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ABSTRACT

In this paper we study an inverse boundary value problem for Maxwell’s equa-
tions. The goal is to reconstruct perturbations in the refractive index of the
medium inside an object from the knowledge of the tangential trace of an elec-
tric field on a part of the boundary of the domain. We first provide a uniqueness
result for this inverse problem. Then, we propose a new approach to recon-
struct numerically the perturbations. This complete procedure is based on the
minimization of a cost functional involving an iterated sensitivity equation.

1. Introduction

The study of microwave imaging is of great interest, with potential medical or industrial applica-
tions. The idea is to take benefits of the fact that the interaction between electromagnetic fields
and a material can be described from the dielectric properties of the latter. For example, this
modality is in study for medical applications like the diagnostic of strokes [23, 24]. Indeed, a stroke
affects tissues of the brain, resulting in variations of their dielectric properties. The aim is then to
recover these variations in order to characterize the stroke and apply the right treatment to the
patient. In the same way, microwave imaging is a promising alternative to mammography [18].

Mathematically speaking, microwave imaging defines an inverse problem. Let Ω be a bounded
and simply connected domain of Rp, p ∈ {2, 3}, with boundary Γ := ∂Ω and unit outward normal
denoted by n. The magnetic permeability of the medium in Ω is assumed to be the same as in the
vacuum, µ0. The electric permittivity and conductivity in the medium are two functions of the
space variable x, respectively denoted by ε and σ. We then define the complex refractive index by

κ : Ω ∋ x 7→ 1

ε0

(
ε(x) + i

σ(x)

ω

)
∈ C,

where ε0 is the electric permittivity in vacuum and ω > 0 is the (fixed) wave frequency. The
electric field E in Ω then satisfies the time-harmonic Maxwell’s equation

curl curlE − k2κE = 0, (1)

with k := ω
√
µ0ε0 being the wave number.

We are interested in the inverse boundary value problem consisting in recovering the refractive
index in the whole domain Ω from the knowledge of partial surface measurements at fixed frequency.
The part of the boundary Γ0 ⊂ Γ where measurements will be assumed to be known is called the
accessible part. We assume that meas(Γ0) > 0 and we denote by Γ1 := Γ \ Γ0 the nonaccessible
part. In this paper, we study the question of the uniqueness for such a problem. We then provide
an algorithm to numerically solve this inverse problem.

We assume here that the unknown function κ is a perturbation of a background refractive
index, denoted by κ0 and assumed to be known in Ω. Moreover, we assume that the perturbations
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are not glued to the boundary. In other words, there exists a tubular neighborhood V of Γ in Ω,
that is:

∃rV > 0/∀x ∈ Γ, B(x, rV) ∩ Ω ⊂ V,
where B(x, rV) is the open ball centered at x of radius rV , such that supp(κ − κ0) is contained
in Ω \ V̄. This assumption allows us to write κ|V = κ0|V : the refractive index is known in V. An
example of such configuration is provided in Figure 1.

Under this assumption, this problem shares similarities with the reconstruction of obstacles
from far-field measurements, in the sense that both aim to retrieve unknowns properties from field
data. The key difference lies in the data: we are using here near-field measurements. This leads
to approaches that are different from the ones involving far-field measurements. Examples of such
approaches, in the case of Maxwell’s equations, can be found in [13, 6, 19, 11] and references
there-in.

Assuming that the refractive index is known in a tubular neighborhood V of Γ has two benefits.
From a theoretical point of view, it allows us to state a new uniqueness result without having
to fix some specific geometric nor physical conditions on the nonaccessible part of the boundary.
This will be done in Section 2. From a practical point of view, this assumption also allows us
to have a well-defined system for the data completion problem. In Section 3, we then propose
a way to retrieve total data from partial ones: starting with data known on the accessible part
of the boundary, we obtain data defined on a complete boundary. Section 4 is devoted to an
application mapping amplitudes of perturbations to corresponding electric fields. We show that
this application can be differentiated indefinitely, the value of its derivatives being given by the so
called iterated sensitivity equation. This yields an original approach to regularize a classical cost
function in Section 5. In Section 6, we describe a complete procedure to reconstruct perturbations
(both their supports and amplitudes) from the knowledge of the electric field on the accesssible
part. This procedure is then tested against different 2D and 3D configurations, first to retrieve
perturbations of simple shape, and then to study how the algorithm behaves with more complex
inhomogeneities.

2. Uniqueness result

Let us introduce the vector space

H(curl) := {u ∈ L2(Ω)3 ; curlu ∈ L2(Ω)3}.

For any vector field u ∈ H(curl), the tangential trace is defined by continuous extension of the
mapping γt(u) = u|Γ × n (see for example [20]). We introduce the trace space

Y (Γ) := {f ∈ H−1/2(Γ)3 ; ∃u ∈ H(curl)/γt(u) = f},

and its restriction in the distributional sense to Γ0

Y (Γ0) := {f |Γ0
; f ∈ Y (Γ)}.

The inverse boundary value problem we are interested in is to determine the electric permittivity
ε and conductivity σ from boundary measurements taken on the accessible part Γ0, obtained from
a given boundary source term, at a fixed frequency ω. These measurements are modeled by a
Cauchy data set C(ε, σ; Γ0), as defined in the following.

Definition 2.1. The pair of coefficients ε and σ is said admissible if both are in C1(Ω̄), with
ε ≥ ε̃ and σ ≥ σ̃ almost everywhere in Ω, for some constants ε̃ > 0 and σ̃ > 0.

Definition 2.2. For a pair of admissible coefficients (ε, σ) defined in Ω as in Definition 2.1,
the corresponding Cauchy data set C(ε, σ; Γ0) at a fixed frequency ω > 0 consists of pairs
(f , g) ∈ Y (Γ0) × Y (Γ0)

′ such that there exists a field E ∈ H(curl) satisfying (1) for κ :=
(ε+ iσ/ω)/ε0 with boundary conditions E|Γ0

× n = f and curlE|Γ0
× n = g.
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The uniqueness question for our inverse problem reads as follows. Given a frequency ω > 0
and two pairs of admissible coefficients (εj , σj), j ∈ {1, 2}, does C(ε1, σ1; Γ0) = C(ε2, σ2; Γ0)
imply ε1 = ε2 and σ1 = σ2 in Ω? A uniqueness result for partial data is stated in [4]. However,
geometrical conditions are imposed on the nonaccessible part Γ1, which is supposed to be part of
either a plane or a sphere. In [3], these geometrical conditions are relaxed, but are replaced by
a perfect conducting boundary condition: E|Γ1

× n = 0. Both hypotheses can be restrictive in
applications. The result stated in Theorem 2.3 can be seen as an improvement of these results,
as neither geometrical nor boundary conditions are imposed on the nonaccessible part. Although
simple, the idea behind Theorem 2.3 is new, and uses results from [3] and [5].

