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Abstract 
 

Corrosion occurring in subsurface nuclear waste repositories yields the production of dihydrogen (H2), 
the possible accumulation of which being a major security concern. The development of accurate and 
theoretically assessed mathematical and numerical models is therefore a priority to quantify the in situ 
production of H2 along large time scales. Despite important efforts of the mathematical community during 
the last 15 years, there is so far no satisfactory mathematical framework for the so-called Diffusion 
Poisson Coupled Model (DPCM) proposed by Bataillon and collaborators (Bataillon et al., 2012, 2010). 
This model describes the evolution of the oxide layer covering the metal by taking into account the 
oxidation of the metal, the transfer within the oxide layer of the charge carriers driven by some self-
consistent electric potential, and the dissolution of the oxide at the interface with some aqueous solution.  

The main reason for the aforementioned gap in the theory is that no thermodynamic potential, serving 
as a Lyapunov functional, has been shown to be dissipated along time, in accordance to the second 
principle of thermodynamics. Assuming pressure and temperature to be constant, Gibbs free energy is 
indeed expected to decay, up to some exchange with the surrounding metal and solution. We propose 
an update of the DPCM model which fulfils some variant of Onsager's reciprocal relation, ensuring 
therefore the compatibility of the model with the second principle of thermodynamics.  

The main differences with the original DPCM model are the following: (i) the transport of ferric cations 
and oxygen vacancies in the oxide are driven by a vacancy diffusion process with a nonlinear mobility 
including a saturation effect; (ii) the motion of the interfaces is driven by the difference of grand potential 
(or Landau free energy) density rather than by a difference of chemical potential as in the original DPCM; 
(iii) a correction in the charge carrier fluxes is incorporated to take the volume expansion stemming from 
the iron oxidation into account; (iv) an update of the boundary condition for the electrons between the 
oxide and the metal.   
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Significance Statement 
Corrosion occurring in subsurface nuclear waste repositories yields the production of dihydrogen (H2), 
the possible accumulation of which being a major security concern. The development of accurate and 
theoretically assessed mathematical and numerical models is therefore a priority to quantify the in situ 
production of H2 along large time scales. Despite important efforts of the mathematical community during 
the last 15 years, there is so far no satisfactory mathematical framework for the so-called Diffusion 
Poisson Coupled Model (DPCM) proposed by Bataillon and collaborators (Bataillon et al., 2012, 2010). 
This model describes the evolution of the oxide layer covering the metal by taking into account the 
oxidation of the metal, the transfer within the oxide layer of the charge carriers driven by some self-
consistent electric potential, and the dissolution of the oxide at the interface with some aqueous solution.  

The main reason for the aforementioned gap in the theory is that no thermodynamic potential, serving 
as a Lyapunov functional, has been shown to be dissipated along time, in accordance to the second 
principle of thermodynamics. Assuming pressure and temperature to be constant, Gibbs free energy is 
indeed expected to decay, up to some exchange with the surrounding metal and solution. We propose 
an update of the DPCM model which fulfils some variant of Onsager's reciprocal relation, ensuring 
therefore the compatibility of the model with the second principle of thermodynamics.  

The advantage of having some stability encoded by the second principle of thermodynamics is manyfold. 
First, this stability property is essential to establish the well-posedness of the system of partial differential 
equations (PDEs) derived along the modelling process for arbitrary large time. It also paves the way to 
the design of stable numerical methods that remain accurate even for large time horizons.   
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1. Modelling corrosion for nuclear waste repository safety 

1.1 General context and motivation  
The strategy of the French agency for radioactive waste management (ANDRA) for the long term 
storage of long life and high activity nuclear wastes relies on the subsurface storage in deep geological 
layers. Galleries dug in a clay geological layer should host iron canisters containing vitrified wastes. 
Assessing the security of the whole system on large time periods – up to millennials – is a challenge 
involving a large scientific community gathering researchers and engineers.  

In such a scenario, the corrosion of the iron canisters will lead to the generation of dihydrogen (H2), the 
accumulation of which being a source of explosion risk. The precise quantification of the H2 source over 
long time period is therefore a scientific priority. It is the motivation to the work reported here, that was 
carried out in the framework of our research project supported by the EURAD program.  

