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DIFFUSION-BASED SPEECH ENHANCEMENT WITH A WEIGHTED
GENERATIVE-SUPERVISED LEARNING LOSS

Jean-Eudes Ayilo, Mostafa Sadeghi, Romain Serizel

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

ABSTRACT
Diffusion-based generative models have recently gained at-
tention in speech enhancement (SE), providing an alternative
to conventional supervised methods. These models transform
clean speech training samples into Gaussian noise centered at
noisy speech, and subsequently learn a parameterized model
to reverse this process, conditionally on noisy speech. Unlike
supervised methods, generative-based SE approaches usually
rely solely on an unsupervised loss, which may result in less
efficient incorporation of conditioned noisy speech. To ad-
dress this issue, we propose augmenting the original diffusion
training objective with a mean squared error (MSE) loss, mea-
suring the discrepancy between estimated enhanced speech
and ground-truth clean speech at each reverse process itera-
tion. Experimental results demonstrate the effectiveness of
our proposed methodology.

Index Terms— Speech enhancement, diffusion models,
generative modeling, supervised learning.

1. INTRODUCTION

Diffusion models are a recent class of generative models
that have brought significant improvements in image and
audio synthesis [1, 2]. Their underlying mechanism is to
gradually turn training samples into noise, and then learn
a parameterized model to revert this process, thus enabling
data generation from pure noise. These models are also gain-
ing increasing interest in the speech enhancement (SE) task,
whose goal is to recover a clean speech signal recorded in
adverse acoustic environments. In this context, diffusion
models aim at learning the distribution of speech data, encod-
ing their temporal-spectral characteristics, in order to infer
clean speech from noisy observation [3]. Additionally, this
distribution is learned conditionally on the associated noisy
speech data to guide the data generation process [3–6].

This generative-based SE approach is systematically dif-
ferent from the prevailing supervised counterpart [7,8], which
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learns a deep neural network (DNN) to directly estimate clean
speech from noisy input by minimizing a supervised loss, e.g.,
mean squared error (MSE). In contrast, diffusion-based SE
usually follows the standard unsupervised (generative-based)
loss used in diffusion models, with the difference that noisy
speech is provided as an additional input. While this could be
potentially advantageous, as the intrinsic properties of clean
speech are also modeled, contrary to supervised methods, it
may not efficiently leverage the conditioned information of
noisy speech. In other words, the training loss in the diffusion
process does not properly measure the goodness of the esti-
mated clean speech. As such, without a proper supervision, it
may lead to the so-called condition collapse phenomenon [9],
i.e., ignoring some parts of conditioning information.

The current study aims at addressing this issue, and
bridging the performance gap between the supervised and
diffusion-based approaches by combining the best of the two
worlds. To this end, we propose to add an MSE loss to the
original generative-based diffusion loss. This extra super-
vised loss measures the distance between an estimation of the
enhanced speech signal at each iteration of the reverse pro-
cess and the ground-truth clean speech. In doing so, we hope
to combine the effectiveness of diffusion models in unseen
noise conditions and the strength of supervised methods in
seen noise conditions. Experiments are performed to evalu-
ate the effectiveness of the proposed approach against both
supervised and standard diffusion-based approaches. The
results show promising performance of the proposed training
methodology.

In the rest of the paper, we present an overview of
diffusion-based SE methods in Section 2, followed by a more
detailed review of [10]. Our proposed methodology is dis-
cussed in Section 3. Next, Section 4 presents the experiments
and results, and Section 5 concludes the paper.

2. RELATED WORK

2.1. Diffusion-based speech enhancement

The fundamental concept behind diffusion models involves
two main phases. Initially, within a forward process, clean
data is progressively distorted by adding (usually) Gaussian
noise, eventually resulting in entirely noise data following a
tractable distribution like a standard Gaussian. Subsequently,



through a reverse process, a DNN is trained to sequentially
produce clean data, beginning from random noise sampled
from the prior distribution.