Theorem 2.3. Let ω > 0. Assume that (εj , σj), j ∈ {1, 2}, are two pairs of admissible
coefficients (see Definition 2.1) such that ε1 = ε2 and σ1 = σ2 in V̄ where V is a tubular
neighborhood of Γ. Then C(ε1, σ1; Γ0) = C(ε2, σ2; Γ0) implies ε1 = ε2 and σ1 = σ2 in Ω.

Proof. We begin to prove that, under these hypotheses, Cauchy data sets coincide not only on
Γ0, but on the whole boundary Γ. To this end, consider a couple (f , g) ∈ C(ε1, σ1; Γ). Then, there
exists E1 ∈ H(curl) satisfying

curl curlE1 − k2κ1E1 = 0, in Ω,

E1 × n = f , on Γ,

curlE1 × n = g, on Γ,

where κ1 := (ε1+iσ1/ω)/ε0. Since the boundary conditions are obviously satisfied on the accessible
part Γ0, we get (f , g) ∈ C(ε1, σ1; Γ0). Thus, (f , g) ∈ C(ε2, σ2; Γ0) = C(ε1, σ1; Γ0) by assumption.
Therefore, there is a field E2 ∈ H(curl) such that

curl curlE2 − k2κ2E2 = 0, in Ω,

E2 × n = f , on Γ0,

curlE2 × n = g, on Γ0,

where κ2 := (ε2 + iσ2/ω)/ε0. Note that the boundary conditions are only satisfied on Γ0. Now,
we define E := E1 −E2. In the neighborhood V of Γ, E then satisfies

curl curlE − k2κE = 0, in V,
E × n = 0, on Γ0,

curlE × n = 0, on Γ0,

where κ := κ1 = κ2 by assumption on V. We then apply [3, Lemma 5.4, ii] which yields E ≡ 0
in V̄. Consequently, we get E2 × n = E1 × n = f and curlE2 × n = curlE1 × n = g on the
whole boundary Γ. Then, (f , g) belongs to the Cauchy data set C(ε2, σ2; Γ). Changing the roles
of (ε1, σ1) and (ε2, σ2) proves that

C(ε1, σ1; Γ) = C(ε2, σ2; Γ).

Now, we infer from the assumptions on the coefficients that ∂αε1 = ∂αε2 and ∂ασ1 = ∂ασ2 on the
boundary Γ for any multi-index α ∈ N3 such that |α| ≤ 1. These properties are the assumptions
of the global uniqueness theorem of Caro and Zhou (see [5, Theorem 1.1]). This gives ε1 = ε2 and
σ1 = σ2 in Ω and completes the proof. ■

3. Data transmission

In this section, we are interested in the data completion problem for Maxwell equation. The entry
data for our inverse problem is the knowledge of the tangential trace gD := E×n on the accessible
part Γ0, with E being the electric field resulting from the boundary source term gN := curlE×n.
The question of data completion then reads as follow: how can we compute the missing data, that
is E × n on the whole boundary Γ?
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As the propagation of the electric field inside Ω is modeled by (1), it seems natural to consider
the following Cauchy problem:

curl curlE − k2κE = 0, in Ω,

E × n = gD, on Γ0,

curlE × n = gN , on Γ0.

(2)

We could then define the missing boundary data as the traces of the solution of problem (2).
However, solving this problem requires the knowledge of the refractive index κ in the whole domain
Ω, which is unknown in the context of our inverse problem. To work around this issue, we use the
main hypothesis stated on the refractive index: κ is equal to the (known) background refractive
index κ0 in V, the tubular neighborhood of Γ. This allows us to write that E satisfies the same
Cauchy problem as defined above, but in V, where the refractive index is known:

curl curlE − k2κ0E = 0, in V,
E × n = gD, on Γ0,

curlE × n = gN , on Γ0.

(3)

From [3, Lemma 5.4, ii], we know that, if problem (3) admits a solution, then it is unique.
However, Cauchy problems are known to be ill-posed [1, 2]. Then, in order to solve problem (3)
numerically, it is necessary to regularize it. In [7], we proposed to adapt the quasi-reversibility
method to Maxwell’s equations to solve problem (3). In particular, we proved the convergence
of the relaxed and regularized formulation to the solution of this Cauchy problem in the case of
noisy data. This method gives satisfying results. However, the question of how to choose the
involved penalization parameter remains open: in the mentioned paper, we used the method of
L-curves, and numerical experiments show that it is indeed promising, but there is no theoretical
results to prove its convergence. Moreover, from a numerical point of view, using a penalization
parameter that can be very small leads to linear systems that can be difficult to solve, especially
in 3D domains.

As an alternative, we propose here to use the iterated quasi-reversibility method, introduced
in [9]. To this end, we introduce the auxiliary unknown F := curlE. In order to keep simple
notations, we describe here only the 3D case. However, the method can also be written in 2D in a
similar way, adapting the spaces by taking into account that there are two curl operators in this
case. Then, problem (3) can be written:

curlF − k2κ0E = 0, in V,
curlE − F = 0, in V,

E × n = gD, on Γ0,

F × n = gN , on Γ0.

(4)

To take into account potential noise, both boundary data gD and gN are assumed to belong to
L2(Γ0)

3. It is then natural to look for E and F in

H̃(curl) := {u ∈ L2(V)3 ; curlu ∈ L2(V)3 and u× n ∈ L2(Γ0)
3},

which is a Hilbert space, endowed with the scalar product

∀(u,v) ∈ H̃(curl)2, (u,v)H̃(curl) :=

∫
V
(u · v̄ + curlu · curl v̄) +

∫
Γ0

(u× n) · (v̄ × n)

and the induced norm ∥ · ∥2
H̃(curl)

:= (·, ·)H̃(curl).

Let X := H̃(curl)2 and Y := L2(V)3 × L2(V)3 × L2(Γ0)
3 × L2(Γ0)

3. These are Hilbert spaces
endowed with their respective graph norms. Let us introduce the operator

A : X → Y
(E,F ) 7→ (curlF − k2κ0E, curlE − F ,E|Γ0

× n,F |Γ0
× n)

so that problem (4) can be rewritten:

Find x = (E,F ) ∈ X such that Ax = y := (0, 0, gD, gN ) ∈ Y.
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Proposition 3.1. The operator A is linear, continuous, one-to-one, not onto and has a dense
range.