1.2 State of the art and scientific positioning 
There has been an important effort by ANDRA to develop a model and a numerical tool to simulate in 
an accurate way the evolution of the magnetite layer protecting the iron canister to be stored in 
geological repositories. The code CALIPSO, the main developer of which being Christian Bataillon, is 
currently the reference code for the simulation of the complex model – referred to in the literature as 
DPCM for diffusion coupled Poisson model – described in (Bataillon et al., 2012, 2010).  

The continuous model addressed here consists in one-dimensional convection diffusion equations for 
the charge carriers coupled with a self-consistent electric potential governed by a Poisson equation. 
Non-trivial boundary conditions across the interfaces strengthen the coupling. Moreover, the geometry 
of the oxide layer evolves along time due to the oxidation of the model and to the dissolution of the oxide 
(see section 2.1 for a similar construction).  

From a numerical point of view, the method (Bataillon et al., 2012) implemented in CALIPSO relies on 
finite volumes for the space discretization, and on a fully coupled backward Euler scheme for the time 
discretization. A similar strategy is adopted in our work.  

Even though CALIPSO gives good results and looks to be stable, only very few elements of 
mathematical analysis have been provided so far. Let us mention for instance (Chainais-Hillairet and 
Lacroix-Violet, 2014, 2012) where solutions to a reduced model with fixed interface are studied in the 
steady and transient case respectively. In the case of a mobile domain, the existence of pseudo-
stationary (or travelling-wave) solution has been studied in (Chainais-Hillairet and Gallouët, 2016) under 
an electric neutrality assumption for the oxide layer, and in (Breden et al., 2021) thanks to a computer 
assisted proof, but for a single set of parameters. The lack in mathematical foundations for the CALIPSO 
code stems from the lack of theoretically proven stability for the DPCM model.  

Whereas the stability of scalar partial differential equations can take many forms, it becomes much more 
complex when it comes to highly coupled systems. In such a case where elementary calculations can 
no longer be carried out, it is now well understood since a few decades that the stability should come 
from the second principle of thermodynamics. Indeed, thermodynamical potentials like the Gibbs free 
energy provide natural candidates as Lyapunov functionals. However, proving such a decay requires a 
very specific structure for the model, which is in general not fulfilled by models built by the apposition of 
physical laws to model distinct phenomena. A global approach to capture off-diagonal effects is needed. 
Furthermore, the boundary conditions and the bulk equations should be set accordingly. The DPCM 
model was not derived in this spirit. Our goal in this project was to update it so that it becomes compatible 
with thermodynamics, in the sense that the free energy decays along time.  
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2. A thermodynamically consistent DPCM model 

2.1 Model description   
In the same spirit as (Bataillon et al., 2012, 2010), we are interested in a one-dimensional model, the 
space variable x being the dimensionless rescaled1 width of the oxide layer made of magnetite (Fe3O4) 
protecting the metal.  In our setting, magnetite is thought of as a one-dimensional lattice made of one 
fixed ferric cation located on a tetrahedral site surrounded by 4 oxygen anions which are allowed to jump 
from one octahedral site to a neighbouring one. Two additional mobile ferric cations Fe3+ occupying 
octahedral sites may jump to available neighbouring sites following a vacancy diffusion process too. We 
also consider the displacement of electrons e- in the conduction band. Rather than the number of oxygen 
anions O2- per elementary oxide pattern, we keep track of the concentration of oxygen vacancies V2+, 
the number of which per elementary pattern being equal to 4 minus the number of oxygen anions. We 
denote by 𝑢!, 𝑢" and 𝑢# the concentration of ferric cations, electrons and oxygen vacancies respectively, 
while 𝑧! = +3, 𝑧" = −1 and 𝑧# = +2 denote their respective (rescaled) charge. We also denote by 𝑢! =
2 and 𝑢# = 4 the maximal number of mobile ferric cations and oxygen vacancies per elementary 
magnetite pattern.  

 

Figure 1 – Schematic representation of the oxide layer 

 

The position of the interface between the oxide and the solution (resp. the metal) is denoted by X0 (resp. 
X1) and is assumed to evolve along time. Therefore, X0 and X1 are unknowns of our problem, as well as 
the self-consistent electrostatic potential Ψ which is deduced from the charge carrier concentrations 
thanks to a Poisson equation (Bataillon et al., 2010).  