Many recent studies have already used the diffusion prin-
ciple for speech enhancement. [3] used Gaussian Markov
chains to model the forward and reverse processes, where the
mean of the forward Gaussian Markov chain is a linear inter-
polation between the clean speech and the associated noisy
one. The training objective is obtained by minimizing the
Kullback–Leibler (KL) divergence between the forward and
reverse Markov chains, which leads to an objective where
the trained network learns to predict both Gaussian noise
and non-Gaussian noise. [5] added an auxiliary classification
loss to the loss function of [3] to perform noise classification
and help the model better use the noise information, which
resulted in improved performance. [4] leveraged stochastic
differential equation (SDE) [1] to model the forward and re-
verse processes, and used denoising score matching [11] as
the training objective.

All these works condition the diffusion process on the
noisy speech to take into account the non-Gaussian nature
of environmental noise. More precisely, to estimate clean
speech, the reverse process is performed starting from a Gaus-
sian noise centred on the noisy speech, which allows for itera-
tively recovering an enhanced version. [6] proposed to extend
the forward process by incorporating a deterministic, progres-
sive degradation of the clean speech through linear interpola-
tion between the clean speech and the noisy speech. The train-
ing objective here consists in minimizing an ℓ1 loss between
the clean speech and the reconstruction of the clean speech at
a given step of the forward degradation. The recent work [9]
identified the condition collapse problem, and proposed an
auxiliary conditional generation network for generating reli-
able condition representations as well as a dual-path parallel
network architecture to provide fine-grained condition guid-
ance for the diffusion model. Additionally, a refinement net-
work is trained in a supervised way that takes the enhanced
speech returned by the reverse sampling and outputs a refined
version. We adopt a different strategy than these approaches
by including an ℓ2 supervision loss in the generative denois-
ing score matching objective.

2.2. Score-based generative model for SE (SGMSE)

In this section, we review the score-based diffusion model
proposed in [4], as a closely related approach to our work.
Let us consider a triple of flattened short-time Fourier trans-
form (STFT) representations of clean speech, noisy speech,
and noise: x0, y, n ∈ Cd, where d denotes the total number
of complex-valued time-frequency (TF) bins. We assume that
the noisy speech STFT is formed by the following mixture
model: y = x0 + n. The objective of SE is then to recover
x0 given y.

As previously mentioned, the forward process of diffusion

involves gradually introducing Gaussian noise to the clean
speech. This process is modeled by a stochastic differential
equation (SDE), and its solution is represented as the stochas-
tic process {xt}t [4]:

dxt = γ (y − xt)︸ ︷︷ ︸
:=f(xt,y)

dt+

[
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(
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σmin

)t
√

2 log

(
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)]
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:=g(t)

dw

(1)
where xt denotes the process state at time t ∈ (0, T ], γ ∈ R
controls the transition from x0 to y, and g(t) ∈ R, with con-
stant parameters σmin and σmax, is the diffusion coefficient that
controls the amount of noise induced by a standard Wiener
process w. Moreover, f(xt,y) is the drift term, which makes
the forward process conditioned on the noisy speech. For nu-
merical stability, the forward process starts at tε ̸= 0.

The final SE objective is to reverse the above forward pro-
cess in order to estimate the clean speech. To this end, one
needs to find the solution to the following associated reverse
process SDE [12]:

dxt =
[
−f(xt,y) + g(t)2∇xt log pt(xt|y)

]
dt+ g(t)dw

(2)
where w denotes a standard Wiener process running back-
wards in time. In (2), the term ∇xt

log pt (xt|y) refers to the
conditional score function, which is approximated by a so-
called (conditional) score model sθ (xt,y, t) with parameters
denoted θ. The score model can be trained by minimizing
a Fisher divergence between the true and approximate score,
utilising the denoising score matching principle [11]. Doing
so, the training objective reduces to:

min
θ

Et,(x0,y),z,xt|(x0,y)

[
Lθ (xt,y, t, z)

]
, (3)

where

Lθ (xt,y, t, z) :=

∥∥∥∥sθ (xt,y, t) +
z

σ(t)

