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Abstract—This paper proposes to use Tangled Program Graph
(TPG) for Radio Frequency Fingerprint (RFF) identification.
RFF is a unique signature created by electromagnetic distortions
of the different radio frequency hardware components in the
device. This signature is contained in the signal and may be
used as a secure identifier because it can not be easily spoofed.
In recent years, RFF identification is mainly based on Deep
Learning (DL). TPG is a new machine learning technique based
on genetic evolution, which are less complex than DL. In this
paper, we propose to use TPG-based classification to achieve
a lightweight and accurate RFF identification scheme. Results
show that TPGs achieve the same accuracy as a state-of-the-
art convolutional neural network with a learning phase duration
clearly reduced on the CPU. TPGs are also used to analyse both
the impact of the channel and the receiver radio on the accuracy.

Index Terms—Tangled Program Graph, Deep Learning, Radio
Frequency Fingerprint, Software Defined Radio.

I. INTRODUCTION

Since the introduction of the Internet of Things (IoT),
low power devices have been used in sensitive and secure
networks. Hence, the security problem has been the topic of
many researches [1]. As a consequence, it is mandatory to
ensure robust and lightweight authentication systems.

In most telecommunication standards, identification meth-
ods are based on the meta-data of communication protocol
that gives an address to enable the authentication. In fact,
such meta-data are used for RFID and WiFi authentication,
but those solutions could be counterfeited [2]. Moreover, they
should also lead to a low transmission overhead especially
for IoT scenarios. In recent years, Jagannath et al. propose to
identify static devices by their location [3]. Location methods
have strong limitations because they are intrinsically sensible
to environmental variations and identification accuracy falls
in a dynamic context. A secure identification solution should
be robust to time and environment changes, especially in a
wireless context.

The Radio Frequency Fingerprint (RFF) identification is a
solution based on the singularity of the hardware. The hard-
ware components create unique electromagnetic distortions in
the transmitted signal [4]. To identify the RFF, the signal

should be captured by a radio and be classified among the dif-
ferent potential candidates. A Software Defined Radio (SDR)
receiver helps for signal capture as they are able to record
large bandwidths and store the raw In Phase - Quadrature
(IQ) samples before applying specific post-processing to help
signals classification.

To identify a device with its RFF, two main methods exist:
parametric methods, and learning based methods.

• The parametric methods are done in two steps: first, some
features that describe the RFF are extracted from the
received signal [4]–[6]. In the second step, a classifier
such as K-Nearest Neighbors is used to identify the
device based on the values of the features. For example,
the feature used in [5], [6], is Power Spectral Density
(PSD) while [4] uses many metrics to characterise the
RFF such as phase and frequency error.

• The supervised Deep Learning (DL) techniques used
training phase to learn how to classify radios. In par-
ticular Convolutional Neural Networks (CNNs) are used
to extract and classify RFFs [7]–[10].

Optionally, the input signal can be pre-process before being fed
into the neural network with, for example, channel equalization
or domain transforms. Sankhe et al. explore different archi-
tectures of CNN, such as AlexNet-inspired, or CNN with less
layers, but more parameters [9], [10]. Some Recurrent Neural
Network (RNN) has been explored too [7]. In addition, other
architectures of DL have been explored such as transformers
architecture [11].

If DL techniques are promising and show very good classi-
fication results, they also exhibit an important complexity both
at training and inference steps, dependent on their architecture
[12]. In the IoT context, RFF authentication might be with
stringent complexity and energy constraints.

To address the complexity issues, this paper proposes to
use Tangled Program Graph (TPG) instead of CNN. TPGs
are a recent light-by-construction machine learning technique
based on genetic programming principles [13]. Previous works
demonstrated that for comparable performance with a State of
the Art (SotA) of DL, TPGs inference required 2 to 3 orders of978-1-6654-6483-3/23/31.00 ©2023 IEEE
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Fig. 1. Transmission and reception chain. LNA stands for Low Noise
Amplifier and ADC stands for Analog to Digital Converter.

magnitude less computations, and 3 to 5 orders of magnitude
less memory [14].

The core contributions of this paper are as followed:
• We explore a new machine learning mechanism called

TPG for RFF identification.
• We propose some results and comparison between TPG

and an SotA-inspired CNN in both accuracy and the
duration of the learning phase [10].

