabilizing eect that balance the inertial destabilising eect of the shear stress. A thorough discussion is given in the review by Charru et al. (2013). For dissolution or melting problems, Claudin et al. (2017) considered a passive scalar transport equation, representing, for example the concentration of a chemical species or the temperature, and the wall prole evolution is controlled by the wall normal ux of the scalar transported. The ablation problem on the nosetip of a re-entry vehicle can be apprehended in the same way but several issues must be addressed rst, among which one is of key importance.

The correction C proposed by Hanratty is an heuristic model, made to recover measurement (Zilker et al. 1977) data for the wall shear stress from a mixing length approach.

However, in order to close the passive scalar transport equation in the approach followed by Claudin et al. (2017), the turbulent scalar ux is related to the eddy viscosity based on the mixing length and including the correction C. Assuming that C is a valid and sucient correction for the turbulent scalar ux closure is far from being trivial and there is no exisiting data enabling to validate this model. The choice of the closure is yet a determining factor for the assessment of the wall normal ux that controls the surface regression rate.

To shed light on this point we follow the approach presented by Claudin et al. (2017) for the transport of a passive scalar and in § 2 we study the forced response of the energy equation for an incompressible uid. At rst, a xed corrugated surface is considered and a dedicated mixing length is proposed to model the turbulent scalar ux. The choice of the base ow is also discussed in this section to remove doubts about the relevance of the validation cases performed. In § 3 DNS computations are carried out to establish some validation points to complete the experimental data of Hanratty, notably concerning heat ux. Additionally, RANS computations with rst and second order moment closures are performed to discuss the inuence of the turbulent closures in the momentum and energy equations. In the last § 4, through the analysis of the dierent types of results, we will discuss the achievements and some limitations of the Hanratty correction. Finally, a simple wall regression model, assuming scale separation between the ablation mechanism and the ow response, is presented to try to establish a link with the Thomas correlation. In particular, we highlight the key role played by the closure relation for the turbulent heat ux.

Linear forced response

Turbulent closure for the linearised momentum equations

We take up the work by Charru et al. (2013) to solve the linearised momentum equations, considering a steady and incompressible uid ow, the corrugated surface being xed in time at this stage. The notation and the system of equations are reminded in appendix A.1.

The study is restricted to the linear response of the ow to the wall undulation, i.e. the amplitude ζ 0 of the wall deformation is small enough compared to the wavelength 2π α with α the wavenumber. The non-linear limit is αζ 0 ≈ 0. & Smith (1974). Since the mixing length l (A 2) depends on the non-dimensional variables, the wall normal coordinate η, the Reynolds number R based on the wavenumber α and the van Driest number A, the disturbed part of the mixing length l obtained after linearisation contains three distinct contributions:

l = -κ [ 1 -exp  - Rη A 0   1 - Rη A 0 + Rη 2 A 0  τxz 2 -βC ]
(2.1)

The rst one due to η is the linearised eect of the geometrical deformation. The second reveals the inuence of the wall shear stress disturbance τxz . Finally, the dependence to C is brought by the van Driest constant A with β the relative variation of A due to the relaxed pressure gradient β = 1

A 0 ∂ A ∂C .
A 0 = 26 is the standard van Driest constant and β = 35 is found to be the value that best ts the measurements (Frederick & Hanratty 1988;Charru et al. 2013). The dimensionless correction C is given by a dierential equation that reads:

γ ∂C ∂ x = 1 u 2 τ ∂ ∂ x  τ xx - p ρ  -C (2.2)
γ is a constant that determines the length over which the relaxation operates with respect to the streamwise gradient of τ xx -p ρ . Originally (Thorsness et al. 1978;Frederick & Hanratty 1988), C was only related to the pressure gradient, with similar results. The dimensionless quantity C does not correspond to the whole correction introduced in l, but it will be called Hanratty's correction thereafter for brevity. When only the geometrical dependence of l is kept, and so the dependence on τxz and C are dropped in eq. (2.1), the turbulence can be seen as "frozen" regarding the perturbations. This will be referred to as the frozen turbulence assumption in the following. More details on equations (2.1) and (2.2) can be found in the supplemental material of the review of Charru et al. (2013).

Experimental results and those of the linear analyses of the wall shear stress phase ψ τ = arg( τxz ) plotted in gure 2 for wavenumbers in the transitional regime. Indeed, three regimes can be distinguished with respect to R and the penetration depth of the perturbation δ i . The rst regime corresponds to small values of R (R < 100), and, according to Charru
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Additionally, the problem is then independent of the friction Reynolds number and only depends on the dimensionless wavenumber α + = R -1 . However, the reference experiments 

l = δ  0.14 -0.08  1 - z δ  2 -0.06  1 - z δ  4   1 -exp  - √ τ xz z ν A  (2.3)
For αδ = π, corresponding to Hanratty's experiments, similar results (gure 2) are obtained with both versions of the code when β is increased to 45 in the channel conguration.

Considering the existing dispersion for the experiments, both results are satisfactory. When αδ is lowered or increased by a factor of 2, the magnitude β of the Hanratty correction C must be modied accordingly to recover the experimental data. There is a real inuence of the friction Reynolds number on the results but it can be compensated by adjusting β. It is nevertheless important to note that both versions of the code with the respective mixing length models (A 2) and (2.3) provide close results for R < 500 (α + > 0.002) for a common reference value β = 35, whatever the values of αδ. Therefore, the dependence to the friction Reynolds number δ in the transitional regime is small and the linear responses obtained by considering the inner region of a boundary layer can be legitimately compared to measurements or computations obtained in channel ow congurations. The results presented below have all been produced by the code based on the inner boundary layer region to be consistent with previous studies.