∥∥∥∥2 (4)

and z ∼ NC(z;0, I), with NC denoting the circularly-
symmetric complex normal distribution. As the drift term
is linear, the transition kernel p0t (xt|x0,y) admits a closed-
form expression [1]:

p0t(xt|x0,y) = NC

(
xt;µ (x0,y, t) , σ(t)

2I
)
, (5)

where
µ(x0,y, t) = e−γtx0 +

(
1− e−γt

)
y (6)

and

σ(t)2 =
σ2

min

(
(σmax/σmin)

2t − e−2γt
)
log(σmax/σmin)

γ + log(σmax/σmin)
. (7)



Once the score model is trained, it is plugged in (2), replacing
the score function, and the resulting reverse SDE is solved
by a Predictor-Corrector sampling procedure [1] to iteratively
generate clean speech’s estimates.

3. WEIGHTED GENERATIVE-SUPERVISED
LEARNING LOSS

The training objective function described in (3) and (4) aims
to train the score model by minimizing the discrepancy be-
tween the approximated score and the score derived from
the transition kernel, represented as ∇xt

log p0t(xt|x0,y) =
−z/σ(t). This suggests that, in its current form, the score
model is not explicitly informed of the specific SE task it is
meant to perform. Instead, the training loss primarily resem-
bles the generative (unsupervised) loss typically utilized in
unconditional diffusion models.

To address this issue, we propose the inclusion of a su-
pervised loss as a form of regularization or guidance. This
additional loss explicitly reinforces the SE objective during
the score model’s training. To accomplish this objective, we
need to have an estimate of the clean speech at each iteration
of the reverse process, denoted x̂0,t, to be compared against
the ground-truth x0. Such an estimate could be provided us-
ing Tweedie’s approach [13]. To this end, by combining (5)
and (6), we can write

xt = e−γtx0 +
(
1− e−γt

)
y + et (8)

where et ∼ NC(et;0, σ(t)
2I). If we apply Tweedie’s for-

mula independently to the real and imaginary parts of the vari-
ables, we obtain the following result:

e−γtx̂0,t + (1− e−γt)y = xt + (σ(t)2/2)∇xt
log pt(xt|y)

≈ xt + (σ(t)2/2)sθ(xt,y, t). (9)

We then propose to add an MSE loss between the above
expression and the associated ground-truth one, i.e., e−γtx0+
(1 − e−γt)y, to the original score loss (3). This leads to the
following weighted training objective for learning the condi-
tional score model

min
θ

Et,(x0,y),z,xt|(x0,y)[(1− αt)Lθ (xt,y, t, z)+

αt

∥∥∥∥xt +
σ(t)2

2
sθ(xt,y, t)− (e−γtx0 + (1− e−γt)y)

∥∥∥∥2]
(10)

which is a weighted loss between the original generative-
based training loss in (4) and a supervised ℓ2 loss. αt are
time-dependent scalar weights taking values in [0, 1]. We
propose to use the following expression for the weights

αt =
σ(T )− σ(t)

σ(T )− σ(tε)
. (11)

In the proposed loss function (10), we aim to make a balance
between two essential tasks: conditional score estimation and
supervised estimation of clean speech at every reverse itera-
tion. The parameter αt, as a function of time, increases as
the Gaussian noise variance σ(t) decreases during the reverse
process. Consequently, at earlier stages of the reverse diffu-
sion process, the network is expected to give higher weights
to the loss associated with score estimation, while in the later
stages, the score network is tasked with assigning more im-
portance to the supervised component of the loss.

4. EXPERIMENTS

Baselines. We evaluate the performance of our proposed
weighted generative-supervised learning loss for SE, com-
paring it to a reference approach referred to as SGMSE+ [4].
Both methods utilize the same network architecture, based
on the Noise Conditional Score Network (NCSN++), which
consists of a multi-resolution U-Net design. Additionally,
we compare these two methods with a purely supervised
model that directly predicts the clean speech spectrogram
from the noisy speech spectrogram input. For the supervised
approach, we also use the NCSN++ network, which is trained
by minimizing the MSE loss between the enhanced and clean
spectrograms.