• We use and analyse the results obtained with a recent
database called WiSig [15] to highlight the impact of the
propagation channel and the receiver RFF.

The rest of this paper is organized as follows.
In section II, transmission and RFF models are presented,

with a focus on their intricacies and pitfall in an RFF identifi-
cation context and the classification framework is introduced.
Section III introduces TPGs and keys on how classification
is made with TPGs are given. In Section IV, we describe
the database used for our analysis and describes the key
performance results of the paper. Section V, draws some
conclusions.

II. RFF CLASSIFICATION

A. Transmission chain model and radio frequency features

The RFF of a transmitter is a unique signature created by the
hardware components of the transmission chain. A transmis-
sion/reception chain is modelled in Fig. 1. The transmission
chain is represented in the left part of the channel block. It
takes in input a IQ complex symbol stream. The first block
represents the digital signal converter, converted in the analog
domain to obtain x(t). Then the local oscillator modulates the
signal at the carrier frequency fRF , and the Power Amplifier
(PA) amplifies it. All those components distort the signal and
create the signature called the RFF of the transmitter denoted
FRFFTx . The emitted signal could be modelled by:

xant(t) =FRFFTx
(x(t)) , (1)

xant(t) =FPA ◦ Fosc ◦ FIQmismatch
◦ FDAC (x(t)) , (2)

where ◦ represents the function composition.
Equation (2) shows the impact of each component. FDAC

represents the distortions caused by the Digital to Analog
Converter (DAC). FIQmismatch

models the impairments induced
by the IQ modulation and called IQ Mismatch: the two inde-
pendent paths of the modulator are not perfectly orthogonal,
and this breaks the plane orthogonality. Fosc represents the

impact of the oscillator, used to shift the signal from baseband
to its carrier frequency. It will lead to two impairments i)
a carrier frequency offset ii) a phase noise. Finally, FPA

corresponds to the distortion induced by the amplifier non
linearity. It can be for instance modeled by a parametric model
(such as Rapp model) or a polynomial model. These nested
functions show the difficulty to extract features. However,
some parametric solutions are proposed by [5], [6] which use
the Power Spectral Density (PSD) coefficients to characterise
the transmitter, or metrics that characterize the RFF [4].

In Fig. 1, the channel block represents the wireless commu-
nication environment as interference signals, the multi-path
and fading channel models which could impact the signal.
Finally, the receive block represents the receiver with its own
components (not detailed in the model) and its own distortion
functions. It corresponds to a RFF in the receiver. The received
IQ signal used for identification and denoted xidf(t) can be
modeled as:

xidf (t) = FRFFRx
◦ Fchannel ◦ FRFFTx

(x(t)) , (3)

with Fchannel represents the propagation channel, and FRFFRx

represents the distortion function caused by the receiver. The
impact of the receiver and channel on the signal complicates
the transceiver identification. To overcome this problem, some
authors propose to equalize the channel [8], [15]. However,
in this paper, we consider that the identification system has
no information on the channel and classifies the IQ signals
without demodulation and decoding operations.

B. Classification with Deep Learning

In recent years, DL has been massively used for clas-
sification as it could learn automatically how to classify
radio transmitter [7]–[10]. Fig. 2 describes the classification
procedure. First, the SDR receiver stores the IQ samples at
the sampling frequency Fs to populate a labeled database, at
the input of the identification stage. The database is then split
in two parts 90% for train and 10% for test part. The network
chosen in the present paper for comparison has been proposed
and studied for RFF identification in [10]. It is a CNN inspired
by AlexNet, with 4 convolutional layers, and each layer is
composed of two blocks of 128 filters size 7×1 and 5×1 and
a maxpooling stage. The chosen activation function is ReLu
and the optimizer is Adam. After the 4 convolutional layers,
the CNN has 3 fully connected layers with 256 nodes, 128 and
the number of class (in this case 6 classes). This architecture
is described in Fig. 3 and has 1,232,774 parameters.

In the training part, the network takes 256 IQ samples
grouped in batches of size 600 sub-signals in input. The labels
of the signals in the batch are calculated and compared with
the true labels using cross-entropy as the loss function to apply
the back-propagation. This process is repeated for each batch
and each epoch.
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At the end of the learning phase, the network could now
take unlabeled IQ samples in the input and estimate the radio
label. This is called inference phase, or test if we can compare
the results with true labels.