The role of the vorticity

Another remarkable aspect in the evolution of the wall shear stress phase is the inuence of the vorticity. The penetration depth δ i depends on the Reynolds number R and its denition (Charru & Hinch 2000) is given by the vorticity disturbance $ = û,ηi ŵ at the wall (see appendix A). The penetration depth must not be seen as the distance to the wall where the perturbation is not zero but a measure of the distance over which the vorticity acts. Actually, the perturbation elds for the velocity and the pressure are not zero above δ i but the vorticity is. 

l θ = κz  1 -exp  - z √ τ xz ν A 1 /2  1 -exp  - z √ τ xz ν A θ 1 /2
(2.4)

The mixing length disturbance lθ is given by:

lθ = -κ  1 -exp  - Rη A 0  1 /2 ( 1 -exp ( - Rη A 0 θ )) 1 /2 ×        1 + 1 2 exp  -Rη A 0  1 -exp  -Rη A 0   Rη A 0 - Rη 2 A 0  τxz 2 -βC  + 1 2 exp  -Rη A 0 θ  1 -exp  -Rη A 0 θ  ( Rη A 0 θ - Rη 2 A 0 θ  τxz 2 -β θ C - θ τxz 2  )       (2.5)
The introduction of a second damping function in eq. (2.4) makes it possible to introduce an additional correction to lθ in eq. (2.5). From Cebeci & Smith (1974), we have 

A 0 θ = 30. A θ is made dependent on τxz with a coecient  θ = 2 A 0 θ ∂ A θ ∂ τxz . The dependence of A θ on C is taken identical to that of A in eq.

Navier-Stokes computations

RANS computations

To enlighten the impact of the turbulent closure on the forced response, several RANS (Reynolds Averaged Navier-Stokes) computations were performed. The numerical procedure is based on the second order compressible nite volume code named CEDRE (Aupoix et al. 2011;Scherrer et al. 2011), developed at ONERA and designed for unstructured grids. The computational domain is a 2D periodic channel where αδ = π. In order to respect Hanratty's experimental conditions, the sinusoidal prole was only applied on the bottom wall. Constant and homogeneous source terms were added to reproduce the mean pressure gradient and to balance the energy budget. A constant temperature was imposed as a boundary condition at the walls so that the induced uxes compensate the energy source term. The source terms were designed to respect as much as possible the incompressibility assumption. The density uctuations were found to be three to four orders of magnitude below the velocity and not true with second order models. In particular, the exact production term for u ′2w ′2 is

P xx -P zz = -4u ′2 ∂u ∂ x -2u ′ w ′  ∂u ∂z - ∂w ∂ x 
and suggests a dependence on the shear stress u ′ w ′ for the growth of u ′2w ′2 . At the rst order with respect to the wall oscillation, the production term P xx -P zz is not only ruled by the pressure induced velocity gradient ∂u ∂ x but also by the shear stress -u ′ w ′ . The objective of the computations is to highlight the eects of these dierences on the evolution of ψ τ with respect to R.

The closure relations for the turbulent heat uxes u ′ i h ′ completely dier between kω and EBRSM models. The standard approach associated with eddy viscosity models such as the k -ω model is to make use of a simple gradient diusion hypothesis (SGDH) with a turbulent thermal diusivity including a constant turbulent Prandtl number Pr t , in a similar manner to equation (A 11) for the mixing lenght model of the linearized problem. In all the following k-ω computations, Pr t is set to 0.9. In the context of second order models, several approaches can be contemplated but the most commonly employed model relies on the generalized gradient diusion hypothesis (GGDH) with the relation taken from Daly & Harlow (1970) 

-u i h ′ = c θ ξ t u ′ i u ′ j ∂h ∂ x j
′ h ′ GGDH = -c θ ξ t u ′2 ∂h ∂ x -c θ ξ t u ′ w ′ ∂h ∂ y ≈ u ′ h ′ SGDH -c θ ξ t u ′ w ′ ∂h ∂ y since ξ t u ′2 ∝ ν t .
The shear stress is known to be aected by the wall deformation which means that, at the rst order, the turbulent heat ux will thus behave dierently between the SGDH and the GGDH models. In the transitional regime, the wall heat ux φ w depends on the contribution of the turbulent heat ux in the energy budget and ultimately its phase ψ φ with respect to the corrugated wall will be inuenced by the choice of the closure relation.

DNS computations for validation

The experimental data of Hanratty et al. do not allow a comprehensive examination of all the aspects regarding the perturbations due to the wall waviness. There is no available data on heat transfer at the wall. For applications, the analysis of the energy budget is determining since the wall regression is most often driven by transfers at the wall that can be The friction Reynolds numbers δ + range from 150 to 500 with R ∈ {100, 150, 200, 300}.

Here again, the velocity eld is nearly divergence-free and the density uctuations are several orders of magnitude lower than the velocity and pressure perturbations. The amplitude of the wall ripple is chosen to give ζ + 0 ∈ [2.9, 6.6] ensuring linear behaviours with αζ 0 always less than 0.03.