Proof. It is clear that A is linear and continuous. As the Cauchy problem (3) admits at most one
solution but may have no solution, A is one-to-one but not onto. Let us prove that its range is
dense in Y. To this end, we will prove that Range(A)⊥ = {0}. Let y = (u,v,f , g) ∈ Range(A)⊥.
In other words, we have :

∀(E,F ) ∈ X , (A(E,F ), (u,v,f , g))Y = 0,

which reads:

∀(E,F ) ∈ X ,

∫
V
((curlF − k2κ0E) · ū+ (curlE − F ) · v̄) +

∫
Γ0

((E × n) · f̄ + (F × n) · ḡ) = 0.

We first consider F ∈ C∞
c (V)3 and E = 0, which yields∫

V
(curlF · ū− F · v̄) = 0.

An integration by parts then gives curlu = v in V. As v ∈ L2(V)3, this yields u ∈ H(curl;V).
By considering E ∈ C∞

c (V)3 and F = 0, a similar argument gives curlv = k2κ0u and then
v ∈ H(curl;V). Now, we take E = 0 and F ∈ H̃(curl). An integration by parts yields

⟨F × n,n× (u× n)⟩∂V =

∫
Γ0

(F × n) · ḡ.

Then, we obtained:

g =

{
n× (u× n), on Γ0,

0, on ∂V \ Γ0.

Similarly, by taking E ∈ H̃(curl) and F = 0, we get

f =

{
n× (v × n), on Γ0,

0, on ∂V \ Γ0.

Grouping all these results together, we obtain that u ∈ H(curl;V) satisfies
curl curlu− k2κ0u = 0, in V,

u× n = 0, on ∂V \ Γ0,

curlu× n = 0, on ∂V \ Γ0.

By uniqueness of the solution to the Cauchy problem, we then have u ≡ 0, and then v ≡ 0, f ≡ 0
and g ≡ 0, so y = 0, which ends the proof. ■

Let us now introduce the sesquilinear form

b : X × X → C

((u1,v1), (u2,v2)) 7→
∫
Ω

(u1 · v̄1 + u2 · v̄2).

It is readily seen that the norm
√
∥A·∥2Y + b(·, ·) is equivalent to ∥ · ∥X . Let y = (0, 0, gD, gN ) ∈ Y

be such that problem (4) admits a (unique) solution (E,F ). For δ > 0, we define the sequence
(xM

δ )M∈N∪{−1} by x−1
δ := 0 and then, for all M ∈ N, xM

δ is the unique element in X satisfying:

∀x ∈ X , (AxM
δ , Ax)Y + δb(xM

δ ,x) = (y, Ax)Y + δb(xM−1
δ ,x).
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Results from [9] then guarantees, using Proposition 3.1, that

lim
M→+∞

xM
δ = (E,F ).

As it has been observed in [7], the error committed when the solution of the Cauchy problem is
approximated using the quasi-reversibility method is lower in the interior of the domain V than on
the nonaccessible boundary Γ1. Then, in view of solving our inverse problem, it seems interesting
to not complete the data on the whole boundary Γ, which requires to use the reconstructed field on
Γ1. Instead, we introduce an artificial boundary inside V, Γint := ∂U , where U is a open set such
that U ∩ V ≠ ∅, as illustrated in Figure 1. The quasi-reversibility method allows us to transmit
the partial data from Γ0 to Γint: then, we can consider that we have total data on the boundary
of the subdomain U .

Γ 0

Γ
intV

U

Figure 1: Example of possible configuration for the domain Ω. The accessible part of the boundary
Γ0 is shown as thick parts on ∂Ω. The support of the perturbation is here composed of three parts,
delimited by dotted lines. This support does not touch V, the tubular neighborhood where κ is
assumed to be known, represented here by the part filled with vertical lines. Finally, Γint is an
artificial boundary included in V, delimiting the subdomain U represented by the gray part.

Remark 3.2. When using the iterated quasi-reversibility method to approximate the solu-
tion of the rewritten Cauchy problem (4), one can observe that the error can be too important
to be neglected in high-frequency regimes. One possible workaround, if κ0 is constant over
V, consists in considering F = 1

k
√
κ0

curlE instead of simply F = curlE. This yields the
system 

curlF − k
√
κ0E = 0, in V,

curlE − k
√
κ0F = 0, in V,

E × n = gD, on Γ0,

F × n =
1

k
√
κ0

gN , on Γ0,

offering a better precision.

4. Iterated sensitivity equation

From now on, for any admissible refractive index κ, we denote by E[κ] the solution of the direct
problem {

curl curlE[κ]− k2κE[κ] = 0, in Ω,

curlE[κ]× n = gN , on Γ,
(5)
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where gN is the Neumann trace of a given incident wave. In the rest of this paper, we adopt the
following notation: for any couple (a, b) ∈ (R+)2,

a ≲ b ⇐⇒ (∃C > 0/a ≤ Cb).

Proposition 4.1. Let F ∈ L2(Ω)p and g ∈ Y (Γ)′. The variational formulation of the
problem {

curl curlE − k2κE = F , in Ω,

curlE × n = g, on Γ,

reads {
Find E ∈ H(curl) such that

(curlE, curlϕ)− k2(κE,ϕ) = (F ,ϕ) + ⟨g,ϕT ⟩Γ, ∀ϕ ∈ H(curl),

where (·, ·) denotes the dot product in L2(Ω)p, ⟨·, ·⟩Γ denotes the duality bracket from Y (Γ)′

to Y (Γ) and ϕT is the continuous extension of the map ϕ 7→ n× (ϕ× n). This variational
problem admits a unique solution E ∈ H(curl), depending continuously on F and g:

∥E∥H(curl) ≲ ∥F ∥0 + ∥g∥Y (Γ)′ ,

where ∥ · ∥0 denotes the L2(Ω)p-norm.

Remark 4.2. Under the assumptions described in Definition 2.1, one can prove that the
sesquilinear form involved in the variational formulation is coercive (see for example [12] or
[15, Remark 1.6]), hence the result. It is possible to consider weaker assumptions on the
refractive index, allowing for example the conductivity to be zero on some parts of Ω (as
long as it is not zero everywhere), as shown in [20]. To remain as simple as possible in the
statement of Theorem 4.3 which follows, we chose to not consider such setting.

We recall here that we are looking for an unknown refractive index which is assumed to be
a perturbation of a known background index κ0. We will see later that the idea of the inverse
procedure we propose in this paper is to separate the informations from the support and amplitude
of the perturbations. In this section, we then temporarily fix the support D of this perturbation
and then only its amplitude, a ∈ R, is allowed to vary. We will then denote κa the refractive index:

κa := κ0(1 + aχD),

where χD is the characteristic function of D, for any a ∈ R such that κa is still an admissible
refractive index. The goal of this section is to provide a tool to study small variations around this
amplitude. For any given real number h, we then introduce the perturbed refractive index

κa+h := κ0(1 + (a+ h)χD) = κa + hκ0χD.