More precisely, we set  

−λ" ∂$$Ψ = ρhl +0z'u'
#

'(!

	 in	(X), X!) (1) 

where ρhl = −5 stands for the charge of the host lattice made of one iron atom at the tetrahedral site 
together with 4 oxygens at octahedral sites. The rescaled Debye length is denoted by λ. The above 
Poisson equation is complemented with Robin boundary conditions modelling the interfaces as 
capacitors. More precisely, we set  

−γ) ∂*Ψ;𝑡, 𝑋)(𝑡)> + Ψ;𝑡, 𝑋)(𝑡)> − ΔΨpzc) = 0 (2) 

and  

γ! ∂*Ψ;𝑡, 𝑋!(𝑡)> + Ψ;𝑡, 𝑋!(𝑡)> − V + ΔΨpzc! = 0. (3) 

 
1 The nondimensionalization of the system is not discussed in this contribution. We refer to (Breden et al., 2021) for details on that 

purpose. 
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In the above formula, γ) and γ! are positive parameters involving the capacity of the interfaces and the 
rescaled Debye length, whereas V is the electric potential in the metal (the reference potential in the 
solution is set to 0), and ΔΨpzc)  (resp. ΔΨpzc! ) is the voltage drop due to the charge accumulation in the 
Helmoltz layer at the solution/oxide (resp. oxide/metal) interface, see Figure 2. In what follows, we make 
use of the shorten notation Ψ)  and Ψ! for Ψ;𝑡, 𝑋)(𝑡)> and Ψ;𝑡, 𝑋!(𝑡)> respectively.  

 
Figure 2 – Schematic representation of the self-consistent electric potential in the oxide 

The equations governing the evolution of the electric potential are fully similar to what was proposed in 
(Bataillon et al., 2012, 2010). This is also the case of the equations governing the flux of cations and 
oxygen vacancies across the interfaces, which are prescribed by Butler-Volmer laws. More precisely, at 
the solution/oxide interface, we set  

F') = −k')u')e.!/!
"0"m'

) + (u' − u'))e1.!2!
"0" , 	 i = 1	and	i = 3, (4) 

with 𝑘3) and 𝑚3
) being positive parameters, and α3) and β3) being nonnegative parameters summing to 1. 

Similarly, for the flux of iron atoms through the interface 𝑋!, we have  

F!! = m!
!u!!e.#/#

#40#156k!! − (u! − u!!)e1.#2#
#40#156. (5) 

There is no flux of oxygen atoms through the oxide/metal interface. Translating this fact in terms of flux 
of oxygen vacancies yields the following formula linking the vacancy flux with the interface motion:  

F#! = −𝑢#𝑋!̇. (6) 

Denoting by 𝑎"
7(𝑡) = 𝑎" P𝑢";𝑡, 𝑋7(𝑡)>Q the activity of the electrons at the interface 𝑋7, 𝑝	 ∈ {0,1}, then the 

electronic exchange with the metal writes  

𝐹"! = 𝑚"
! 𝑎"! 𝑒8$/$

#40#196 − 𝑘"! 𝑎"met𝑒18$2$
#40#196, (7) 

with a"met standing for the activity of the electrons in the metal. The aforementioned expression slightly 
differs from the one proposed in (Bataillon et al., 2010), which however suggests to set the parameters 
β"! = 0 and α"! = 1. 

Still in (Bataillon et al., 2010), it is suggested that the flux of electrons between the aqueous domain and 
the oxide has two origins. The ferrous release (FR), which accounts for the reduction of ferric into ferrous 
cations in the solution, is described by the Butler-Volmer type relation  

𝐹"
),FR = 𝑚"

),FR𝑒18$2$
",FR0" − 𝑘"

),FR𝑎") 𝑒8$/$
",FR0" , (8) 

for positive 𝑚"
),FR and 𝑘"

),FR respectively depending on the activity of the ferrous and ferric cations in the 
solution. Besides, proton reduction (PR) also induces a flux of electrons governed by  

𝐹"
),PR = 𝑚"

),PR𝑒18$2$
",PR0" − 𝑘"