These DNS congurations cannot be directly considered as a complementary material to the experimental results of Hanratty et al. since αδ is twice as small in the computations as in the experiments. However, it was shown in § 2.2 that for R < 500 the phase shift ψ τ is hardly aected by this change in the product αδ. This choice for αδ is a compromise between representativeness and cost. The main purpose of these simulations is to serve as a reference for RANS computations and the linear analyses, especially concerning the heat transfer. For this reason, RANS computations were also performed with strictly similar conditions. All computations used air as uid with perfect gas assumptions and given the temperature levels encountered, the specic heat capacity C p can be reasonably considered constant. The computed temperature elds are directly comparable to the enthalpy elds. We dataset. The DNS mean temperature proles are well reproduced by the EBRSM model while the kω model tends to underpredict the proles above the linear region.

Analysis and discussion

Inuence of the turbulent closures on RANS computations

The narrow dierences on the mean quantities visible in the gure 4 actually hide more vast discrepancies on the perturbation elds, which increase with the Reynolds number R. Proles of the velocity and temperature perturbation elds were extracted at several streamwise location x λ and plotted in gure 5 and gure 6. The amplitude of the perturbation are divided by a factor 2 when R is doubled, in accordance with the linear expansion (A 4) stating that any quantity q is such that

q + -〈q + 〉 ζ + 0 ∝ α + = R -1 .
It is immediately apparent that the EBRSM model compares better to the DNS results than the kω model. The agreement is better for velocity perturbations than for temperature perturbations where a noticeable dierence exists below z + = 20. Despite a good overall trend, the perturbation proles presented by the kω model are lagged behind those of DNS with smaller amplitudes. The higher the Reynolds number, the larger the lag. Another notable point that emerges from these gures is
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Figure 6: Proles of temperature perturbations. The legend is identical to that of gure 5. . that the ordering between the proles is modied from the center of the channel to the wall.

These gures 5 and 6 again illustrate the division between vortical and non-vortical regions.

Around the center of the channel, the phase of the perturbed eld is not altered with respect to the wall and the ordering between proles is aligned with the wall locations, i.e. in-phase or anti-phase, depending on the sign of the perturbation. Conversely, near the wall, the ordering is modied by the phase of the perturbed eld. Moreover, DNS and RANS calculations have also revealed a perturbation peak on the velocity proles around z + = 10, consistent with the vorticity peak revealed by the linear analysis (gure 3). A similar peak is also visible on the temperature proles, but less pronounced due to the high levels of perturbations observed in the non-vortical region. The wall shear stress disturbances τ + w -〈τ + w 〉 ζ + 0 of gure 7 corroborate the previous observations with kω predictions delayed compared to those of DNS while the EBRSM model provides better agreement. For the wall heat ux disturbances

φ + w -〈φ + w 〉 ζ + 0
presented in gure 7, the kω model underestimates the amplitudes and is not able to recover the phase shift. The EBRSM model greatly improves the results but the phase shift on φ w is a bit overpredicted. The RANS results for the wall shear stress phase ψ τ are also reported in gure 2. The closure relations of the RANS computations are manifestly responsible of the prediction accuracy and the results evidence the failure of the Boussinesq hypothesis as expected. Even though the wall deformation is very small ensuring a linear behavior of the perturbation, the ow eld is heavily aected by the turbulent modelling.

The error is even more pronounced on the perturbed temperature eld and the wall heat ux.

As explained above, the good behavior of the EBRSM model compared to the kω model is essentially due to the the representation between the Reynolds stress dierence u ′2w ′2 .

Figure 8 shows the mean and disturbed proles of u ′2 +w ′2 + and -u ′ w ′ + obtained with the EBRSM calculations and compared to those from the DNS for R = 300. Although the forced response does not match that yielded by DNS, the prole of u ′2w ′2 at leading order is in good agreement with DNS results, while for kω calculations (not shown here) the normalized stress dierence at the leading order is 〈u ′2 +w ′2 + 〉 = 4〈ν t ∂u ∂ x 〉 = 0. Figure 8 also indicates that the perturbations due to the wall on the diagonal stress dierence u ′2w ′2 is four to ve times larger than that induced on the shear stress -u ′ w ′ + . It results that the term ∂τ xxτ zz ∂ x has a magnitude ve times smaller than that of the term ∂τ xz ∂z in the streamwise order of the perturbation O(αζ 0 ), in the streamwise momentum equation (A 1). However, the Hanratty correction acts on the shear stress τ xz through the modication of the mixing length. In other words, the Hanratty correction does not correct the problematic term but balances the streamwise momentum equation, and in that sense it can viewed as an ad-hoc palliative to the failure of the Boussinesq hypothesis. The second limitation comes from the use of a relaxed pressure gradient to drive the correction C. RANS and DNS calculations have evidenced the role of the mean vorticity of the ow in creating the turbulent stresses that ultimately lead to the observed phase shift in the wall shear stress. But, the pressure gradient does not enter the vorticity equation and is not a relevant variable to control turbulence.

Furthermore, the pressure gradient is not involved in the Reynolds stress transport equations which does not prevent the EBRSM computations from correctly reproducing the phase shift of the wall shear stress. Despite these limitations, the Hanratty correction is very useful and eective for linear analyses.

A further demonstration of the positive impact of the correction C is shown in gure 9

where the amplitudes of the wall shear stress disturbance are presented. In the linear analysis the wall shear stress uctuation τ + w -〈τ + w 〉 ζ + 0 is given by α τxz (0) according to eq. (A 4).

