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Convergence Results for Primal-Dual Algorithms in
the Presence of Adjoint Mismatch

Emilie Chouzenoux, Andrés Contreras, Jean-Christophe Pesquet, and Marion Savanier

Abstract

Most optimization problems arising in imaging science involve high-dimensional linear operators and their adjoints. In the
implementations of these operators, approximations may be introduced for various practical considerations (e.g., memory limitation,
computational cost, convergence speed), leading to an adjoint mismatch. This occurs for the X-ray tomographic inverse problems
found in Computed Tomography (CT), where the adjoint of the measurement operator (called projector) is often replaced by
a surrogate operator. The resulting adjoint mismatch can jeopardize the convergence properties of iterative schemes used for
image recovery. In this paper, we study the theoretical behavior of a panel of primal-dual proximal algorithms, which rely on
forward-backward-(forward) splitting schemes, when an adjoint mismatch occurs. We analyze these algorithms by focusing on
the resolution of possibly non-smooth convex penalized minimization problems in an infinite-dimensional setting. By using tools
from fixed point theory, we show that they can solve monotone inclusions that go beyond minimization problems. Such findings
indicate these algorithms can be seen as a generalization of classical primal-dual formulations. The applicability of our findings
are also demonstrated through two numerical experiments in the context of CT image reconstruction.

Index Terms

Adjoint mismatch, convex optimization, primal-dual algorithms, convergence analysis, fixed point theory, CT reconstruction,
forward-backward splitting, Tseng’s splitting.

I. INTRODUCTION

Many imaging science applications [2] can be formulated as inverse problems where a high-dimensional variable has to be
estimated from noisy indirect observations. Solving an inverse problem can often be recast as the problem of minimizing a
cost function expressed as a sum of convex terms composed with linear operators [41]. Especially when these functions are
non-smooth, first-order proximal splitting algorithms appear as appealing minimization strategies [19], [11]. In these algorithms,
each cost function term is handled separately, either through its gradient or through its proximity operator. At the core of the
convergence analysis of most proximal splitting methods is the interpretation of the optimization problem as an instance of a
monotone inclusion problem [21]. For example, the forward-backward (also called proximal gradient [23] in the variational
case) algorithm [24] solves an inclusion based on a sum of two monotone operators. Owing to its solid convergence guarantees,
this scheme is widely used in inverse problems involving sparsity priors [27], [15]. However, when the cost function involves a
non-smooth term composed with a linear operator, the proximal step in the forward-backward algorithm may not have a closed
form, so it must be computed using an inner loop at the expense of practical efficiency. A way to avoid performing these sub-
iterations is to rely on primal-dual proximal splitting algorithms [36], [9], [22], [6], [1], [31]. These algorithmic schemes are
grounded on splitting strategies such as the forward-backward, the Douglas-Rachford [5], [33], or Tseng’s forward-backward-
forward [52] algorithms for finding a zero of a sum of maximally monotone operators. For instance, the Chambolle-Pock
algorithm [14] is one of the most popular methods. More flexibility can be added in the considered formulation by taking into
account the gradient of Lipschitz differentiable terms in the objective function. The Combettes-Pesquet algorithm [22] based on
Tseng’s forward-backward-forward splitting was the first algorithm offering this possibility. Then, Condat-Vũ algorithm [55],
[25] was proposed, which constitutes an extension of the Chambolle-Pock one. The Loris-Verhoeven algorithm [40] is another
powerful algorithm relying on the forward-backward splitting. It offers more freedom in choosing the algorithm parameters,
but deals with a more restricted class of optimization problems. Primal-dual algorithms have numerous applications in the
resolution of signal/image processing problems [51], [44], [17], [7]. These schemes increase the dimension of the original
minimization variables by introducing auxiliary dual variables, yielding the resolution of a system of two decoupled monotone
inclusions in the primal-dual product space.
In real-life imaging applications, an adjoint mismatch frequently occurs. This term corresponds to the situation when, in the
iterative process, the adjoints of the linear operators in the cost function are replaced by surrogate operators. An adjoint
mismatch typically occurs in Computed Tomography (CT) image reconstruction. CT involves the resolution of a linear inverse
problem, where the forward operator is a discrete Radon transform that relates an image to a set of projections measured at
several angles during the rotation of an X-ray imaging system [35]. During the reconstruction, the adjoint of the projector, called
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backprojector, is often approximated to produce an estimate of the image more rapidly (by improving the conditioning [58] or
reducing computational complexity per iteration [32]) or to improve the quality of the reconstruction [57]. An adjoint mismatch
has also been advocated in SPECT (Single Photon Emission Computed Tomography) imaging [46], [58] and in microscopy
imaging [45]. With such mathematical approximations, the convergence guarantees of classical minimization algorithms no
longer hold. Hence there is a need for designing and adapting existing results and schemes to these situations.
The effect of an adjoint mismatch has first been studied for CT in the context of simultaneous or row-action algebraic
algorithms [35] based on projections onto convex sets (POCS). In that case, the convergence can be analyzed with tools
from linear algebra. Some works gave convergence conditions [30], [58], [28], [38] and focused on fixing the convergence
of these schemes [28]. In contrast, others proposed to use more general optimization schemes that can directly deal with
non-symmetric normal fixed-point equations [42], [50]. The resulting algorithms are semi-convergent; the number of iterations
acts as a regularization parameter. The literature on the influence of an adjoint mismatch on more complex proximal splitting
schemes has been expanding recently. The convergence of the proximal gradient algorithm (PGA) has been studied in [18]
when an adjoint mismatch is present on the forward operator. In the context of microscopy imaging where the forward operator
satisfies a specific orthogonality condition, [45] gave conditions for the Douglas-Rachford/ADMM iterations to converge in
the Multi-Agent Consensus Equilibrium (MACE) framework [12]. They also highlighted that using an adjoint mismatch in a
quadratic data fidelity term was equivalent to using the proximity operator (or agent) of the quadratic term with a different
prior model for the image that depends on the mismatched adjoint. A similar observation was made in [49], where the authors
showed that considering an adjoint mismatch in PGA could be seen as a problem of unmatched preconditioning where the
metric used in the gradient step differs from the one used in the proximity step. Up to our knowledge, the first proposal to
analyze a primal-dual proximal splitting method under an adjoint mismatch is [39] which studies two mismatched forms of the
Chambolle-Pock algorithm with fixed and varying step sizes. These analyses are conducted under strong convexity assumptions.
The authors give conditions on the strong convexity modulus of the involved functions and they derive update rules for the
step sizes to recover similar convergence rates to those of the matched schemes. However, they do not investigate the existence
and uniqueness of the fixed points of the mismatched methods.
The contribution of this paper is to analyze the behavior of some of the most popular primal-dual proximal splitting algorithms
in the presence of adjoint mismatch by relying on fixed-point theory [21]. Our study leverages some of our previous results
in [18]. Our analysis applies to a broad class of penalized least-squares problems. More specifically, we provide sufficient
conditions for the existence and uniqueness of fixed point of the modified schemes, and we also provide conditions to ensure
the convergence of the schemes to such a fixed point. Our methodology allows us to develop extensions of existing algorithms
that are robust to adjoint mismatches. Their resulting fixed points satisfy general notions of equilibrium (similar to the one
arising in neural network architectures/paradigms, plug-and-play methods [21], [43], [34]) instead of being the solution to a
minimization problem. In this aspect, our work is in line with the recent efforts to design [49], [48] and learn [3], [10], [43],
[12] more expressive variants of well-known optimization schemes while keeping convergence guarantees.

The paper is organized as follows. In section II, we present our notation and useful definitions underlying the class of
minimization and monotone inclusion problems under the scope of our study. We also present the penalized least-squares cost
function we aim to minimize, which involves two linear operators. The first linear operator appears in a quadratic term, while
the second arises in a non-necessarily smooth convex term. Sections III, IV, and V gather our methodological contributions,
namely the study of the properties of three main classes of primal-dual splitting algorithms in the presence of adjoint mismatch.
Specifically, section III focuses on the Condat-Vũ algorithm [55], [25], and its mismatched version. We consider the case when
an adjoint mismatch appears on the linear operator in the quadratic term and the second linear operator is perturbed. Note that
this differs from the mismatch considered in [39], which appears on the second linear operator. This analysis is then extended
to the projected form of the Condat-Vũ algorithm proposed by Briceño-Arias and López [8]. In section IV, we perform an
analysis of the Loris-Verhoeven algorithm [40] in the case of an adjoint mismatch on the linear operator involved in the
quadratic term. In section V, we analyze the Combettes-Pesquet algorithm [22] when the adjoints of both linear operators are
approximated. We derive convergence results for all the above algorithms and characterize the resulting fixed points. Finally,
in section VI, we illustrate our theoretical findings on examples involving two different inverse problems in CT reconstruction,
with two types of regularization and noise modeling.

II. PRELIMINARIES

A. Notation and background

Let us introduce some basic notation and definitions on convex analysis, proximity operators, and monotone operators. Most
of our notation follow from the reference book [4].
We consider optimization problems over real Hilbert spaces. We denote by H, G, L some real Hilbert spaces, and B(H,G)
the set of bounded and linear operators from H to G. The norm of H is denoted by ‖ · ‖H and the associated inner product
〈·, ·〉H. The operator norm of D ∈ B(H,G) is denoted by ‖D‖H,L = sup {‖Dx‖L | x ∈ H, ‖x‖H = 1}. Given C ⊂ H, sriC
denotes its strong relative interior.



3

2H denotes the power set of H. Given a set-valued operator M : H → 2H, we define domM = {x ∈ H | Mx 6= ∅} as its
domain, and ranM and graM as its range and graph, respectively.
M−1 : H → 2H denotes the inverse operator of M, with domain ranM and range domM, and M−1(0) = {x ∈ H | 0 ∈
Mx} the set of zeros of M.
M is said to be monotone when, for every (x, y) ∈ graM and (x′, y′) ∈ graM, 〈y′−y, x′−x〉H ≥ 0.M is said to be maximal
when graM is maximal in the sense of the inclusion in H ×H among the graphs of monotone operators. Moreover, M is
strongly monotone with parameter ρ ≥ 0 if for every (x, y) ∈ graM and (x′, y′) ∈ graM, 〈y′ − y, x′ − x〉H ≥ ρ‖x′ − x‖2H.
The resolvent of a maximally monotone operator M scaled with a parameter γ > 0 is the mapping JγM : H → H : x 7→
JγM(x) = (IdH + γM)

−1
x, where IdH refers to the identity operator in H.

An operator C : H → H is cocoercive if there exists Θ > 0 such that for every (x, x′) ∈ H2, 〈Cx′ − Cx, x′ − x〉H ≥
Θ‖Cx′ − Cx‖2H.
The Fenchel-Legendre conjugate of a function f : H →]−∞,+∞], is expressed as f∗ : H → [−∞,+∞] : u 7→ sup

x∈H
(〈x, u〉H − f(x)).