III. TANGLED PROGRAMM GRAPH

A. A brief introduction of TPG

Introduced in 2017, TPG is a successful Reinforcement
Learning (RL) model [16] that builds on SotA genetic pro-
gramming techniques. Unlike DNNs whose topology is gen-
erally chosen by an expert data scientist, TPGs are grown
from scratch for each learning environment, and their topol-
ogy and computational complexity adapt automatically to
the complexity of the learned task. TPGs have proven to
be competitive with SotA DNNs, providing several order of
magnitude improvements in computational complexity and
memory requirements on various use cases, with gains at both
training and inference [14].

A TPG is structured as a directed graph whose vertices
and edges, called teams and programs, respectively, specify a
control flow of an RL agent, and not a data flow as in DNNs.
The control flow of the TPG stems from its root vertex, each
time a new state of the learning environment is observed. All
programs associated to outgoing edges of the root team are
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executed with the current state of the environment as their
input. An example of TPG and the semantics is given in Fig. 4.

A program is a genetically evolved assembly sequence of
instructions taking as inputs the different variables exposed
by the environment and returning a single value, called a
bid, per program. Once all programs have completed their
execution, the edge associated to the largest output bid is
identified, and the execution of the TPG continues following
this edge. Eventually, the edge with the largest bid leads to a
leaf vertex, associated to a specific action of the RL agent on
the environment.

The TPG is grown from scratch for each learning envi-
ronment, and complexity is added to the model if it leads
to a greater reward. This makes the complexity of the TPGs
dependent on the complexity of learned task [16], [17].

The training process for TPG is not based on gradient
descent, like DNNs, but on a genetic algorithm. The genetic
algorithm is a bio-inspired optimization algorithm. An initial
graph is randomly created with different roots where each
root represents a different policy. After objective evaluations
which affect some reward to each individual policy, the
algorithm selects the roots associated to the greatest rewards,
and removes the other ones from the graph. At each generation
of the training process, new root teams are introduced in the
graph by randomly copying and mutating surviving ones.

B. TPGs for RFF classification

Despite being initially proposed for RL, TPGs are also
used for classification. In this case, an Action represents a
class membership decision. For example, TPG-based classi-
fication apply on the CIFAR-10 dataset achieves interesting
results [13].

TPG-based classification leads to similar framework as
the one described in Fig. 2. The network is the TPG, the
update phase is done by a genetic algorithm and an iteration
corresponds to a generation. The inputs of TPG for each
prediction are a set of 256 IQ samples as it is done with DL.
At each generation, each root of the TPG takes 600 random



sequences of 256 samples in input. The reward is based on the
F1 score which is calculated on the 600 sequences as follows:

F1 = E
c∈C

(
2

1
P (c) +

1
R(c)

)
, (4)

with

{
P (c) = tp(c)

tp(c)+fp(c)

R(c) = tp(c)
tp(c)+fn(c)

where E [·] stands for the expectancy operator applied here on
all the classes c ∈ C. P (c) is called the precision for the class
c and is a function of the number of true positives tp(c) and
false positives fp(c). R(c) is the recall for the class c and is
function of tp(c) and the false negatives fn(c).

The genetic update of TPG could create a solution where
one class is not classified [13]. Because the global accuracy or
F1 score is given as a reward, this may hide disparities between
classes, with a class being perfectly detected all the time, and
another never. That’s why the TPG update, in classification
case, changes to conserve at least one sub-graph per class [18].
In the implementation used throughout our experiments, the
natural selection process has been modified as follows. When
selecting the n best roots that survive for the next generation
of the training, p% of the roots are selected based on their
averaged F1 score on all m classes, while the other (100−p)%
are selected for their F1 score on a single class. In section IV,
p = 10% is used.

IV. EXPERIMENTS AND RESULTS

A. Database

To experiment the capacity of TPG for device classification
the database choice is noteworthy. Many public databases exist
such as Oracle [9], WiSig [15] and the one proposed in [19].
The other database often used in RFF identification is the
DARPA database [7], [8], [20], [21] but this database has no
public access. Building a database of IQ signals from scratch
is a difficult task because many parameters could affect the
detection reliability. In particular, the SotA shows it is difficult
to handle the dynamic channel.