Evaluation metrics. To measure the quality of the enhanced
speech signals, we use standard instrumental evaluation
metrics, including the scale-invariant signal-to-distortion
ratio (SI-SDR) in dB [14], the extended short-time objec-
tive intelligibility (ESTOI) measure [15] ([0, 1]), and the
perceptual evaluation of speech quality (PESQ) score [16]
([−0.5, 4.5]). In addition, we use the DNS-MOS, as a non-
intrusive objective evaluation metric [17], which provides
three MOS scores: speech signal quality (SIG), background
intrusiveness (BAK), and overall quality (OVRL). For all
these metrics, the higher, the better.

Datasets. For training and evaluation, we used the WSJ0-
QUT [18] and NTCD-TIMIT datasets [19], to allow for a
cross-dataset evaluation. The WSJ0-QUT dataset combines
the clean speech signals from the WSJ0 dataset [20] with
noise signals from the QUT-NOISE dataset [21]. The test sub-
set of WSJ0-QUT comprise 651 synthetic mixtures (roughly
1.5 hours). It iscreated by taking clean speech signals from
the ‘si et 05‘ subset of WSJ0 (unseen speech samples) and
adding noise signals sampled uniformly from the ‘verifica-
tion‘ set of the QUT-NOISE dataset with signal-to-noise ra-
tio (SNR) values of -5, 0, and 5 dB.

The NTCD-TIMIT dataset comprises 62 English speakers
(with/without Irish accent), divided into train, test, and vali-
dation subsets, where each speaker utters 98 different sen-
tences. Duration of each utterance is approximately 5 sec-
onds. To create the training and validation datasets, we com-
bined the clean speech signals from the NTCD-TIMIT dataset



Table 1: Speech enhancement results (mean ± standard error) for WSJ0-QUT and NTCD-TIMIT under both matched and
mismatched conditions. The best average metric value is highlighted in bold, and the second best is italicized.

Training set Metric SI-SDR (dB) PESQ ESTOI SIG-MOS BAK-MOS OVR-MOS

WSJ0-QUT

Input (WSJ0-QUT) -2.60 ± 0.16 1.83 ± 0.02 0.50 ± 0.01 4.04 ± 0.01 2.93 ± 0.02 3.13 ± 0.01
Supervised 12.91 ± 0.14 2.67 ± 0.02 0.84 ± 0.00 4.38 ± 0.01 4.81 ± 0.01 4.30 ± 0.01
SGMSE+ [10] 10.21 ± 0.16 2.83 ± 0.02 0.81 ± 0.00 4.52 ± 0.01 4.70 ± 0.01 4.31 ± 0.01
Proposed 10.40 ± 0.15 2.88 ± 0.02 0.83 ± 0.00 4.56 ± 0.01 4.73 ± 0.00 4.37 ± 0.01

NTCD-TIMIT
Supervised 9.27 ± 0.15 2.36 ± 0.02 0.75 ± 0.00 4.22 ± 0.01 4.68 ± 0.01 4.15 ± 0.02
SGMSE+ [10] 7.32 ± 0.15 2.51 ± 0.02 0.72 ± 0.01 4.47 ± 0.01 4.60 ± 0.01 4.24 ± 0.01
Proposed 7.55 ± 0.14 2.61 ± 0.02 0.75 ± 0.00 4.55 ± 0.01 4.66 ± 0.00 4.34 ± 0.01

NTCD-TIMIT

Input (NTCD-TIMIT) -7.81 ± 0.22 1.77 ± 0.02 0.31 ± 0.00 3.51 ± 0.01 2.28 ± 0.02 2.69 ± 0.01
Supervised 8.57 ± 0.19 2.18 ± 0.02 0.54 ± 0.01 3.69 ± 0.01 4.26 ± 0.01 3.42 ± 0.02
SGMSE+ [10] 6.21 ± 0.23 2.35 ± 0.02 0.53 ± 0.01 4.02 ± 0.01 4.30 ± 0.01 3.68 ± 0.01
Proposed 7.97 ± 0.18 2.46 ± 0.02 0.57 ± 0.01 4.14 ± 0.01 4.37 ± 0.01 3.83 ± 0.01