To study these small variations, we introduce the application mapping an amplitude a of pertur-
bation to the corresponding electric field E[κa], solution of (5):

K : R → H(curl)

a 7→ E[κa].

Theorem 4.3. Let I ⊂ R be an open interval such that κa is admissible for all a ∈ I. Then
K ∈ C∞(I;H(curl)). Moreover, if we denote, for any a ∈ I and n ∈ N, E(n)

a := K(n)(a) the
n-th derivative of K at point a, then E

(0)
a = E[κa] and, for all n ∈ N∗, E(n)

a is the unique
solution of the iterated sensitivity equation:{

Find E(n)
a ∈ H(curl) such that

(curlE(n)
a , curlϕ)− k2(κaE

(n)
a ,ϕ) = nk2(κ0χDE(n−1)

a ,ϕ), ∀ϕ ∈ H(curl).
(S)
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Proof. Let a ∈ I. As I is an open interval, there exists h0 > 0 such that a + h ∈ I for all
h ∈ ]−h0, h0[. In the following, h will always be assumed to belong in this interval. We will prove
by induction on n ∈ N∗ that:

∥E(n−1)
a+h −E(n−1)

a ∥H(curl) ≲ |h|, ∥E(n−1)
a+h ∥H(curl) ≲ ∥gN∥Γ, ∥Ẽ(n)

a −E(n)
a ∥H(curl) ≲ |h|, (Hn)

where:

∀n ∈ N∗, Ẽ(n)
a :=

E
(n−1)
a+h −E

(n−1)
a

h
.

Let begin with the case n = 1. As E(0)
a = E[κa] is the weak solution of problem (5), it satisfies

(according to Proposition 4.1):

(curlE(0)
a , curlϕ)− k2(κaE

(0)
a ,ϕ) = ⟨gN ,ϕT ⟩Γ, ∀ϕ ∈ H(curl). (6)

We can as well write the variational problem satisfied by E
(0)
a+h:

(curlE
(0)
a+h, curlϕ)− k2(κa+hE

(0)
a+h,ϕ) = ⟨gN ,ϕT ⟩Γ, ∀ϕ ∈ H(curl),

from which we can directly infer, as a consequence of Proposition 4.1, that ∥E(0)
a+h∥H(curl) ≲ ∥gN∥Γ.

We rewrite this problem using the identity κa+h = κa + hκ0χD:

(curlE
(0)
a+h, curlϕ)− k2(κaE

(0)
a+h,ϕ) = ⟨gN ,ϕT ⟩Γ + k2h(κ0χDE

(0)
a+h,ϕ), ∀ϕ ∈ H(curl). (7)

Computing the difference between (7) and (6) yields:

(curl(E
(0)
a+h−E(0)

a ), curlϕ)−k2(κa(E
(0)
a+h−E(0)

a ),ϕ) = k2h(κ0χDE
(0)
a+h,ϕ), ∀ϕ ∈ H(curl). (8)

From (8) and Proposition 4.1, we obtain:

∥E(0)
a+h −E(0)

a ∥H(curl) ≲ k2|h|∥κ0χDE
(0)
a+h∥0 ≲ |h|∥E(0)

a+h∥H(curl) ≲ |h|,

which, in particular, shows that K is continuous at point a. Now, from the definition of Ẽ
(1)
a ,

using (8) and computing the difference with (S) at rank n = 1, we get:

(curl(Ẽ(1)
a −E(1)

a ), curlϕ)−k2(κa(Ẽ
(1)
a −E(1)

a ),ϕ) = k2(κ0χD(E
(0)
a+h−E(0)

a ),ϕ), ∀ϕ ∈ H(curl),

from which, once again using Proposition 4.1, we get:

∥Ẽ(1)
a −E(1)

a ∥H(curl) ≲ ∥E(0)
a+h −E(0)

a ∥H(curl) ≲ |h|.

This shows that
lim
h→0

K(a+ h)−K(a)

h
= E(1)

a

in H(curl).
Now, let n ∈ N∗ be such that (Hn) is true. We will show that K(n) is still continuous and

differentiable at point a. To this end, let us write the variational problems satisfied by E
(n)
a and

E
(n)
a+h:

(curlE(n)
a , curlϕ)− k2(κaE

(n)
a ,ϕ) = nk2(κ0χDE(n−1)

a ,ϕ), ∀ϕ ∈ H(curl),

(curlE
(n)
a+h, curlϕ)− k2(κa+hE

(n)
a+h,ϕ) = nk2(κ0χDE

(n−1)
a+h ,ϕ), ∀ϕ ∈ H(curl).

In particular, this gives:

∥E(n)
a+h∥H(curl) ≲ ∥E(n−1)

a+h ∥H(curl) ≲ ∥gN∥Γ,

8



using Proposition 4.1 and (Hn). As in the case n = 1, we use the identity κa+h = κa + hκ0χD to
get:

(curl(E
(n)
a+h −E(n)

a ), curlϕ)− k2(κa(E
(n)
a+h −E(n)

a ),ϕ)

= nk2(κ0χD(E
(n−1)
a+h −E(n−1)

a ),ϕ) + k2h(κ0χDE
(n)
a+h,ϕ), ∀ϕ ∈ H(curl).

Then, using (Hn):

∥E(n)
a+h −E(n)

a ∥H(curl) ≲ ∥E(n−1)
a+h −E(n−1)

a ∥H(curl) + |h|∥E(n)
a+h∥H(curl) ≲ |h|,

and then K(n) is continuous at point a. Using the definition of Ẽ(n+1)
a and (S) written at rank

n+ 1, we get:

(curl(Ẽ(n+1)
a −E(n+1)

a ), curlϕ)− k2(κa(Ẽ
(n+1)
a −E(n+1)

a ),ϕ)

= nk2(κ0χD(Ẽ(n)
a −E(n)

a ),ϕ) + k2(κ0χD(E
(n)
a+h −E(n)

a ),ϕ), ∀ϕ ∈ H(curl).

Then, as usual, we use Proposition 4.1 and (Hn) to obtain

∥Ẽ(n+1)
a −E(n+1)

a ∥H(curl) ≲ |h|,

which concludes the proof. ■

As we are interested in the tangential trace of the electric field, it is natural to also define the
application mapping the amplitude of the perturbation to the trace of the corresponding field:

Kt : R → Y (Γ)

a 7→ γt(E[κa]).