In this paper, we use WiSig because of the following rea-
sons. WiSig is a recent database that is constructed with many
signals and with a lot of information on how signals have been
captured as transmitters positioning and type of radio used.
They provide a large-scale WiFi dataset captured by 41 USRPs
with 20 MHz bandwidth from different references. The signals
come from 174 WiFi transmitters over four different captures
performed over a month. The authors have created different
databases with many transmitters (150), many receivers (32),
many signals (1000 for each transmitter). For our experiments,
we choose the ManySig dataset with 6 transmitters and 12
receivers. We have reproduced the locations of the transmitters
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and receivers to study the impact of the channel and this can
be observed in Fig. 5.

Each transceiver represented in blue square in Fig. 5 has
emitted 1000 signals of 256 IQ samples. All transmitters are
Atheros AR5212 AR5213. The receivers are dispatched in the
room so the propagation channel may differ from one radio to
another. The database is split in two parts 90% (5400 signals)
for training and 10% (600 signals) for the test. Both datasets
are balanced as they contain signals from all transceiver radios
with a balanced ratio.

B. Timing and accuracy comparison in a favorable scenario

In this section, performances of both TPG and CNN are
compared. Both algorithms are trained on the CPU of a
core Intel i7-8850H @2.60GHz with 6 cores and 12 threads
and with SSE4.2 and AVX2 extensions. The CNN is also
trained on a GPU NVIDIA Quadro P1000. The TPG is not
implemented on the GPU as its non-symmetric structure is
not suitable for such architecture. The WiSig database offers
many degrees of freedom such as: day of capture data, receiver
radio (positions and references). In this first experiment, data
are received on day 1 by the radio Rx1 for both training and
test phase. It corresponds to a favorable scenario for training
and identification because the receiver is the same for all
signals and the relative position is different for all transmitters
moreover the testing scenario is the same as the learning one.

Tables I and II give the confusion matrices obtained with the
TPG network [18] and the AlexNet-inspired CNN respectively.
The rows of the confusion matrix are the true labels while
the columns are the labels estimated by the network. The
numbers represent the percentage obtained for each case.
Those matrices show the capacity of TPG to correctly learn to
labelled radio. Table I allows to validate the correct functioning
of TPG. Both confusion matrices are very similar.



TABLE I
CONFUSION MATRIX OBTAINED WITH TPG FOR TRAINING AND TEST IN

SAME CONDITIONS

True
Guess Tx1 Tx2 Tx3 Tx4 Tx5 Tx6

Tx1 96.0 1.0 0.0 1.0 0.0 2.0
Tx2 0.0 93.0 0.0 7.0 0.0 0.0
Tx3 0.0 3.0 95.0 0.0 0.0 2.0
Tx4 1.0 3.0 0.0 96.0 0.0 0.0
Tx5 0.0 0.0 1.0 0.0 99.0 0.0
Tx6 0.0 0.0 0.0 0.0 0.0 100.0

TABLE II
CONFUSION MATRIX OBTAINED WITH CNN FOR TRAINING AND TEST IN

SAME CONDITIONS

True
Guess Tx1 Tx2 Tx3 Tx4 Tx5 Tx6

Tx1 100.0 0.0 0.0 0.0 0.0 0.0
Tx2 0.0 87.5 0.0 12.5 0.0 0.0
Tx3 0.0 30.0 70.0 0.0 0.0 0.0
Tx4 0.0 0.0 0.0 100.0 0.0 0.0
Tx5 12.5 0.0 0.0 0.0 87.5 0.0
Tx6 0.0 0.0 0.0 0.0 0.0 100.0

To compare those results in terms of timing, Fig. 6 gives
F1 scores during the training phase as a function of time.
The yellow triangles represent the F1 score of TPG during
the training phase on the CPU. The blue triangles represent
the evolution of the F1 score for the CNN learning phase on
the CPU while the blue squares correspond to the F1 score
of the CNN using the GPU. When considering CPU, the TPG
exhibits an important speed-up when compared to the CNN.
Its speed is very close to a CNN training on a GPU with two
advantages (i) the learning can be done on a platform without
the specific GPU accelerator with similar speed (ii) the energy
consumption is reduced as only the CPU is used for the TPG.

This analysis shows similar performance between TPG and
DL. In the rest of the paper TPGs are used to deeper analyse
the database and propose an interpretation of the impact of
the propagation channel and the receiver. The analysis and the
interpretation in the rest of the paper are only done for TPG
but the same comportment has been observed for the CNN
based solutions.

C. Mitigation of environment impact using augmentation

The impact of environmental change on classification accu-
racy is now evaluated. In this part, the only changing factor is
the day of the emission. The locations of radios do not change,
so the propagation channel should not change either. However,
the radios are not in controlled room, so 3 factors can affect
the RFF:

• The environment channel: the radios are not in an ane-
choïc chamber and interference signals may alter the
quality of the labeled database.
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Fig. 6. Time evolution of the F1 score of the different networks on different
hardware.

TABLE III
CONFUSION MATRIX OBTAINED WITH TPG FOR TEST DONE ON

DIFFERENT DAYS

True
Guess Tx1 Tx2 Tx3 Tx4 Tx5 Tx6

Tx1 77.4 20.0 0.0 1.0 0.4 1.2
Tx2 2.7 40.8 0.0 56.5 0.0 0.0
Tx3 6.2 29.7 7.5 0.0 25.3 31.4
Tx4 2.1 17.3 1.1 79.5 0.0 0.0
Tx5 0.4 0.0 0.4 0.0 99.2 0.0
Tx6 0.6 3.1 56.4 3.7 4.3 31.9

• The environmental conditions: the ambient factors as
humidity or temperature are not controlled in the room
and can impact the performance of the components and
changed the distortions.

• The RFF modifications over time: the days of capture
signals are distributed over one month so the component
degradation could impact the RFF of the devices.

Table III gives the average accuracy for a test, realised on
signals from days 2, 3 and 4, whereas the training is realised
with signals from only day 1.

The confusion matrix shows how difficult it is to gener-
alize the training with other environmental conditions. This
problem has been yet shown in [7] for CNN where the
authors proposed to realize a data augmentation to present
many different environmental conditions to the network. With
this augmentation, the network should learn the RFF without
the implication of environment. The augmentation could be
realized physically or virtually. For physical augmentation, the
number of experiments is increased to create more environ-
mental conditions. For virtual augmentation, diversity is added
on signals with an environmental model. Here, the database
offers the possibility to physically augment the training dataset
thanks to the different days captured. Data from day 2, 3 and
4 is used for training and the test is realized on day 1.



TABLE IV
CONFUSION MATRIX OBTAINED WITH TPG FOR AUGMENTED DAYS

TRAINING AND TEST ON DAY 1

True
Guess Tx1 Tx2 Tx3 Tx4 Tx5 Tx6

Tx1 100.0 0.0 0.0 0.0 0.0 0.0
Tx2 1.0 60.0 21.0 18.0 0.0 0.0
Tx3 3.0 1.0 17.0 1.0 7.0 71.0
Tx4 0.0 0.0 1.0 99.0 0.0 0.0
Tx5 0.0 0.0 1.0 0.0 99.0 0.0
Tx6 0.0 11.0 0.0 0.0 0.0 89.0

Table IV gives the accuracy results achieved with data
augmentation. It shows that TPG is able to generalize the
identification and a better accuracy is achieved for the new
day. The comparison with Table III shows that physical data
augmentation is interesting for RFF classification, especially
with environments where variations may occur.

D. Influence of the training conditions

In this section, the impact of both the propagation channel
and the receiver is analyzed. The WiSig database is well
documented and contained information on the kind of radio
used, later denoted by reference. The key point is that all the
radio receivers are the same reference (SDR N210) except
two radios: radios number 4 (Rx4) and 9 (Rx9), represented
by orange circles in Fig. 5. To stress the impact of the radios,
all training phases are realized with receiver Rx1.

1) Influence of the channel: The first analysis is done with
signals from radio Rx6. Radios Rx1 and Rx6 are one meter
distance and they are the same reference. Hence, the channel
propagation has changed because of the distance between
receivers and the RFF of the receiver has changed a little
because of the singularity of the two systems. Table V shows
that our emitters are, on average, correctly identified but the
detection performance has been altered compared to the ideal
case exposed in Section V-B. Two conclusions can be drawn:
Two receivers radios from the same reference and with closed
position could be swapped during training and test phases
with an accuracy penalty with respect to the ideal case. It
also proves that a difference propagation channel between
two devices from the same reference affects the results or, in
other words, that the network learns a part of the propagation
channel.

We now propose to realise the same analysis with the
test done on signals from radio Rx7. This radio is the same
reference as Rx1 and Rx6 but it is localized at the opposite of
the room. Table VI shows that three emitters are correctly
identified and the average identification accuracy decreases
in comparison with the results achieved by Rx6. The main
difference between the two radios is the location. So in a
dynamic context, for which the channel propagation changes
between training and test steps, the identification capacity

decreases. To mitigate this phenomenon, we propose a channel
augmentation using different radios with the same reference.
The confusion matrix VII shows the result of a training
realized on signals from Rx1, 2 and 3 and test done on signals
from Rx5, 6, 7 and 8. The results are clearly better with
the augmentation. The TPG is able to identify transmitters
with other receivers in different locations but same reference,
when the training phase is done with a diversity of radios and
locations. This result would be even better by enhancing the
augmentation with data from Rx1 moving at more locations.

2) Influence of the receiver RFF: Finally, we realize the test
on the signals from radio Rx9 again with a training phase on
Rx1. Rx9 is close to Rx7 so we can expect similar confusion
matrix as in Table VI". The main difference between Rx7 and
Rx9 is the reference of radio. Rx9 is B210 when Rx7, 1 and
6 are N210. Table VIII shows the results obtained with this
configuration and shows the incapacity to correctly identify
the radios and in particular a strong performance penalty with
respect to Table VI.

Some key assets can be drawn here: even a slight modifica-
tion of the propagation channel or the environment propagation
may lead to an important drop of the detection accuracy.
Physical data augmentation is thus required to keep good gen-
eralization properties. Besides, we prove here that the receiver
RFF has a tremendous impact on the capacity to accurately
classify a transmitter, even more than the propagation channel
itself. It shows the necessity to propose diverse and extensive
dataset that can be physically augmented and with a strong
variety of propagation channels, environment characteristics
and strong diversity in both transmitter and receiver references.

V. CONCLUSION

This paper proposes to use a new machine learning
technique called TPG to identify devices with RFF
recognition. The results show a fast F1 score progression of
TPG during the training phase on the CPU. The progression
is very close to F1 score progression of SotA CNN on
the GPU. In the second part, TPGs are used to assess a
deep analysis of the chosen database and interpretations of
the impact of the propagation channel and the receiver are
proposed. The analysis concludes with the negative impact of
changing captured conditions between training and test phase
for identification. The paper presents the interest of physical
data augmentation to be able to identify the transmitters in
different situations. The augmentation has to be on different
days and proposes different realistic configuration that we
can have in inference phase.
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TABLE V
CONFUSION MATRIX OBTAINED WITH TPG FOR TEST DONE ON RX 6

True
Guess Tx1 Tx2 Tx3 Tx4 Tx5 Tx6

Tx1 75.0 8.5 1.1 8.1 2.7 4.6
Tx2 4.0 57.6 0.4 36.5 1.3 0.1
Tx3 1.2 11.9 0.6 0.5 5.4 80.4
Tx4 3.0 7.9 0.5 86.7 1.1 0.8
Tx5 1.4 0.1 3.8 0.5 94.2 0.0
Tx6 7.9 51.1 9.8 0.1 31.0 0.1

TABLE VI
CONFUSION MATRIX OBTAINED WITH TPG FOR TEST DONE ON RX 7

True
Guess Tx1 Tx2 Tx3 Tx4 Tx5 Tx6

Tx1 83.2 8.7 0.9 4.6 1.1 1.5
Tx2 2.5 62.5 0.2 34.3 0.3 0.2
Tx3 19.9 3.1 0.0 75.4 0.7 0.9
Tx4 0.3 99.3 0.0 0.3 0.1 0.0
Tx5 0.2 5.5 0.3 1.6 92.4 0.0
Tx6 24.3 31.3 0.8 41.1 2.5 0.0

0007-01 (RedInBlack project) and ANR-22-CE25-0005-01
(FOUTICS project).
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