WSJ0-QUT
Supervised 5.98 ± 0.22 2.02 ± 0.02 0.50 ± 0.01 3.76 ± 0.01 4.19 ± 0.01 3.34 ± 0.02
SGMSE+ [10] 1.28 ± 0.27 2.05 ± 0.02 0.45 ± 0.01 4.04 ± 0.01 4.05 ± 0.01 3.57 ± 0.02
Proposed 4.42 ± 0.23 2.08 ± 0.02 0.48 ± 0.01 4.16 ± 0.01 4.20 ± 0.01 3.76 ± 0.01

with various types of noise from the DEMAND dataset [22].
We applied different SNR values, including -10, -5, 0, 5, and
10 dB. Each utterance in the training and validation sets was
mixed with three different combinations of DEMAND noises
and SNRs, resulting in a total of 12,348 training and 2,352
validation mixtures. For the test subset, we retained the same
noisy speech signals as provided in the NTCD-TIMIT dataset.
These noisy samples were generated by adding six different
noise types, including Living Room, White, Cafe, Car, Bab-
ble, and Street, with SNRs of -5 dB, 0 dB, and 5 dB. The test
set comprises 810 mixtures.

Hyperparameters setting for SDE and STFT. Input data
representations, SDE and STFT representations follow the
same settings as in [10]. Specifically, the STFT of the speech
data, with a sampling rate of 16kHz, is computed with a win-
dow size of 512, a hop length of 128 (75% overlap) and a
Hann window which gives F = 256 as the number of fre-
quency bins. For the drift and diffusion coefficients of SDE in
(1), the parameters are set as γ = 1.5, σmin = 0.05, σmax =
0.5. The minimum and maximum process times are set to
tε = 0.03 and T = 1, respectively.

Results. In Table 1, we present the average speech enhance-
ment metrics for all the cross-dataset configuration settings,
along with the corresponding standard error of the mean. To
clarify, we use the term “matched condition” when the model
is trained and tested on the same dataset, while “mismatched
condition” refers to cases where the model is evaluated on a
test set from a different dataset than the one it was trained on.

From Table 1, we can draw several conclusions. First,
in both matched and mismatched conditions, the supervised
method consistently outperforms the two diffusion-based
methods when considering the SI-SDR, ESTOI, and BAK-
MOS metrics. Our proposed method ranks second in per-
formance. Nevertheless, when trained and evaluated on the
NTCD-TIMIT dataset, the ESTOI and BAK-MOS metrics

show a different trend. In these cases, the supervised method
underperforms our proposed method. For the PESQ, SIG-
MOS, and OVR-MOS metrics, the proposed method consis-
tently performs the best.

A noteworthy observation from these findings is that in
the matched conditions, when the supervised method per-
forms the best, the gap between the supervised and SGMSE+
tends to narrow when the supervision loss is added. This
trend also holds for the mismatched conditions.

In summary, our proposed method appears to inherit some
capabilities from the supervised method, striving to match its
performance in terms of SI-SDR, ESTOI, and BAK-MOS. Si-
multaneously, it retains and even improves upon the strengths
of the baseline SGMSE+ method, resulting in better perfor-
mance in terms of ESTOI, PESQ, SIG-MOS, and OVR-MOS.
This suggests that the supervision loss provides valuable feed-
back for score estimation.

5. CONCLUSION

In this paper, we addressed the problem of diffusion-based
speech enhancement. We introduced a supervised training
loss component alongside the original generative-based score
estimation loss to better leverage the noisy speech data. This
weighted loss balances the score estimation loss with an
MSE-based supervision loss, enhancing the mapping be-
tween clean and noisy speech by incorporating clean speech
estimates during the reverse process. This additional loss
aids in training a score model better optimized for speech
enhancement. Our experiments, conducted in both matched
and mismatched conditions, demonstrate that our approach
combines the strengths of supervised methods and diffusion-
based approaches, resulting in improved performance. Future
research directions involve exploring alternative supervised
loss functions to MSE and developing more efficient adaptive
weighting mechanisms.
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