Calculations of the linear response with C and, to a lesser extent, the EBRSM results, follow the measurements remarkably well, while the kω and results of the linear analysis without the Hanratty correction move further apart as α + decreased.

We now focus on the use of the Hanratty correction in the closure relation for turbulent heat ux of the linearised energy equation detailed in § (2.4). In the mixing length disturbance lθ (2.5), C is considered twice with respect to the two van Driest numbers A and A θ . An additional dependence on τxz was introduced for the van Driest number A θ . Best agreements were obtained with  θ = 4. The results of the linear analysis for the evolution of the phase of the wall heat ux ψ φ with respect to α + are shown in gure 10 and compared to RANS Figure 11: Amplitude of the wall heat ux perturbation. Square symbols are the RANS computations with the EBRSM (blue) and the kω (orange) models respectively. The solid and dashed lines are the results of the linear analysis. The blue lines correspond to results of the linear approach with φ * w = 400 (dashed) and φ * w = -400 (solid). The orange line presents the analysis performed with the frozen turbulence assumption. The dashed black line are the results obtained with A θ = A 0 θ = 26 and  θ = 0.

phase values of about 40 o whereas with A 0 θ = 30 and especially  θ = 4, the linear forced responses match those of the EBRSM computations. This means that the Hanratty correction has a benecial impact on lθ but it is not sucient. An additional correction on A θ , with  θ = 4, is required to recover the results obtained with the EBRSM computations.

In The results obtained with A 0 θ = 26 and  θ = 0 are not better. For the energy equation, the Hanratty correction is not able to compensate the approximation made in the modelling of the turbulent heat uxes. This is not surprising since C was implicitly designed to correct only for the misrepresentation of the Reynolds stresses. Although imperfect, the linear analysis using the model described in § 2.4 for the energy equation allows a good prediction of ψ φ . However, it was not possible with this type of closure (2.5) for lθ to also obtain a satisfying prediction of the wall heat ux amplitude.

Linear stability of an ablative surface

The surface elevation is now a function of time ζ(x, t) = ζ 0 e (σ w t + iω w t + iαx) and is assumed to be ruled by the ablation process and controlled by the wall heat ux. For moving surfaces, the critical layer, below which the ow propagates more slowly than the surface, has a crucial importance on the ow dynamics (Belcher & Hunt 1998). For our reentry applications (see appendix B), the surface speed ω w α is low compared to the friction velocity.

In this slow waves regime ( ω w αu τ . 15) the critical layer is thin and plays no signicant dynamical role. In other words, only the temporal growth rate σ w matters and controls the surface regression in direction z.

The model detailed in the appendix A. computations. The peak is moved to higher values of α + as Pr is increased and for example when Pr = 100 the peak is located at α + = 4.2 × 10 -3 .

Thomas (1979) presented evidence in support of the hypothesis that the scalloping of soluble surfaces may be attributed to wall turbulence. By analysing bed morphologies where scallops occur, he showed that the longitudinal wavelength of the bedform is a multiple of the viscous length δ ν providing α + ≈ 6 × 10 -3 . The proportionality between these quantities was demonstrated over a range exceeding four decades of length and covering a wide variety of situations from the corrosive dissolution of steel (Schoch 1968;Schoch et al. 1969Schoch et al. , 1970a,b;,b;Schuster 1971;Heimsch et al. 1978), brass (Sick 1972) and copper (Knutsson et al. 1972), the plastic shear of bitumen (Brauer 1963) and aluminium (Brunton 1966) and the rippling of colloidal-particle deposits in a water main (Wiederhold 1949;Seiferth & Krüger 1950). In the context of atmospheric re-entry vehicles, the wavelength found in the TATER experiment (Hochrein & Wright 1976) aligns with the Thomas correlation. The orders of magnitude provided in appendix B justify the use of the linear approach (A.1 and A.2) to study this type of ow, particularly with respect to compressibility eects. The location of the most unstable mode with the EBRSM computations or with the linear approach are closed to the value found in the Thomas correlation, conrming the role of turbulence in the occurrence of scallops. It is nevertheless premature to draw general conclusions from these results. Only the linear response was examined, with a high degree of hypothesis on the ow that restricts the scope of the approach. Further verication is needed to extend the approach to dierent types of erodible surfaces where scallops are observed. Non linear eects, notably related to ow separations may also interfere in the scalloping formation (Charru et al. 2013). This will certainly require further experimental or numerical data for validation. The results presented are a rst step towards explaining the value of the slope of the Thomas correlation.

Conclusion and perspectives

The scallops observed on re-entry blunt bodies are similar to that encountered in many applications, the characteristic scale of which is given by the Thomas correlation of viscous boundary layer length. The study of these scallops was historically based on a linear analysis of the disturbances generated by a xed wall corrugation on the inner region of a turbulent boundary. The success of this approach relies in particular on the use of the Hanratty correction, without understanding the underlying mechanisms requiring the intervention of this correction. Using RANS and DNS numerical simulations, an in-depth analysis of the perturbations generated by the corrugated wall has allowed to clarify the implications of the dierent terms of the Navier-Stokes equations and to better understand the role of the Hanratty correction.