The following result is a direct consequence of Theorem 4.3 and of the fact that γt is linear and
continuous from H(curl) to Y (Γ).

Corollary 4.4. Let I ⊂ R be an open interval such that κa is admissible for all a ∈ I. Then
Kt ∈ C∞(I;Y (Γ)). Moreover, for any a ∈ I and n ∈ N, we have K

(n)
t (a) = γt ◦K(n)(a).

5. A linearized cost functional

We recall that our goal in this paper is to reconstruct a refractive index κex. When Ω is illuminated
by a wave of trace gN , the electric field E[κex] propagating inside Ω is solution of problem (5).
In the context of our inverse problem, E[κex] is unknown in Ω. Instead, we have access to its
tangential trace E[κex] × n on Γ0, the accessible part of the boundary. To solve this inverse
problem, a natural approach is to find κ minimizing the cost functional

J : κ 7→ 1

2
∥E[κex]× n−E[κ]× n∥2Γ0

,

measuring the distance between the measurements and the predictions of the direct problem.
Unfortunately, trying to minimize J without any regularization leads to poor results (see for
example [15, Section 6.3]). To regularize this functional, we will first recall that we are assuming
that κex is a perturbation of a known background refractive index κ0. The only hypothesis about
the support of the perturbation is that it is contained outside a given tubular neighborhood of the
domain’s boundary. Then, the support of this perturbation, denoted Dex, is unknown, as well as
its amplitude aex ∈ R. With these notations, we have:

κex = κ0(1 + aexχDex).

Our goal is then to retrieve aex and Dex, which is then equivalent to the reconstruction of κex.
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The applications K and Kt defined in Section 4 can actually be defined for any support of
perturbation D. To highlight this dependency, we rename them to KD and KD,t: each choice of
support defines a new couple of applications. This notation allows us to define a first regularization
of J where we are explicitly looking for a perturbation of κ0:

Jr : (D, a) 7→ 1

2
∥E[κex]× n−KD,t(a)∥2Γ0

.

This naturally regularizes the cost functional by reducing the size of the set of allowed refractive
indices. However, evaluating Jr still requires solving problem (5), each time with a different
refractive index. This means that, each time we evaluate Jr numerically, we have a new matrix
to invert, which can lead to high computational cost and time. We propose here a way to work
around this issue by assuming that the amplitude of the perturbation is such that |a| < 1. Then,
we can use Corollary 4.4. For any fixed support D, as KD,t is C∞, it admits a Taylor expansion
at any order N ∈ N:

KD,t(a) =

N∑
n=0

an

n!
K

(n)
D,t(0) + o(aN ).

It is then possible to choose N ∈ N∗ large enough so that o(aN ) can be neglected and:

KD,t(a) ≈ KD,t(0) +

N∑
n=1

an

n!
K

(n)
D,t(0).

The idea is then simply to replace the term KD,t(a) in the expression of Jr by this truncated
expansion:

J : (D, a) 7→ 1

2

∥∥∥∥∥E[κex]× n−E[κ0]× n−
N∑

n=1

an

n!
K

(n)
D,t(0)

∥∥∥∥∥
2

Γ0

.

As the background refractive index κ0 is assumed to be known, E[κ0] can always be computed
and we can equivalently say that our entry data in our inverse problem is δE × n := E[κex] ×
n −E[κ0] × n. One can notice that the system required to be solved to compute the derivatives
K

(n)
D,t(0), for n ∈ N∗ is the same as the one for E[κ0], that is problem (5) with the background

refractive index κ0, for any support D or amplitude a. It is then faster to evaluate numerically J
than Jr, as long as a factorization (e.g. an LU decomposition) of the matrix is stored.

6. Numerical results

6.1. A complete inversion procedure
In this section, we test the reconstruction of a refractive index κex in different configurations. We
assume that κex is a perturbation of a known background refractive index κ0. In the first tests,
the support of the perturbation Dex is assumed to be a ball contained in Ω \ V̄ where V will be a
given tubular neighborhood of Γ. The amplitude of the perturbation is a real constant aex. With
these notations, we are then looking for Dex and aex such that:

κex = κ0(1 + aexχDex).

When the support of the perturbation is assumed to be a ball, it is determined by two parameters:
its center, denoted xex and its radius, denoted rex.

The data is generated by solving problem (5) with refractive index κex, and with g being the
Neumann trace of a plane wave Eη of direction η ∈ Rp (unitary):

Eη : x 7→ η⊥eik
√
κ0η·x,

where η⊥ ∈ Rp is a unitary vector orthogonal to η. Once the electric field E[κex] is generated,
its tangential trace E[κex] × n is computed on a given part Γ0 of the boundary. The entry data
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for the inverse procedure is the collection of the tangential traces obtained from plane waves of
different directions η.

As a first step, we transmit these partial data to a boundary Γint defined inside V, using
the iterated quasi-reversibility method described in Section 3. More precisely, we transmit the
difference field to get an approximation of (E[κex]−E[κ0])|Γint

×n, used in the rest of the algorithm
to reconstruct the perturbation.

In order to reduce the number of unknowns, we use a result from [8]: for z ∈ Γint, the quantity
|((E[κex]−E[κ0])×n)(z)| decreases as the distance between z and xex increases. In other words,
this modulus is controled by a surface peak that can be localized to obtain an approximation of
x̂ex, the projection of xex on Γint. Denoting n̂ the normal at this point, we then have:

xex = x̂ex − dexn̂,

where dex > 0 is the depth of the perturbation.
Having an approximation of x̂ex allows to reduce the number of parameters to retrieve to

three scalars: the depth of the perturbation, its radius, and its amplitude. For d > 0, we note
x(d) = x̂ − dn̂. Let’s denote D(d, r) the ball centered at x(d) and of radius r. As a final step of
the algorithm, we will then minimize the functional

j : (d, r, a) 7→ J(D(d, r), a).

In all tests, we minimize in two steps. Let us introduce the functional

j̃ : (d, r) 7→ min
a

j(d, r, a).

In other words, for a given support of perturbation, we are looking for the optimal amplitude, that
is the amplitude allowing us to best approach the boundary data. As the parameters d and r are
fixed, the functional j(d, r, ·) is a simple function from R to R and can then be minimized using
classical methods. Here, we chose to use a golden section method [17]. To minimize the functional
j̃ which is defined from R2 to R, we chose to apply Powell’s method [22].

All PDEs are solved with FreeFem++ [14], using edge finite elements of order 1 (see [21]). The
meshes are generated with Gmsh [10]. All examples can be reproduced using the code available in
the dedicated Git repository [16].

6.2. Unit disk
We begin with a simple case, in two dimensions (p = 2). Here, Ω is the unit disk. The tubular
neighborhood V where it is assumed that there is no perturbations is the annulus of outer radius
1 and of inner radius 0.7. The accessible part of the boundary, Γ0, is the union of 32 patches
equally distributed on Γ. We add an artificial boundary Γint inside V where the partial data will
be transmitted: it is chosen as the circle centered at the origin and of radius 0.8. Then, U is the
disk centered at the origin and of radius 0.8. The perturbation that we will want to retrieve is
located in the disk centered at point (−0.4, 0) and of radius 0.2. This configuration is illustrated
in Figure 2.

We fix the physical constants ω, µ0 and ε0 to 1. The background permittivity and conductivity
are also set to 1. Then, the background refractive index is here κ0 := 1 + i. The refractive index
that we will want to retrieve is a perturbation of this background index:

κex := κ0(1 + aexχDex),

where the support Dex is the disk centered at xex := (−0.4, 0) and of radius rex := 0.2, and
aex := 0.1 is the amplitude. We find that the exact projection of the perturbation on Γint is
x̂ex = (−0.8, 0). Then, the exact depth is dex = 0.4.

The synthetic data are generated on a mesh of the unit disk Ω of size 1.37998 · 10−20.0137998,
using 74 525 triangles (37 584 vertices and 112 108 edges). We use eight incident waves, of directions
ηm := (cos θm, sin θm) with θm := 2πm

8 for 0 ≤ m ≤ 7. The data transmission problem is solved
on a mesh of the known neighborhood V of size 2.00013 · 10−20.0200013, using 18 190 triangles
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Γint

V

D

Figure 2: Configuration of the domain Ω for the first numerical test. The thicker parts on the
boundary is Γ0. The artificial boundary is the dashed line, while the dotted line represents the
boundary of the support of the perturbation.

(9466 vertices and 27 656 edges). The cost function j is minimized on a mesh of the unit disk of
size 4.08549 · 10−20.0408549, using 8691 triangles (4459 vertices and 13 149 edges). In Table 1, we
summarize the results obtained in this configuration. The reconstructed refractive index is shown
in Figure 3.

Parameter Exact value Approximation Relative error
Center (−0.4, 0) (−0.37236, 0.00482) 7.01355 · 10−2

Radius 0.2 0.21157 5.78467 · 10−2

Amplitude 0.1 0.09143 8.57238 · 10−2

Table 1: Reconstruction of a spherical perturbation in the unit disk in 2D, with unitary physical
parameters.

6.3. Influence of the amplitude
To determine the influence of the choice of amplitude over the results, we propose to test the same
configuration as described in the previous section, but with different values of exact amplitude.
We vary here the amplitude by taking values between −0.3 and 0.3, with a step of 0.05, excluding
zero. It is interesting to notice that the reconstruction of the support does not seem to be affected
by the choice of amplitude. Indeed, the mean value of the reconstructed depths is 0.42782, with
a standard variation of 0.00037, and the mean value of the reconstructed radii is 0.21328, with a
standard variation of 0.00177. In Table 2, we list the values of the reconstructed amplitude for
each case. We can observe that the error is always of same order: the mean value for this error
is 9.45%, with a standard variation of 1.14%. An interesting detail to notice is that the difference
a− aex is always of sign opposite to the sign of the exact amplitude. In other words, the absolute
value of the amplitude is always under-estimated.

6.4. 3D case
We now propose a 3D equivalent of the previous case. The domain Ω is the unit ball. The known
neighborhood V is the annulus of outer radius 1 and inner radius 0.8. The accessible part Γ0 is the
union of 102 patches distributed on the whole boundary Γ. This is illustrated in Figure 4. Inside
V, we define the artificial boundary Γint as the sphere centered at the origin and of radius 0.9. The
perturbation is located in the ball centered at point (−0.4, 0, 0) and of radius 0.2.
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Figure 3: Real part of the reconstructed refractive index in the unit disk. The boundary of the
exact support of the perturbation is shown as a white line.

aex a a− aex
|a−aex|
|aex|

−0.30 −0.26952 0.03048 10.15936%
−0.25 −0.22748 0.02252 9.00868%
−0.20 −0.18193 0.01807 9.03563%
−0.15 −0.13500 0.01500 10.00114%
−0.10 −0.09257 0.00743 7.43232%
−0.05 −0.04519 0.00481 9.61981%
0.05 0.04446 −0.00554 11.08609%
0.10 0.09143 −0.00857 8.57175%
0.15 0.13252 −0.01748 11.65165%
0.20 0.18244 −0.01756 8.77901%
0.25 0.22534 −0.02466 9.86586%
0.30 0.27537 −0.02463 8.21076%

Table 2: Behavior of the reconstructed amplitude a with respect to the exact amplitude aex.

As in the 2D case, the physical constants are all fixed to 1, leading to a background refractive
index equal to κ0 = 1 + i. The amplitude of the perturbation is given by aex := 0.2.

Data are generated on a mesh of the unit ball Ω of size 7.95939 · 10−20.0795939, using 480 175
tetrahedrons (83 619 vertices and 577 278 edges). We use six incident waves of directions

η ∈ {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}.

The data transmission problem is solved on a mesh of V of size 9.04978 · 10−20.0904978, using
160 156 tetrahedrons (34 520 vertices and 211 511 edges). The cost function j is minimized on a
mesh of the unit ball of size 2.71142 · 10−10.271142, using 28 020 tetrahedrons (5605 vertices and
35 653 edges). Results are summarized in Table 3 and illustrated in Figure 5.

Parameter Exact value Approximation Relative error
Center (−0.4, 0, 0) (−0.35166, −0.03888, −0.02515) 1.67349 · 10−1

Radius 0.2 0.19326 3.37106 · 10−2

Amplitude 0.2 0.21760 8.79817 · 10−2

Table 3: Reconstruction of a spherical perturbation in the unit ball in 3D, with unitary physical
parameters.
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Figure 4: Configuration of the domain Ω in 3D. The accessible part Γ0 is represented by the patches
on the sphere.

Figure 5: Real part of the reconstructed refractive index in the 3D unit ball. The boundary of the
exact support of the perturbation is shown as a white line.

6.5. Microwave regime
Coming back to a two-dimensional setting, we now propose a slightly more complicated geometry.
Here, the domain Ω represents a head profile. The known neighborhood V is the region between
the boundary of Ω and an ellipse, and we choose a bigger ellipse to represent the artificial boundary
Γint. The accessible part of the boundary is the union of 34 patches. The perturbation will be
located in the disk centered at (0.05, 0.4) and of radius 0.1. This configuration is illustrated in
Figure 6.

We use here the common definitions of the physical constants. The permittivity in vacuum
is then set to ε0 := 8.854 · 10−12 F · m−1 and the magnetic permeability of the vacuum is set to
µ0 := 4π · 10−7 H · m−1. We choose a frequency in the microwave regime, that is ω := 108 Hz.
The background permittivity of the medium is fixed to ε := 10−10 F · m−1 and its background
conductivity is fixed to σ := 0.33 S · m−1. This yields κ0 ≈ 1.1294 · 101 + 3.7271 · 102i. As
previously, the exact refractive index is a perturbation of this background index:

κex := κ0(1 + aexχDex),
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Γint

V

D

Figure 6: Configuration of the domain Ω for the head profile. The thicker parts on the boundary
is Γ0. The artificial boundary is the dashed line, while the dotted line represents the boundary of
the support of the perturbation.

with aex := 0.1 and Dex the disk centered at xex := (0.05, 0.4) and of radius rex := 0.1.
Data are generated on a mesh of Ω of size 2.80451 · 10−30.00280451, using 1 396 929 triangles

(700 240 vertices and 2 097 168 edges). We use 16 incident waves, defined in the same way as in
the unit disk case (see Subsection 6.2). A noise is added to the generated data, using the following
procedure. Each degree of freedom of the tangential trace gD of the field is perturbed by the
addition of a random complex number in such a way that

∥gη
D − gD∥0,Γ0

∥gD∥0,Γ0

= η,

where η > 0 is the level of noise and gη
D is the noised trace. In this test, we fix this level of noise to

η = 0.02. The data transmission problem is solved on a mesh of V of size 3.45773 ·10−30.00345773,
using 622 148 triangles (313 135 vertices and 935 283 edges). The minimization is achieved on a
mesh of Ω of size 1.36741 ·10−20.0136741, using 60 194 triangles (30 474 vertices and 90 667 edges).
The retrieved parameters are summarized in Table 4, with corresponding refractive index shown
in Figure 7.

Parameter Exact value Approximation Relative error
Center (0.05, 0.4) (0.05502, 0.38480) 3.97167 · 10−2

Radius 0.1 0.11796 1.79581 · 10−1

Amplitude 0.1 0.07054 2.94557 · 10−1

Table 4: Reconstruction of a spherical perturbation in a head profile in 2D, with realistic physical
parameters in the microwave regime.

6.6. Discussion about the location
In all tested configurations, the minimization of the cost function defined in Section 5 leads to
good results, with a satisfying precision. One can notice that the locations of the reconstructed
perturbations are always deeper than the exact supports. This can actually be explained by the
first step of the procedure, that is the transmission of the boundary data by the quasi-reversibility
method. Indeed, in Table 5, we see the parameters retrieved when we use the exact data as entry
of the minimization step, instead of the transmitted data, in the case of the unit disk in R2 (see
Subsection 6.2). The reconstructed perturbation is shown in Figure 8.

To understand the reason behind this behavior, we compare in Figure 9 the trace of the differ-
ence field (E[κex]−E[κ0])×n on Γint with the trace resulting from the resolution of the transmission
problem. It can be observed that the reconstructed surface peak is well-located. However, it has a
lower amplitude and occupies more space over the surface. As it has been observed in [8], the space
occupied by the surface peak depends on the depth of the perturbation: the deeper a perturbation
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Figure 7: Real part of the reconstructed refractive index in the geometry of a 2D head profile in
microwave regime. The boundary of the exact support of the perturbation is shown as a white
line.

Parameter Exact value Approximation Relative error
Center (−0.4, 0) (−0.39754, 0.00227) 8.35419 · 10−3

Radius 0.2 0.20301 1.50750 · 10−2

Amplitude 0.1 0.09822 1.77511 · 10−2

Table 5: Reconstruction of a spherical perturbation in the unit disk in 2D, with unitary physical
parameters. The transmission step is skipped and exact data are used.

is, the larger will be the surface peak. As the reconstructed surface peak is larger than the exact
one, it is then natural to reconstruct deeper perturbations at the end. It is not clear currently
whether or not it is possible to predict the deformation of the peak due to the transmission step
in order to correct it and obtain more precise results.

6.7. More complex perturbations

6.7.1. Approximation by a ball

In the previous test cases, the algorithm is looking for a perturbation of constant amplitude con-
tained in a single ball. One can wonder what it finds out with data generated from perturbations
that do not satisfy these assumptions. In Figure 10, we show the results of the complete inversion
procedure in such cases, using the same global configuration as in the unit disk case shown in
Subsection 6.2. In the first test, the amplitude of the perturbation is still constant and equal to
0.1, but the support has a shape of a star instead of a ball. In the second test, we go back to a
disk, but the amplitude is not constant: it is set to

amaxe
− r2c

1−r2c ,

where amax := 0.1 is the maximum amplitude and rc is the distance of the current point to the
center of the disk, divided by the radius of the disk. Then, κ ∈ C∞(Ω), equal to κ0 outside of the
perturbation and to κ0(1 + amax) on the center of the perturbation.

In both cases, the reconstructed perturbation is deeper than the exact support, following the
same behavior discussed in the previous section. In the case of the star-shaped perturbation, the
algorithm finds an amplitude equal to 0.09084 instead of 0.1. As the procedure is looking for a
constant amplitude, it does not retrieve the variations of the second case: it finds an amplitude
equal to 0.06311. It is interesting that, in both cases, the procedure provides a rough idea of
the perturbation, which could serve as a good initial guess for an algorithm looking for more
parameters.
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Figure 8: Real part of the reconstructed refractive index in the unit disk with exact data on the
whole boundary. The boundary of the exact support of the perturbation is shown as a white line.

6.7.2. Ellipsoids

As a first step to handle more complex shapes, we propose to reconstruct ellipsoids, in 2D and
3D configurations. Except for the shape of the perturbation’s support, the settings are the ones
described in Subsection 6.2 and Subsection 6.4. The results of the complete inversion procedure are
listed in Table 6 for the 2D case, and in Table 7 for the 3D case. They are illustrated in Figure 11.

Parameter Exact value Approximation Relative error
Center (−0.4, 0) (−0.39182, 0.00187) 2.09871 · 10−2

x-radius 0.15 0.13962 6.91861 · 10−2

y-radius 0.25 0.26395 5.58086 · 10−2

Amplitude 0.1 0.10096 9.63128 · 10−3

Table 6: Reconstruction of an ellipsoidal perturbation in the unit disk in 2D, with unitary physical
parameters.

Parameter Exact value Approximation Relative error
Center (−0.4, 0, 0) (−0.35245, −0.04526, −0.02455) 1.75205 · 10−1

x-radius 0.2 0.19363 3.18313 · 10−2

y-radius 0.4 0.34730 1.31745 · 10−1

z-radius 0.3 0.28110 6.30023 · 10−2

Amplitude 0.2 0.24738 2.36877 · 10−1

Table 7: Reconstruction of an ellipsoidal perturbation in the unit ball in 3D, with unitary physical
parameters.

6.7.3. Multiple parts

In the previous test cases, the support of the perturbation is always composed of a single connected
component. When it is not the case, as it has been proved in [8], each component will generate its
own surface peak. This behavior allows us to automatically detect when there are several connected
components, without having to a priori know their numbers. Then, in the localization step, each
peak leads to an approximation of the projection of the corresponding component’s center on Γint.
The idea is then to minimize

j̃ : (d1, . . . , dP , r1, . . . , rP ) 7→ min
a

J

(
P⋃
i=1

D(di, ri), a

)
,
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Figure 9: Comparison of the exact tangential trace of the difference field (E[κex] − E[κ0]) × n
on Γint and its approximation by the quasi-reversibility method. The circle Γint is unfolded: the
x-axis shows the angle of a point while y-axis shows the value of the modulus of the trace at this
point.

where P ∈ N∗ is the number of peaks that have been found. Once again, we consider a test case
in the unit disk and another one in the unit ball. The results of the 2D case are listed in Table 8
and the ones for the 3D case are listed in Table 9. Both are illustrated in Figure 12.

Parameter Exact value Approximation Relative error
Center 1 (−0.55, −0.45) (−0.53157, −0.43996) 2.95271 · 10−2

Radius 1 0.1 0.12189 2.18877 · 10−1

Center 2 (0.4, 0.6) (0.38488, 0.58559) 2.89726 · 10−2

Radius 2 0.07 0.08498 2.14044 · 10−1

Amplitude 0.1 0.06953 3.04699 · 10−1

Table 8: Reconstruction of a perturbation having two connected components in the unit disk in
2D, with unitary physical parameters.

Parameter Exact value Approximation Relative error
Center 1 (−0.5, 0, 0) (−0.42968, −0.03325, −0.02998) 1.66729 · 10−1

Radius 1 0.2 0.18773 6.13715 · 10−2

Center 2 (0, 0, 0.6) (−0.03367, 0.01041, 0.50099) 1.75165 · 10−1

Radius 2 0.1 0.09801 1.98898 · 10−2

Amplitude 0.2 0.24617 2.30842 · 10−1

Table 9: Reconstruction of a perturbation having two connected components in the unit ball in
3D, with unitary physical parameters.

6.7.4. Other shapes

We propose here a simple idea to explore the case of more complex shapes. The first step is to
apply the inverse procedure to get a ball whose center is denoted (x0, y0) and radius is denoted
r0. Then, we slightly deform the boundary of this ball. To this end, in 2D, we parametrize this
boundary:

x(θ) = x0 + (r0 + r(θ)) cos θ, y(θ) = y0 + (r0 + r(θ)) sin θ, with θ ∈ [0, 2π[,
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Figure 10: Reconstruction of more complex perturbations in the unit disk in 2D. Top pictures:
star-shaped perturbation with constant amplitude. Bottom pictures: disk-shaped perturbation
with variable amplitude. Left pictures: real part of the exact refractive index. Right pictures:
results of the complete inversion procedures.

Figure 11: Reconstruction of an ellipsoidal perturbation in the unit disk (left picture) and in the
unit ball (right picture).
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Figure 12: Reconstruction of a perturbation composed of two connected components in 2D (left
picture) and in 3D (right picture).

where r describes the local perturbation of the radius. The goal is then to reconstruct this function.
For that, we chose to approximate its decomposition into a Fourier series:

r ≈
Nr∑
n=1

(an cos(n·) + bn sin(n·)),

with Nr ∈ N∗ the number of pairs of coefficients ((an, bn))
Nr
n=1 to consider in the truncation. We

obtain the following cost function to minimize:

j̃Nr
: (d, r0, a1, . . . , aNr

, b1, . . . , bNr
) 7→ min

a
J(D(d, r0, a1, . . . , aNr

, b1, . . . , bNr
), a),

where D(d, r0, a1, . . . , aNr
, b1, . . . , bNr

) is the currently tested support, with boundary described as
above. The idea is to minimize j̃Nr

using the previously found disk as an initial guess, with Nr

incrementally increased until no significant change is observed in the value of the cost function.
The test case is the star-shaped perturbation shown in Figure 10. Two configurations are

considered: one with total data, where the data completion step is skipped, and one with partial
data, using the complete inversion procedure. We obtain the reconstructions shown in Figure 13.

While the reconstructed perturbation is close to the exact one in the case of total data, the case
of partial data is less satisfying: the location is reasonable, but the shape is not fully recovered.
When used in the direct solver, this perturbation leads to a tangential trace that is very close to
the one we provide in the minimization, as illustrated in Figure 14. Hence, it seems that the issue
comes from the data completion step that certainly deforms the shape of the perturbation.

It has to be noted that the initial minimization, where the goal is to approximate the support
by a ball, should not be ommitted. As an example, we provide Figure 15 where the cost function
is minimized with the exact same setting as for the partial data case in Figure 13, except that it
is not initialized with the disk approximation.

7. Concluding remarks

Using the iterated sensitivity equation, we were able to regularize the classical cost functional used
to solve the inverse problem we are interested in. The complete inversion procedure provides good
results when it comes to the reconstruction of a perturbation from the knowledge of partial surface
measurements, even in cases where the shape or amplitude of the perturbation is not what the
algorithm is expecting.

In addition to the regularization it provides, the use of an asymptotic expansion is also inter-
esting from a numerical point of view: using a direct solver, the evaluation of this cost functional is
faster than the evaluation of the classical one, as it is always the same linear system that needs to
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Figure 13: Reconstruction of a star-shaped perturbation, using total data on top figures and partial
data on bottom figure. Left: approximation by a disk. Right: final result.

be inverted. The same remark applies to the use of the iterated quasi-reversibility: all iterations,
for all incident waves, share the same linear system. The limitations of using direct solvers are
however well known. In particular, it prevents the use of fine meshes, especially in 3D.

The examples of reconstruction of shape parameters led to promising results, especially in the
case of total data. If one would like to capture more complex geometries in this case, it would be
better to study other approaches, for instance involving shape derivatives. The case of partial data
is more delicate: as observed in Figure 9, some informations are lost. A study of the (iterated)
quasi-reversibility method is needed to better understand what happens exactly, and to determine
whether it is possible or not to counter this effect.
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