The domain of f is dom f = {x ∈ H | f(x) < +∞} and this function is said to be proper when dom f 6= ∅.
The class of convex, lower semicontinuous, and proper function defined on H is denoted by Γ0(H) and the Moreau subdif-
ferential of any function f in Γ0(H) is denoted by ∂f , while the proximity operator of f is given by proxf : H → H : x 7→

argminv∈H

(
f(v) +

1

2
‖v − x‖2

)
.

From [4, Corollary 16.30] we have (∂f)−1 = ∂f∗ and, if f is strongly convex with modulus σ ≥ 0, then ∂f is σ-strongly
monotone [4, Example 22.4 (iv)].
Finally, given α ∈]0, 1[, an operator T : H → H is α-averaged if, for every (x, y) ∈ H2, there exists a nonexpansive operator
Q : H → H such that T = (1− α)IdH + αQ.

B. Problem statement

Let us now state the generic minimization problem considered in this paper. Let H ∈ B(H,G), D ∈ B(H,L), f ∈ Γ0(H),
and g ∈ Γ0(L). Given y ∈ G, we are interested in solving the primal optimization problem

minimize
x∈H

1

2
‖y −Hx‖2G + f(x) + g(Dx). (II.1)

By using first-order optimality conditions [4, Theorems 16.47, 27.1], Problem (II.1) can be reformulated as finding a solution
to the variational inclusion problem

0 ∈ ∂f(x) +D∗∂g(Dx) +H∗(Hx− y). (II.2)

A solution to (II.2) is a solution to (II.1), but the converse may not be true. From now on, the solution set of (II.2) is supposed
to be nonempty, and then so is the solution set of (II.1). Under mild qualification constraints, the solutions to (II.1) and (II.2)
are the same. One of such qualification conditions is

0 ∈ sri (D(dom f)− dom g) . (II.3)

We refer the reader to [4, Proposition 27.5, Corollary 27.6] for other examples of qualification constraints.
The dual problem associated with (II.1) reads

minimize
u∈G

(f + h)∗(−D∗u) + g∗(u), (II.4)

where h : H → R : x 7→ 1
2‖y −Hx‖

2
G .

On the one hand, x is a solution to (II.1) and u is a solution to the dual problem associated with (II.1) if and only if
z = (x, u) ∈ Z = H×L is a solution to(

0
0

)
∈
(

∂f(x) +D∗u
−Dx+ ∂g∗(u)

)
︸ ︷︷ ︸

Az

+

(
H∗Hx−H∗y

0

)
︸ ︷︷ ︸

Bz

. (II.5)

The operator A : Z → 2Z : (x, u) 7→ (∂f(x) + D∗u,−Dx + ∂g∗(u)) is maximally monotone [4, Proposition 26.32 (iii)].
Moreover, the operator B : Z → Z : (x, u) 7→ (H∗Hx − H∗y, 0) is θ-cocoercive, with θ = 1/‖H‖2H,G . Based on this
structure, the forward-backward splitting [24] can be applied to solve (II.5). Combined with preconditioning [26], it yields a
simple form of iteration in terms of primal/dual updates.
On the other hand, (II.5) is also equivalent to the following splitting(

0
0

)
∈
(

∂f(x)
∂g∗(u)

)
︸ ︷︷ ︸

Mz

+

(
H∗Hx−H∗y +D∗u

−Dx

)
︸ ︷︷ ︸

Qz

, (II.6)
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where M is a maximally monotone operator (see [4, Theorem 26.32 (iii)]) and Q is a monotone operator which is Lipschitz
continuous with constant ϑ ≤ ‖H‖2H + ‖D‖H,L (see [22]). We can use Tseng’s approach [4, Theorem 26.17], [9, Theorem
2.5 (ii)] to build primal-dual schemes delivering a solution to splitting (II.6).
Both (II.5) and (II.6) splitting strategies will be at the basis of the primal-dual algorithms under study. The Condat-Vũ (CV)
algorithm (section III) and the Loris-Verhoeven (LV) algorithm (section IV) will be derived from (II.5) while the Combettes-
Pesquet (CP) algorithm (section V) will rely on (II.6).

III. THE MISMATCHED CONDAT-VŨ ALGORITHM

A. CV algorithm

In this section, we use the forward-backward splitting to solve (II.6). The resulting iteration by the implicit and preconditioned
discretization of (II.5) reads: for every n ∈ N,

0 ∈ Azn+ 1
2

+Bzn + P (zn+ 1
2
− zn), (III.1)

where zn = (xn, un) ∈ Z , and zn+ 1
2

= (xn+ 1
2
, un+ 1

2
) ∈ Z . The preconditioning metric P is defined as

(∀z = (x, u) ∈ Z) Pz =

(
1
τ x−D

∗u
−Dx+ 1

σu

)
, (III.2)

where τ and σ are two positive real parameters and initialization x0 ∈ H and u0 ∈ L.
Let (Θn)n∈N be a sequence of relaxation parameters. The corresponding primal-dual forward-backward iteration [4], often
called the Condat-Vũ (CV) iteration in the literature [55], [25], reads

CV iterations for solving (II.5):

for n = 0, 1, . . .


xn+ 1

2
= proxτf (xn − τ(H∗(Hxn − y) +D∗un))

un+ 1
2

= proxσg∗
(
un + σD(2xn+ 1

2
− xn)

)
xn+1 = xn + Θn(xn+ 1

2
− xn)

un+1 = un + Θn(un+ 1
2
− un).

(III.3)

The convergence of (III.3) to a solution pair (x, u) to (II.5) is guaranteed by [25, Theorem 3.1] for step sizes τ > 0, σ > 0

such that τ
(
σ‖D‖2H,L +

1

2θ

)
< 1, and relaxation parameters (Θn)n∈N ⊂ [0, δ], with δ = 2 − 1

2θ

(
1

τ
− σ‖D‖2H,L

)
and θ

the cocoercivity constant of operator B such that
∑
n∈N

Θn (δ −Θn) = +∞.

Remark 3.1: The condition on the step sizes (τ , σ) implies that τσ‖D‖2H,L < 1, which allows us to conclude that operator
P present in (III.1) is strongly positive (bounded from below) and therefore invertible. Hereafter, we will consider the Hilbert
space ZP obtained by equipping Z with the inner product 〈·, ·〉P : (z, z′) 7→ 〈z, z′〉P = 〈z, Pz′〉Z . Hence, operators P−1A
and P−1B are maximally monotone [4, Proposition 20.24] and cocoercive [25, Theorem 3.1] in ZP , respectively.

B. Convergence properties of the mismatched CV algorithm

In this section, we will be interested in studying the impact of replacing operator H∗ in the n-th iteration of Algorithm (III.3)
by a surrogate Kn ∈ B(G,H). This yields the following modified algorithm:

Mismatched CV iterations:

for n = 0, 1, . . .


xn+ 1

2
= proxτf (xn − τ(Kn(Hxn − y) +D∗un))

un+ 1
2

= proxσg∗
(
un + σD(2xn+ 1

2
− xn)

)
xn+1 = xn + Θn(xn+ 1

2
− xn)

un+1 = un + Θn(un+ 1
2
− un),

(III.4)

The sequence of surrogates (Kn)n∈N is related to a constant linear operator K through the following assumption, which is
similar to [18, Assumption 3.1],

Assumption 3.2: There exists K ∈ B(G,H) and {ωn}n∈N ⊂ [0,+∞[ such that
∑
n∈N ωn < +∞ and

KH 6= 0 (III.5)

(∀n ∈ N) ‖Kn −K‖G,H ≤ ωn. (III.6)

To perform the convergence analysis of (III.4), we introduce notation involved in the characterization of the spectra of the
linear operators in the cost function.

Notation 3.3: For every n ∈ N, we define the following quantities:
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(i) L = KH
(ii) λmin = inf {〈x, Lx〉H | x ∈ H, ‖x‖H = 1}

(iii) L̃ = ΠL, L̃n = ΠKnH , K̃ = ΠK, and K̃n = ΠKn, with Π: Z → Z : (x, u) 7→ (x, 0).
(iv) Tn : Z → Z : z 7→ JP−1A

(
z − P−1

(
L̃nz − K̃ny

))
and

T : Z → Z : z 7→ JP−1A

(
z − P−1

(
L̃z − K̃y

))
.

Under this notation, Algorithm (III.4) can be rewritten more concisely in terms of a simple update rule on the pair zn = (xn, un):

(∀n ∈ N) zn+1 = zn + Θn (Tn (zn)− zn) . (III.7)

Algorithm (III.7) can be viewed as a mismatched form of a forward-backward algorithm for finding a zero of a sum of
maximally monotone operators in ZP . Similarly to [18], we rely on the cocoercivity properties of operator L̃ to study the
convergence of (III.7).

Proposition 3.4: Assume that (τ, σ) ∈]0,+∞[2 are such that τσ‖D‖2H,L < 1. We have the following properties.

(i) P−1L̃ is cocoercive in ZP if and only if L is cocoercive.
(ii) Suppose that Ran(L+ L∗) is closed. Then P−1L̃ is cocoercive in ZP with constant η̃ > 0 if and only if λmin ≥ 0,

Ker(L+ L∗) = KerL, and

η̃ ≤ η̃max =
2

‖P−1/2ΠM‖2H,Z
, (III.8)

where
M = (IdH + (L− L∗)(L+ L∗)#)(L+ L∗)1/2 (III.9)

and (L+ L∗)# denotes the pseudo-inverse of L+ L∗. In addition,

η̃max ≥ τ−1(1− τσ‖D‖2H,L)ηmax (III.10)

where ηmax = 2/‖M‖2H,H is the largest cocoercivity constant of L.
Proof:

(i) P−1L̃ is cocoercive in ZP if and only if there exists η̃ > 0 such that, for every z ∈ Z ,

(∀z ∈ Z) 〈z, P−1L̃z〉ZP
≥ η̃‖P−1L̃z‖2ZP

⇔ (∀z′ ∈ Z) 〈z′, P−1/2L̃P−1/2z′〉Z ≥ η̃‖P−1/2L̃P−1/2z′‖2Z . (III.11)

Therefore P−1L̃ is cocoercive in ZP if and only if P−1/2L̃P−1/2 is cocoercive in Z . In turn, it follows from [4,
Proposition 4.12] that, if L̃ is cocoercive, then P−1/2L̃P−1/2 is cocoercive. Conversely, if P−1/2L̃P−1/2 is cocoercive,
then P 1/2(P−1/2L̃P−1/2)P 1/2 = L̃ is cocoercive, that is