It is found that the disturbance proles can be separated into two distinct regions. Away from the wall, the vorticity perturbation is zero and the velocity and temperature proles are in phase with the wall undulation. In the vicinity of the wall, the vorticity disturbance is signicant and a phase shift with respect to the wall is observed on the various perturbed quantities. The vorticity creation is directly related to the contribution u ′2w ′2 for wall heat transfer. In particular, the phase shift and the amplitude of the wall heat ux uctuation are poorly predicted by the linear approach, even with the Hanratty correction, unless a supplementary correction is also added in the mixing length governing the turbulent heat ux closure. Finally, the study of wall regression under the eect of an ablative ux is carried out. The surface elevation is supposed to be ruled by the wall heat ux and its growth rate, apart from the homogeneous contribution of the leading order, is governed by the phase shift and amplitude of the wall heat ux disturbance. When the Boussinesq hypothesis is used without compensation, the linearized problem is unconditionally stable. But, in the linear approach using the Hanratty correction and in the RANS EBRSM computations, the growth rate of the surface elevation is found to be positive for α + > 0.006 in the transitional regime.

The most unstable mode is found for α + = 2.4 × 10 -3 in the linear analysis and around 

Figure 1 :

 1 Figure 1: Scallops observed on in-ight and on-ground experiments representative of hypersonic reentry vehicles. From left to right, nosetips pictures of the TATER experiment (Hochrein & Wright 1976), on-ground tests using camphor (Larson & Mateer 1968) and teon (Powars 2011) as surrogate material.

For

  turbulent ows, other contributions may come into play, notably the diusion term related to the dierence in stresses τ xxτ zz . When comparing the experimental observations and the linear analysis, Hanratty et al. noticed the failure of the mixing length model. Interestingly, by introducing a dependence of the mixing length to a relaxed pressure gradient, noticed C hereinafter, Hanratty and co-workers (Thorsness et al. 1978; Abrams & Hanratty 1985) were able to reproduce the behavior of the wall shear stress phase. This correction to the mixing length was further reformulated by Charru et al. (2013) and Claudin et al. (2017) and used successfully.

Figure 2 :

 2 Figure 2: Phase of the wall shear stress in the transitional regime. Filled black circles denote Hanratty's experimental results. Solid lines are results of the linear analyses with the Hanratty correction C (blue) and under the frozen turbulence hypothesis (orange). Rectangles are results of RANS computations with the kω model (orange) and the EBRSM model (blue). Forced responses in channel ow are plotted with dashed blue lines for αδ = 2π and β = 40: ---; αδ = π and β = 45: -. -.-; αδ = π /2 and β = 50: -.. -..-. The dashed orange line corresponds to the linear analysis where the Hanratty correction is o but the dependence to τxz is conserved. . & Hinch (2000), δ i ∝ δ ν R 1 /3 where δ ν is the viscous length ν u τ . The perturbation is conned in the viscous sublayer so that the turbulent closure plays no role in this regime. The third regime corresponds to the long wave approximation (R > 10000) for which the ow disturbances extend far beyond the viscous region where the Reynolds stresses cannot be neglected anymore. As reminded by Charru et al. (2013), velocity measurements conrm the linear increase in mixing length with wall distance in the logarithmic region. Therefore, in this regime, the results are little aected by the choice of turbulent closure as long as the linearity of the eddy viscosity with respect to the wall distance is recovered in the logarithmic region of the inner layer. The intermediate regime, i.e. R ∈ [100, 10000], often called transitional regime, is far more complex and more challenging. The linear analysis with the standard mixing length model, i.e. without the inclusion of correction C, does not recover the trend measured, but the use of the Hanratty correction improves the results remarkably. The evolution of ψ τ with α + = R -1 from the laminar regime to the fully turbulent regime is then faithfully reproduced.
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 3 Figure 3: Vorticity disturbance proles. Dark blue to light blue lines indicates increased Reynolds number R = 10, 100, 200, 500, 700, 1000. of Hanratty et al. were obtained in a rectangular channel of height 2δ with δα = π. Therefore, the friction Reynolds number δ + may then inuence the ow response to the wall deformation, and the validation of the results obtained from Hanratty's experiments in a channel may be questioned. To elucidate this issue, we consider a modied version of our code with a mixing length model adapted to channel ow conguration and using the Nikuradse formula:

  Figure 3 depicts the normalized vorticity proles for R ∈ [10, 1000]. Vorticity peaks, almost independent of R, are clearly visible around z + = 7 before the proles tend to zero.The disturbance eld can be divided into a vortical region, near the wall, and a non-vortical region far from the wall. In the non-vortical region, the phases of the perturbations are nearly constant and without osets from the corrugated wall. Below, the induced vorticity impacts on the proles and phase shifts appear. The vortical region has a determining inuence on the evolution of ψ τ .2.4. Turbulent closure for the linearised energy equationTo tackle dissolution or melting problems,Claudin et al. (2017) introduced an additional transport equation for a passive scalar in the linear analysis. The model was intended to be applicable to a wide range of applications using a Robin boundary condition at the wall. In the present context, in order to compare results of the linear analysis to numerical Navier-Stokes simulations, the considered passive scalar is the total enthalpy associated with the linearised energy equation (A 10). Again, for the sake of comparison with numerical simulations, the boundary condition at the wall is a Dirichlet type condition where the enthalpy is imposed. For large values of wall heat ux, the dissipation can be neglected and the energy equation (A 10) reduces to an advection-diusion equation identical to the dissolution equation considered by Claudin et al. (2017). The model (A 10) is representative of ablative materials for which, in the context of re-entry vehicles, the surface regression may be directly related to the energy equation or to an oxidizer concentration transport equation (White & Grabow 1973). The main dierence with Claudin et al. (2017) lies in the closure relation for the turbulent scalar ux, which here is the turbulent heat ux (A 11). Claudin et al. (2017) considered that the mixing length for the turbulent scalar ux, denoted l θ , can be simply taken equal to l. For this study, a more general form (Cebeci & Smith 1974) for l θ is retained by separating the damping functions for the velocity and the enthalpy:

  (2.1) and in the following we take β θ = β = 35. The results obtained with the model retained by Claudin et al. (2017) are recovered when A 0 θ = A 0 = 26 and  θ = 0.

  pressure uctuations. Eight congurations with various values of the kinematic viscosity ν were explored, corresponding to R ≈ {100, 150, 200, 300, 400, 500, 700, 1000} covering the transitional regime. Two turbulence models were used to analyse the impact of the order of the Reynolds stresses closure. On the one hand, computations with the kω model (Menter 1994) were performed to characterize the inuence of the Boussinesq hypothesis (A 3) while, on the other hand, the EBRSM (Elliptic Blending Reynolds Stress Model) turbulence model (Manceau & Hanjalić 2002; Manceau 2015) was retained to obtain representative results of second moment closure. The Boussinesq hypothesis is expected to have a signicant impact on the streamwise momentum balance (A 1) through the term τ xxτ zz in the transitional regime. With the Boussinesq hypothesis u ′2w ′2 is made proportional to ∂u ∂ x which is

.

  The turbulent time ξ t deduces from the turbulent kinetic energy and its dissipation. The EBRSM model was run with the classical value c θ = 0.22, close to that recommended by Dehoux et al. (2017). The choice for the closure relation of u ′ i h ′ has a considerable inuence on the enthalpy perturbation eld and the wall heat ux φ w . A close look to the expressions of the streamwise component u ′ h ′ for both models SGDH and GGDH reveals the inuence of shear stress u ′ w ′ . The GGDH closure relation for a non-parallel bidimensional ow gives u

  represented without any loss of generality by heat transfer as reminded in § 2.4. To access such data, DNS (Direct Numerical Simulations) were conducted with the spectral dierence Navier-Stokes solver named JAGUAR(Chapelier et al. 2016) and developed at ONERA and CERFACS. The code is designed to handle triangle(Veilleux et al. 2022a) or tetrahedral elements(Veilleux et al. 2022b) but all the presented computations were performed with a 4th-order discretisation scheme using hexahedral elements. Time integration is made with a low-dissipation low-dispersion 6th-order Runge-Kutta scheme. The computational domainis [0, 3λ] × [0, 6δ] × [ζ 0 cos(αx), δ] with αδ = π 2. The streamwise extend of the domain is 12δ ≈ 4πδ that ts the usual requirements for periodic channel ow simulations. A constant source term is added on the momentum equation that sets the friction velocity u τ . The wall temperature is kept constant and the level of the mean heat ux on the wall is determined by the balance with the viscous and turbulent dissipation. As a consequence the wall heatux is φ w = ρu 2 τ U b ,with U b the bulk velocity, providing rather low values of φ * w = U + b . Two mesh resolutions are used depending on the targeted Reynolds number. The numbers of solution points are 240 × 240 × 160 ≈ 9M and 320 × 320 × 240 ≈ 24M. With a 4th-order discretisation, the mean y + values in the wall cells are found to stay between 0.25 and 0.5.

  note θ the temperature dierence with the wall and θ + = θ θ τ the associated dimensionless variable where θ τ = -φ w ρC p u τ is the friction temperature. Mean velocity proles 〈u + 〉 (gure 4) compare favorably between the dierent computations for all Reynolds numbers, even though the kω model underestimates the proles in the buer layer. The reference data of Hoyas & Jiménez (2008) obtained in non-deformed channels are also depicted to prove the validity of the DNS computations presented here. Second moments also agree between the two DNS

Figure 4 :

 4 Figure 4: Mean velocity (blue) and temperature (orange) proles. Empty symbols (•,) are DNS results while solid lines (EBRSM) and dashed lines (kω) presents RANS computations. The full black symbol () are DNS results from Hoyas & Jiménez (2008) at Re τ = 180 and Re τ = 550 respectively.
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 5 Figure 5: Proles of velocity perturbations at stations x/λ = 0.0 (blue), x/λ = 0.2 (purple), x/λ = 0.4 (green), x/λ = 0.6 (orange) and x/λ = 0.8 (red). Symbols are DNS results, solid lines presents the RANS computations with the EBRSM model while the dashed lines stand for the kω results.