),PR𝑎") 𝑒8$/$
",PR0" , (9) 

with 𝑚"
),PR and 𝑘"

),PR respectively depending on the activity of dissolved H2 in the solution and on the pH. 
The electron flux across 𝑋) is then given by  

𝐹") = 𝐹"
),FR + 𝐹"

),PR. (10) 
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Denote by 𝑅PB the Pilling-Bedworth ratio, i.e. the ratio between one elementary cell of oxide over the 
volume occupied by the required number of iron atoms to form such a pattern (3 for the magnetite). In 
our case, this ratio is close to 2 for the magnetite and in particular greater than 1, meaning that the oxide 
has a smaller concentration of iron atoms than the metal. The inertial frame of the oxide then moves 
with velocity  

𝑣ox = (1 − 𝑅PB)𝑋!̇.		 (11) 

The conservation of the species i  ∈ {1,2,3} then writes  

∂E𝑢3 + ∂*  𝐽3 = 0, (12) 

where 𝐽3 denotes the flux of species i in the inertial frame of reference. Owing to (11), it relates to the 
flux 𝐺3 in the inertial frame of the oxide through formula  

𝐽3 = 𝐺3 + 𝑢3𝑣ox. (13) 

The ferric cations and oxygen vacancies bulk fluxes 𝐺3 ,   i ∈ {1,3}, have nonlinear convection and linear 
diffusion 

𝐺3 = −𝑑3(∂*𝑢3 + η3(𝑢3)𝑧3 ∂*Ψ),	 	 η3(𝑢3) =
𝑢3(𝑢3 − 𝑢3)

𝑢3
, 	 𝑖 ∈ {1,3}, (14) 

 

where 𝑑3 > 0 stands for the diffusion coefficient of the species i. Define by  

µ' = µ'∗ + log
u'

u' − u'
, 	 	 i = 1	and	i = 3, (15) 

the chemical potentials of the ferric cations and of the oxygen vacancies – the reference chemical 
potential µ3∗ depends on the temperature and on the pressure only, which are assumed to be given 
constants throughout this report –, and by  

ξ3 = µ3 + 𝑧3Ψ (16) 

their electrochemical potential. Then the ferric cation and oxygen vacancy fluxes G' rewrite  

𝐺3 = −𝑑3η3(𝑢3) ∂*ξ3 , 	 	 𝑖 ∈ {1,3}. (17) 

The nonlinear convection in (14) is characteristic of a vacancy diffusion process. In contrast, there is no 
limit on the number of electrons in the band conduction provided enough energy is afforded. Denote by 
𝑎" = 𝑒G$1G$∗  the activity of the electrons, which is supposed to depend on 𝑢" only but neither on 𝑢! nor 
𝑢#, then the flux of electrons in the frame of the oxide is given by  

𝐺" = −𝑑"(∂*𝑎" + 𝑧"𝑎" ∂*Ψ) = −𝑑"𝑎" ∂*ξ". (18) 

As pointed out in (Bataillon et al., 2012), the boundary fluxes 𝐹3
H relate to the bulk fluxes thanks to the 

relation  

𝐹3
H = 𝐽3

H − 𝑢3
H𝑋Ḣ, 	 	 𝑖 ∈ {1,2,3}, 	𝑝 ∈ {0,1}. (19) 

In the case of interest where a Boltzmann statistics is used for the electrons, i.e.		µ" = log(𝑢"), then one 
recovers the same linear drift-diffusion flux (18) as in (Bataillon et al., 2010) up to the term corresponding 
to the change of inertial frame in (13). This is not the case for the ferric cations and the oxygen vacancies 
as, additionally to the correction corresponding to the change of frame, convection in our model is 
nonlinear (14), in opposition to the linear convection postulated in (Bataillon et al., 2012, 2010). These 
corrections to the reference model  (Bataillon et al., 2012) of the state of the art already yield important 
differences that are highlighted in (Cancès et al., 2023a) when the evolution of the oxygen vacancies – 
and thus the motion of the interfaces – is neglected.  

We introduced a more conceptual difference to handle the evolution of the geometry of the oxide layer 
and the motion of the interfaces 𝑋), 𝑋!. While the displacement of the interfaces was implicitly driven by 
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the difference of some electrochemical potential in (Bataillon et al., 2010), this is no longer the case in 
our model. For thermodynamic reasons that will be made explicit in the next section, we postulate that 
the displacement of the interface is driven by the jump in the density of the grand potential (or Landau 
free energy). Denote by 𝐴3(𝑢3) the chemical contribution to the free energy of species 𝑖, so that d𝐴3 =
µ3du',  then the grand potential is defined by  

Π =0𝑢3µ3
#

3(!

− 𝐴3(𝑢3) − ρhlΨ−
λ"

2
|∂*Ψ|", (20) 

then one readily checks that ∂*Π = ∑ 𝑢3 ∂*ξ3#
3(! . In particular, Π depends on all the species and not only 

on the oxygen vacancies density, in opposition to the original model (Bataillon et al., 2010). In our model, 
we suppose that  

𝑋!̇ = κ!𝑍!;Π(𝑋!) − 𝑢#;µ#(𝑋!) + 𝑧#Ψ(𝑋!)> − Πmet>, (21) 

𝑋)̇ = 𝑣d) + (1 − 𝑅PB)𝑋!̇. (22) 

The dissolution velocity of the oxide 𝑣d)	is assumed to have the form 

𝑣d) = −κ)𝑍);Π(𝑋)) − Πsol>. (23) 

In the above expressions, κ! and κ) are nonnegative functions of the densities and the electrical potential 
at the interfaces, while 𝑍) and 𝑍! are nondecreasing functions of the jump of grand potential at the 
interfaces satisfying 𝑍)(0) = 𝑍!(0) = 0. The parameters Πsol and Πmet stand for the grand potential in 
the solution and in the metal respectively and are assumed to be given.  

The fact that the displacement of the interfaces is driven by the grand potential seems to be new in the 
context of corrosion modeling. However, such a fact was suggested in the seminal book (Pimpinelli and 
Villain, 1999), and used in relatively close contexts by (Cermelli and Jabbour, 2005; Li et al., 2009), but 
in the absence of electrical effects.  

2.2 Onsager’s reciprocal relation and free energy dissipation  
The model we propose has been designed in order to ensure the decay along time of some 
thermodynamical potential, namely the Gibbs free energy of the full system made of the solution, the 
oxide and the metal.  

Define 𝒢ox(𝑡) the Gibbs free energy of the oxide at time 𝑡 as the sum of a chemical contribution 𝒜ox(𝑡) 
and an electrical contribution ℰox(𝑡) respectively defined by  

𝒜ox = u v𝐴hl +0𝐴3(𝑢3)
#

3(!

wd𝑥
K#

K"
(24) 

and 

ℰox =
λ"

2 yu
|∂$Ψ|" dx

L#

L"
+
1
γ) P

|Ψ)|" − zΔΨpzc) z
"
Q +

1
γ! P

|Ψ!|" − zV − ΔΨpzc! z"Q{ (25)	

with Ψ deduced from the 𝑢3 thanks to the Poisson equation (1)–(3) detailed previously. Then one shows 
that M𝒜ox

MO,
= µ3 and Mℰox

MO,
= 𝑧3Ψ, so that M𝒢ox

MO,
= ξ3 owing to (16). Here M𝒢ox

MO,
 stands for the first variation of 𝒢ox 

with respect to 𝑢3. Therefore, the time evolution of the Gibbs free energy writes  

d
d𝑡 𝒢ox =0u ξ3 ∂E𝑢3d𝑥

K#

K"

#

3(!

. (26) 

After a few calculations to be detailed in a forthcoming article building on the model equations described 
in the previous section, one gets that  
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d
d𝑡 𝒢ox = u 0𝐺3

#

3(!

∂*ξ3
K#

K"
d𝑥 −0(𝐹3!ξ3! − 𝐹3)ξ3))

#

3(!

− 𝑅PB𝑋!̇π! + π)𝑣d). (27) 

Each contribution in the integral of the right-hand side is nonnegative because of (17) and (18). The 
other terms correspond to exchange terms with the solution and with the metal. Their sign is not clear, 
motivating the introduction of an augmented free energy accounting for the solution and the metal. We 
set  

 
Then it follows from the calculations detailed above that  

 

In the above right-hand side, for 𝑖	 = 	1 and 𝑖 = 3, we have set Δξ3) = ξ3(𝑋)) − ξ3sol with ξ3sol = log }R,
"

S,
"~ 

being the electrochemical potential of species 𝑖 = 1 and 𝑖 = 3 in the solution. Similarly, for 𝑖	 ∈ {1,2,3}, 

we have set Δξ3! = ξ3met − ξ3(𝑋!), with ξ3met = log }S,
#

R,
#~ + 𝑧3𝑉. For the fluxes of electrons across the 

solution/oxide interface, we have to introduce two electrochemical potentials ξ"
),PR and ξ"

),FR, but the 
reasoning is similar. Then as highlighted for instance in (Cancès et al., 2023a), the structure of the 
Butler-Volmer laws (4)-(5) and (7)-(10) is such that all the contributions corresponding to fluxes across 
the interfaces in the above right-hand side are nonnegative.  

To establish the decay of the augmented free energy along time, it only remains to check that the two 
last terms related to the motion of the interfaces yield nonnegative contributions. This stems from the 
fact that the functions 𝑍H are equal to 0 at 0 and increasing.  

To conclude this section, let us remark that the decay of the Gibbs free energy for our model is a 
consequence of the particular mathematical structure of our model. Indeed, our model has been derived 
as the generalized gradient flow of the augmented Gibbs free energy (Mielke, 2011; Peletier, 2014; 
Peletier et al., 2022). 

3. A reduced model with fixed interfaces 

3.1 Model simplification   
In the spirit of previous contributions of the literature – see for instance (Chainais-Hillairet and Lacroix-
Violet, 2014, 2012) – we have focused on the simplified model where oxygen vacancies are neglected. 
Thanks to this simplifications, interfaces can be assumed to be fixed, and after rescaling the width of 
the oxide layer can be assumed to be constant along time and equal to 1. This simplification may sound 
strong, but the reduced model allows to give good insights for the production rate of dihydrogen H2. 
Moreover, it can be used for the calibration of the full model and its numerous parameters.  

3.2 Mathematical analysis 
In the reduced model we proposed in (Cancès et al., 2023a), the unknowns are 𝑢! and 𝑢", as well as 
the self-consistent electrostatic potential Ψ solving the Poisson equation. There is no further need of the 
oxygen vacancy density 𝑢#, neither on the grand potential Π, but the other ingredients remain the same: 
Butler-Volmer law for the fluxes across the interface, nonlinear convection-diffusion equation for the 
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ferric cations and linear convection-diffusion equation for the electrons. Furthermore, the system can 
still be interpreted as the generalized gradient flow of some augmented Gibbs free energy. This ensures 
in particular some stability for the model on which we build to establish the global in time existence of a 
solution to the system in (Cancès et al., 2023a).  

It is worth noticing that we do not impose restrictions on the parameters, in opposition to what was 
necessary in the previous work (Chainais-Hillairet and Lacroix-Violet, 2014). Moreover, we also 
establish the physically relevant bounds 0 < 𝑢! < 𝑢!, 0 < 𝑢" and 0 < 𝑢# < 𝑢# among other technical 
estimates we do not detail here, cf. (Cancès et al., 2023a) for interested readers. These bounds are all 
consequences of the control of the free energy and of its dissipation rate, following the methodology of 
(Gajewski and Gröger, 1989; Jüngel, 2015). 

3.3 Numerical approximation    
As a step towards the development of a finite volume scheme for the full model, we addressed the 
reduced model. The preservation of the consistency of our model with the second principle of 
thermodynamics at the discrete level has been a priority when designing the numerical method. This led 
us to consider two-point flux approximation (TPFA) finite volumes in space and a backward in time Euler 
time discretization. For the fluxes in the drift-diffusion equations for the conservation of the charge 
carriers, we either use so-called Scharfetter-Gummel (SG) fluxes for the linear equation corresponding 
to electrons, or a new extension of the squareroot approximation (SQRA) fluxes to the case of nonlinear 
mobilities for ferric cations (Cancès and Venel, 2023). We also developed and analysed mathematically 
in (Cancès et al., 2023b) a new variant of the SG scheme which shares the main features with the new 
SQRA scheme, that are the preservation of the physical bounds and the decay of some discrete free 
energy functional.   

Even though this would not lead to particular problem, we did not prove rigorously so far the convergence 
of our scheme towards the global in time solution to the reduced model exhibited in (Cancès et al., 
2023a). We rather focused on the simulation of the reduced model thanks to a prototype code developed 
in Python, and to its comparison with the model obtained from the original DPCM (Bataillon et al., 2010) 
after similar simplifications consisting in neglecting the oxygen vacancies. We refer to (Cancès et al., 
2023a) for the values assigned to the parameters in our tests.  

 

 
Figure 3 – Comparison of the current-voltage characteristics corresponding to the new 

thermodynamically consistent reduced model (vDPCM, orange solide line) and to the original reduced 
model (DPCM, dashed blue line) for pH = 7 (left), pH = 8,5 (center) and pH = 10 (right).  

 

It appears that from a macroscopic point of view, our new reduced model (referred to as vDPCM in what 
follows) gives similar results as the reduced model building on the original model (still referred to as 
DPCM in the figures below). This can for instance be observed on the i-v curves depicted on Figure 3. 
However, it clearly appears on Figure 4 that the original model does not preserve the physical bound 
𝑢3 < 𝑢3 on the density of ferric cations, in opposition to our new model.  
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Figure 4 – Profiles of the scaled densities of cations (top), electrons (middle) and the electrostatic 

potential (bottom, in Volts, the physical unit) at the steady state for two values of the applied potential 
V, that are -0.4 Volts (left) and 0.3 Volts (right). 

4. Conclusion and prospects 

4.1 Conclusion  
We proposed a new model which can be seen as an update of the model proposed in (Bataillon et al., 
2012, 2010) to accurately represent the magnetite layer protecting the iron canister to be stored in 
geological repositories. Our new model is designed to be compatible with the second principle of 
thermodynamics. More precisely, we built the model as a generalized gradient flow so that Onsager 
reciprocal relation is automatically satisfied.  

We performed in (Cancès et al., 2023a) the mathematical and numerical analysis of a simplified model 
where oxygen vacancies have been neglected, so that the geometry of the domain does not evolve 
along time. The new model we propose provides close results from a macroscopic point of view on the 
few cases we assessed, but significant differences are observed in terms of the repartition of the charge 
carriers in the oxide layer. In particular, our model preserves the physical range for the ferric cation 
occupation rate, in opposition to the simplified model (Chainais-Hillairet and Lacroix-Violet, 2014) built 
from the original model (Bataillon et al., 2010). 
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New contributions to the theory of finite volumes have been needed to properly handle the nonlinear 
mobilities in the convection-diffusion of cations. We proposed in  (Cancès et al., 2023b; Cancès and 
Venel, 2023) some schemes that are free energy diminishing while keeping a small computational cost.  

Let us finally mention the work (Merlet et al., 2022) where another simplification is addressed. A reduced 
model accounting only for oxygen vacancies (but with moving interfaces) is proposed and analysed 
thanks to tools from calculus of variations and Wasserstein gradient flow theory {Citation}.  

4.2 Prospects 
We still have to develop an efficient numerical tool to simulate the full model sketched in section 2.1. On 
top of the non-trivial treatment of the time discretization, the discretization of the grand potential Π 
requires a particular attention. The highly coupled and nonlinear nature of the problem makes the 
effective resolution difficult as we enforce strong constraints on the computational cost and the 
robustness of the tool so that it can be coupled to THMC platforms without significantly increasing the 
computational time.  

Among the other challenges we will have to face in the near future, the calibration of our model has to 
be done carefully. Indeed, the calibration procedure that was employed to fix the parameters in the 
original DPCM model cannot be used directly and must be adapted. In particular, the choice of the 
functions 𝑍), 𝑍! and κ), κ! governing the motion of the interfaces is left open so far. Advanced 
discussions with electrochemists and specialists of material science will be required here.  

Once our Python prototype code will be finalized, then we plan to use it to train a surrogate model to get 
a fast solver to be used in the context of uncertainty quantification and sensibility analysis.  

 
Code source 
We make use of a private Python prototype code which is not mature enough to be published on public 
repositories. The code will be made available when finalized and calibrated.   
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