(∀z ∈ Z) 〈z, L̃z〉Z ≥ η‖L̃z‖2Z
⇔ (∀x ∈ H) 〈x, Lx〉H ≥ η‖Lx‖2H, (III.12)

for some η > 0.
(ii) Let L̃∗P denote the adjoint of P−1L̃ in ZP and let

λ̃min = inf
{
〈z, P−1L̃z〉ZP

| z ∈ ZP , ‖z‖ZP
= 1
}
. (III.13)

According to [18, Proposition 3.4(ii)], provided that Ran(P−1L̃ + L̃∗P ) is closed, P−1L̃ is cocoercive in ZP with
constant η̃ if and only if λ̃min ≥ 0, Ker(P−1L̃+ L̃∗P ) = Ker(P−1L̃), and

η̃ ≤ 2

‖(IdZ + (P−1L̃− L̃∗P )(P−1L̃+ L̃∗P )#)(P−1L̃+ L̃∗P )1/2‖2ZP ,ZP

. (III.14)

Since L̃∗P = P−1L̃∗, Ker(P−1L̃+ L̃∗P ) = Ker(L̃+ L̃∗) = Ker(L+L∗)×L and, similarly, Ker(P−1L̃) = KerL×L.
Therefore Ker(P−1L̃ + L̃P ) = Ker(P−1L̃) if and only if Ker(L + L∗) = KerL. Similarly, Ran(P−1L̃ + L̃∗P ) =

P−1 Ran(L̃ + L̃∗) = P−1(Ran(L + L∗) × {0}). Thus, Ran(P−1L̃ + L̃∗P ) is closed if and only if Ran(L + L∗) is
closed.
For every z = (x, u) ∈ Z ,

〈z, P−1L̃z〉ZP
≥ λ̃min‖z‖2ZP

⇔ 〈z, L̃z〉Z ≥ λ̃min‖z‖2ZP

⇔ 〈x, Lx〉H ≥ λ̃min‖(x, u)‖2ZP
. (III.15)
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So, λ̃min ≥ 0 if and only if, for every x ∈ H, 〈x, Lx〉H ≥ 0, that is λmin ≥ 0. In addition, when condition λmin = 0
is met, λ̃min = 0.
Since ‖ · ‖ZP ,ZP

= ‖P 1/2 · P−1/2‖Z,Z , we have

‖(IdZ + (P−1L̃− L̃∗P )(P−1L̃+ L̃∗P )#)(P−1L̃+ L̃∗P )1/2‖2ZP ,ZP

= ‖(IdZ + (P−1L̃− L̃∗P )(P−1L̃+ L̃∗P )#)(P−1L̃+ L̃∗P )(IdZ + (P−1L̃+ L̃∗P )#(L̃∗P − P−1L̃)‖ZP ,ZP

= ‖P 1/2(IdZ + P−1(L̃− L̃∗)(L̃+ L̃∗)#P )P−1(L̃+ L̃∗)(IdZ + (L̃+ L̃∗)#PP−1(L̃∗ − L̃))P−1/2‖Z,Z
= ‖P−1/2(IdZ + (L̃− L̃∗)(L̃+ L̃∗)#)(L̃+ L̃∗)(IdZ + (L̃+ L̃∗)#(L̃∗ − L̃))P−1/2‖Z,Z
= ‖P−1/2(IdZ + (L̃− L̃∗)(L̃+ L̃∗)#)(L̃+ L̃∗)1/2‖2Z,Z .

By using the specific form of L̃, we deduce that

‖(IdZ + (P−1L̃− L̃∗P )(P−1L̃+ L̃∗P )#)(P−1L̃+ L̃∗P )1/2‖2ZP ,ZP
= ‖P−1/2ΠM‖2H,Z . (III.16)

Altogether with (III.14), this yields (III.8).
In addition,

‖P−1/2ΠM‖H,Z ≤ ‖P−1/2Π‖Z,Z‖M‖H,H = ‖P−1/2Π‖Z,Z
√

2

ηmax
, (III.17)

where

‖P−1/2Π‖Z,Z = ‖Π∗P−1/2‖Z,Z = ‖ΠP−1/2‖Z,Z

= sup
z′∈Z\{0}

‖ΠP−1/2z′‖Z
‖z′‖Z

= sup
z=(x,u)∈Z\{0}

‖x‖H√
〈z, Pz〉Z

. (III.18)

For every z = (x, u) ∈ Z ,

〈z, Pz〉Z =
1

τ
‖x‖2H − 2〈Dx, u〉L +

1

σ
‖u‖2L

=
1

τ
‖x‖2H +

1

σ
‖u− σDx‖2L − σ‖Dx‖2L

≥ 1

τ
(1− τσ‖D‖2H,L)‖x‖2H. (III.19)

We deduce from (III.18) and (III.19) that

‖P−1/2Π‖2Z,Z ≤
τ

1− τσ‖D‖2H,L
, (III.20)

which, combined with (III.17), yields (III.10).

The following results provides a characterization of the fixed point set of T .
Proposition 3.5: Let (x̃, ũ) ∈ Z . Then (x̃, ũ) ∈ FixT if and only if (x̃, ũ) belongs to

F =
{

(x, u) ∈ Z | Ky ∈ ∂f(x) + Lx+D∗u, u ∈ ∂g(Dx)
}
, (III.21)

which is nonempty if L+ ∂f +D∗ ◦ ∂g ◦D is surjective.
(i) If λmin ≥ 0, then F is closed and convex.

(ii) Let F1 = {x ∈ H | (∃u ∈ L) (x, u) ∈ F}.
F1 has at most one element if one of the following conditions holds:

(a) L+ ∂f +D∗ ◦ ∂g ◦D is strictly monotone.
(b) λmin ≥ 0 and g ◦D + f is strictly convex.

F1 is a singleton if (II.3) is satisfied and one of the following conditions holds:
(c) λmin ≥ 0 and L+ ∂f +D∗ ◦ ∂g ◦D is strongly monotone.
(d) λmin > 0.
(e) λmin ≥ 0, and f is strongly convex or [g is strongly convex and D∗D is strongly positive].
(f) L is cocoercive, and f is strongly convex or [g is strongly convex and D∗D is strongly positive].

Proof:

z̃ = (x̃, ũ) ∈ FixT ⇔ z̃ = T z̃ ⇔ 0 ∈ P−1
(
L̃z̃ − K̃y

)
+ P−1Az̃ ⇔ Ky ∈ ∂f(x̃) + Lx̃+D∗ũ, Dx̃ ∈ ∂g∗(ũ),
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that is z̃ ∈ F . In addition,

(∃ũ ∈ L)

{
Ky ∈ ∂f(x̃) + Lx̃+D∗ũ

Dx̃ ∈ ∂g∗(ũ)
⇔ Ky ∈ ∂f(x̃) + Lx̃+D∗∂g(Dx̃), (III.22)

and the latter condition is satisfied if ∂f + L+D∗ ◦ ∂g ◦D is surjective.
(i) If λmin ≥ 0, then, for every z = (x, u) ∈ Z , 〈L̃z, z〉Z = 〈Lx, x〉H ≥ 0 and, since L̃ is continuous, L̃ is maximally

monotone on Z . Operator A being maximally monotone, by [4, Proposition 23.39], we conclude that F = zer(L̃−
K̃y +A) is closed and convex.

(ii) According to (III.22), F1 = zer(L−Ky + ∂f +D∗ ◦ ∂g ◦D).
(a) Follows from [4, Proposition 23.35].
(b) From standard subdifferential calculus rules, F1 ⊂ zer(L−Ky+∂(f+g ◦D)). λmin ≥ 0⇔ L+L∗ positive
⇔ L is monotone. In addition, f + g ◦D is strictly convex if and only if ∂(f + g ◦D) is strictly monotone.
Thus, under the stated condition, L − Ky + ∂(f + g ◦ D) is strictly monotone, and F1 has at most one
element.

(c) Since ∂f and D∗◦∂g◦D are maximally monotone and (II.3) holds, ∂f+D∗◦∂g◦D is maximally monotone
[4, Corollary 25.4]. Since L is maximally monotone and has a full domain, L + ∂f + D∗ ◦ ∂g ◦D is thus
maximally monotone. Then we deduce the result from [4, Proposition 23.37].

(d) If λmin > 0, L is strongly monotone and (c) is satisfied.
(e) If g is ρG-strongly convex with ρG > 0, there exists h ∈ Γ0(L) such that g = h + ρG‖ · ‖2L/2 and

D∗ ◦ ∂g ◦D = D∗ ◦ ∂h ◦D + ρGD
∗D is strongly monotone as D∗D is strongly positive. If f is strongly

convex, then ∂f is strongly monotone. The result then follows from (c).
(f) Since L is cocoercive, from [18, Lemma 3.3(i)], λmin ≥ 0 and the result follows from (e).

We will now turn our attention to the convergence of the mismatched CV algorithm by establishing a first result regarding
the averagedness properties of operator T .

Lemma 3.6: Let η̃ ∈] 12 ,+∞[, α =
1

2− 1
2η̃

, and W = IdZP
− P−1L̃. Then, if P−1L̃ is η̃-cocoercive in ZP , then T is

α-averaged in ZP .
Proof: If P−1L̃ is η̃-cocoercive in ZP and η̃ > 1/2, according to [4, Proposition 4.39], W is 1

2η̃ -averaged in ZP . Similarly
to the proof of [18, Lemma 3.14], we deduce that

(∀z ∈ ZP ) ‖Wz − 2 (1− α) z‖ZP
+ ‖Wz‖ZP

≤ 2α‖z‖ZP
. (III.23)

Since P−1A is maximally monotone on ZP , then JP−1A is firmly nonexpansive [4, Corollary 23.9]. Finally, it follows from
(III.23) and [20, Theorem 3.8], that T = JP−1A(W ·+P−1K̃y) is α-averaged. The following theorem provides conditions
under which iteration (III.4) converges to a fixed point of T .

Theorem 3.7: Let (τ, σ) ∈]0,+∞[2 be such that τσ‖D‖2H,L < 1. Assume that η̃ ∈]1/2,+∞[ is a cocoercivity constant of
P−1L̃ in ZP . For δ = 2− 1/(2η̃), let {Θn}n∈N ⊂ [0, δ] be a sequence such that

∑
n∈N

Θn (δ −Θn) = +∞, and suppose that

F 6= ∅. Then the sequence ((xn, un))n∈N given by (III.4) converges weakly to some point in F .
Proof: Let z0 = r0 ∈ Z , let (zn)n≥1 be given by (III.7), and let (rn)n≥1 be defined as

(∀n ∈ N) rn+1 = rn + Θn

(
T (rn)− rn

)
. (III.24)

By applying Theorem 3.6, operator T is α-averaged in ZP with α = 1/δ = 1/(2− 1
2η̃ ). Thus, the sequence (rn)n∈N converges

weakly to some r ∈ Fix
(
T
)

[4, Proposition 5.16], which implies that % = supn∈N ‖rn‖ZP
< +∞.