Figure 7 :

 7 Figure 7: Wall shear stress (left / blue color) and wall heat ux disturbances (right / orange color) at R = 150 (top) and R = 300 (bottom). Symbols are DNS results. Solid lines are the RANS computations with the EBRSM model and the dashed lines represent the computations with the kω model.
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 8 Figure 8: (left) Mean proles of the Reynolds stress dierence u ′2 +w ′2 + (blue) and the shear stress -u ′ w ′ + (orange) for R = 300. Symbols are the DNS results and lines stand for the EBRSM computations. Corresponding forced responses proles u ′2 +w ′2 + -〈u ′2 +w ′2 + 〉 ζ + 0

Figure 9 :

 9 Figure 9: Amplitude of the wall shear stress perturbation. The lled black circles are measurements of Hanratty et al.. Square symbols are the RANS computations with the EBRSM (blue) and the kω (orange) models respectively. The solid lines are the results of the linear analysis with the Hanratty correction (blue) and when the frozen turbulence assumption is used (orange).

  computations. Results corresponding to the original model proposed by Claudin et al. (2017) (A θ = 26 and  θ = 0) are also reported in gure 10. Values of ψ φ are shifted from 180 o when the sign of φ * w is changed. When |φ * w | is large enough, practically when |φ * w | > 100, the dissipation term û of the equation for the mean enthalpy (A 14) is almost negligible and the equation is symmetrical with respect to φ * w . The Navier-Stokes computations with the kω model provide values of ψ φ in good agreement with the linear analysis obtained with the frozen turbulence assumption, consistently with the observation made on ψ τ in gure 2. Results equivalent to those of Claudin et al. (2017) provide overestimated

Figure 10 :

 10 Figure 10: Wall heat ux disturbance phase ψ φ as a function of the wavenumber α + . Blue symbols are the phase computed with the EBRSM model for φ * w = 400 (^) and φ * w = -400 (). The orange square symbols are the results obtained with the kω model. The solid lines are the corresponding results of the linear analysis with (blue line) all correction activated (A = 26, A θ = 30, β = 35,  θ = 4) and with (orange line) the frozen turbulence hypothesis (A = 26, A θ = 30, β = 0,  θ = 0). The black dashed line presents the results corresponding to the approach followed by Claudin et al. (2017) for l θ (A = 26, A θ = 26, β = 35,  θ = 0). The thin horizontal dashed line correspond to ψ φ = -90 o .

  gure 11 the comparison of the amplitude of the wall heat ux disturbance points out several divergences. The disturbances of the wall heat ux φ i.e. -α f (0), are smaller than those of the RANS computations. The results produced by the kω model and the results of the linear analysis with the frozen turbulence assumption exhibit almost the same trends whereas the EBRSM model and the linear analysis results diverge as α + decreases. This may be due to the closure relation used for the turbulent heat uxes -u ′ i h ′ . The EBRSM model uses the GGDH assumption while the linear analysis makes use of a SGDH hypothesis and is impacted by the Hanratty correction C in lθ (2.5).

  2 can be applied to dissolution or melting problems since the energy equation produces similar results to the advection-diusion equation used by Claudin et al. (2017) when |φ * w | is large. Any solid surface can be decomposed into a series of sinusoidal proles and the linear response of the ow will be the combination of the responses for each wavenumber. The surface regression is assumed to be proportional to the wall ux (Claudin et al. 2017). Dropping the homogeneous part of the ux, the evolution of the elevation at the rst order is ruled by ∂ζ ∂t = -ru 3 τ ζ 0 α| f (0)|e  iαx + iψ φ  , with r a constant proportionality factor (s 2 /m 2 ), controlling the regression rate. The temporal growth rate of the surface elevation is then governed by the real part of the dispersion relation, i.e. σ w = -ru 3 τ α| f (0)| cos  ψ φ  . Function σ w (α) changes sign when |ψ φ | crosses the horizontal line ψ φ = 90 o . In the case of a negative wall heat ux, the horizontal line ψ φ = -90 o is plotted in gure 10. When the Boussinesq hypothesis is used without Hanratty correction in the linear analysis and for the computations with the kω model, ψ φ is always less than -90 o and σ w remains negative for all wavenumbers α + . For the EBRSM results or for the linear responses, involving the correction C, σ w becomes positive for α + ≈ 0.006. All wavenumbers below α + ≈ 0.006 are unstable, in the range of wavenumbers covering the transitional regime. However, the growth rate σ w quickly decreases as α + decreases, mainly due to its proportionality with α. In gure 12, growth rates σ w (normalised) obtained in the RANS computations and in the linear analysis are depicted with respect to α + . In the kω computations and in the linear analysis with the frozen turbulence assumption, the growth rates are always negative. Both models predict stable modes regardless of α + . But the EBRSM model and the linear approach show an unstable region where σ w > 0 and the presence of a peak. The wavenumber associated with this peak indicates the most unstable mode for which the surface time growth rate is the highest. The error in the prediction of the amplitude of the wall heat ux with the linearized model using eq.(2.5) for the closure of the turbulent heat ux leads to a shift in the position of the peak. The linear analysis indicates a peak at α + = 2.4 × 10 -3 (R = 417) whereas it is found at α + ≈ 4 × 10 -3 (R = 250) by the EBRSM model. The location of the peak is almost independent of φ * w and is not modied by the sign of φ * w as long as |φ * w | > 100. The Prandtl number Pr has a limited inuence on the peak position in the linear approach. The same tendency is expected in Navier-Stokes
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 12 Figure 12: Normalised growth rate σ w φ w r ρ with respect to α + in logarithmic and linear scales. Square symbols are the RANS computations with the EBRSM (blue) and kω (orange) models. The corresponding dashed lines are splines computed from the data. The solid lines are the results of the linear approach with (orange) and without the frozen turbulence assumption.