For every n ∈ N, let us bound zn+1 − rn+1 as follows

‖zn+1 − rn+1‖ZP
=

∥∥zn − rn + Θn (rn − zn) + Θn

(
Tn(zn)− T (rn)

)∥∥
ZP

≤
∥∥zn − rn + Θn

(
T (zn)− T (rn)− zn + rn

)∥∥
ZP

+ Θn

∥∥Tn(zn)− T (zn)
∥∥
ZP

. (III.25)

T being α-averaged in ZP , there exist a nonexpansive operator W : ZP → ZP such that T = (1 − α)Id + αW . Since
{Θn}n∈N ⊂ [0, 1/α], we have∥∥zn − rn + Θn

(
T (zn)− T (rn)− zn + rn

)∥∥
ZP

= ‖ (1− αΘn) (zn − rn) + αΘn (W (zn)−W (rn)) ‖ZP

≤ (1− αΘn) ‖zn − rn‖ZP
+ αΘn‖W (zn)−W (rn)‖ZP

≤ ‖zn − rn‖ZP
. (III.26)
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Since JP−1A is firmly nonexpansive in ZP , for every z ∈ Z ,∥∥Tn(z)− T (z)
∥∥
ZP
≤ ‖P−1(L̃nz − K̃ny − L̃z + K̃y)‖ZP

≤ ‖P−1(L̃n − L̃)z‖ZP
+ ‖P−1(K̃n − K̃)y‖ZP

≤ ‖P−1(L̃n − L̃)‖ZP ,ZP
‖z‖ZP

+ ‖P−1(K̃n − K̃)‖ZP ,ZP
‖y‖ZP

= ‖P−1/2(L̃n − L̃)P−1/2‖Z,Z‖z‖ZP
+ ‖P−1/2(K̃n − K̃)P−1/2‖Z,Z‖y‖ZP

≤ ‖P−1‖Z,Z(‖L̃n − L̃‖Z,Z‖z‖ZP
+ ‖K̃n − K̃‖Z,Z‖y‖ZP

)

= ‖P−1‖Z,Z(‖Ln − L‖H,H‖z‖ZP
+ ‖Kn −K‖G,H‖y‖ZP

)

= ‖P−1‖Z,Z(‖(Kn −K)H‖H,H‖z‖ZP
+ ‖Kn −K‖G,H‖y‖ZP

)

≤ ‖P−1‖Z,Z(‖H‖H,G‖z‖ZP
+ ‖y‖ZP

)‖Kn −K‖G,H
≤ ‖P−1‖Z,Z(‖H‖H,G‖z‖ZP

+ ‖y‖ZP
)ωn, (III.27)

where the last inequality follows from Theorem 3.2. Altogether (III.25), (III.26), and (III.27) yield, for every n ∈ N,

‖zn+1 − rn+1‖ZP
≤ ‖zn − rn‖ZP

+ Θn‖P−1‖Z,Z(‖H‖H,G‖zn‖ZP
+ ‖y‖ZP

)ωn

≤ ‖zn − rn‖ZP
+ Θn‖P−1‖Z,Z

(
‖H‖H,G(‖zn − rn‖ZP

+ ‖rn‖ZP

)
+ ‖y‖ZP

)ωn

≤ (1 + µn)‖zn − rn‖ZP
+ νn (III.28)

with

µn = δ‖P−1‖Z,Z‖H‖H,G ωn (III.29)

νn = δ‖P−1‖Z,Z(%‖H‖H,G + ‖y‖ZP
)ωn. (III.30)

Since (µn) ∈ `1+ and (νn) ∈ `1+, according to [4, Lemma 5.31], ‖zn − rn‖ZP
< +∞. Consequently, δ′ = supn∈N ‖zn‖ZP

<
%+ supn∈N ‖zn − rn‖ZP

< +∞.
Let us now define

(∀n ∈ N) en =
Tn(zn)− T (zn)

α
, (III.31)

and it follows from (III.27) that∑
n∈N
‖en‖ZP

≤ ‖P
−1‖Z,Z
α

(‖H‖H,Gδ′ + ‖y‖ZP
)
∑
n∈N

ωn < +∞. (III.32)

Algorithm (III.7) can be re-expressed as

(∀n ∈ N) zn+1 = zn + Θ′n (Qzn + en − zn) with Θ′n = αΘn ∈]0, 1[. (III.33)

Therefore, the weak convergence of (zn)n∈N to some z̃ ∈ Fix(Q) = Fix
(
T
)

= F follows from [4, Theorem 5.5]. We deduce
the following more restrictive convergence result which is an extension of standard convergence results for CV algorithm.

Corollary 3.8: Assume that Ran(L+ L∗) is closed, λmin ≥ 0, and Ker(L+ L∗) = KerL. Let (τ, σ) ∈]0,+∞[2 be such
that τ−1 − σ‖D‖2H,L > ‖M‖2H,H/4, where M is given by (III.9). For

δ = 2− 1

4

(1

τ
− σ‖D‖2H,L

)−1
‖M‖2H,H, (III.34)

let {Θn}n∈N ⊂ [0, δ] be a sequence such that
∑
n∈N

Θn (δ −Θn) = +∞, and suppose that F 6= ∅. Then the sequence

(xn, un)n∈N given by (III.4) converges weakly to some point in F .
Proof: Note that, if τ−1−σ‖D‖2H,L > ‖M‖2H,H/4, then τσ‖D‖2H,L < 1. In addition, it follows from Theorem 3.4 that, when
Ran(L+ L∗) is closed, λmin ≥ 0, and Ker(L+ L∗) = KerL, P−1L̃ is η̃ -cocoercive in ZP with

η̃ = τ−1(1− τσ‖D‖2H,L)ηmax (III.35)

and ηmax = 2/‖M‖2H,H. The result then follows by applying Theorem 3.7. We now provide an estimate of the distance
between a Kuhn-Tucker pair (x̂, û) of the original optimization problem and a fixed point (x̃, ũ) of T .

Proposition 3.9: Assume that (II.3) holds and L is a cocoercive operator.
If f + g ◦D is strongly convex with modulus ρ > 0, then there exists a unique vector x̃ in F1 and a unique solution x̂ to the
primal problem (II.1), and we have

‖x̃− x̂‖H ≤
1

ρ

∥∥(K −H∗) (Hx̂− y)
∥∥
H . (III.36)
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In addition, if g is β-Lipschitz differentiable with β ∈ [0,+∞[, there exists a unique (x̃, ũ) ∈ F and a unique solution û to
the dual problem, and we have

‖ũ− û‖L ≤
β

ρ
‖D‖H,L

∥∥(K −H∗) (Hx̂− y)
∥∥
H . (III.37)

Proof: Since (II.3) is satisfied, ∂f +D∗ ◦ ∂g ◦D = ∂(f + g ◦D) [4, Theorem 16.47 (i)]. As we have assumed that f + g ◦D
is ρ-strongly convex and L is cocoercive, L + ∂f + D∗ ◦ ∂g ◦D is strongly monotone. If follows from Theorem 3.5(c) that
there exists a single element x̃ in F1 which is such that

Ky ∈ Lx̃+ ∂f(x̃) +D∗∂g(Dx̃). (III.38)

For any γ > 0, (III.38) is equivalent to

x̃ = proxγ(f+g◦D)

(
x̃− γK(Hx̃− y)

)
. (III.39)

For similar reasons, there exists a unique solution x̂ to the primal problem, which satisfies the fixed point equation

x̂ = proxγ(f+g◦D)

(
x̂− γH∗(Hx̂− y)

)
. (III.40)

Because of the ρ-strong convexity of f + g ◦D, proxγ(f+g◦D) is (1 + γρ)−1-Lipschitzian [4, Proposition 23.13]. The error
bound in (III.36) is thus derived by the same arguments as in the proof of [18, Theorem 3.11].
In addition, if g is Gâteaux differentiable, there exists a unique ũ ∈ L such that (x̃, ũ) ∈ F , which is given by

ũ = ∇g(Dx̃), (III.41)

where ∇g is the gradient of g. Similarly, there exists a unique solution û to the dual problem, given by

û = ∇g(Dx̂). (III.42)

By using the fact that ∇g is β-Lipschitzian, we deduce that

‖ũ− û‖L ≤ β‖D(x̃− x̂)‖L
≤ β‖D‖H,L‖x̃− x̂‖H. (III.43)

The upper error bound in (III.37) then follows from (III.36).

C. Convergence properties of the mismatched CV algorithm with modified D

We now provide a brief analysis of the convergence of Condat-Vũ algorithm when D is replaced by an operator V ∈ B(H,L)
such that ‖V −D‖H,L ≤ ε for some ε > 0. Let

(1) Ã : Z → 2Z : z = (x, u) 7→ (∂f(x) + V ∗u,−V x+ ∂g∗(u))
(2) P̃ : Z → Z : z = (x, u) 7→

(
x
τ − V

∗u,−V x+ u
σ

)
with (τ, σ) ∈]0,+∞[2.
Here again Ã is maximally monotone on Z and P̃ is self adjoint and strongly positive for all (τ, σ) ∈]0,+∞]2 satisfying
τσ (‖D‖H,L + ε)

2
< 1, hence P̃−1Ã is maximally monotone in ZP [4, Proposition 20.24]. Let the operators L, L̃, K̃, K̃n,

and L̃n be defined by Theorem 3.3 and suppose that (Kn,K) ∈ (B (G,H))2 satisfy Theorem 3.2.
For every n ∈ N, we define the operators

T̃ = JP̃−1Ã ◦
(

IdZ − P̃−1(L̃− K̃)
)
, T̃n = JP̃−1Ã ◦

(
IdZ − P̃−1(L̃n − K̃n)

)
. (III.44)

Then the mismatched form of CV algorithm can be rewritten as

(∀n ∈ N) zn+1 = zn + Θn

(
T̃n (zn)− zn

)
, (III.45)

with z0 ∈ Z . Under conditions similar to those in Theorem 3.7, the weak convergence of sequence (zn)n∈N to some z̃ =
(x̃, ũ) ∈ Fix T̃ can be readily established.
The following result provides bounds on the errors incurred in this additional change.

Proposition 3.10: Assume that L is a cocoercive operator, f is strongly convex with modulus ρ > 0, and g is Lipschitz-
differentiable with constant β > 0. Then, there exists a unique fixed point (x̃, ũ) of T̃ and unique solution (x̂, û) to the
primal-dual problem(II.5). In addition,

‖x̃− x̂‖H ≤
1

ρ

∥∥(K −H∗)(Hx̂− y) + V ∗∇g(V x̂)−D∗∇g(Dx̂)
∥∥
H (III.46)

‖ũ− û‖L ≤ β(‖V ‖H,L‖x̃− x̂‖H + ‖(V −D)x̂‖L). (III.47)
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Proof: Since dom g = L, (II.3) holds. The existence and uniqueness of (x̃, ũ) and (x̂, û) follows from arguments similar to
those in the proof of Theorem 3.9.
In addition, it follows from (III.38) that, for every γ > 0,

x̃ = proxγf
(
x̃− γ(K(Hx̃− y) + V ∗∇g(V x̃))

)
(III.48)

Similarly,
x̂ = proxγf

(
x̂− γ(H∗(Hx̂− y) +D∗∇g(Dx̂))

)
. (III.49)

Since f is ρ-strongly convex, proxγf is Lipschitz-continuous with constant (1 + γρ)−1 [4, Proposition 23.13]. Thus, using the
triangle inequality and the Lipschitz property of proxγf yields

‖x̃− x̂‖H ≤
1

1 + γρ

∥∥x̃− x̂− γ(K(Hx̃− y) + V ∗∇g(V x̃)−H∗(Hx̂− y)−D∗∇g(Dx̂))
∥∥
H

≤ 1

1 + γρ

(
‖(IdH−γL)(x̃− x̂)− γ(V ∗∇g(V x̃)− V ∗∇g(V x̂))‖H

+ γ
∥∥(K −H∗)(Hx̂− y) + V ∗∇g(V x̂)−D∗∇g(Dx̂)

∥∥
H

)
. (III.50)

Since L is cocoercive with constant ηmax and ∇g is β-Lipschitzian, hence cocoercive with constant 1/β, L + V ∗ ◦ ∇g ◦ V
is cocoercive with constant ζ =

(
(ηmax)−1 + β‖V ‖2H,L

)−1
[4, Proposition 4.12]. Consequently, by choosing γ ∈ [0, 2ζ],

IdH−γ(L+ V ∗ ◦ ∇g ◦ V ) is nonexpansive [4, Proposition 4.39]. We then deduce from (III.50) that

‖x̃− x̂‖H ≤
1

1 + γρ

(
‖x̃− x̂‖H + γ

∥∥(K −H∗)(Hx̂− y) + V ∗∇g(V x̂)−D∗∇g(Dx̂)
∥∥
H

)
, (III.51)

which results in (III.46).
According to the first-order characterization of Fix T̃ ,

ũ = ∇g(V x̃). (III.52)

Using this equation and (III.42) allows us to derive the following inequality:

‖ũ− û‖L = ‖∇g(V x̃)−∇g(Dx̂)‖L
≤ β‖V x̃−Dx̂‖L
≤ β(‖V (x̃− x̂)‖L + ‖(V −D)x̂‖L), (III.53)

so yielding (III.47).

D. Remarks on the mismatched projected primal-dual splitting algorithm

When an additional constraint is added to our initial primal problem (II.1), the optimization problem becomes

Find x̂ ∈ C ∩ Argmin
x∈H

1

2
‖Hx− y‖2G + f(x) + g(Dx), (III.54)

where C is a closed and convex nonempty subset of H, and H , D, f and g are defined as previously. The dual problem reads

Find û ∈ E ∩ Argmin
u∈L

(f + h)∗(−D∗u) + g∗(u), (III.55)

where E is a closed vector subspace of L such that ranD ⊂ E. Such a problem can be solved by the projected form of CV
algorithm proposed by Briceño-Arias and López in [8]. We will be interested in the mismatched form of this algorithm with
a fixed operator K: Given (x0, u0) ∈ Z and (τ, σ) ∈]0,+∞[2,

Projected mismatched primal-dual algorithm:

for n = 0, 1, . . .


pn = proxτf

(
xn − τ

(
K (Hxn − y) +D∗un

))
xn+1 = projC(pn)
xn = xn+1 + pn − xn
qn = proxσg∗ (un + σDxn)
un+1 = projE (qn)

. (III.56)

In particular, if K = H∗, C = H, and E = L, we recover (III.3) in the case when, for every n ∈ N, Θn = 1.
We have then the following convergence result where L and F are defined as previously.

Proposition 3.11: Assume that Ran(L + L∗) is closed, λmin ≥ 0, and Ker(L + L∗) = KerL. Let (τ, σ) ∈]0,+∞[2 be
such that τ−1 − σ‖D‖2H,L > ‖M‖2H,H/4, where M is given by (III.9). Suppose that F ∩ (C × E) 6= ∅. Then the sequence



11

(xn, un)n∈N generated by (III.56) converges weakly to some point in F∩(C×E). In addition (pn−xn)n∈N and (qn−un)n∈N
converge strongly to 0.
Proof: On the one hand, under the assumptions made on L, we have seen that x 7→ K(Hx − y) is ηmax-cocoercive with
ηmax = 2/‖M‖2H,H. On the other hand, [8, Theorem 3.2 (ii)] guarantees the weak convergence of (xn, un)n∈N under the
condition

‖D‖2H,L <
1

σ

(
1

τ
− 1

2ηmax

)
. (III.57)

The strong convergence properties of (pn−xn)n∈N and (qn−un)n∈N are also stated in the proof of [8, Theorem 3.2]. Note
that the error related to the mismatch can still be quantified by Theorem 3.9.

IV. THE MISMATCHED LORIS-VERHOEVEN ALGORITHM

In this section, we consider a specific instance of our original template (II.1) where f = κ
2 ‖ · ‖

2
H with κ ∈]0,+∞[. This

problem can be solved by the primal-dual algorithm proposed by Loris and Verhoeven [40], which also relies on the forward-
backward splitting. This algorithm, that will be designated as LV algorithm, also appears under the name of Primal-Dual
Fixed-Point algorithm based on the Proximity Operator (PDFP2O) [16] and Proximal Alternating Predictor-Corrector (PAPC)
algorithm [29].
The LV iterations can still be described by means of the implicit inclusion (III.1) where A, B, and P are now given by

(∀z = (x, u) ∈ Z) Az =

(
D∗u

−Dx+ ∂g∗(u)

)
(IV.1)

Bz =

(
(H∗H + κ IdH)x−H∗y

0

)
(IV.2)

Pz =

(
1
τ x

( 1
σ IdL−τD∗D)u

)
(IV.3)

with (τ, σ) ∈]0,+∞[2. The iterations of LV algorithm are then given by

LV iterations:

for n = 0, 1, . . .


tn = H∗ (Hxn − y) + κxn

un+ 1
2

= proxσg∗
(
un + σD

(
xn − τ(tn +D∗un)

))
xn+1 = xn −Θnτ

(
tn +D∗un+ 1

2

)
un+1 = un + Θn

(
un+ 1

2
− un

) (IV.4)

where {Θn}n∈N is a sequence of relaxation parameters and (x0, u0) ∈ Z .
When, at iteration n ∈ N, H∗ is replaced by an operator Kn ∈ B(H,G) satisfying Theorem 3.2, the mismatched form of LV
algorithm reads

Mismatched LV iterations:

for n = 0, 1, . . .


tn = Kn (Hxn − y) + κxn

un+ 1
2

= proxσg∗
(
un + σD

(
xn − τ(tn +D∗un)

))
xn+1 = xn −Θnτ

(
tn +D∗un+ 1

2

)
un+1 = un + Θn

(
un+ 1

2
− un

) (IV.5)

This iteration can be reexpressed as (III.7) where Theorem 3.3(ii)-(iv) holds, but L is now defined as

L = KH + κIdH. (IV.6)

It follows that all the results in subsection III-B can be extended to the mismatched LV algorithm.
Theorem 4.1 is a straightforward adaptation of Theorem 3.5 to characterize the fixed point set of the nonlinear mapping T
(see Theorem 3.3(iv)).

Proposition 4.1: Let (x̃, ũ) ∈ Z . Then (x̃, ũ) ∈ FixT if and only if (x̃, ũ) belongs to

F =
{

(x, u) ∈ Z | Ky ∈ Lx+D∗u, u ∈ ∂g(Dx)
}
, (IV.7)

which is nonempty if L+D∗ ◦ ∂g ◦D is surjective.
(i) If λmin ≥ 0, then F is closed and convex.

(ii) Let F1 = {x ∈ H | (∃u ∈ L) (x, u) ∈ F}.
F1 has at most one element if one of the following conditions holds:
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(a) L+D∗ ◦ ∂g ◦D is strictly monotone.
(b) λmin ≥ 0 and g ◦D is strictly convex.

F1 is a singleton if (II.3) is satisfied and one of the following conditions holds:
(c) λmin ≥ 0 and L+D∗ ◦ ∂g ◦D is strongly monotone.
(d) λmin > 0.
(e) λmin ≥ 0, g is strongly convex, and D∗D is strongly positive.
(f) L is cocoercive, g is strongly convex, and D∗D is strongly positive.

Similarly, we derive an equivalent of Theorem 3.8 concerning the convergence of the mismatched LV.
Proposition 4.2: Assume that Ran(L+L∗) is closed, λmin ≥ 0, and Ker(L+L∗) = KerL. Let (τ, σ) ∈]0,+∞[2 be such

that τ < 4/‖M‖2H,H and τσ‖D‖2H,L < 1, where M is given by (III.9). For

δ = 2− τ

4
‖M‖2H,H, (IV.8)

let {Θn}n∈N ⊂ [0, δ] be a sequence such that
∑
n∈N

Θn (δ −Θn) = +∞, and suppose that F 6= ∅. Then the sequence

(xn, un)n∈N given by (IV.5) converges weakly to some point in F .
Proof: The result from Theorem 3.4 stating that, when Ran(L+ L∗) is closed, λmin ≥ 0, and Ker(L+ L∗) = KerL, P−1L̃
is cocoercive in ZP with constant η̃max = 2/‖P−1/2ΠM‖2H,Z still holds for LV algorithm. We also have

η̃max ≥
2

‖P−1/2Π‖2H,Z‖M‖2H,H
=

2

τ‖M‖2H,H
= η̃, (IV.9)

which shows that P−1L̃ is η̃-cocoercive in ZP . The result then follows from Theorem 3.7, which remains valid in this context.

Remark 4.3: When there is no mismatch, M =
√

2(H∗H+κ IdH)1/2 and we recover the conditions derived in [40, Theorem
3.1], [26, Theorem 3.1] for the convergence of sequences (xn)n∈N and (un)n∈N generated by (IV.4).
Similarly to Theorem 3.9, we can provide an estimate of the distance between a Kuhn-Tucker pair (x̂, û) of the original
problem and a fixed point (x̃, ũ) of T .

Proposition 4.4: Assume that 0 ∈ sri (Ran(D)− dom(g)) and L, given in (IV.6), is a cocoercive operator.
Let ρ ∈]0,+∞[. If κ ≥ ρ or g ◦D is strongly convex with modulus ρ, then there exists a unique vector x̃ in F1, defined in
Theorem 4.1(ii), and a unique solution x̂ to the primal problem (II.1). Moreover, inequality (III.36) holds.
In addition, if g is β-Lipschitz differentiable with β ∈ [0,+∞[, there exists a unique (x̃, ũ) ∈ F , defined in (IV.7), and a
unique solution û to the dual problem. Finally, inequality (III.37) is satisfied.

V. THE MISMATCHED COMBETTES - PESQUET ALGORITHM

A. CP algorithm
In this section, we explore the benefits of the Combettes - Pesquet algorithm (CP), which relies on Tseng’s splitting (II.6)

to solve (II.1)-(II.4). This algorithm was introduced in [22, Theorem 4.2] and constitutes a generalization of the one in [9]. It
reads

CP-iterations for (II.1) and (II.4):

for n = 0, 1, . . .



v1,n = xn − γ (H∗(Hxn − y) +D∗un)
p1,n = proxγf (v1,n)
v2,n = un + γDxn
p2,n = proxγg∗(v2,n)
q2,n = p2,n + γDp1,n
q1,n = p1,n − γ (H∗(Hp1,n − y) +D∗p2,n)
xn+1 = xn − v1,n + q1,n
un+1 = un − v2,n + q2,n,

(V.1)

where γ > 0 and (x0, u0) ∈ Z . By setting, for every n ∈ N,

zn = (xn, un) , vn = (v1,n, v2,n) , pn = (p1,n, p2,n) , and qn = (q1,n, q2,n) , (V.2)

iterations (V.1) can be rewritten as

Tseng iterations:

for n = 0, 1, . . .


vn = zn − γQ(zn)
pn = JγM (vn)
qn = pn − γQ(pn)
zn+1 = zn − vn + qn,

(V.3)
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with

M : Z → 2Z : (x, u) 7→ (∂f(x), ∂g∗(u)) (V.4)
Q : Z → Z : (x, u) 7→ (H∗Hx+D∗u−H∗y,−Dx) . (V.5)

Since (V.3) is an instance of Tseng’s algorithm, according to [9, Theorem 2.5 (ii)], if zer(M + Q) 6= ∅ and γ ∈]0, 1/ϑ[,
sequences (zn)n∈N =

(
(xn, un)

)
n∈N and (pn)n∈N converge weakly to some ẑ = (x̂, û) ∈ zer(M +Q). Therefore, sequences

(xn)n∈N (resp. (un)n∈N) generated by (V.1) converge weakly to x̂ (resp. û), which is a solution to (II.1) (resp. (II.4)).

B. Convergence properties of the twice mismatched CP algorithm
For algorithm (V.1), we consider a mismatched form obtained by substituting a fixed operator K ∈ B(G,H) for H∗ as well

as an operator V ∗ ∈ B(L,H) for D∗. This leads to the following iterations:

Mismatched CP-iterations:

for n = 0, 1, . . .



v1,n = xn − γ
(
K(Hxn − y) + V ∗un

)
p1,n = proxγf (v1,n)
v2,n = un + γ(Dxn + εun)
p2,n = proxγg∗(v2,n)
q2,n = p2,n + γ(Dp1,n + εp2,n)
q1,n = p1,n − γ

(
K(Hp1,n − y) + V ∗p2,n

)
xn+1 = xn − v1,n + q1,n
un+1 = un − v2,n + q2,n,

(V.6)

where ε > 0 is an additional parameter. In addition to the presence of mismatched adjoints, we see that there are two algorithmic
modifications in the updates rules of the variables v2,n and q2,n.
By making the change of variables (V.2), algorithm (V.6) can be rewritten, in the product space Z , as

Tseng form of (V.6):

for n = 0, 1, . . .


vn = zn − γQ̃(zn)
pn = JγM (vn)

qn = pn − γQ̃(pn)
zn+1 = zn − vn + qn,

(V.7)

where
Q̃ : Z → Z : (x, u) 7→

(
Lx+ V ∗u−Ky,−Dx+ εu

)
(V.8)

and
L = KH, (V.9)

as in section III.
We first provide some preliminary results about operator Q̃.

Proposition 5.1: Let λmin defined in Theorem 3.3 and

ελmin = λmin −
1

4ε
‖V −D‖2H,L, (V.10)

εϑ1 = max{‖L‖H,H, ε}+ max{‖D‖H,L, ‖V ‖H,L}, (V.11)
εϑ2 =

√
‖L‖2H,H + ‖V ‖2H,L + ‖D‖2H,L + ε2, (V.12)

and εϑ = min{ εϑ1, εϑ2}. We have the following properties:
(i) Q̃ is Lipschitz continuous with constant εϑ.

(ii) If ελmin ≥ 0,
then Q̃ is monotone.

(iii) If ελmin > 0, then Q̃ is strongly monotone and cocoercive.
Proof: Since Q̃ is an affine operator, its monotonicity, Lipschitz continuity, and cocoercivity properties are the same as those
of the linear operator

Q = Q̃+ (Ky, 0). (V.13)

(i) On the one hand

‖Q‖Z,Z ≤
∥∥∥∥[L 0

0 ε IdL

]∥∥∥∥
Z,Z

+

∥∥∥∥[ 0 V ∗

−D 0

]∥∥∥∥
Z,Z

≤ max{‖L‖H,H, ε}+ max{‖D‖H,L, ‖V ‖H,L} = εϑ1. (V.14)
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On the other hand, for every z = (x, u) ∈ Z ,

‖Qz‖2Z = ‖Lx+ V ∗u‖2H + ‖ −Dx+ εu‖2L
≤ ‖LL∗ + V ∗V ‖H,H‖z‖2Z + ‖DD∗ + ε2 IdL ‖L,L‖z‖2Z
≤ (‖L‖2H,H + ‖V ‖2H,L + ‖D‖2H,L + ε2)‖z‖2Z , (V.15)

which implies that
‖Q‖Z,Z ≤ εϑ2. (V.16)

In summary, Q, and thus Q̃, are Lipschitz continuous with constant ‖Q‖Z,Z ≤ εϑ.
(ii) By using Cauchy-Schwarz inequality, for every z = (x, u) ∈ Z ,〈

Qz, z
〉
Z = 〈Lx, x〉H + ε‖u‖2L + 〈u, (V −D)x〉L
≥ λmin‖x‖2H + ε‖u‖2L − ‖u‖L‖(V −D)x‖L
≥ λmin‖x‖2H + ε‖u‖2L − ‖V −D‖H,L‖u‖L‖x‖H

=
[
‖x‖H ‖u‖L

]
C

[
‖x‖H
‖u‖L

]
, (V.17)

where
C =

[
λmin − 1

2‖V −D‖H,L
− 1

2‖V −D‖H,L ε

]
. (V.18)

C is positive semidefinite if and only if{
tr(C) = λmin + ε ≥ 0

det(C) = λminε− 1
4‖V −D‖

2
H,L ≥ 0,

(V.19)

that is ελmin ≥ 0. we deduce from (V.17) that, subject to this condition, Q and thus Q̃ are monotone.
(iii) Assume now that ελmin > 0. Then C is positive definite and its smallest eigenvalue is

ευ =
λmin + ε−

√
(λmin + ε)2 − 4 ελminε

2
> 0. (V.20)

It follows from (V.17) that Q is strongly monotone with constant ευ.
We have then, for every z ∈ Z ,〈

Qz, z
〉
Z ≥

ευ ‖z‖2Z ≥ ευ
‖Qz‖2Z
‖Q‖2Z,Z

≥
ευ

( εϑ)2
‖Qz‖2Z .

This shows that Q (and thus Q̃) is cocoercive with constant

εη =
ευ

( εϑ)2
. (V.21)

Conditions of convergence for the mismatched CP algorithm are deduced from this result.
Proposition 5.2: Let ελmin and εϑ be defined as in Theorem 5.1. Let γ ∈]0, ( εϑ)−1[. Assume that zer(M + Q̃) 6= ∅

and ελmin ≥ 0. Then the sequences ((xn, un))n∈N and ((p1,n, p2,n))n∈N generated by Algorithm (V.6) converge weakly to
(x̃, ũ) ∈ zer(M + Q̃).
Proof: Under the considered assumptions, Q̃ is monotone and εϑ-Lipschitzian. Thus, the result follows from standard conditions
for the convergence of Tseng’s algorithm applied to (V.7). We now characterize the set of limit points.

Proposition 5.3: Let εg be the Moreau envelope of g of parameter ε > 0 defined as

(∀v ∈ L) εg(v) = inf
w∈L

g(w) +
1

2ε
‖w − v‖2L. (V.22)

Let (x̃, ũ) ∈ Z . Then (x̃, ũ) ∈ zer(M + Q̃) if and only if (x̃, ũ) belongs to

εF =

{
(x, u) ∈ Z | Ky ∈ ∂f(x) + Lx+ V ∗u, u = ∇ εg(Dx) =

Dx− proxεg(Dx)

ε

}
, (V.23)

which is nonempty if L+ ∂f + V ∗ ◦ ∇ εg ◦D is surjective.
(i) If ελmin defined by (V.10) is nonnegative, then εF is closed and convex.
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(ii) Let εF1 = {x ∈ H | (x,∇ εg(Dx)) ∈ εF} and let

ελ1,min = λmin −
1

ε
‖V −D‖H,L‖D‖H,L ≥ 0. (V.24)

εF1 has at most one element if one of the following conditions holds:
(a) L+ ∂f + V ∗ ◦ ∇ εg ◦D is strictly monotone.
(b) ελ1,min ≥ 0 and εg ◦D + f is strictly convex.

F1 is a singleton if one of the following conditions holds:
(c) L+ ∂f + V ∗ ◦ ∇ εg ◦D is strongly monotone.
(d) ελ1,min > 0
(e) ελ1,min ≥ 0, and f is strongly convex or [g∗ is Lipschitz-differentiable and D∗D is strongly positive].

Proof: The proof follows the same lines as in the proof of Theorem 3.5. In the following, we point out the main differences.
By using (III.9) and (V.8), we have

(x̃, ũ) ∈ zer(M + Q̃)

⇔

{
0 ∈ ∂f(x̃) + Lx̃+ V ∗ũ−Ky
0 ∈ ∂g∗(ũ)−Dx̃+ εũ.

(V.25)

We know that ( εg)∗ = g∗ + ε
2‖ · ‖

2 ⇒ ∂( εg)∗(ũ) = ∂g∗(ũ) + εũ [4, Proposition 14.1] and εg is differentiable with gradient
∇ εg = ε−1(IdL−proxεg) [4, Proposition 12.30]. We thus deduce that

(x̃, ũ) ∈ zer(M + Q̃)

⇔

{
Ky ∈ ∂f(x̃) + Lx̃+ V ∗ũ

Dx̃ ∈ ∂( εg)∗(ũ)

⇔

{
Ky ∈ ∂f(x̃) + Lx̃+ V ∗ũ

ũ = ∇ εg(Dx̃).
(V.26)

This shows that (x̃, ũ) ∈ εF .
(i) According to Theorem 5.1(i)-(ii), if ελmin ≥ 0, Q̃ is monotone and continuous. Since M is maximally monotone,

M + Q̃ is also maximally monotone and zer(M + Q̃) is closed and convex.
(ii) We can perform the decomposition

L+ ∂f + V ∗ ◦ ∇ εg ◦D = ∂f +D∗ ◦ ∇ εg ◦D + L+ (V −D)∗ ◦ ∇ εg ◦D. (V.27)

Subdifferential ∂f +D∗ ◦∇ εg ◦D = ∂(f + εg ◦D) is maximally monotone. Using the Cauchy-Schwarz inequality,
for every (x, x′) ∈ H2,

〈L(x− x′), x− x′〉H + 〈(V −D)∗∇ εg(Dx)− (V −D)∗∇ εg(Dx′), x− x′〉H
≥ λmin‖x− x′‖2H −

∥∥(V −D)∗
(
∇ εg(Dx)−∇ εg(Dx′)

)∥∥
H‖x− x

′‖H
≥ λmin‖x− x′‖2H − ‖V −D‖H,L‖∇ εg(Dx)−∇ εg(Dx′)‖L‖x− x′‖H

≥ λmin‖x− x′‖2H −
1

ε
‖V −D‖H,L‖D(x− x′)‖L‖x− x′‖H

≥ ελ1,min‖x− x′‖2H, (V.28)

where we have used the ε−1-Lipschitz continuity of ∇ εg. This shows that L + (V −D)∗ ◦ ∇ εg ◦D is monotone,
if ελ1,min ≥ 0. In addition, it is strongly monotone (hence, strictly monotone) if ελ1,min > 0. Since this operator is
also continuous, it is maximally monotone in both cases. The rest of the proof is similar to that of Theorem 3.5, by
noticing that εg is strongly convex ⇔ ( εg)∗ is Lipschitz-differentiable ⇔ g∗ is Lipschitz-differentiable.

We now provide a bound on the distance between an optimal pair of solutions (x̂, û) to problem (II.1)-(II.4) and (x̃, ũ) ∈ εF .
Proposition 5.4: Let ελmin be defined by (V.10). Assume that ελmin > 0, f is strongly convex with modulus ρ > 0, and g

is Lipschitz-differentiable with constant β > 0. Then, there exists a unique pair z̃ = (x̃, ũ) ∈ εF and a unique solution (x̂, û)
to the primal-dual problem. In addition,√

‖x̃− x̂‖2H + ‖ũ− û‖2L ≤
1

µ

(
‖(K −H∗)(Hx̂− y)‖H +

√
‖V −D‖2H,L + ε2 ‖û‖L

)
, (V.29)

where µ = min{ρ, 1/β}.
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Proof: f is ρ-strongly convex and g is β-Lispchitz differentiable (i.e., g∗ is β−1-strongly convex), ∂f and ∂g∗ are strongly
monotone with constants ρ and 1/β, respectively. M is thus strongly monotone with constant µ. Since Q is continuous and
monotone, M + Q is maximally monotone and strongly monotone. The existence of a unique zero ẑ to M + Q is thus
guaranteed by [4, Corollary 23.37]. Similarly, it follows from Theorem 5.1(i) and Theorem 5.1(iii) that Q̃ is continuous and
strongly monotone. Hence M + Q̃ is maximally monotone and strongly monotone and zer(M + Q̃) is a singleton {z̃}.
For every γ > 0,

ẑ ∈ zer(M +Q) ⇔ ẑ = JγM (ẑ − γQẑ) (V.30)

z̃ ∈ zer(M + Q̃) ⇔ z̃ = JγM (z̃ − γQ̃z̃) (V.31)

Since M is strongly monotone with constant µ, JγM is Lipschitz continuous with constant 1/(1 +γµ) [4, Proposition 23.13].
From (V.30) and (V.31), we deduce that

‖z̃ − ẑ‖Z ≤
1

1 + γµ
‖z̃ − ẑ − γ(Q̃z̃ −Qẑ)‖Z

≤ 1

1 + γµ
‖(IdZ −γQ̃)(z̃ − ẑ)− γ(Q̃−Q)ẑ‖Z

≤ 1

1 + γµ

(
‖ IdZ −γQ̃‖Z,Z‖z̃ − ẑ‖Z + γ‖(Q̃−Q)ẑ‖Z

)
. (V.32)

According to Theorem 5.1(iii), Q̃ is cocoercive with constant εη given by (V.21). Therefore, by assuming that γ ∈]0, εη], we
have ‖ IdZ −γQ̃‖Z,Z ≤ 1. We deduce from (V.32) that

‖z̃ − ẑ‖Z ≤
1

µ
‖(Q̃−Q)ẑ‖Z

=
1

µ

∥∥((K −H∗)(Hx̂− y) + (V −D)∗û, εû
)∥∥
Z

≤ 1

µ

(∥∥((K −H∗)(Hx̂− y), 0
)∥∥
Z +

∥∥((V −D)∗û, εû
)∥∥
Z

)
≤ 1

µ

(
‖(K −H∗)(Hx̂− y)‖H +

√
‖V −D‖2H,L + ε2 ‖û‖L

)
. (V.33)

Remark 5.5:
(i) In the absence of mismatch on D∗ (i.e., V ∗ = D∗), one can choose ε = 0 in (V.6) and (V.8). zer(M +Q̃) is then equal

to the set F characterized in Theorem 3.5. If F 6= ∅, λmin ≥ 0, and γ ∈]0, ( 0ϑ)−1[, then the sequences ((xn, un))n∈N
and ((p1,n, p2,n))n∈N generated by Algorithm (V.6) converge weakly to (x̃, ũ) ∈ F . Theorem 3.9 applies to evaluate
the error incurred by the mismatch.

(ii) When H = K = 0, it follows from [39, Theorem 1.2] that, if f is strongly convex with modulus ρ > 0, (x̃, ũ) ∈ εF
and x̂ is the solution to the primal problem, then

‖x̃− x̂‖H ≤
1

ρ
‖V −D‖H,L‖ũ‖L. (V.34)

VI. NUMERICAL EXPERIMENTS

This section illustrates the applicability of our theoretical results to the resolution of 2D image reconstruction problems
arising in Computed Tomography (CT). All the simulations presented in this section are performed using the ASTRA Toolbox
[54], [53] implemented in Matlab.

A. Example 1: reconstruction from few CT views

We aim at recovering an image x with N pixels, reshaped as a vector in the Euclidean space H = RN . A set of noisy
tomographic projections p ∈ G = RS of the original image x is available, according to the following observation model:

p = Rx+ b (VI.1)

where R ∈ RS×N is the forward operator called projector, and b is an additive i.i.d. zero-mean Gaussian noise. The projector
is a discrete implementation of the Radon transform, chosen here as the line-length ray-driven projector [56]. An approximate
adjoint of R, denoted by B ∈ RN×S , is derived from an alternative discretization model. In our simulations, B is the pixel-
driven backprojector which is particularly suited for a GPU implementation compared to the adjoint of R [32]. For (u, v) i.i.d.
uniformly sampled on ([0, 1]N )2, the average over 20 realizations of the ratio 〈Ru | v〉/〈u | Bv〉 is 1.005.
Our goal is to retrieve an estimate of x given p, the projector R, and its surrogate adjoint B.
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Fig. 1: Original image x with highlighted FOV (left) and observed projections p (right).

1) Data: Let us specify the data and settings used for this experiment. In model (VI.1), x is an axial slice of an abdomen
of size 41 cm whose values range from 1000 to 3000, containing intense inserts with pixel intensity ranges in [3500, 4200].
These values correspond to positive Hounsfield Unit (HU) (air is 0 HU and water is 1000 HU). The source-to-object distance
is 800 mm, and the source-to-image distance is 1200 mm, which corresponds to a magnification factor of 1.5, typically
encountered in clinical scanners. The projector R describes a fan-beam geometry over 180◦ using 50 regularly spaced angular
steps. The detector has a length of 40 cm. The bin grid is twice upsampled with respect to the pixel grid: the detector has
250 bins of size 1.6 mm, so that S = 250 × 250. The image is reconstructed on a grid of N = 160 × 160 pixels, with size
2 × 1.6/1.5 = 2.13 mm. Data p is obtained after adding 1% relative Gaussian noise on Rx. The inverse problem (VI.1) is
highly ill-posed because of the small detector field of view (FOV) and the limited angular density. This problem corresponds
to a common setup in CT when the detector is not large enough to measure the projections of large body parts such as the
abdomen, as it happens in image guidance for interventional radiology. The set of pixels in the image whose projections belong
to the detector FOV defines the so-called FOV image. Because of truncation, the exterior of the FOV has to be estimated for
the reconstruction of the FOV to be accurate. The size of the reconstruction grid is thus slightly larger than the support of
the FOV. Figure 1 shows the original image x with its FOV and the observed data p. Due to the use of a short detector, the
projections suffer from axial truncation, as shown by non-zero values at the border of some vertical lines of the sinogram.

2) Regularization: We provide an estimate of x by solving the following penalized least squares problem:

minimize
x∈RN

1

2
‖p−Rx‖2 + f(x) + g(Dx) +

κ

2
‖x‖2 (VI.2)

with κ ∈ [0,+∞[. Functions f and g ◦D serve to enforce desired properties on the sought image. Here, we promote sparsity
of the image vertical and horizontal gradients [13]. We additionally constraint the nonnegativity of the reconstructed pixel
intensities. This leads us to set f = ι[0,+∞[N where ιC denotes the indicator function of a set C. Moreover, we set g = ξ‖·‖1,2
with D = ∇ =

[
∇h

∇v

]
, where ∇h ∈ RN×N , ∇v ∈ RN×N are, respectively, the horizontal and vertical discrete gradient

operators (assuming zero-padding) and ‖ · ‖1,2 is the `1,2-norm of RN , so that g ◦ D is the discrete total variation penalty
weighted by ξ ∈ [0,+∞[ [47]. We set the regularization hyperparameter ξ to 800 through a grid search, minimizing the FOV
image error.

3) Condat-Vũ algorithm: Problem (VI.2) can be rewritten as (II.1) with H =

[
R√
κIdRN

]
, κ ∈ [0,+∞[, and y =

[
p
0

]
. The

surrogate adjoint of H is K =
[
B
√
κIdRN

]
. For such a problem, we can apply the CV approach presented in section III.

We run Algorithms (III.3) and (III.4) (i.e., CV algorithm without/with an adjoint mismatch, respectively) for κ ∈ {κ1, κ2} ⊂
]0,+∞[ where L = KH = BR+κIdRN is only cocoercive for κ = κ2. In the latter case, the condition given in Theorem 3.5(d)
holds, which proves the existence of a unique fixed point x̃ of scheme (III.4) and its convergence is ensured according to
Theorem 3.8. In contrast, nothing can be said about the convergence of the scheme in the case involving κ1. We set κ1 = 1
and κ2 to −λ̃min + 0.01 where λ̃min = −28.24 is the minimum spectral value of (BR+R∗B∗)/2 estimated from the power
iterative method. The cocoercivity constant η is computed using Theorem 3.4(ii).
The convergence parameter σ is set to 10−3. For Algorithm (III.3), the step-size τ is set to 0.99/(8σ + 0.5/θ) with θ =
1/‖H‖2H,G . To illustrate the instabilities incurred by the use of the mismatched adjoint K when using κ1, the same step-size
value τ is used as in the matched case. With κ2, the convergence of Algorithm (III.4) is ensured, as stated by Theorem 3.8
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Fig. 2: Evolution of the error (‖x−xn‖/‖x‖)n along iterations for Algorithms (III.3)-(III.4) (top) and Algorithms (IV.4)-(IV.5)
(bottom), for two settings of parameter κ.

and Theorem 3.4, by setting τ = 0.99/(8σ + ‖M‖2H,H/4), where M is defined in (III.9). Both algorithms are run until a
maximum number 3× 104 of iterations is reached. Initial iterates x0 and u0 are set to zero.

4) Loris-Verhoeven algorithm: Problem (VI.2) can also be solved with the LV approach presented in section IV. More

precisely, the cost function can be rewritten as in (II.1) by setting H = R, y = p, D =

[
∇

IdRN

]
, f = κ

2 ‖ · ‖
2, and

(
∀(z1, z2) ∈ (RN )2

)
g

([
z1
z2

])
= ‖z1‖1,2 + ι[0,+∞[N (z2). (VI.3)

Similarly to the CV case, L = BR+κIdRN . Therefore, for the mismatched LV algorithm (IV.5), the existence and uniqueness
of a fixed point x̃ in F1, defined in Theorem 4.1(ii)(c), is only guaranteed when κ = κ2, but not when κ = κ1. The convergence
parameter σ is here set as 1.99/(9τ). For Algorithm (IV.4) with both values of κ and Algorithm (IV.5) with κ1, step-size τ
is set to 1.99/(‖H‖2H,G + κ). The convergence of Algorithm (IV.5) with κ2 is ensured by setting τ to 3.99/‖M‖2H,H, where
M is the same as in the CV case, in accordance with Theorem 4.2.

5) Results: Figure 2 displays the normalized root mean square error (NMSE) defined as (‖x−xn‖/‖x‖)n, computed along
the iterations when applying CV Algorithms (III.3)-(III.4) and LV Algorithms (IV.4)-(IV.5). We recall that Algorithms (III.3)
and (IV.4) require the use of the exact adjoint of H . The plots confirm that, with value κ1, both CV and LV algorithms converge
when this exact adjoint H∗ is used, but diverge when H∗ is replaced by K, as was expected from our theoretical analysis.
In the latter case, CV and LV algorithms show an initial convergence trend before diverging. We notice that on this example,
the mismatched CV (III.4) diverges faster than the mismatched LV (IV.5). When reaching the maximal number of iterations,
the NMSE associated to (III.4) is 0.93 whereas the NMSE associated to (IV.5) is 0.57.
When using κ2, all algorithms converge to close fixed points, as expected by our theory. The corresponding NMSE values are
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Fig. 3: Reconstructed images (top) and zoomed FOVs (bottom). From left to right: x, reconstructions obtained using (III.3)
with κ1, (III.4) with κ1, (III.3) with κ2, (III.4) with κ2, (IV.5) with κ1.

0.251 for (III.3), 0.242 for (III.4), 0.253 for (IV.4) and 0.252 for (IV.5). Remarkably, our mismatched algorithms (III.4)-(IV.5)
with κ2 lead to lower reconstruction error in the first iterations of the algorithms.
Reconstructed images and their FOVs are displayed in Figure 3 using the same windowing. Note that the reconstructions
obtained using (IV.4) look the same as those obtained with (III.3). Likewise, the same reconstruction is obtained with (III.4)
and (IV.5), when κ2 is used. For all the reconstructed images, we also provide the NMSE and the maximum absolute error
(MAE) computed in the FOV image, defined as maxi∈{1,...,N} |[maskFOV(x − x)]i| where [maskFOV(xn)]i = [xn]i if pixel
i of xn is in the FOV, and [maskFOV(xn)]i = 0 otherwise. When parameter κ2 is used, the reconstructed image obtained by
CV/LV with the mismatched adjoint K (MAE=461, NMSE=0.040) is very similar to the image obtained without mismatch
(MAE=495, NMSE=0.041). In contrast, combining the setting κ1 with the mismatched adjoint yields reconstructions that are
highly deteriorated by high-frequency patterns leading to a higher error (MAE=2735, NMSE=0.637 for CV and MAE=1249,
NMSE=0.249 for LV) compared to the solution obtained when using the exact adjoint (MAE=215, NMSE=0.026 for both CV
and LV).

B. Example 2: reconstruction from Poisson data

In this second example, we focus on an another acquisition scenario, namely we consider the case when the projection data
p contain photon count views which follow a Poisson distribution:

p = P(Rx), (VI.4)

that each component ps of p ∈ RS , s ∈ {1, . . . , S}, is drawn independently from a Poisson distribution with mean [Rx]s. The
goal is again to restore an estimate of x given p, R, and its mismatched adjoint B.

1) Data: This second test problem uses a fan-beam geometry with 200 views. In model (VI.4), x is an axial slice of an
abdomen. Contrary to Example 1, it is now made only of an anatomical background (see Figure 4). We set the source-to-object
distance, the source-to-image distance, the detector length, the number of bins, and the bin size as in Example 1. Hence,
S = 250 × 200. Projections p are then simulated by using model (VI.4). The image is reconstructed on a discrete grid of
N = 220× 220 pixels, with size 2.13 mm. The mismatched backprojector B is derived from the same discretization scheme
as B in Example 1.

2) Regularization: Due to the presence of Poisson noise, the data discrepancy term in the cost function differs from the
one in Example 1. Namely, we make use of the negative log-likelihood of the image given the data [37], to define ` ◦R with

(∀z = (zs)1≤s≤S ∈ RS) `(z) =

S∑
s=1

KL(zs, ps) (VI.5)

and

(∀(u, v) ∈ R2) KL(u, v) =

 −v log u+ u if u > 0, v > 0
u if u ≥ 0, v = 0
+∞ otherwise.

(VI.6)

Furthermore, we introduce a nonnegativity constraint on the components of the solution and a Tikhonov-based penalty.
Altogether, the resulting minimization problem reads

minimize
x∈RN

χ `(Rx) +
1

2
‖Hx‖2 + ι[0,+∞[N (x) (VI.7)
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Fig. 4: Phantom x with highlighted FOV

where χ ∈ [0,+∞[ weights the Poisson data fidelity term and we define the linear operator H =

[
∆

κIdRN

]
. Moreover,

∆ ∈ RN×N refers to the 2D discrete Laplacian operator (here, implemented in the 2D Fourier domain), and κ ∈ [0,+∞[.
Problem (VI.7) can be rewritten in the form (II.1) with y = 0R2N , D = R, g = χ `, and f = ι[0,+∞[N .

3) Combettes-Pesquet algorithm: Problem (VI.7) is solved with CP algorithm (V.1)-(V.6). In our configuration, an adjoint
mismatch only arises on D (i.e., the projector R), and again denoting by B the mismatched adjoint. We hence have V = B∗

and K = H∗ in Algorithm (V.6).
To guarantee the convergence of Algorithm (V.6) to a unique fixed point, we must choose (κ, ε) to satisfy the conditions of
Theorem 5.1 and Theorem 5.3. We first set κ and then choose 4ε = ‖V − D‖2H,L/(κ2 − 0.02) so that ελmin = 0.02 > 0
in (V.10). In particular, we consider the setting (κ2, ε2) = (3.3, 6.6) for which convergence is guaranteed and the setting
(κ1, ε1) = (0.6, 0) for which it is not guaranteed.
In Algorithm (V.1), parameter γ is set to 0.99/(4 + κ2 + ‖D‖H,L). When Algorithm (V.6) is run with κ1, γ is set as in
the matched case. When Algorithm (V.6) is run with κ2 and ε2, we ensure its convergence using Theorem 5.2 by setting
γ = 0.99/ εϑ with εϑ = min( εϑ1,

εϑ2) = εϑ1 where εϑ1 and εϑ2 are defined respectively by (V.11) and (V.12). We set the
data fidelity parameter χ to 5000, and we perform 4000 iterations of CP algorithm. Similarly to Example 1, the initial iterates
x0 and u0 are set to zero.

Fig. 5: Evolution of the error ‖x− xn‖/‖x‖ along iterations for CP Algorithms (V.1) and (V.6), for two settings of parameter
κ.

4) Results: In Figure 5, we plot the relative error between the ground truth x and the estimate along the iterations. We
observe the same behavior as in our previous example. Algorithm (V.6) with (κ1, ε1) diverges quickly, while it converges to
a fixed point with (κ2, ε2). This fixed point is indistinguishable from the minimizer of (VI.7) with κ = κ2, both in terms of
NMSE/MAE and visual inspection (see Figure 6).

VII. CONCLUSION

We thoroughly analyzed a set of classical primal-dual proximal splitting algorithms when the adjoints of the involved linear
operators are approximated. Our study strongly relies on fixed-point theory tools. We established necessary conditions to ensure
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Fig. 6: Reconstructed images (top) and zoomed FOVs (bottom). From left to right: x, reconstructed images using (V.1) with
κ1 (NMSE = 0.052, MAE = 201), (V.6) with κ1 (NMSE = 0.079, MAE = 401), (V.1) with κ2 (NMSE = 0.056, MAE = 232),
(V.6) with κ2 (NMSE = 0.055, MAE = 206).

the convergence of these unmatched schemes when applied to non-smooth convex penalized least-squares problems. We showed
that unmatched algorithms solve more general monotone inclusions than those derived from the original minimization problem.
We illustrated our results through two numerical examples of CT image reconstruction when the adjoint of the projector is
inexact. Both a quadratic and a more sophisticated Poisson fidelity term have been considered in our experiments. In both cases,
we showed that convergence can still be guaranteed for an unmatched projector-backprojector pair. It would be interesting to
extend our analysis to algorithms for finding a zero of a sum of more than two maximally monotone operators [21]. Handling
more general form of cost functions would also be of further interest in future research.
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[7] R. I. BOŢ AND C. HENDRICH, Convergence analysis for a primal-dual monotone + skew splitting algorithm with applications to total variation

minimization, Journal of Mathematical Imaging and Vision, 49 (2014), pp. 551–568, https://doi.org/10.1007/s10851-013-0486-8.
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