  in the streamwise momentum equation. RANS computations using the kω and EBRSM models, confronted with reference results from DNS, highlight the failure of the Boussinesq hypothesis in this context. The results for the velocity disturbances show that the kω calculations, which are based on the Boussinesq hypothesis, are not able to reproduce the DNS data correctly, unlike the EBRSM calculations, which are fairly accurate. The dierences between the DNS results and the kω computations are even greater for the temperature proles. The use of a SGDH closure for turbulent heat uxes further increases the errors. In contrast, the EBRSM calculations, which use a GGDH closure, show very good agreement with the DNS calculations, notably for the parietal heat ux. A comparative study of results from the linear analysis and RANS results highlights the role of the Hanratty correction. The latter serves in fact to compensate for the poor representation of the Reynolds stresses in the equations and coming from the use of the Boussinesq hypothesis. The Hanratty correction was designed to act eectively on the momentum equation. Its indirect use in the energy equation does not make it possible to obtain the expected results

α

  + = 4 × 10 -3 in the EBRSM computations. The dierence in location results from the errors made on the phase and amplitude in the linear analysis because of the used turbulent closure relations. These values of the dimensionless wavenumber are close to that given by the Thomas correlation providing a rst indication on the mechanisms involved in the occurrence of the scallops in the linear phase. Many questions are still open and studies are needed to evaluate the inuence of compressibility, regression models including possible chemical reactions, real gas eects, roughness eects and nally non-linear interactions. In parallel, as suggested in gure 1, a 3D linear analysis taking into account surface curvature eects could provide additional information on the three-dimensional nature of scallops. Declaration of interests. The authors report no conict of interest.into account the ablation that occurs on the nosetip of the vehicle and real gas eects. For the part of the ight during which the ablation occurs, the orders of magnitude of dierent quantities obtained in the inner region of the boundary are presented below, justifying the hypothesis used in the present study.Because of the detached shock located upstream, the conical part of the nosetip faces a weakly supersonic ow with a Mach number at the edge of the boundary layer M e around 1 -2. Within the inner region of the boundary layer the Mach number is below unity and the density varies by 20% around a mean value of 6 kg/m 3 . Therefore, the compressibility eects are not so pronounced and considering the linear analysis of an incompressible uid in such a case can be viewed as a rst approach. The friction velocity is about 50 m/s and the viscosity is estimated at ν = 1.2 × 10 -5 m 2 /s 2 at the wall. The surface regression(McAlees & Maydew 1985) last about 11 s and the maximal regression speed is about 2 mm/s. The maximum wall heat ux is φ w ≈ 50 MW/m 2 which gives φ * w ≈ 70.

Appendix A.

A.1. The momentum equations

We consider the bidimentional Reynolds averaged Navier-Stokes equations for a steady incompressible ow. The Reynolds average , that reduces to a time averaging under the assumption of ergodicty, is used to study the mean quantities. In the following, the symbol  is dropped for mean quantities but kept for the second order moments. We note  ′ the uctuations around the Reynolds average. We also introduce the spatial average 〈〉 = 1 λ ∫ λ 0 dx. The equations set read:

The At the leading order on smooth at walls, the only remaining Reynolds stress in the equation is the shear stress u ′ w ′ and then the turbulent closure is made with a Prandtl mixing length model l coupled with a van Driest damping function. It reads:

with A the van Driest number. The total stress τ i j are deduced from the Boussinesq hypothesis:

where ν t and k are the eddy viscosity and turbulent kinetic energy, respectively. For a mixing length model, the turbulent kinetic energy is related to l through the relation k

is the norm of the strain rate tensor S i j and χ a phenomenological constant between 2 and 3 that may be found for boundary layers from Bradshaw's relation (Bradshaw et al. 1967).

All quantities in eq. (A 1) are expressed in wall units using u τ and ν. The + sign commonly used to designate variables expressed in wall units are dropped for the sake of conciseness and clarity in eq. (A 4), (A 7), (A 8) and (A 9). The mixing length l is made dimensionless using the wavenumber α. Any dimensionless quantity q is then decomposed in a homogeneous part and a disturbed part only depending on η such that q(x, z) = 〈q〉(η) + αζ 0 q(η)e iαx .

More explicitly, for the velocity and Reynolds stress elds the decomposition reads:

We note τp the disturbance for the dierence τ zzp /ρ including the pressure contribution.

For the mixing length, we have:

The expression of l is given by eq.( 2.1). The Hanratty correction is found after linearisation of eq. ( 2.2) which becomes:

The mean velocity prole 〈u〉 is solution of the equation:

where  ,η denotes the derivative with respect to η.

At the rst order, the system for the disturbed eld reads:

The associated four boundary conditions are:

. The energy equation

We consider the energy equation written for the total enthalpy

where the ux f is given by f

The turbulent heat ux -h ′ w ′ is modelled with a simple gradient diusion hypothesis using the eddy viscosity ν t = l 2 ∂u ∂z and the turbulent Prandtl number Pr t .

-

The mixing length l θ is given by eq. (2.4) in section § 2.4. It is then made dimensionless with the wavenumber α. The enthalpy and ux are made dimensionless with u τ and we note φ * w = φ w ρu 3 τ the dimensionless wall heat ux. Again the + sign is dropped in eq. (A 12), (A 14), (A 15) and (A 16). All these quantities are decomposed in a homogeneous part and a disturbed part as follows:

and

The mean enthalpy 〈h〉 is deduced from:

while the perturbations ĥ and f are ruled by: ĥ

The associated boundary conditions are: