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MEAN-FIELD LIMIT OF POINT VORTICES FOR THE

LAKE EQUATIONS.

MATTHIEU MÉNARD

Abstract. In this paper we study the mean-field limit of a system of
point vortices for the lake equations. These equations model the evolu-
tion of the horizontal component of the velocity field of a fluid in a lake
of non-constant depth, when its vertical component can be neglected.
As for the axisymmetric Euler equations there are non-trivial self in-
teractions of the vortices consisting in the leading order of a transport
term along the level sets of the depth function.

If the self-interactions are negligible, we show that the system of
point vortices converges to the lake equations as the number of points
becomes very large. If the self-interactions are of order one, we show
that it converges to a forced lake equations and if the self-interactions
are predominant, then up to time rescaling we show that it converges to
a transport equation.

The proof is based on a modulated energy approach introduced by
Duerinckx and Serfaty in (Duke Math. J., 2020) that we adapt to deal
with the heterogeneity of the lake kernel.

1. Introduction

1.1. Lake equations. The purpose of this article is to investigate the mean-
field limit of point vortices (which are dirac masses in the vorticity field of
a fluid) in a lake of non-constant depth. Namely we want to establish the
convergence of an empirical distribution of point vortices to a continuous
density solving the lake equations, as the number of vortices becomes very
large. These equations describe the evolution of the horizontal velocity field
of an incompressible fluid in a lake, when:

• The depth is small with respect to the lengthscale of horizontal vari-
ations of the fluid velocity.

• The surface of the fluid is almost flat (small Froude number).
• The vertical velocity is small with respect to the horizontal velocity.

For a rigorous derivation of these equations from the shallow water system
we refer to the work of Bresch, Gisclon and Lin in [7]. A more general
introduction to depth-averaged models can be found in [28, Chapter 5] and
a discussion on the three upper hypothesis can be found in [55].

These equations are similar to the planar Euler equations, but they take
into account the depth of the lake, given by a positive function b. If b is
constant, then one recovers the usual planar Euler equations. The well-
posedness of the lake equations on bounded domains have been first inves-
tigated by Levermore, Oliver and Titi in [43]. In this paper they studied an
analogue of the Yudovich theorem for Euler equations (see [64]). This result
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2 M. MÉNARD

was extended later by Bresch and Métivier in [12] to include the case where
the depth function b vanishes at the boundary and by Lacave, Nguyen and
Pausader in [39] to deal with the case of rough bottoms. The existence and
uniqueness of global classical solutions have been established by Al Taki and
Lacave in [1].

In this paper we will study the case of an infinite lake modeled by the
whole plane R2. We are interested in the following vorticity form of the
equations:

(1.1)





∂tω + div

((
u− α

∇⊥b

b

)
ω

)
= 0

div(bu) = 0

curl(u) = ω

where

• ⊥ denotes the rotation by
π

2
(that is (x1, x2)

⊥ := (−x2, x1)).
• α ∈ [0,+∞) is a forcing parameter.
• b : R2 −→ (0,+∞) is the depth function satisfying Assumption 1.5
below.

• u : [0,+∞) × R2 −→ R2 is the velocity field of the fluid.
• ω : [0,+∞) ×R2 −→ R is the vorticity field of the fluid, defined by

ω = curl(u) := ∂1u2 − ∂2u1.

The true lake equations have no forcing term (α = 0), but we will study
this more general model as it could arise as a mean-field limit of point
vortices (in the regime where the self-interaction of the vortices are not
negligible). It is a particular case of a model studied by Duerinckx and
Fischer (see [23, Equation (1.9)]). In this work the authors proved the global
existence and uniqueness of weak solutions and the local well-posedness of
strong solutions. We will consider the following definition of weak solutions:

Definition 1.1. Let T > 0 and ω0 ∈ L∞(R2) with compact support. We say
that (ω, u) is a weak solution of (1.1) on [0, T ] with initial condition ω0 if
ω ∈ L1([0, T ], L∞(R2,R2))∩C0([0, T ], L∞(R2)−w∗) with compact support in
space for all t ∈ [0, T ], u ∈ L2

loc([0, T ] × R2,R2), for almost every t ∈ [0, T ],
div(bu) = 0 and curl(u) = ω distributionally and for all ϕ smooth with
compact support in [0, T )× R2 and t ∈ [0, T ),

(1.2)

¨

[0,t]×R2

∂tϕω +∇ϕ ·
(
u− α

∇⊥b

b

)
ω =

ˆ

R2

ϕ(t)ω(t) −
ˆ

R2

ϕ(0)ω0.

In the regime where the self-interaction of the point vortices is predomi-
nant, the system of point vortices will converge in an accelerated timescale
to a transport equation along the level sets of the topography:

(1.3) ∂tω − div

(∇⊥b

b
ω

)
= 0.

For this equation we will use the following definition of weak solutions:
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Definition 1.2. Let T > 0 and ω0 ∈ L∞(R2) with compact support. We
say that is a weak solution of (1.3) on [0, T ] with initial condition ω0 if
ω ∈ L1([0, T ], L∞(R2,R2)) ∩ C0([0, T ], L∞(R2) − w∗) with compact support
in space for all t ∈ [0, T ] and for all ϕ smooth with compact support in
[0, T )× R2 and t ∈ [0, T ),

(1.4)

¨

[0,t]×R2

∂tϕω −∇ϕ · ∇
⊥b

b
ω =

ˆ

R2

ϕ(t)ω(t)−
ˆ

R2

ϕ(0)ω0.

1.2. Point vortices for the lake equations. The forced lake equations
(1.1) have been derived as the mean-field limit of complex Ginzburg-Landau
vortices with forcing and pinning effects by Duerinckx and Serfaty in [24].
The dynamics of these vortices comes from the physics of supraconductors
or superfluids and is very different from the dynamics of vortices in a lake.
In this paper we are interested in deriving Equations (1.1) as the mean-
field limit of a model introduced by Richardson in [55]. In that work he
established by a formal computation the equation followed by the center of
vorticity q(t) of a small vortex of size ε in a lake of depth b. To leading order
in ε, this equation gives

(1.5) q̇(t) ≈ −Γ| ln(ε)|
4π

∇⊥b(q(t))

q(t)

where Γ is the intensity of vorticity (that is Γ =

ˆ

B(q(0),ε)
ω).

This means that to leading order in ε, a very small vortex follows the level
lines of the topography without seeing the interaction with other vortices
remaining far from him. The latter equation was rigourously justified by
Dekeyser and Van Schaftingen in [19] for the motion of a single vortex and
this result was extended later to the case of a finite number of vortices by
Hientzsch, Lacave and Miot in [33].

We want to investigate the behavior of N point vortices of intensity N−1

as N becomes large. We will see in Section 2 that the elliptic problem
{
div(bu) = 0

curl(u) = ω

has a unique solution given by the kernel

gb(x, y) :=
√
b(x)b(y)g(x− y) + Sb(x, y)

where Sb is a function solving a certain elliptic equation (see Equation (2.9))

and g(x) := − 1

2π
ln |x| is the opposite of the Green kernel of the Laplacian

on the plane R2. More precisely, we have

u(x) = − 1

b(x)

ˆ

R2

∇⊥
x gb(x, y)ω(y) dy.

Recall that a point vortex is asymptotically represented by a dirac mass of
vorticity. Therefore using the kernel ∇⊥

x gb we can compute the velocity field
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generated by N − 1 vortices δqj of intensity
1

N
on a vortex δqi :

− 1

N

N∑

j=1

j 6=i

1

b(qi)
∇⊥

x gb(qi, qj).

This term correspond to the term ureg given by Richardson in [55, Equa-
tion (2.90)]. Combining this equation with the self-interaction term of (1.5)
we get the model of point vortices we will study in this paper:

(1.6) q̇i = −αN
∇⊥b(qi)

b(qi)
− 1

N

N∑

j=1
j 6=i

1

b(qi)
∇⊥

x gb(qi, qj)

where we have denoted

αN :=
| ln(εN )|
4πN

where εN is the size of the vortices.

Remark 1.3. Up to now there is no mathematical justification of Equation
(1.6): We do not even expect this equation to describe precisely the motion
of a fixed number of small vortices as we have neglected all self-interaction
terms of order smaller than | ln(ε)|. However Theorem 1.8 will justify that
this simplified model is statistically relevant when N becomes very large.

Remark 1.4. There are several works establishing approximate analytical
trajectories of vortices in a lake for some specific depth profiles, and also
other numerical and experimental results related to vortex dynamics in
lakes. For more details we refer to the results of [55] and the associated
bibliography.

Two quantities will be of interest for the study of this system. The inter-
action energy

EN (t) :=
1

N2

N∑

i=1

N∑

j=1

j 6=i

gb(qi(t), qj(t))

and the moment of inertia

IN (t) :=
1

N

N∑

i=1

|qi(t)|2.

One could prove that the total energy

Etot
N := EN +

αN

N

N∑

i=1

b(qi)

is a conserved quantity for the point vortex system (1.6) or that if ω is a
solution of (1.1) with enough regularity and decay, the quantity

¨

R2×R2

gb(x, y)ω(t, x)ω(t, y) dxdy + α

ˆ

R2

b(x)ω(t, x) dx

is conserved by the flow. The moment of inertia IN and the interaction
energy EN are not conserved quantity but they are bounded in time, and
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this will be useful both for our mean-field limit result and for the well-
posedness of System (1.6) (see Section 3).

If αN −→
N→+∞

+∞ the self-interactions are predominant. In order to study

this regime we will study an accelerated timescale as it was done in [19] and
[33] to study the motion of a finite number of vortices. Therefore we define:

qi(t) := qi(α
−1
N t).

This gives

(1.7) q̇i = −∇⊥b(qi)

b(qi)
− 1

NαN

N∑

j=1

j 6=i

1

b(qi)
∇⊥

x gb(qi, qj)

We also define the rescaled interaction energy

EN (t) := EN (α−1
N t)

and the rescaled moment of inertia

IN (t) := IN (α−1
N t).

1.3. Mean-field limits. Mean-field limits consist in studying the conver-
gence of a system of ordinary differential equations modeling the evolution
of a finite number of particles

(1.8) ẋi =
1

N

N∑

i=1

K(xi − xj)

to a Euler-like equation modeling the evolution of a continuous density
µ(t, x):

(1.9) ∂tµ+ div((K ∗ µ)µ) = 0

when the number of particles becomes large (here K : Rd −→ Rd is an inter-
action kernel). For systems of order two we are interested in the convergence
of a system of particles following Newton’s second law

ẍi =
1

N

N∑

i=1

K(xi − xj)

to a Vlasov-like equation modeling the evolution of a continuous density
f(t, x, v):

(1.10)





∂tf + divx(fv) + divv((K ∗ µ)f) = 0

µ(t, x) =

ˆ

Rd

f(t, x, v) dv.

A mean-field limit result consists in proving that if at time zero, the
empirical distribution of the particles

1

N

N∑

i=1

δxi(t)

(
respectively

1

N

N∑

i=1

δ(xi(t),ẋi(t))

)

converges to the continuous density µ(t, x) solution of (1.9) (respectively
f(t, x, v) solution of (1.10)) then the convergence also holds for any finite
time.
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When K is Lipschitz the mean-field limit of the upper system was estab-
lished by compactness arguments in [6, 51] or by optimal transport theory
and Wasserstein distances by Dobrushin in [21]. If K is singular there are
numerous results establishing the mean-field limit of systems of order one:

Schochet proved in [61] the mean-field convergence of the point vortex

system (that is K =
1

2π

x⊥

|x|2 in dimension 2) to a measure-valued solution of

Euler equations up to a subsequence, using arguments previously developed
in [20] and [60] to prove existence of such solutions.

For sub-coulombic interactions, that is |K(x)|, |x||∇K(x)| 6 C|x|−α with
0 < α < d − 1, the mean-field limit of (1.8) was proved by Hauray in [30]
assuming div(K) = 0 and using a Dobruschin-type approach (following the
idea of [31, 32]). It was also used by Carillo, Choi and Hauray to study with
the mean-field limit of some aggregation models in [16].

In [22] Duerinckx gave another proof of the mean-field limit of several
Riesz interaction gradient flows using a “modulated energy” that was intro-
duced by Serfaty in [62].

In [63], Serfaty used this modulated energy approach to prove the mean-
field convergence of such systems where K was a kernel given by Coulomb,
logarithmic or Riesz interaction, that is K = ∇g for g(x) = |x|−s with
max(d − 2, 0) 6 s < d for d > 1 or g(x) = − ln |x| for d = 1 or 2. For this
purpose K ∗ µ was supposed to be Lipschitz.

Rosenzweig proved in [57] the mean-field convergence of the point vortex
system without assuming Lipschitz regularity for the limit velocity field,
using the same energy as in [63] with refined estimates. Remark that it
ensures that the point vortex system converges to any Yudovich solutions
of the Euler equations (see [64]). This result was extended later for higher
dimensional systems (d > 3) in [56] by the same author.

In [52] Nguyen, Rosenzweig and Serfaty extended the modulated energy
approach to a more general class of potentials g using the commutator struc-
ture of the equations.

With a modulated energy approach, Bresch, Jabin and Wang defined a
modulated entropy functionnal which allowed them to prove mean-field limit
of interacting particles with noise in [9, 10, 11]. This method was used later
to obtain uniform in time convergence for Riesz-type flows by Rosenzweig
and Serfaty in [59] and by Rosenzweig, Serfaty and Chodron de Courcel in
[18].

For systems of order two, the mean-field limit has been established for
several singular kernels:

In [31, 32], Hauray and Jabin dealt with the case of some sub-coulombian
interactions (or more precisely |K(x)| 6 c|x|−s with 0 < s < 1) by using a
Dobrushin-type approach.

In [37, 38], Jabin and Wang studied the case of bounded and W−1,∞

gradients.
In [4, 34, 41, 42] the same kind of results is proved with some cutoff of

the interaction kernel.
In the appendix of [63], Duerinckx and Serfaty studied the case of parti-

cles interacting with a Coulomb or a Riesz interaction kernel to the Vlasov
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equation in the monokinetic regime, that is the pressureless Euler-Poisson
equations. The same method have been used to study the mean-field limit
of more general models coming from quantum physics, biology or fluid dy-
namics (see for example [15, 50, 54]).

In [29], Han-Kwan and Iacobelli proved the mean-field limit of particles
following Newton’s second law to the Euler equation in a quasineutral regime
or in the gyrokinetic limit. This result was extended later by Rosenzweig in
[58] to allow a larger choice of scaling between the number of particles and
the coupling constant.

Recently, Bresch, Jabin and Soler were able in [8] to prove the mean-
field limit derivation of the Vlasov-Fokker-Planck equation with the true
Coulomb interactions using the BBGKY hierarchy and the diffusivity in the
velocity variables to get estimates on the marginals.

Numerous other mean-field limit results were proved for interacting parti-
cles with noise with regular or singular kernels. See for example [3, 5, 17, 25,
37, 38, 40, 44, 52, 53]. For a more complete bibliography on the mean-field
limit of interacting particles with noise we refer to the bibliography of [18].

For a general introduction to the subject of mean-field limits we refer to
the reviews [27, 36].

1.4. Notations and assumptions.

1.4.1. Notations.

• For u ∈ L1
loc(R

2,R2), we denote curl(u) = ∂1u2 − ∂2u1.

• For h ∈ Ḣ1(R2), we denote

(1.11) [h, h]i,j := 2∂ih∂jh− |∇h|2δi,j.
It is the stress-energy tensor used in [63] to prove the mean-field
limit of several singular ODE’s. Remark that for h smooth enough,
we have

div[h, h] = 2∆h∇h.
• We denote <x>= (1 + |x|2) 1

2 .
• g is the opposite of the Green function of the laplacian:

g(x) := − 1

2π
ln |x|.

• | · |C0,s is the semi-norm associated to the Hölder space C0,s:

|f |C0,s = sup
x 6=y

|f(x)− f(y)|
|x− y|s .

• When 1 6 p 6 +∞, p′ denotes the dual exponent of p.
• If ν is a probability measure on R2, we will denote ν⊗2 := ν ⊗ ν.
• C is a generic constant. We will denote CA,B when a constant de-
pends on some quantities A and B.

• P(R2) is the space of probability measures on R2.

• For QN = (q1, ..., qN ) ∈ (R2)N we denote I(QN ) =
1

N

N∑

i=1

|qi|2.
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1.4.2. Assumptions. We will make the following assumption on the depth
function b:

Assumption 1.5. We assume that b is a smooth function, inf b > 0, sup b <
+∞ and that there exists γ > 0 such that

(1 + |x|)4+γ(|∇b(x)|+ |D2b(x)|) < +∞.

We will consider regular solutions of (1.1) and (1.3) in the following sense:

Assumption 1.6. We say that a function ω(t, x) satisfies Assumption 1.6
if ω ∈ L∞([0, T ], L∞(R2) ∩P(R2)) ∩ C0([0, T ], L∞(R2)−w∗), if there exists
a compact K such that for every t ∈ [0, T ], supp(ω(t)) ⊂ K and if ∇Gb[ω] ∈
L∞([0, T ],W 1,∞) where Gb is the operator defined by Equation (2.11).

Remark 1.7. A weak solution of (1.1) in the sense of Definition 1.1 (or a weak
solution of (1.3) in the sense of Definition 1.2) does not necessarily verify
Assumption 1.6 because of the regularity we ask for the velocity field∇Gb[ω].
This assumption will be crucial to apply Proposition 6.1 and prove the
mean-field limit Theorem 1.8. The existence and uniqueness of sufficiently
regular solutions of (1.1) locally in time is ensured by [23, Theorem 2]. One
could also prove that ω ∈ L∞([0, T ], C0,s) is sufficient to have ∇Gb[ω] ∈
L∞([0, T ],W 1,∞).

1.5. Main result and plan of the paper. The main result of this paper
is the following theorem which gives the mean-field limit of the point vortex
system (1.6) and its rescaled version (1.7) (we recall that the kernel gb is
defined by (2.10)):

Theorem 1.8. Assume that b satisfies Assumption 1.5. We have mean-field
convergence of the point-vortex system in the two following regimes:

(1) Let ω be a solution of (1.1) with initial datum ω0 in the sense of Def-
inition 1.1, satisfying Assumption 1.6 and (q1, ..., qN ) be a solution
of (1.6). Assume that:

• (IN (0))N is bounded.

• 1

N

N∑

i=1

δq0i
∗−−⇀

N→+∞
ω0 for the weak-∗ topology of probability mea-

sures.
• αN −→

N→+∞
α.

• 1

N2

∑

16i 6=j6N

gb(q
0
i , q

0
j ) −→

N→+∞

¨

R2×R2

gb(x, y)ω0(x)ω0(y) dxdy.

Then for all t ∈ [0, T ],
1

N

N∑

i=1

δqi(t)
∗−−⇀

N→+∞
ω(t) for the weak-∗

topology of probability measures and

1

N2

∑

16i 6=j6N

gb(qi(t), qj(t)) −→
N→+∞

¨

R2×R2

gb(x, y)ω(t, x)ω(t, y) dxdy.

(2) Let ω be a solution of (1.3) with initial datum ω0 in the sense of Def-
inition 1.2, satisfying Assumption 1.6 and (q1, ..., qN ) be a solution
of (1.7). Assume that:
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• (IN (0))N is bounded.

• 1

N

N∑

i=1

δq0i
∗−−⇀

N→+∞
ω0 for the weak-∗ topology of probability mea-

sures.
• αN −→

N→+∞
+∞.

• 1

N2

∑

16i 6=j6N

gb(q
0
i , q

0
j ) −→

N→+∞

¨

R2×R2

gb(x, y)ω0(x)ω0(y) dxdy.

Then for all t ∈ [0, T ],
1

N

N∑

i=1

δqi(t)
∗−−⇀

N→+∞
ω(t) for the weak-∗ topol-

ogy of probability measures and

1

N2

∑

16i 6=j6N

gb(qi(t), qj(t)) −→
N→+∞

¨

R2×R2

gb(x, y)ω(t, x)ω(t, y) dxdy.

Remark that in the case αN −→
N→+∞

0 we recover the classical lake equations

((1.1) with α = 0).
The boundedness of (IN (0)) is a technical assumption made to ensure

that not too much vorticity is going to infinity. This assumption was not
necessary in the original papers of Duerinckx in [22] and of Serfaty in [63]
but we will need it to deal with the heterogeneity of the kernel gb (defined
in (2.10)).

The convergence of the interaction energy and the weak−∗ convergence
of (ωN ) to ω ensure the convergence of (ωN ) to ω in a stronger sense: We
will prove in Corollary 5.4 that provided certain technical assumptions are
satisfied, it is equivalent to the convergence to zero of a “modulated energy”
functionnal. For an empirical measure of point vortices (q1, ..., qN ) and a
vorticity field ω ∈ L∞ with compact support, this modulated energy is
defined by:

(1.12) Fb(QN , ω) :=

¨

(R2×R2)\∆
gb(x, y) d

(
1

N

N∑

i=1

δqi − ω

)
(x) d

(
1

N

N∑

i=1

δqi − ω

)
(y)

where

∆ := {(x, x) ; x ∈ R2}.
We will use this energy to control the distance between solutions ω and

QN of (1.1) and (1.6) or solutions ω and QN of (1.3) and (1.7) at any given
time t:

(1.13) Fb,N (t) := Fb(QN (t), ω(t))

and

(1.14) Fb,N (t) := Fb(QN (t), ω(t)).

The proof of Theorem 1.8 relies on Grönwall-type estimates on these two
quantities. The paper is organised as follows:
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• In Section 2 we prove the well-posedness of the elliptic problem link-
ing a velocity field satisfying div(bu) = 0 and its vorticity, the ex-
istence of a Green kernel for this elliptic problem and we establish
several regularity estimates.

• In Section 3 we prove that the point-vortex system is well-posed and
give some estimates on the interaction energy and on the moment of
inertia of the system that we will need in Section 7.

• In Section 4 we compute the time derivative of Fb,N and of Fb,N .
• In Section 5 we state several properties of the modulated energy.
We prove that it controls the convergence in Hs for s < −1 (see
Corollary 5.3) and that having the convergence of the modulated
energy is equivalent to have weak-∗ convergence of the point vortex
system and convergence of its interaction energy (see Corollary 5.4).

• In Section 6 we bound the main term appearing in the derivatives
of the modulated energies.

• In Section 7 we use the results of the other sections to prove Theo-
rem 1.8.

The modulated energy Fb is similar to the modulated energy defined in
[63, Equation (1.16)] and the proofs of Sections 4 to 7 follow the same global
ideas. The main difference between Theorem 1.8 and other mean-field limit
results using modulated energies is that the kernel gb is not of the form
a(x, y) = a(x− y). Most of the difficulties adressed by this paper consist in
dealing with the heterogeneity of the kernel gb.

Funding. This work is supported by the French National Research Agency
in the framework of the project “SINGFLOWS” (ANR-18-CE40-0027-01).

2. Velocity reconstruction

There exists a Biot-Savart type law to reconstruct a velocity field u satis-
fying div(bu) = 0 from its vorticity. In this section we prove several results
concerning this reconstruction. In Subsection 2.1 we prove that the elliptic
equations linking u with its vorticity are well-posed. In Subsection 2.2 we
prove some results related to the asymptotic behavior of the velocity field as
|x| −→ ∞. In Subsection 2.3, we give an analogue of the Biot-Savart law for
a velocity field satisfying System (2.1). Finally, in Subsection 2.4 we define
some regularisations of the Coulomb kernel and of the dirac mass that we
will need in Sections 5 and 6.

2.1. Well-posedness of the elliptic problem. In this subsection we jus-
tify the well-posedness of the elliptic equations satisfied by the velocity field:

(2.1)

{
div(bu) = 0

curl(u) = ω.

As we will write u = −1

b
∇⊥ψ we will also consider the “stream function”

formulation of the upper system:

(2.2) − div

(
1

b
∇ψ
)

= ω.
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For this purpose we will consider the following weighted Sobolev spaces:

Definition 2.1. For 1 < p < ∞ we consider the Banach space W 2,p
−1 (R

2)
defined by

W 2,p
−1 (R

2) := {u ∈ D′(R2) ; ∀α ∈ N2, |α| 6 2, < ·>|α|−1 Dαu ∈ Lp(R2)}
and equipped with its natural norm

‖u‖
W

2,p
−1

:=


∑

|α|62

∥∥∥< ·>|α|−1 Dαu
∥∥∥
p

Lp




1

p

.

These weighted spaces were first introduced by Cantor in [14] and have
been investigated to study elliptic equations on unbounded domains. For
a more precise study of these spaces and further references we refer to [45,
48, 49]. The following proposition is a straightforward consequence of [45,
Theorem 2] (which is the combination of two theorems proved in [48] and
[49]) and states that Equations (2.1) and (2.2) are well-posed.

Proposition 2.2. Let 2 < p < +∞, assume that < ·> ω ∈ Lp(R2), then

there exists a unique solution ψ of (2.2) in W 2,p
−1 (R

2)/R. Morever if u ∈
Lp(R2,R2) is a solution of (2.1) in the sense of distributions, then

u = −1

b
∇⊥ψ.

Proof. We can rewrite Equation (2.2) as

−∆ψ − b∇
(
1

b

)
· ∇ψ = bω.

We have that:

• −∆ is an elliptic operator with constant coefficients and homoge-
neous of degree 2.

• b∇
(
1

b

)
∈ C0 and

lim
|x|→+∞

∣∣∣∣<x>2−1+0 b(x)∇
(
1

b

)
(x)

∣∣∣∣ = 0

since b satisfies Assumption 1.5.
• < ·> bω ∈ Lp.

• −1 6 −2

p
and 1− 2

p
/∈ N.

Therefore by [45, Theorem 2], there exists a unique solution ψ (up to a

constant) of Equation (2.2) in W 2,p
−1 (R

2).
Now if u ∈ Lp is a solution of (2.1), then

‖< ·> curl(bu)‖Lp = ‖< ·> bω‖Lp +
∥∥∥< ·> ∇⊥b · u

∥∥∥
6 Cb(‖< ·> ω‖Lp + ‖u‖Lp)

since b satisfies Assumption 1.5. Let us consider π ∈ W 2,p
−1 (R

2) to be the
unique solution (up to a constant) of −∆π = curl(bu) given by [45, The-
orem 1]. Then bu + ∇⊥π is a div-curl free vector field in Lp so it is zero.
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Moreover,

− div

(
1

b
∇π
)

= − curl

(
1

b
∇⊥π

)
= curl(u) = ω

so ∇π = ∇ψ by uniqueness of solutions of (2.2) in W 2,p
−1 (R

2)/R. �

Now we state several estimates for solutions of Equation (2.2), proved by
Duerinckx in [23]:

Lemma 2.3. [From [23, Lemma 2.6]] Let p > 2, ω be such that < ·> ω ∈
Lp(R2). If ψ ∈ W 2,p

−1 (R
2) is the solution of (2.2) given by Proposition 2.2,

then:

(1) There exists p0 > 2 depending only on b such that for all 2 < p 6 p0,

‖∇ψ‖Lp 6 Cp ‖ω‖
L

2p
p+2

.

(2) For all 0 < s < 1,

|∇ψ|C0,s 6 Cs ‖ω‖
L

2
1−s

.

(3) ‖∇ψ‖L∞ 6 C ‖ω‖L1∩L∞.

Remark 2.4. In [23], this lemma was stated for any solution of (2.2) with
decreasing gradient (which is the case for a solution given by Proposition 2.2
since its gradient is in W 1,p) and for ω smooth with compact support but
by density it can be extended to all ω such that < ·> ω ∈ Lp(R2) and such
that the upper inequalities make sense.

2.2. Asymptotic behavior of the velocity field. The main result of this
subsection is the following proposition giving the asymptotic behavior of a
velocity field satisfying (2.1).

Proposition 2.5. Let ω ∈ L∞ with compact support and u = −1

b
∇⊥ψ

where ψ is the solution of (2.2) given by Proposition 2.2. There exists
C > 0 depending only on b and ω such that for all x ∈ R2\{0},

(2.3)

∣∣∣∣u(x)−
1

2π

(
ˆ

R2

ω

)
x⊥

|x|2
∣∣∣∣ 6

C

|x|2 .

Moreover there exists δ ∈ (0, 1) and C such that

(2.4) |ψ(x)| 6 C(1 + |x|δ).
To prove this proposition we will need to use the following result about

the asymptotic behavior of a velocity field given by the usual Biot-Savart
law:

Lemma 2.6. Let us assume that µ is a measurable function such that µ ∈
L1((1+ |x|2) dx) and | · |2µ ∈ Lp for some p > 2. Then there exists C,R > 0
depending only on µ such that for all x ∈ R2\{0},

∣∣∣∣
ˆ

R2

x− y

|x− y|2 dµ(y)−
(
ˆ

R2

dµ(y)

)
x

|x|2
∣∣∣∣ 6

C

|x|2 .

In particular if

ˆ

R2

dµ = 0, then
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ˆ

R2

x− y

|x− y|2 dµ(y) = O
|x|→+∞

(|x|−2).

This lemma is a classical result in fluid dynamics (see for example [46,
Proposition 3.3]) that we will prove for the sake of completeness.

Proof. If x 6= 0, we have

ˆ

R2

µ(y)

(
x− y

|x− y|2 − x

|x|2
)

dy =
1

|x|2
ˆ

R2

µ(y)
|x|2(x− y)− x|x− y|2

|x− y|2 dy.

Now remark that

|x|2(x− y)− x|x− y|2

= |x|2(x− y)− (x− y)(|x|2 + |y|2 − 2x · y)− y|x− y|2

= (x− y)(|y|2 − 2(x− y) · y − 2|y|2)− y|x− y|2

= −y|x− y|2 − 2[(x− y) · y](x− y)− |y|2(x− y).

Thus ∣∣∣∣
ˆ

R2

µ(y)

(
x− y

|x− y|2 − x

|x|2
)

dy

∣∣∣∣ 6
C

|x|2
(
ˆ

R2

|y||µ(y)|dy

+

ˆ

R2

|y|2|µ(y)|
|x− y| dy

)
.

Now we have that for any p > 2,
ˆ

R2

|y|2|µ(y)|
|x− y| dy 6

∥∥| · |2µ
∥∥

p−2

2p−2

L1

∥∥| · |2µ
∥∥

p

2p−2

Lp

(see for example [35, Lemma 1]) and therefore we get the proof of Lemma 2.6.
�

With this result we can now study the asymptotic behavior of a velocity
field satisfying System (2.1):

Proof of Proposition 2.5. We write

(2.5) µ := div(u) = div

(
1

b
bu

)
= ∇

(
1

b

)
· bu = −∇b · u

b
.

By Helmholtz decomposition we can write

(2.6) u = −∇g ∗ µ−∇⊥g ∗ ω.
Let 2 < p < +∞, then by Assumption 1.5,

ˆ

R2

(1 + |y|2)|µ(y)|dy 6 Cb

ˆ

R2

1 + |y|2
(1 + |y|)4+γ

|u(y)|dy

6 Cb

∥∥∥(1 + | · |)−(2+γ)
∥∥∥
Lp′

‖u‖Lp < +∞

and
ˆ

R2

|y|2p|µ(y)|p dy 6 Cb

ˆ

R2

|y|2p(1 + |y|)−p(4+γ)|u(y)|p dy

6 Cb

ˆ

R2

|u(y)|p dy < +∞.
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If we apply Lemma 2.6 on each term of (2.6) we only need to show that
ˆ

µ = 0 to obtain (2.3). We define

b∞ := lim
|x|→+∞

b(x).

Remark that the existence of this limit is guaranteed by Assumption 1.5.
Let us prove by induction that for any integer n,

(2.7)
n∑

k=0

lnk(b∞)

k!

ˆ

R2

µ =
1

n!

ˆ

R2

lnn(b)µ.

If n = 0 then this equality reduces to

ˆ

µ =

ˆ

µ. Now let us assume

that it holds for some n > 0. Using Equation (2.5), we get

lnn(b)µ = − 1

n+ 1
∇ lnn+1(b) · u.

Inserting Equation (2.6), we get

lnn(b)µ =
1

n+ 1
∇ lnn+1(b) · (∇g ∗ µ+∇⊥g ∗ ω).

Integrating over a ball of center 0 and radius R and integrating by parts we
get

(2.8)

ˆ

B(0,R)
lnn(b)µ =

1

n+ 1

(
ˆ

∂B(0,R)
lnn+1(b)(∇g ∗ µ+∇⊥g ∗ ω) · d~S

−
ˆ

B(0,R)
lnn+1(b) div(∇g ∗ µ+∇⊥g ∗ ω)

)

=
1

n+ 1

(
ˆ

∂B(0,R)
lnn+1(b)(∇g ∗ µ+∇⊥g ∗ ω) · d~S

+

ˆ

B(0,R)
lnn+1(b)µ

)

where d~S(x) = 2πxdσ(x) and σ is the uniform probability measure on
∂B(0, R). Using Lemma 2.6, we get that for x ∈ ∂B(0, R),

(∇g ∗ µ+∇⊥g ∗ ω)(x) · x

= − 1

2π

((
ˆ

R2

µ

)
x

|x|2 +

(
ˆ

R2

ω

)
x⊥

|x|2 +O(R−2)

)
· x

= − 1

2π

(
ˆ

R2

µ

)
+O(R−1).

Thus we get that

1

n+ 1

ˆ

∂B(0,R)
lnn+1(b)(∇g ∗ µ+∇⊥g ∗ ω) · d~S −→

R→+∞
− lnn+1(b∞)

n+ 1

ˆ

R2

µ.

Combining the upper equality with Equations (2.7) and (2.8) we get that

n+1∑

k=0

lnk(b∞)

k!

ˆ

R2

µ =
1

(n+ 1)!

ˆ

R2

lnn+1(b)µ
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which ends the proof of Equality (2.7). Now if n goes to infinity, this gives

eln(b∞)

ˆ

R2

µ = 0

and thus
ˆ

R2

µ = 0.

Now by Lemma 2.3 and Morrey’s inequality (see for example [13, Theo-
rem 9.12]), for any 2 < p 6 p0,

|ψ(x)| 6 |ψ(x) − ψ(0)| + |ψ(0)|

6 Cp ‖∇ψ‖Lp |x|1−
2

p + |ψ(0)|.

Taking δ = 1− 2

p
we obtain (2.4). �

2.3. Construction of the Green kernel. The main result of this subsec-
tion is a Biot-Savart type law for the lake equations, given by Proposition 2.8.
Let us begin by giving the definition and some estimates on the function Sb
that appears in the definition of the kernel gb (see Equation (2.10)):

Lemma 2.7. For y ∈ R2, let Sb(·, y) be a solution of

(2.9) − div

(
1

b
∇Sb(·, y)

)
= −g(· − y)

√
b(y)∆

(
1√
b

)

given by Proposition 2.2 applied to ω = −g(· − y)
√
b(y)∆

(
1√
b

)
and ψ =

Sb(·, y). Then:

(1) For any y ∈ R2 and 2 < p 6 +∞, ∇xSb(·, y) ∈ Lp and

‖∇xSb(·, y)‖Lp 6 Cb,p(1 + |y|).
(2) There exists s0 ∈ (0, 1) such that for all 0 < s < s0,

|∇xSb(x, ·)|C0,s(B(y,1)) 6 Cb,s(1 + |y|)
|∇xSb(·, y)|C0,s(R2) 6 Cb,s(1 + |y|).

Proof. For any p such that 1 6 p < +∞, we have
∥∥∥∥
√
b(y) < ·> ∆

(
1√
b

)
g(· − y)

∥∥∥∥
Lp

6 ‖b‖
1

2

L∞

∥∥∥∥g(· − y) < ·> ∆

(
1√
b

)∥∥∥∥
Lp

and ∥∥∥∥< ·> g(· − y)∆

(
1√
b

)∥∥∥∥
p

Lp

6

ˆ

B(y,1)
<x>p |g(x− y)|p

∣∣∣∣∆
(

1√
b

)
(x)

∣∣∣∣
p

dx

+

ˆ

B(y,1)c
<x>p |g(x− y)|p

∣∣∣∣∆
(

1√
b

)
(x)

∣∣∣∣
p

dx

6C ‖g‖p
Lp(B(0,1))

∥∥∥∥< ·> ∆

(
1√
b

)∥∥∥∥
p

L∞
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+

ˆ

B(y,1)c
(1 + |x|2) p

2 (|x|+ |y|)p
∣∣∣∣∆
(

1√
b

)
(x)

∣∣∣∣
p

dx.

By Assumption 1.5, we have that
ˆ

B(y,1)c
(1 + |x|2) p

2 (|x|+ |y|)p
∣∣∣∣∆
(

1√
b

)
(x)

∣∣∣∣
p

dx

6

ˆ

R2

(1 + |x|2) p

2 (|x|+ |y|)p
(1 + |x|)(4+γ)p

dx

6 Cb(1 + |y|)p.
Therefore we can apply Proposition 2.2 to show that there exists a solution
Sb(·, y) of (2.9) in W 2,p

−1 (R
2), unique up to a constant. Since <x>> 1 we

also have that ∥∥∥∥
√
b(y)g(· − y)∆

(
1√
b

)∥∥∥∥
Lp

6 Cb,p(1 + |y|).

By Lemma 2.3, there exists p0 such that for any 2 < p 6 p0 and 0 < s < 1:

‖∇xSb(·, y)‖Lp 6

∥∥∥∥
√
b(y)∆

(
1√
b

)
g(· − y)

∥∥∥∥
L

2p
p+2

6 Cb,p(1 + |y|)
and

|∇xSb(·, y)|C0,s 6 Cs

∥∥∥∥
√
b(y)∆

(
1√
b

)
g(· − y)

∥∥∥∥
L

2
1−s

6 Cb,s(1 + |y|)
that is the second inequality of Claim (2). Using that

‖·‖L∞ 6 C(‖·‖Lp + | · |C0,s)

(see for example the proof of Morrey’s embedding theorem in [13, Theo-
rem 9.12]), we get the bound we want on ∇xSb:

‖∇xSb(·, y)‖L∞ 6 Cb(1 + |y|).
If we interpolate the inequalities on ‖∇xSb(·, y)‖L∞ and ‖∇xSb(·, y)‖Lp for
2 < p 6 p0 we find that for any p > 2,

‖∇xSb(·, y)‖Lp 6 Cb,p(1 + |y|).
For the first inequality of Claim (2), let us consider z such that |z| is small

and remark that Sb(x, y + z)− Sb(x, y) solves

div

(
1

b
(∇xSb(·, y + z)−∇xSb(·, y))

)

=
(√

b(y + z)g(y + z − ·)−
√
b(y)g(y − ·)

)
∆

(
1√
b

)
.

Let us find a bound for the second member in Lp:(√
b(y + z)g(y + z − x)−

√
b(y)g(y − x)

)
∆

(
1√
b

)
(x)

=(
√
b(y + z)−

√
b(y))g(y − x)∆

(
1√
b

)
(x)
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+
√
b(y + z)(g(y + z − x)− g(y − x))∆

(
1√
b

)
(x).

For the first term,∣∣∣∣(
√
b(y + z)−

√
b(y))g(y − x)∆

(
1√
b

)
(x)

∣∣∣∣ 6 Cb|z|
∣∣∣∣g(y − x)∆

(
1√
b

)∣∣∣∣
and we can bound its Lp norms by Cb(1 + |y|)|z| as in the proof of Claim
(1). For the second term,

ˆ

R2

∣∣∣∣
√
b(y + z)(g(y + z − x)− g(y − x))∆

(
1√
b

)
(x)

∣∣∣∣
p

dx

6Cb

ˆ

R2

∣∣∣∣(g(x+ z)− g(x))∆

(
1√
b

)
(y − x)

∣∣∣∣
p

dx

6Cb

ˆ

B(0,|z|α)
|g(x + z)− g(x)|p dx

+ Cb

ˆ

B(0,|z|α)c
|g(x + z)− g(x)|p

∣∣∣∣∆
(

1√
b

)
(y − x)

∣∣∣∣
p

dx

for any 0 < α < 1. Now, if |z| is small enough,
ˆ

B(0,|z|α)
|g(x + z)− g(x)|p dx 6 C

ˆ

B(0,|z|α)
g(x+ z)p + g(x)p dx.

Now we use a classical rearrangement procedure to bound
ˆ

B(0,|z|α)
g(x+ z)p −

ˆ

B(0,|z|α)
g(x)p dx

=

ˆ

B(z,|z|α)
g(x)p −

ˆ

B(0,|z|α)
g(x)p dx

=

ˆ

B(0,|z|α)
g(x)p(1B(z,|z|α)(x)− 1) dx

+

ˆ

B(0,|z|α)c∩B(z,|z|α)
g(x)p dx

Now remark that for x ∈ B(0, |z|α), g(x)p > − 1

2π
lnp(|z|α) and therefore

ˆ

B(0,|z|α)
g(x)p(1B(z,|z|α)(x)− 1) dx

6 − 1

2π
lnp(|z|α)

ˆ

B(0,|z|α)
(1B(z,|z|α)(x)− 1) dx

6 − 1

2π
lnp(|z|α)(|B(0, |z|α) ∩B(z, |z|α)| − |B(0, |z|α)|)

and on B(0, |z|α)c, g(x) 6 − 1
2π ln(|z|α) so

ˆ

B(0,|z|α)c∩B(z,|z|α)
g(x)p dx 6 − 1

2π
lnp(|z|α)|B(0, |z|α)c ∩B(z, |z|α)|.

We get
ˆ

B(0,|z|α)
g(x+ z)p −

ˆ

B(0,|z|α)
g(x)p dx 6 0
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and therefore
ˆ

B(0,|z|α)
|g(x+ z)− g(x)|p dx 6 2

ˆ

B(0,|z|α)
g(x)p dx

6 C|z|2α
ˆ

B(0,1)
g(|z|αy)p dy

6 C|z|2α
ˆ

B(0,1)
(αg(z) + g(y))p dy

6 Cb|z|2αg(z)p.
Now if |z| is small enough,

Cb

ˆ

B(0,|z|α)c
|g(x+ z)− g(x)|p dx

∣∣∣∣∆
(

1√
b

)
(y − x)

∣∣∣∣
p

6 Cb

(
|z| C|z|α

)p ˆ

R2

∣∣∣∣∆
(

1√
b

)
(y − x)

∣∣∣∣
p

dx

6 Cb|z|p(1−α)

by Assumption 1.5. Finally, using Lemma 2.3 as for the first claim, we get
that for any 0 < α < 1 and some p > 2,

|∇xSb(x, y + z)−∇xSb(x, y)| 6 Cb(1 + |y|)|z| + Cb(|z|
2α
p g(z) + |z|1−α).

Dividing both sides by |z|s for s small enough proves the first inequality of
Claim (2). �

With this lemma we are now able to construct the lake kernel. The
construction is similar to the one established in [19, Proposition 3.1] for
bounded domains.

Proposition 2.8. There exists a symmetric solution Sb of Equation (2.9)
such that Sb(0, 0) = 0. We define gb as

(2.10) gb(x, y) :=
√
b(x)b(y)g(x− y) + Sb(x, y).

Let ω ∈ L∞ with compact support. We define

(2.11) Gb[ω](x) =

ˆ

R2

gb(x, y) dω(y).

Then Gb[ω] is a distributional solution of (2.2).
Moreover for 2 < p < +∞, Gb[ω] is the unique solution (up to a constant)

of (2.2) in W 2,p
−1 (R

2) given by Proposition 2.2.

Proof of Proposition 2.8. Let us first define

gb(x, y) :=
√
b(x)b(y)g(x− y) + Sb(x, y)

where Sb is a solution of Equation (2.9) given by Proposition 2.2 (not nec-
essarily symmetric). Then we have the following result:

Claim 2.9. If ϕ is smooth with compact support, then

−
ˆ

R2

gb(x, y) div

(
1

b
∇ϕ
)
(x) dx = ϕ(y).
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Proof of the Claim. We have

−
ˆ

R2

gb(x, y) div

(
1

b
∇ϕ
)
(x) dx

=−
ˆ

R2

√
b(x)b(y)g(x− y) div

(
1

b
∇ϕ
)
(x) dx

−
ˆ

R2

Sb(x, y) div

(
1

b
∇ϕ
)
(x) dx

=:T1 + T2.

We have

T1 =−
√
b(y)

ˆ

R2

√
b(x)g(x− y) div

(
1

b
∇ϕ
)
(x) dx

=
√
b(y)

ˆ

R2

g(x− y)
1

2b(x)
√
b(x)

∇b(x) · ∇ϕ(x) dx

+
√
b(y)

ˆ

R2

1√
b(x)

∇g(x− y) · ∇ϕ(x) dx

=:L1 + L2.

Integrating by parts in the first integral we get

L1 =−
√
b(y)

ˆ

R2

ϕ(x)
1

2b(x)
√
b(x)

∇g(x− y) · ∇b(x) dx

−
√
b(y)

ˆ

R2

ϕ(x)g(x − y) div

(
1

2b
√
b
∇b
)
(x) dx.

For L2, we use

∇
(

1√
b
ϕ

)
=

1√
b
∇ϕ− ϕ

1

2b
√
b
∇b

to get

L2 =
√
b(y)

ˆ

R2

ϕ(x)
1

2b(x)
√
b(x)

∇b(x) · ∇g(x− y) dx

+
√
b(y)

ˆ

R2

∇
(

1√
b(x)

ϕ(x)

)
· ∇g(x− y) dx

=
√
b(y)

ˆ

R2

ϕ(x)
1

2b(x)
√
b(x)

∇b(x) · ∇g(x− y) dx

+ ϕ(y)

since −∆xg(x− y) = δy distributionally. Now let us compute T2:

T2 = −
ˆ

R2

Sb(x, y) div

(
1

b
∇ϕ
)
(x) dx

= −
ˆ

R2

div

(
1

b
∇xSb(·, y)

)
(x)ϕ(x) dx

= −
√
b(y)

ˆ

R2

g(x− y)∆

(
1√
b

)
(x)ϕ(x) dx
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where we used that Sb is a solution of (2.9) in the last line. Now just remark
that

∆

(
1√
b

)
= − div

(
1

2b
√
b
∇b
)

and thus adding L1 and L2 we get

−
ˆ

R2

gb(x, y) div

(
1

b
∇ϕ
)
(x) dx = ϕ(y)

and we get the proof of Claim 2.9. �

Now let ω ∈ L∞(R2) with compact support. We have

−
ˆ

R2

(
ˆ

R2

gb(x, y)ω(y) dy

)
div

(
1

b
∇ϕ
)
(x) dx

= −
ˆ

R2

(
ˆ

R2

gb(x, y) div

(
1

b
∇ϕ
)
(x) dx

)
ω(y) dy

=

ˆ

R2

ϕ(y)ω(y) dy

where we used Claim 2.9 in the last equality. Therefore Gb[ω] is a distribu-
tional solution of (2.2).

Now we prove that with this kernel we recover solutions in the sense of
Proposition 2.2:

Claim 2.10. Let ω ∈ L∞ with compact support, then for all p ∈ (2,+∞),
we have that ∇Gb[ω] ∈ Lp. Moreover if ψ is the solution of (2.2) given by
Proposition (2.2), then ψ = Gb[ω] up to a constant.

Proof of the claim. We have:

∇Gb[ω](x) =

ˆ

R2

∇b(x)
2
√
b(x)

√
b(y)g(x− y)ω(y) dy

+

ˆ

R2

√
b(x)b(y)∇g(x− y)ω(y) dy

+

ˆ

R2

∇xSb(x, y)ω(y) dy

=:T1 + T2 + T3.

Now,

|T1| 6Cb|∇b(x)|
(
ˆ

B(x,1)
|(ln |x− y|)ω(y)|dy

+

ˆ

supp(ω)\B(x,1)
(|x|+ |y|)|ω(y)|dy

)

6Cb ‖ω‖L1((1+|x|) dx)∩L∞ (1 + |x|)−(3+γ)

by Assumption 1.5. Hence T1 ∈ Lp. For the second term, we have

T2 =
√
b(x)∇g ∗ (

√
bω)
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and therefore T2 ∈ Lp by Hardy-Littlewood-Sobolev inequality (see for ex-
ample [2, Theorem 1.7]). For the third term,

|T3| 6
(
ˆ

R2

|ω|
)
ˆ

R2

|∇xSb(x, y)|
|ω(y)|dy
´

|ω|
and thus by Jensen inequality

‖T3‖pLp 6

(
ˆ

R2

|ω|
)p−1¨

R2×R2

|∇xSb(x, y)|p|ω(y)|dy dx.

We have that

‖∇Sb(·, y)‖Lp 6 Cb(1 + |y|)
by Claim (1) of Lemma 2.7. Therefore

‖T3‖pLp 6 Cb

(
ˆ

R2

|ω|
)p−1 ˆ

R2

(1 + |y|)p|ω(y)|dy

and it follows that ∇Gb[ω] ∈ Lp. By Proposition 2.2 we get that Gb[ω] = ψ
up to a constant. �

We are only left to justify that there exists a symmetric solution of (2.9).
Consider ω1, ω2 two smooth functions with average zero, then by Claim 2.10,
we have
¨

R2×R2

gb(x, y)ω1(x)ω2(y) dxdy =

ˆ

R2

(ψ2(x) + C)ω1(x) dx

= −
ˆ

R2

ψ2(x) div

(
1

b
∇ψ1

)
(x) dx

where ψi is the solution of

− div

(
1

b
∇ψi

)
= ωi

given by Proposition 2.2. If R > 0, we have that

−
ˆ

B(0,R)
ψ2(x) div

(
1

b
∇ψ1

)
(x) dx =−

ˆ

∂B(0,R)

1

b
ψ2∇ψ1 · d~S

+

ˆ

B(0,R)

1

b
∇ψ2 · ∇ψ1.

Using Proposition 2.5, we obtain
∣∣∣∣∣

ˆ

∂B(0,R)

1

b
ψ2∇ψ1 · d~S

∣∣∣∣∣ 6 2πR
∥∥b−1

∥∥
L∞

C(1 +Rδ)
C

R2
−→

R→+∞
0

and therefore
¨

R2×R2

gb(x, y)ω1(x)ω2(y) dxdy =

ˆ

R2

1

b
∇ψ2 · ∇ψ1

which is a symmetric expression of ψ1 and ψ2. It follows that
¨

R2×R2

gb(x, y)ω1(x)ω2(y) dxdy =

¨

R2×R2

gb(y, x)ω1(x)ω2(y) dxdy.
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Since
√
b(x)b(y)g(x − y) is symmetric we get that

¨

R2×R2

Sb(x, y)ω1(x)ω2(y) dxdy =

¨

R2×R2

Sb(y, x)ω1(x)ω2(y) dxdy

for any ω1, ω2 smooth with compact suport and average zero. Let us define

A(x, y) := Sb(x, y)− Sb(y, x).

Now we fix χ, ω1, ω2 smooth functions with compact support such that
ˆ

R2

ω2 = 0 and

ˆ

R2

χ = 1. Remark that we no longer assume that

ˆ

R2

ω1 = 0.

We define

A2(x) :=

ˆ

R2

A(x, y)ω2(y) dy.

We have
ˆ

R2

A2ω1 =

ˆ

R2

A2

(
ω1 −

(
ˆ

R2

ω1

)
χ

)
+

(
ˆ

R2

ω1

)
ˆ

R2

A2χ

= 0 +

(
ˆ

R2

ω1

)
ˆ

R2

A2χ.

Thus A2 is constant so for every x ∈ R2,
ˆ

R2

∇xA(x, y)ω2(y) dy = 0

for all ω2 with mean zero and therefore ∇xA(x, y) = U(x). It follows that
A(x, y) = c(x) + d(y). Since A(x, y) = −A(y, x), we have d = −c. Now let

us set S̃b(x, y) := Sb(x, y) + c(y). We have:

S̃b(x, y)− S̃b(y, x) = Sb(x, y)− Sb(y, x) + c(y)− c(x)

= c(x)− c(y) + c(y)− c(x)

= 0

which proves that S̃b a symmetric solution of (2.9). Up to adding a constant

we can also assume that S̃b(0, 0) = 0. �

The symmetry of Sb allows us to obtain more regularity estimates:

Lemma 2.11. Let Sb be the symmetric solution of Equation (2.9) given by
Proposition 2.8, then

(1) Sb is smooth on R2 × R2\{(x, x) ; x ∈ R2}.
(2) |Sb(x, y)| 6 Cb(1 + |x|2 + |y|2).

Proof. For 0 < r < R, we define C(y, r,R) := B(y,R)\B(y, r). We have
that Sb(·, y) is a solution of




div

(
1

b
∇Sb(·, y)

)
= g(· − y)

√
b(y)∆

(
1√
b

)
in C(y, r,R)

Sb(·, y) = Sb(·, y) ∈ C0,s in ∂C(y, r,R).

Thus by elliptic regularity (see for example [26, Theorem 6.13]) we obtain

that Sb(·, y) ∈ C2,s(C̊(y, r,R)) for all y ∈ R2 and 0 < r < R. By symmetry
we get that Sb is C2,s on

R2 × R2\{(x, x) ; x ∈ R2}.
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We can iterate the argument by writing the elliptic system satisfied by the
derivatives of Sb to show that Sb is smooth on

R2 × R2\{(x, x) ; x ∈ R2}.
The second claim is just a consequence of Lemma 2.7, since

|Sb(x, y)| 6 |Sb(0, 0) − Sb(x, 0)| + |Sb(x, 0) − Sb(x, y)|
6 |Sb(0, 0) − Sb(x, 0)| + |Sb(0, x) − Sb(y, x)|
6 ‖∇xSb(·, 0)‖L∞ |x|+ ‖∇xSb(·, x)‖L∞ |y|
6 Cb|x|+ Cb(1 + |x|)|y|
6 Cb(1 + |x|2 + |y|2).

�

We finish this subsection by giving a straightforward consequence of Propo-
sition 2.5 and [23, Lemma 2.7] which will be useful to deal with the regu-
larisation of the dirac mass we will introduce in Subsection 2.4 and use in
Sections 5 and 6.

Lemma 2.12. µ 7→ ∇Gb[µ] extends into a bounded operator from Ḣ−1 to
L2.

Proof. Let µ be a smooth function with compact support and average zero.
By Proposition 2.5, ∇Gb[µ] ∈ L2 and therefore it follows by [23, Lemma 2.7]
that

‖∇Gb[µ]‖L2 6 Cb ‖µ‖Ḣ−1

and the lemma follows from the density of smooth functions with compact
support and average zero in Ḣ−1. �

2.4. Regularisations of the Coulomb kernel and the dirac mass. To
study our modulated energy we will need to have suitable regularisations of
g and of the dirac mass δy. For that purpose, let us first define g

(η) for any
0 < η < 1 as

(2.12) g(η)(x) :=





− 1

2π
ln(η) if |x| 6 η

g(x) if |x| > η

and we define δ
(η)
y as the uniform probability measure on the circle ∂B(y, η).

We also define

(2.13) δ̃(η)y := mb(y, η)
dδ

(η)
y√
b

where

(2.14) mb(y, η) :=

(
ˆ

dδ
(η)
y√
b

)−1

.

In the following proposition we state several properties related to these reg-
ularisations.
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Proposition 2.13. For any 0 < η < 1 and y ∈ R2, we have

(2.15)

ˆ

g(x− z) dδ(η)y (z) = g(η)(x− y)

and

(2.16) |mb(y, η)−
√
b(y)| 6 Cbη.

Proof. By a change of variable we may assume that y = 0. The function

f(x) :=

ˆ

∂B(0,η)
g(x− z) dδ

(η)
0 (z)

is locally bounded and satisfies ∆f = −δ(η)0 = ∆g(η). Now if |x| > η, we
have

ˆ

∂B(0,η)
g(x− z) dδ

(η)
0 (z)− g(η)(x) =

ˆ

∂B(0,η)
(g(x − z)− g(x)) dδ

(η)
0 (z)

=

ˆ

∂B(0,η)
g

(
x

|x| −
z

|x|

)
dδ

(η)
0 (z)

−→
|x|→∞

ˆ

∂B(0,η)
− 1

2π
ln(1) = 0

by dominated convergence theorem. Thus f − g(η) is a harmonic bounded
function so it is constant. Since f(z) = g(η) = g(η)(z) for any z of norm η,

we get that f = g(η).
Let us now prove (2.16):

mb(y, η) −
√
b(y) = mb(y, η)

√
b(y)

(
1√
b(y)

−
ˆ

dδ
(η)
y (z)√
b(z)

)

and thus
|mb(y, η) −

√
b(y)| 6 Cbη

by Assumption 1.5. �

3. Point vortices

To prove Theorem 1.8 we will need to control the evolution of the in-
teraction energy and of the moment of inertia. We recall that the moment
of inertia is not conserved for the lake equations, nor for the point vortex
system. Due to the self-interactions, the interaction energy EN is also not
conserved.

The following proposition gives bounds on the interaction energy and on
the moment of inertia and the global well-posedness of the lake point-vortex
system (1.6).

Proposition 3.1. Let T > 0 and (q01 , ..., q
0
N ) be such that q0i 6= q0j if i 6= j.

There exists a unique smooth solution of (1.6) on [0, T ]. Moreover, we have
the following estimates:

(3.1) |EN (t)| 6 eCb(1+αN )t(|EN (0)|+ IN (0) + 1)

(3.2) IN (t) 6 eCb(1+αN )t(|EN (0)| + IN (0) + 1).
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We also have similar estimates for the rescaled moment of inertia and for
the interaction energy:

(3.3) |EN (t)| 6 eCb(1+α−1

N
)t(|EN (0)| + IN (0) + 1)

(3.4) IN (t) 6 eCb(1+α−1

N
)t(|EN (0)|+ IN (0) + 1).

Proof. Since b is regular (see Assumption 1.5) and Sb, g,∇g are regular out-
side of the diagonal (see Claim (1) of Lemma 2.11), System (1.6) is well-
posed up to the first collision time by Cauchy-Lipschitz theorem. We will
first prove the bounds on EN and IN and then deduce that there is no colli-
sion between the points (this is the classical strategy to prove that the Euler
point vortex system is well-posed when all the vorticities are positive, as
explained for example in [47, Chapter 4.2]). Let us assume that there is no
collision up to some time T ∗ 6 T .

We first compute the time derivative of EN . Since gb is symmetric, we
have

ĖN =
1

N2

N∑

i=1

( N∑

j=1
j 6=i

q̇i · ∇xgb(qi, qj) + q̇j∇ygb(qi, qj)

)

=
2

N2

N∑

i=1

(
− αN

∇⊥b(qi)

b(qi)
− 1

Nb(qi)

N∑

k=1
k 6=i

∇⊥
x gb(qi, qk)

)
·

N∑

j=1
j 6=i

∇xgb(qi, qj)

=− 2αN

N2

N∑

i=1

∇⊥b(qi)

b(qi)
·
( √

b(qi)

2
√
b(qj)

g(qi − qj)∇b(qj)

+
√
b(qi)b(qj)∇g(qi − qj) +∇xSb(qi, qj)

)

and thus we get that
(3.5)

ĖN = −2αN

N2

N∑

i=1

∇⊥b(qi)

b(qi)
·
( N∑

j=1
j 6=i

√
b(qi)b(qj)∇g(qi − qj) +∇xSb(qi, qj)

)
.

Now let us bound the right-handside of the upper equality. Using Claim
(1) of Lemma 2.7 and Assumption 1.5, we have

∣∣∣∣
∇⊥b(qi)

b(qi)
· ∇xSb(qi, qj)

∣∣∣∣ 6 Cb(1 + |qj|)

and thus

(3.6)

∣∣∣∣∣∣∣∣

2αN

N2

N∑

i=1

∇⊥b(qi)

b(qi)
·

N∑

j=1
j 6=i

∇xSb(qi, qj)

∣∣∣∣∣∣∣∣
6 CbαN (1 + IN ).
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Now remark that

2αN

N2

N∑

i=1

∇⊥b(qi)

b(qi)
·
( N∑

j=1

j 6=i

√
b(qi)b(qj)∇g(qi − qj)

)

=
αN

N2

N∑

i=1

N∑

j=1
j 6=i

(√
b(qj)

b(qi)
∇⊥b(qi)−

√
b(qi)

b(qj)
∇⊥b(qj)

)
· ∇g(qi − qj).

Moreover,
√
b(qj)

b(qi)
∇⊥b(qi)−

√
b(qi)

b(qj)
∇⊥b(qj) =

√
b(qj)

b(qi)
(∇⊥b(qi)−∇⊥b(qj))

+
b(qj)− b(qi)√
b(qi)b(qj)

∇⊥b(qj)

and thus using the Lipschitz regularity of b and ∇b (see Assumption 1.5)
and |∇g(qi − qj)| = C|qi − qj|−1 we get that

(3.7)

∣∣∣∣∣∣∣∣

2αN

N2

N∑

i=1

∇⊥b(qi)

b(qi)
·
[ N∑

j=1
j 6=i

√
b(qi)b(qj)∇g(qi − qj)

]
∣∣∣∣∣∣∣∣
6 CbαN .

Combining inequalities (3.6) and (3.7) we get that

(3.8) |ĖN | 6 Cb(1 + IN )αN .

Now we compute the time derivative of IN :

İN =
2

N

N∑

i=1

qi · q̇i

=− 2αN

N

N∑

i=1

qi ·
∇⊥b(qi)

b(qi)

− 2

N

N∑

i=1

N∑

j=1

j 6=i

√
b(qj)

2b(qi)
√
b(qi)

g(qi − qj)qi · ∇⊥b(qi)

− 2

N

N∑

i=1

N∑

j=1
j 6=i

√
b(qi)b(qj)

b(qi)
qi · ∇⊥g(qi − qj)

− 2

N

N∑

i=1

N∑

j=1
j 6=i

qi · ∇⊥
x Sb(qi, qj)

=:2(T1 + T2 + T3 + T4).

Using Assumption 1.5 we have

(3.9) |T1| 6 CbαN .
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For the second term, using Assumption 1.5 we have

|T2| 6
Cb

N2

N∑

i=1

( N∑

j=1

j 6=i

|g(qi − qj)|
)

6
Cb

N2

N∑

i=1

( N∑

j=1
j 6=i

g(qi − qj)1|qi−qj |61 + |qi|2 + |qj|2
)

6 CbIN +
Cb

N2

∑

16i 6=j6N

|qi−qj|61

g(qi − qj).

Now by Assumption 1.5, we have that

1

N2

∑

16i 6=j6N

|qi−qj |61

g(qi − qj) 6
Cb

N2

∑

16i 6=j6N

(√
b(qi)b(qj)g(qi − qj)

+ Sb(qi, qj)

)
+
Cb

N2

∑

16i 6=j6N

|qi−qj |>1

|g(qi − qj)|

+
Cb

N2

∑

16i 6=j6N

|Sb(qi, qj)|

6Cb

(
EN +

1

N2

∑

16i 6=j6N

|qi−qj |>1

|g(qi − qj)|

+
1

N2

∑

16i 6=j6N

|Sb(qi, qj)|
)
.

Moreover,

Cb

N2

∑

16i 6=j6N

|qi−qj |>1

|g(qi − qj)| 6
Cb

N2

∑

16i 6=j6N

|qi−qj |>1

|qi|2 + |qj|2

6 CbIN

and using Claim (2) of Lemma 2.11,

1

N2

∑

16i 6=j6N

|Sb(qi, qj)| 6
Cb

N2

∑

16i 6=j6N

(1 + |qi|2 + |qj |2) 6 Cb(1 + IN ).

Therefore

(3.10) |T2| 6 Cb(1 + |EN |+ IN ).

For the third term we write

T3 =− 1

N2

N∑

i=1

N∑

j=1
j 6=i

√
b(qj)−

√
b(qi)√

b(qi)
∇⊥g(qi − qj) · qi
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− 1

2N2

N∑

i=1

N∑

j=1
j 6=i

∇⊥g(qi − qj) · (qi − qj)

=− 1

N2

N∑

i=1

N∑

j=1
j 6=i

√
b(qj)−

√
b(qi)√

b(qi)
∇⊥g(qi − qj) · qi − 0

and thus using the Lipschitz regularity of b (see Assumption 1.5) we get

(3.11) |T3| 6 Cb(1 + IN ).

For the fourth term, using Claim (1) of Lemma 2.7 we get

(3.12)

|T4| =

∣∣∣∣∣∣∣∣
− 1

N2

N∑

i=1

N∑

j=1
j 6=i

1

b(qi)
qi · ∇⊥

x Sb(qi, qj)

∣∣∣∣∣∣∣∣

6 Cb
1

N2

N∑

i=1

N∑

j=1

|qi|(1 + |qj|)

6 Cb(1 + IN ).

Combining with inequalities (3.9), (3.10), (3.11) and (3.12) we get that

(3.13) |İN | 6 Cb(1 + αN + |IN |+ |EN |).
Let us write UN := (EN , IN ). By equations (3.8) and (3.13) we have

|U̇N | 6 Cb(1 + αN )(1 + |UN |)
therefore by Grönwall’s lemma we have

|UN (t)| 6 eCb(1+αN )t(|UN (0)| + 1)− 1

from which (3.1) and (3.2) follows.
Let us use these bounds to prove that there is no collision (and it will

follow that System (1.6) is globally well-posed). If i 6= j, then

g(|qi − qj|) 6Cb

(
EN +

1

N2

∑

16k 6=l6N

∑
|Sb(qk, ql)|

− 1

N2

∑

16k 6=l6N

(k,l)6=(i,j)

g(qk − ql)

)

6Cb

(
EN +

1

N2

∑

16k 6=l6N

(1 + |qk|2 + |ql|2)
)
.

where we used Claim (2) of Lemma 2.11 and ln |x− y| 6 |x|+ |y|. Thus by
inequalities (3.1) and (3.2) we get

g(|qi − qj|) 6 Cb(e
Cb(1+αN )t(|EN (0)| + IN (0) + 1) + 1)

and therefore

|qi(t)− qj(t)| > exp

(
− 2πCb(e

Cb(1+αN )t(|EN (0)| + IN (0) + 1) + 1)

)
> 0.
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It follows that there is no collision on [0, T ]. The bounds on EN and IN
follow directly from Inequalities (3.1) and (3.2) applied to t = α−1

N τ . �

4. Time derivatives of the modulated energies

The time derivatives of Fb,N and of Fb,N , defined in (1.13) and (1.14),
are given by the two following propositions:

Proposition 4.1. Let ω be a weak solution of (1.1) in the sense of Defini-
tion 1.1, (q1, ..., qN ) be solutions of (1.6). We denote

ωN =
1

N

N∑

i=1

δqi(t).

Assume that ω satisfies Assumption 1.6. Then Fb,N is Lipschitz and for
almost every t ∈ [0, T ],

d

dt
Fb,N (t) =

2

¨

(R2×R2)\∆

(
u(t, x)− α

∇⊥b(x)

b(x)

)
· ∇xgb(x, y) d(ω(t)− ωN (t))⊗2(x, y)

+ 2(αN − α)

¨

(R2×R2)\∆

∇⊥b(x)

b(x)
· ∇xgb(x, y) dωN (t, x) d(ω(t)− ωN (t))(y).

Proposition 4.2. Let (q1, ..., qN ) be solutions of (1.7) and ω be a solution
of (1.3) in the sense of Definition 1.2.

We denote

ωN =
1

N

N∑

i=1

δqi(t).

Assume that ω satisfies Assumption 1.6. Denote v = ∇Gb[ω]. Then F b,N

is Lipschitz and for almost every t ∈ [0, T ], we have

d

dt
F b,N (t) = −2

¨

(R2×R2)\∆

∇⊥b(x)

b(x)
· ∇xgb(x, y) d(ω(t)− ωN (t))⊗2(x, y)

+
2

N2αN

N∑

i=1

N∑

j=1
j 6=i

v(t, qi)

b(qi)
· ∇xgb(qi, qj).

Proof of Proposition 4.1. We split Fb,N in three terms:

Fb,N =

¨

R2×R2

gb(x, y)ω(t, x)ω(t, y) dxdy

− 2

N

N∑

i=1

ˆ

R2

gb(x, qi)ω(t, x) dx+ EN

=:T1 + T2 + EN .

Let us compute the time derivative of T1. For that purpose, we will need
to regularize the kernel gb. The regularisation we will use is given by the
following Claim:

Claim 4.3. There exists a familly of smooth functions (gηb )0<η<1 such that:
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• |gηb (x, y)| 6 Cb(|g(x − y)|+ 1 + |x|2 + |y|2)
• |∇xg

η
b (x, y)|, |∇yg

η
b (x, y)| 6 Cb(|x− y|−1 + 1 + |x|+ |y|).

• For any (x, y) ∈ (R2)2 such that x 6= y,

gηb (x, y)−→η→0
gb(x, y)

∇xg
η
b (x, y)−→η→0

∇xgb(x, y)

∇yg
η
b (x, y)−→η→0

∇ygb(x, y).

Proof of the claim. We define

gηb (x, y) =
√
b(x)b(y)gη(x− y) + Sη

b (x, y)

where gη is a smooth function satisfying:

• gη(x) = g(x) for |x| > η,
• |gη(x)| 6 |g(x)|,
• |∇gη(x)| 6 C|x|−1.

that we can obtain by extending ln |x>η in a smooth function on R+. We
define Sη

b := Sb∗χη where χη is a mollifier on R4. Since Sb is locally Lipschitz
(see Lemma 2.7), Sη

b is smooth and we get from Claim (1) of Lemma 2.7
and Claim (2) of Lemma 2.11 that

• |Sη
b (x, y)| 6 Cb(1 + |x|2 + |y|2),

• |∇xS
η
b (x, y)|, |∇yS

η
b (x, y)| 6 Cb(1 + |x|+ |y|).

Since Sb is locally Lipschitz, Sη
b and ∇Sη

b converge locally uniformly to
Sb and ∇Sb (see for example [13, Proposition 4.21]) and therefore we get
the convergence of gηb (x, y) and ∇gηb (x, y) to gb(x, y) and ∇gb(x, y) for any
x 6= y. �

With this regularisation we can compute the time derivative of T1:

Claim 4.4. T1 ∈W 1,∞([0, T ]) and for almost every t ∈ [0, T ], we have

dT1
dt

= 2

¨

R2×R2

(
u(t, x)− α

∇⊥b(x)

b(x)

)
· ∇xgb(x, y)ω(t, x)ω(t, y) dxdy.

Proof of the claim. For 0 6 s, t 6 T and 0 < η < 1 we have:

T1(t)− T1(s) =

¨

R2×R2

gb(x, y)(ω(t, x)ω(t, y) − ω(s, x)ω(s, y)) dxdy.

Now for almost all x and y such that x 6= y,

|gηb (x, y)||ω(t, x)ω(t, y) − ω(s, x)ω(s, y)|
6 Cb(|g(x − y)|+ 1 + |x|2 + |y|2)|ω(t, x)ω(t, y) − ω(s, x)ω(s, y)|

and
¨

R2×R2

(|g(x− y)|+ 1 + |x|2 + |y|2)

× |ω(t, x)ω(t, y) − ω(s, x)ω(s, y)|dxdy < +∞
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because ω ∈ L∞ with compact support. Therefore by dominated conver-
gence theorem we get that
(4.1)

T1(t)− T1(s) = lim
η→0

¨

R2×R2

gηb (x, y)(ω(t, x)ω(t, y) − ω(s, x)ω(s, y)) dxdy.

Since gηb is smooth and ω has compact support, we can use (1.2) to get that
ˆ

R2

gηb (x, y)(ω(t, y) − ω(s, y)) dy =

ˆ t

s

ˆ

R2

∇yg
η
b (x, y) ·

(
u(τ, y)− α

∇⊥b(y)

b(y)

)
ω(τ, y) dy dτ.

Let us write

ϕ(t, x) :=

ˆ

R2

gηb (x, y)ω(t, y) dy.

Since gηb is smooth we have that for any compact K ⊂ R2,

(t, x) 7→
ˆ

R2

∇yg
η
b (x, y) ·

(
u(t, y)− α

∇⊥b(y)

b(y)

)
ω(t, y) dy ∈ L∞([0, T ], C∞(K))

and thus ϕ ∈W 1,∞([0, T ], C∞(K)) and for almost every t ∈ [0, T ],

∂tϕ(t, x) =

ˆ

R2

∇yg
η
b (x, y)

(
u(τ, y)− α

∇⊥b(y)

b(y)

)
ω(t, y) dy.

Therefore we can use ϕ as a test function in (1.2) (remark that we defined
(1.2) for smooth functions only but by density we can extend it to functions
which are only W 1,∞ in time) and we get that
¨

R2×R2

gηb (x, y)(ω(t, x)ω(t, y) − ω(s, x)ω(s, y)) dxdy

=

ˆ t

s

¨

R2×R2

∇yg
η
b (x, y) ·

(
u(τ, y) − α

∇⊥b(y)

b(y)

)
ω(τ, y)ω(τ, x) dy dxdτ

+

ˆ t

s

¨

R2×R2

∇xg
η
b (x, y) ·

(
u(τ, x)− α

∇⊥b(x)

b(x)

)
ω(τ, x)ω(τ, y) dxdy dτ.

Now we have that for almost every x and y such that x 6= y and almost
every τ ∈ [0, T ],

|∇xg
η
b (x, y) ·

(
u(τ, x)− α

∇⊥b(x)

b(x)

)
ω(τ, x)ω(τ, y)|

6 Cb(|x− y|−1 + 1 + |x|2 + |y|2)|
∣∣∣∣u(τ, x) − α

∇⊥b(x)

b(x)

∣∣∣∣ |ω(τ, y)||ω(τ, x)|

and
ˆ t

s

¨

R2×R2

(|x− y|−1 + 1 + |x|2 + |y|2)

×
∣∣∣∣u(τ, x) − α

∇⊥b(x)

b(x)

∣∣∣∣ |ω(τ, y)||ω(τ, x)|dxdy < +∞.
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Applying dominated convergence theorem we find that

ˆ t

s

¨

R2×R2

∇xg
η
b (x, y) ·

(
u(τ, x)− α

∇⊥b(x)

b(x)

)
ω(τ, x)ω(τ, y) dxdy dτ

−→
η→0

ˆ t

s

¨

R2×R2

∇xgb(x, y) ·
(
u(τ, x)− α

∇⊥b(x)

b(x)

)
ω(τ, x)ω(τ, y) dxdy dτ.

We can do the same for the first term to get that

ˆ t

s

¨

R2×R2

∇yg
η
b (x, y) ·

(
u(τ, y)− α

∇⊥b(y)

b(y)

)
ω(τ, y)ω(τ, x) dy dxdτ

−→
η→0

ˆ t

s

¨

R2×R2

∇ygb(x, y) ·
(
u(τ, y)− α

∇⊥b(y)

b(y)

)
ω(τ, y)ω(τ, x) dy dxdτ.

Using that ∇ygb(x, y) = ∇xgb(y, x) and (4.1) we get that T1 ∈W 1,∞([0, T ])
and for almost every t ∈ [0, T ], we get Claim 4.4. �

We know by Equation 3.5 that

ĖN = −2αN

N2

N∑

i=1

∇⊥b(qi)

b(qi)
·

N∑

j=1
j 6=i

∇xgb(qi, qj)

and therefore

(4.2) ĖN = −2αN

¨

R2×R2\∆

∇⊥b(x)

b(x)
· ∇xgb(x, y) dωN (x) dωN (y).

Now we compute the derivative of the second term:

Claim 4.5. T2 is Lipschitz and for almost every t ∈ [0, T ], we have

d

dt
T2(t)

=− 2

¨

R2×R2

(
u(t, x)− α

∇⊥b(x)

b(x)

)
· ∇xgb(x, y)ω(t, x) dxdωN (t, y)

+ 2αN

¨

R2×R2

∇⊥b(x)

b(x)
· ∇xgb(x, y) dωN (x)ω(t, y) dy

+ 2

¨

(R2×R2)\∆
u(t, x) · ∇xgb(x, y) dωN (x) dωN (y).

Proof of the Claim. If we use the regularisation gηb we defined in Claim 4.3,
Equation (1.2) and if we let η tends to zero as we did for the proof of
Claim 4.4, we can show that T2 is Lipschitz and that for almost every t ∈
[0, T ], we have

dT2
dt

= T2,1 + T2,2
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where
(4.3)

T2,1 := − 2

N

N∑

i=1

ˆ

R2

(
u(t, x)− α

∇⊥b(x)

b(x)

)
· ∇xgb(x, qi)ω(t, x) dx

= −2

¨

R2×R2

(
u(t, x) − α

∇⊥b(x)

b(x)

)
· ∇xgb(x, y)ω(t, x) dxdωN (t, y)

and

T2,2 :=− 2

N

N∑

i=1

q̇i ·
ˆ

R2

∇ygb(x, qi)ω(t, x) dx

=− 2

N

N∑

i=1

q̇i ·
ˆ

R2

∇xgb(qi, x)ω(t, x) dx

=

[
2αN

N

N∑

i=1

∇⊥b(qi)

b(qi)
·
ˆ

R2

∇xgb(qi, x)ω(t, x) dx

]

+

[
2

N2

N∑

i=1

N∑

j=1
j 6=i

1

b(qi)
∇⊥

x gb(qi, qj) ·
ˆ

R2

∇xgb(qi, x)ω(t, x) dx

]

=:T2,2,1 + T2,2,2.

Now we have

(4.4)

T2,2,1 =
2αN

N

N∑

i=1

∇⊥b(qi)

b(qi)
·
ˆ

R2

∇xgb(qi, x)ω(t, x) dx

= 2αN

¨

R2×R2

∇⊥b(x)

b(x)
· ∇xgb(x, y) dωN (x)ω(t, y) dy

and using

ˆ

R2

∇xgb(qi, y)ω(y) dy = b(qi)u
⊥(t, qi) (see Proposition 2.8), we

get

T2,2,2 =
2

N2

N∑

i=1

u(t, qi) ·
N∑

j=1
j 6=i

∇⊥
x gb(qi, qj)

=2

¨

(R2×R2)\∆
u(t, x) · ∇xgb(x, y) dωN (x) dωN (y).

Combining the upper equality with (4.3) and(4.4) we get the proof of Claim
(4.5). �

Now remark that
¨

R2×R2

u(x) · ∇xgb(x, y) dωN (x) dω(y) =

ˆ

R2

u · bu⊥ dωN = 0.

Thus combining Claim 4.4, Equation (4.2) and Claim 4.5 we obtain Propo-
sition 4.1. �

We now compute the derivative of the rescaled modulated energy:
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Proof of Proposition 4.2. We split F b,N in three terms:

F b,N =

¨

R2×R2

gb(x, y)ω(t, x)ω(t, y) dxdy

− 2

N

N∑

i=1

ˆ

R2

gb(x, qi)ω(t, x) dx+ EN

=:T1 + T2 + EN .

Let us compute the time derivative of the first term. Using the regularisation
gηb we defined in Claim 4.3 and using (1.2) and letting η tends to zero as we
did for the proof of Claim 4.4, one can show that T1 is Lipschitz and that
for almost every t ∈ [0, T ], we have

(4.5)
dT1
dt

= −2

¨

R2×R2

∇⊥b(x)

b(x)
· ∇xgb(x, y)ω(t, x)ω(t, y) dxdy.

For the derivative of EN we rescale Equation (4.2) to get

(4.6)
d

dt
EN = −2

¨

R2×R2\∆

∇⊥b(x)

b(x)
· ∇xgb(x, y) dωN (x) dωN (y).

Now let us compute the derivative of the second term:

Claim 4.6.

(4.7)

dT2
dt

=2

¨

R2×R2

∇⊥b(x)

b(x)
· ∇xgb(x, y)ω(t, x) dxdωN (t, y)

+ 2

¨

R2×R2

∇⊥b(x)

b(x)
· ∇xgb(x, y) dωN (x) dω(y)

+
2

N2αN

N∑

i=1

N∑

j=1
j 6=i

v(t, qi)

b(qi)
· ∇xgb(qi, qj).

Proof of (4.7). Using the regularisation gηb we defined in Claim 4.3 and using
(1.2) and letting η tends to zero as we did for the proof of Claim 4.4, one
can show that T2 is Lipschitz and that for almost every t ∈ [0, T ], we have

dT2
dt

= T2,1 + T2,2

where

T2,1 :=
2

N

N∑

i=1

ˆ

R2

∇⊥b(x)

b(x)
· ∇xgb(x, qi)ω(t, x) dx

= 2

¨

R2×R2

∇⊥b(x)

b(x)
· ∇xgb(x, y)ω(t, x) dxdωN (t, y)

and

T2,2 :=− 2

N

N∑

i=1

q̇i ·
ˆ

R2

∇ygb(x, qi)ω(t, x) dx
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=− 2

N

N∑

i=1

q̇i · v(t, qi)

=
2

N

N∑

i=1

v(t, qi) ·
[∇⊥b(qi)

b(qi)
+

1

NαN

N∑

j=1

j 6=i

1

b(qi)
∇xgb(qi, qj)

]

=2

¨

(R2×R2)\∆

∇⊥b(x)

b(x)
· ∇xgb(x, y) dωN (x) dω(y)

+
2

N2αN

N∑

i=1

N∑

j=1
j 6=i

v(t, qi)

b(qi)
· ∇xgb(qi, qj)

and thus we have (4.7). �

Combining Equations (4.5), (4.6) and (4.7) we get (4.2). �

5. Properties of the modulated energy

For 0 < η < 1, we denote

HN,η := Gb

[
1

N

N∑

i=1

δ̃(η)qi
− ω

]
.

If b = 1 this quantity is the electric potential introduced by Serfaty in [63,
Equation (3.12)] divided by N .

Proposition 5.1. Let ω ∈ P(R2) ∩ L∞(R2) with compact support and
q1, ..., qN ∈ R2 be such that qi 6= qj if i 6= j. Then the following inequality
holds:
ˆ

R2

1

b
|∇HN,η|2 +

Cb

N2

∑

16i 6=j6N

(g(qi − qj)− g(η)(qi − qj))

6 Fb(QN , ω)+Cb

(
g(η)

N
+ I(QN )(η+N−1)+ ‖ω‖L1((1+|x|) dx)∩L∞ g(η)η

)

where g(η) is defined by (2.12).

From this proposition we see that even if it is not necessarily positive,
the modulated energy is bounded from below by some negative power of N
(provided that (I(QN )) is bounded). We will also prove the three following
corollaries:

Corollary 5.2. If ω and QN satisfy the hypothesis of Proposition 5.1, then
there exists c > 0 such that

c

N2
|{(qi, qj); |qi − qj| 6 ε}| 6Fb(QN , ω) + Cb

(
g(ε)

N
+ I(QN )(ε+N−1)

+ ‖ω‖L1((1+|x|) dx)∩L∞ g(ε)ε

)
.
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Corollary 5.3. Let α ∈ (0, 1) and ξ be a test function (for example smooth
with compact support or in the Schwartz space), then if ω and QN satisfy
the hypothesis of Proposition 5.1 we have

∣∣∣∣∣

ˆ

R2

ξ

(
1

N

N∑

i=1

δqi − ω

)∣∣∣∣∣ 6Cb|ξ|C0,αN−α + Cb

(
ˆ

R2

1

b
|∇ξ|2

) 1

2
(
Fb(ω,QN )

+
ln(N)

N
+ I(QN )N−1

+ ‖ω‖L1((1+|x|) dx)∩L∞

ln(N)

N

)1

2

.

In particular, there exists β > 0 such that for all s < −1,
∥∥∥∥∥
1

N

N∑

i=1

δqi − ω

∥∥∥∥∥
Hs

6Cb((1 + I(QN ) + ‖ω‖L1((1+|x|) dx)∩L∞)N−β

+ Fb(ω,QN )).

Corollary 5.4. If ω and QN satisfy the hypothesis of Proposition 5.1 and
if (I(QN )) is bounded, then the two following assertions are equivalent:

(1) Fb(ω,QN ) −→
N→+∞

0.

(2)
1

N

N∑

i=1

δqi
∗−−⇀

N→+∞
ω for the weak-∗ topology of probability measures

and

1

N2

∑

16i 6=j6N

gb(qi, qj) −→
¨

R2×R2

gb(x, y)ω(x)ω(y) dxdy.

Proposition 5.1 and Corollaries 5.2, 5.3 and 5.4 are analogues of other
results obtained in [22, 52, 63]. Proposition 5.1 is an equivalent of [63,
Proposition 3.3] or [52, Proposition 2.2] and the proof will follow the same
steps: regularise the modulated energy and control the remainders. Some
terms are very similar to the ones obtained in the Coulomb case whereas
other terms are specific to the lake kernel and will be handled using the
estimates proved in Section 2.

Corollary 5.2 is an equivalent of [52, Corollary 2.3] and Corollary 5.3 is
an equivalent of [63, Proposition 3.6]. Both can be deduced from Propo-
sition 5.1 in the same way [52, Corollary 2.3] and [63, Proposition 3.6] are
deduced from [63, Proposition 3.3] or [52, Proposition 2.2].

Corollary 5.4 is an equivalent of [22, Lemma 2.6] and its proof proceeds
in the same way. Due to the bound we assumed on the moment of inertia,
tightness issues will be easier to handle.

Let us begin by proving the main proposition of this section:

Proof of Proposition 5.1. Let us regularise the modulated energy (1.12) us-

ing the regularisation of the dirac mass δ̃ defined in (2.13). We have

Fb(QN , ω) =
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¨

R2×R2

gb(x, y) d

(
1

N

N∑

i=1

δ̃(η)qi
− ω

)
(x) d

(
1

N

N∑

i=1

δ̃(η)qi
− ω

)
(y)

+
1

N2

∑

16i 6=j6N

¨

R2×R2

(
√
b(qi)b(qj)g(qi − qj)

−
√
b(x)b(y)g(x− y)) dδ̃(η)qi

(x) dδ̃(η)qj
(y)

+
1

N2

∑

16i 6=j6N

¨

R2×R2

(Sb(qi, qj)− Sb(x, y)) dδ̃
(η)
qi

(x) dδ̃(η)qj
(y)

− 1

N2

N∑

i=1

¨

R2×R2

gb(x, y) dδ̃
(η)
qi

(x) dδ̃(η)qi
(y)

+
2

N

N∑

i=1

¨

R2×R2

(√
b(x)b(y)g(x− y)

−
√
b(x)b(qi)g(x− qi)

)
ω(x) dxdδ̃(η)qi

(y)

+
2

N

N∑

i=1

¨

R2×R2

(Sb(x, y)− Sb(x, qi))ω(x) dxdδ̃
(η)
qi

(y)

=:T1 + T2 + T3 + T4 + T5 + T6.

Claim 5.5. We have

T1 =

ˆ

R2

1

b
|∇HN,η|2.

Proof of the claim. Let us first fix µ smooth with compact support and av-
erage zero and write Hµ = Gb[µ]. By Proposition 2.8, we have

¨

R2×R2

gb(x, y)µ(x)µ(y) dxdy =

ˆ

R2

Hµ(x)µ(x) dx

= −
ˆ

R2

Hµ(x) div

(
1

b
∇Hµ

)
(x) dx.

Let R > 0, then integrating by parts we get

−
ˆ

B(0,R)
Hµ div

(
1

b
∇Hµ

)
= −

ˆ

∂B(0,R)

1

b
Hµ∇Hµ · d~S +

ˆ

B(0,R)

1

b
|∇Hµ|2.

Using Proposition 2.5 applied to ω = µ, u = −1

b
∇⊥Hµ and ψ = Hµ, we

have ∣∣∣∣∣

ˆ

∂B(0,R)

1

b
Hµ∇Hµ · d~S

∣∣∣∣∣ 6
C

R2
(1 +Rδ)R −→

R→+∞
0

and therefore
¨

R2×R2

gb(x, y)µ(x)µ(y) dxdy =

ˆ

R2

1

b
|∇Hµ|2.
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Now consider a sequence (µk) of smooth functions with compact support and

average zero converging tom :=
1

N

N∑

i=1

δ̃(η)qi
− ω in Ḣ−1, then by Lemma 2.12,

∇Hµk
−→

k→+∞
∇HN,η in L2.

and therefore
ˆ

R2

1

b
|∇Hµk

|2 −→
k→+∞

ˆ

R2

1

b
|∇HN,η|2

and∣∣∣∣
¨

R2×R2

gb(x, y)µk(x)µk(y) dxdy −
¨

R2×R2

gb(x, y) dm(x) dm(y)

∣∣∣∣

=

∣∣∣∣
ˆ

R2

Gb[µk −m] dµk +

ˆ

R2

Gb[m] d(µk −m)

∣∣∣∣
6 C ‖∇Gb[µk −m]‖L2 ‖µk‖Ḣ−1 + C ‖∇Gb[m]‖L2 ‖µk −m‖Ḣ−1

6 C ‖µk −m‖Ḣ−1

by Lemma 2.12 so we get Claim 5.5. �

Now let us bound the fourth term:

Claim 5.6.

|T4| 6
Cb

N
(g(η) + I(QN )).

Proof. We write

T4 =− 1

N2

N∑

i=1

¨

R2×R2

√
b(x)b(y)g(x − y) dδ̃(η)qi

(x) dδ̃(η)qi
(y)

− 1

N2

N∑

i=1

¨

R2×R2

Sb(x, y) dδ̃
(η)
qi

(x) dδ̃(η)qi
(y)

=:T4,1 + T4,2.

Using the definition of δ̃q (2.13) and Equality (2.15) we get

T4,1 = − 1

N2

N∑

i=1

mb(qi, η)
2

¨

R2×R2

g(x− y) dδ(η)qi
(x) dδ(η)qi

(y)

= − 1

N2

N∑

i=1

mb(qi, η)
2

ˆ

R2

g(η)(x− qi) dδ
(η)
qi

(x).

Therefore,

|T4,1| 6
Cbg(η)

N
.

Now by Claim (2) of Lemma 2.11, we have

|T4,2| 6
Cb

N2

N∑

i=1

(1 + |qi|2).
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We get that

|T4| 6
Cb

N
(1 + I(QN ) + g(η)) 6

Cb

N
(g(η) + I(QN )).

�

Now we bound the third and the sixth term:

Claim 5.7.
|T3|+ |T6| 6 Cb(‖ω‖L1((1+|x|) dx) + I(QN ))η.

Proof. For x ∈ ∂B(qi, η), y ∈ ∂B(qj , η), we use Claim (1) of Lemma 2.7 and
the symmetry of Sb to get

|Sb(qi, qj)− Sb(x, y)| 6 |Sb(qi, qj)− Sb(x, qj)|+ |Sb(x, qj)− Sb(x, y)|
6 Cb(1 + |qj|)η + Cb(1 + |qi|)η
6 Cb(1 + |qi|+ |qj|)η.

Thus we can bound the third term:

(5.1) |T3| 6 Cb(1 + I(QN ))η.

The sixth term can be bounded in the same way:

|T6| 6
Cb

N

N∑

i=1

¨

R2×R2

(1 + |x|+ |qi|)ηω(x) dxdδ̃(η)qi
(y).

We get that

(5.2) |T6| 6 Cb(‖ω‖L1((1+|x|) dx) + I(QN ))η.

and combining (5.1) with (5.2) we get Claim 5.7. �

Now let us bound the fifth term:

Claim 5.8.
|T5| 6 Cb ‖ω‖L1∩L∞ ηg(η).

Proof. Using Proposition 2.13 we write T5 as

T5 =
2

N

N∑

i=1

ˆ

R2

(mb(qi, η)g
(η)(x− qi)−

√
b(qi)g(x− qi))

√
b(x)ω(x) dx

=
2

N

N∑

i=1

(mb(qi, η)−
√
b(qi))

ˆ

R2

g(η)(x− qi)
√
b(x)ω(x) dx

+
2

N

N∑

i=1

√
b(qi)

ˆ

R2

(g(η)(x− qi)− g(x− qi))
√
b(x)ω(x) dx.

and thus by (2.16) and since |g(η)(x− qi)| 6 C(g(η) + |x|+ |qi|) we have

|T5| 6Cb ‖ω‖L1 ηg(η) + Cb ‖ω‖L1(|x| dx) η + Cb ‖ω‖L1 (1 + I(QN ))η

+ Cb ‖ω‖L∞

ˆ

B(0,η)
|g(η)(x)− g(x)|dx.

We get that

|T5| 6 Cb ‖ω‖L1((1+|x|) dx)∩L∞ ηg(η) + (1 + I(QN ))η
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since ω is a probability density. �

We are only remained to estimate from below the second term:

Claim 5.9.

T2 >
Cb

N2

∑

16i 6=j6N

(g(qi − qj)− g(η)(qi − qj))− Cbηg(η).

Proof. We also split T2 in two terms:

T2 =
1

N2

∑

16i 6=j6N

√
b(qi)b(qj)g(qi − qj)

−mb(qi, η)mb(qj , η)

¨

R2×R2

g(x − y) dδ(η)qi
(x) dδ(η)qj

(y)

=
1

N2

∑

16i 6=j6N

√
b(qi)b(qj)g(qi − qj)

−mb(qi, η)mb(qj , η)

ˆ

R2

g(η)(qi − y) dδ(η)qj
(y)

=
1

N2

∑

16i 6=j6N

(
√
b(qi)b(qj)−mb(qi, η)mb(qj , η))

×
ˆ

R2

g(η)(qi − y) dδ(η)qj
(y)

+
1

N2

∑

16i 6=j6N

√
b(qi)b(qj)

(
g(qi − qj)−

ˆ

R2

g(η)(qi − y) dδ(η)qj
(y)

)

=T2,1 + T2,2.

Writing
√
b(qi)b(qj)−mb(qi, η)mb(qj , η) =

√
b(qi)(

√
b(qj)−mb(qj, η))

+mb(qj , η)(
√
b(qi)−mb(qi, η))

and using (2.16) we get that

(5.3) |T2,1| 6 Cbηg(η).

Now by (2.15),

g(qi − qj)−
ˆ

R2

g(η)(qi − y) dδ(η)qj
(y)

= g(qi − qj)− g(η)(qi − qj) +

ˆ

R2

(g(qi − y)− g(η)(qi − y)) dδ(η)qj
(y)

> g(qi − qj)− g(η)(qi − qj) + 0

and thus

(5.4) T2,2 >
Cb

N2

∑

16i 6=j6N

(g(qi − qj)− g(η)(qi − qj)).

We get Claim 5.9 combining Equations (5.3) with (5.4). �

Combining Claims 5.5, 5.6, 5.7, 5.8 and 5.9 we get the proof of Proposi-
tion 5.1. �
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Now we prove the “counting close particles” Corollary:

Proof of Corollary 5.2. The proof is exactly the same as the proof of [57,
Lemma 3.7]. If |qi − qj| 6 ε then

g(qi − qj)− g(2ε)(qi − qj) = − 1

2π
ln |qi − qj|+

1

2π
ln(2ε)

> − 1

2π
ln(ε) +

1

2π
ln(2ε) =

1

2π
ln(2) > 0.

Thus, since g − g(2ε) > 0,

1

2πN2
ln(2)|{(qi, qj); |qi − qj| 6 ε}|

6
1

N2

∑

16i 6=j6N

|qi−qj |6ε

(g(qi − qj)− g(2ε)(qi − qj))

6
1

N2

∑

16i 6=j6N

(g(qi − qj)− g(2ε)(qi − qj))

6Fb(QN , ω)

+ Cb

(
g(ε)

N
+ I(QN )(ε +N−1) + ‖ω‖L1((1+|x|) dx)∩L∞ g(ε)ε

)
.

where we used Proposition 5.1 in the last inequality. �

Now we prove the coercivity result:

Proof of Corollary 5.3. We have
ˆ

R2

ξ

(
1

N

N∑

i=1

δqi − ω

)
=

1

N

ˆ

R2

ξ

(
N∑

i=1

δqi − δ̃(η)qi

)

+

ˆ

R2

ξ

(
1

N

N∑

i=1

δ̃(η)qi
− ω

)

= : T1 + T2.

Now,

T1 =
1

N

N∑

i=1

ξ(qi)−mb(qi, η)

ˆ

∂B(qi,η)

ξ(x)√
b(x)

dδ(η)qi
(x)

=
1

N

N∑

i=1

mb(qi, η)

ˆ

∂B(qi,η)

ξ(qi)− ξ(x)√
b(x)

dδ(η)qi
(x).

Thus
|T1| 6 Cb|ξ|C0,αηα.

Using a sequence (µk) of smooth functions with compact support and av-

erage 0 converging to
1

N

N∑

i=1

δ̃(η)qi
− ω as we have done for Claim 5.5 we can

show that

T2 =

ˆ

R2

1

b
∇ξ · ∇HN,η
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and therefore

|T2| 6
(
ˆ

R2

1

b
|∇ξ|2

) 1

2
(
ˆ

R2

1

b
|∇HN,η|2

) 1

2

6Cb

(
ˆ

R2

1

b
|∇ξ|2

) 1

2
(
Fb(QN , ω) +

g(η)

N

+ I(QN )(η +N−1) + ‖ω‖L1((1+|x|) dx)∩L∞ g(η)η

) 1

2

.

by Proposition 5.1. We conclude by taking η = N−1. The bound on
∥∥∥∥∥
1

N

N∑

i=1

δqi − ω

∥∥∥∥∥
Hs

follows from Sobolev embeddings. �

We finish this section by proving the weak-∗ convergence result:

Proof of Corollary 5.4. Let us denote ωN =
1

N

N∑

i=1

δqi and prove that (ωN )

is a tight sequence of probability measures. Let R > 1, then

(5.5)
|{i ∈ [1, N ] ; |qi| > R}|R2

6

N∑

i=1
|qi|>R

|qi|2

6 NI(QN ).

Dividing by NR2 both sides of the inequality we get
ˆ

B(0,R)c
dωN 6 I(QN )R−2

and since (I(QN )) is bounded we get that (ωN ) is tight. We will now prove
the following Claim:

Claim 5.10. Assume that (ωN ) converges to ω for the weak-∗ topology of
probability measures and that (I(QN )) is bounded. ThenFb(QN , ω) −→

N→+∞
0

if and only if we have

1

N2

∑

16i 6=j6N

gb(qi, qj) −→
¨

R2×R2

gb(x, y)ω(x)ω(y) dxdy.

Proof. Let ε > 0. We write the modulated energy as the sum of three terms:

(5.6)

Fb(QN , ω) =−
¨

R2×R2

gb(x, y)ω(x)ω(y) dxdy

+
1

N2

∑

16i 6=j6N

gb(qi, qj)

− 2

ˆ

R2

ψ(y) d(ωN − ω)(y)
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where ψ = Gb[ω]. Let R > 1 be such that supp(ω) ⊂ B(0, R). We have
ˆ

R2

ψ d(ω − ωN ) = −
ˆ

B(0,R)c
ψ dωN +

ˆ

B(0,R)
ψ d(ω − ωN ).

We bound the first term as we did to obtain (5.5):
∣∣∣∣∣

ˆ

B(0,R)c
ψ dωN

∣∣∣∣∣ 6
1

N

N∑

i=1
|qi|>R

|ψ(qi)|

6
Cb

N

N∑

i=1
|qi|>R

(1 + |qi|δ)

6 Cb(R
−2I(QN ) +R2−δI(QN ))

for some 0 < δ < 1 (by Proposition 2.5). Therefore,∣∣∣∣∣

ˆ

B(0,R)c
ψ dωN

∣∣∣∣∣ 6 ε

if R is big enough. Now let χR,β be a smooth function such that 0 6 χ 6 1,
χR,β(x) = 1 if |x| 6 R and χR,β(x) = 0 if |x| > R+ β. Then
ˆ

B(0,R)
ψ d(ω − ωN ) =

ˆ

χR,βψ d(ω − ωN )−
ˆ

R6|x|6R+β

χR,βψ d(ω − ωN )

Choosing β small enough we have∣∣∣∣∣

ˆ

R6|x|6R+β

χR,βψ d(ω − ωN)

∣∣∣∣∣ 6 ε.

Now ψ is continuous (see Lemma 2.3) so by weak-∗ convergence of (ωN ) to
ω we get that

ˆ

ψχR,β d(ω − ωN ) −→
N→+∞

0

and therefore

lim sup
N→+∞

∣∣∣∣
ˆ

R2

ψ d(ω − ωN )

∣∣∣∣ 6 2ε.

for all ε > 0, so we get
ˆ

R2

ψ d(ω − ωN ) −→
N→+∞

0.

Using (5.6) we get that Fb(QN , ω) −→
N→+∞

0 if and only if we have

1

N2

∑

16i 6=j6N

gb(qi, qj) −→
¨

R2×R2

gb(x, y)ω(x)ω(y) dxdy.

�

It follows directly from the Claim that (2) =⇒ (1). Now if we have
(1), using Corollary 5.3 we have convergence of (ωN ) to ω in any Hs for
any s < −1. It follows by Prokhorov’s theorem (ωN ) converges to ω for
the weak-∗ topology of probability measures. By the Claim we also have
convergence of the interaction energy and therefore (1) =⇒ (2). �
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6. Proof of the main Proposition 6.1

Let us recall that for q ∈ R2, QN = (q1, ..., qN ) ∈ (R2)N and 0 < η < 1,
we have denoted

I(QN ) =
1

N

N∑

i=1

|qi|2,

δ̃(η)q = mb(q, η)
dδ

(η)
q√
b

and

mb(q, η) =

(
ˆ

R2

dδ
(η)
q√
b

)−1

where δ(η)q is the uniform probability measure on the circle ∂B(q, η).
In this Section, we prove the following result:

Proposition 6.1. Let QN = (q1, ..., qN ) ∈ (R2)N such that qi 6= qj if i 6= j,
u ∈W 1,∞(R2,R2) and ω ∈ P(R2)∩L∞(R2) with compact support such that
∇Gb[ω] is continuous and bounded. There exists β ∈ (0, 1) (independent of
ω, u and QN) such that

∣∣∣∣
¨

(R2×R2)\∆
u(x) · ∇xgb(x, y) d

(
1

N

N∑

i=1

δqi − ω

)⊗2

(x, y)

∣∣∣∣

6Cb ‖u‖W 1,∞ |Fb(QN , ω)|
+ Cb(1 + ‖u‖W 1,∞) ‖ω‖L1((1+|x|) dx)∩L∞ (1 + I(QN ))N−β .

This proposition is an equivalent of [63, Proposition 1.1] or [52, Propo-
sition 4.1] and the proof will follow the same steps: regularise the dirac
masses, use the structure of the lake kernel to bound the regular part and
control the remainders. Some terms are very similar to the ones obtained in
the Coulomb case and we will use both the properties of our regularisation
(see Subsection 2.4) and some estimates proved in [52] to bound them. As
in the proof of Proposition 5.1 some terms are specific to the lake kernel and
we will use results of Section 2 to bound them.
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Proof. Let us fix 0 < η <
1

8
and write

(6.1)

¨

(R2×R2)\∆
u(x) · ∇xgb(x, y) d

(
1

N

N∑

i=1

δqi − ω

)⊗2

(x, y)

=

¨

R2×R2

u(x) · ∇xgb(x, y) d

(
1

N

N∑

i=1

δ̃(η)qi
− ω

)⊗2

(x, y)

+

(
− 1

N

N∑

i=1

¨

R2×R2

u(x) · ∇xgb(x, y)

[
dω(x) d(δqi − δ̃(η)qi

)(y)

+ d(δqi − δ̃(η)qi
)(x) dω(y)

])

+

(
1

N2

∑

16i,j6N

¨

(R2×R2)\∆
u(x) · ∇xgb(x, y)

[ dδqi(x) dδqj (y)− dδ̃(η)qi
(x) dδ̃(η)qj

(y)]

)

=:T1 + T2 + T3.

Let us bound the first term. As in Section 5 we write

HN,η := Gb

[
1

N

N∑

i=1

δ̃(η)qi
− ω

]
.

We claim:

Claim 6.2.

T1 =−
ˆ

R2

u(x) · ∇HN,η(x)∇
(
1

b

)
· ∇HN,η(x) dx

+

ˆ

R2

∇
(

1

2b
u

)
: [HN,η,HN,η]

Proof of the Claim. This claim is similar to [63, Lemma 4.3] and we proceed
the same way: Let us first fix µ smooth with compact support and average
zero and write Hµ = Gb[µ]. Then

¨

R2×R2

u(x) · ∇xgb(x, y) dµ
⊗2(x, y)

=−
ˆ

R2

u(x) · ∇Hµ(x) div

(
1

b
∇Hµ

)
(x) dx

=−
ˆ

R2

u(x) · ∇Hµ(x)∇
(
1

b

)
· ∇Hµ(x) dx

−
ˆ

R2

1

b
u · ∇Hµ∆Hµ.

For the second integral of the right handside we proceed as in [63] and
use the stress-energy tensor defined by (1.11) (for more details, see [63,
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Equality (1.25)] and the associated references):
ˆ

R2

1

b
u · ∇Hµ∆Hµ =

ˆ

R2

1

2b
u · div([Hµ,Hµ]).

Integrating over a ball of radius R and integrating by parts we get
ˆ

B(0,R)

1

2b
u · div([Hµ,Hµ]) =

ˆ

∂B(0,R)

1

2b
[Hµ,Hµ]u · d~S

−
ˆ

B(0,R)
∇
(

1

2b
u

)
: [Hµ,Hµ].

Using Proposition 2.5 (applied to ω = µ and ψ = Hµ) we have
∣∣∣∣∣

ˆ

∂B(0,R)

1

2b
[Hµ,Hµ]u · d~S

∣∣∣∣∣ 6
Cb,µ ‖u‖L∞

R4
R.

Letting R −→ ∞ we obtain
ˆ

R2

1

2b
u · div([Hµ,Hµ]) = −

ˆ

R2

∇
(

1

2b
u

)
: [Hµ,Hµ].

Now if (µk) is a sequence of smooth functions with compact support and
average zero such that

µk −
(

1

N

N∑

i=1

δ̃(η)qi
− ω

)
−→

N→+∞
0 in Ḣ−1

then by Lemma 2.12 we have

∇Hµk
−→

N→+∞
∇HN,η in L2

and therefore since u ∈ W 1,∞ and since [Hµk
,Hµk

] (defined by Equation
(1.11)) is quadratic in the derivatives of Hµk

we get that

−
ˆ

R2

u(x) · ∇Hµk
(x)∇

(
1

b

)
· ∇Hµk

(x) dx+

ˆ

R2

∇
(

1

2b
u

)
: [Hµk

,Hµk
]

converges to

−
ˆ

R2

u(x) · ∇HN,η(x)∇
(
1

b

)
· ∇HN,η(x) dx+

ˆ

R2

∇
(

1

2b
u

)
: [HN,η,HN,η]

as k −→ +∞. We are only left to justify that
¨

R2×R2

u(x) · ∇xgb(x, y) dµ
⊗2
k (x, y)

−→
k→+∞

¨

R2×R2

u(x) · ∇xgb(x, y) d

(
1

N

N∑

i=1

δ̃(η)qi
− ω

)⊗2

(x, y).

We define

m =
1

N

N∑

i=1

δ̃(η)qi
.

Let us consider a sequence (νk) of smooth probability densities with support
included in a ball B(0, R) independent of k (containing supp(m)), such that
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(νk−m) converges to zero in Ḣ−1 and for the weak-∗ topology of probability
measures. If we set µk = νk − ω, then

µk − (m− ω) −→
k→+∞

0 in Ḣ−1.

Now we write
¨

R2×R2

u(x) · ∇xgb(x, y) dµ
⊗2
k (x, y)

−
¨

R2×R2

u(x) · ∇xgb(x, y) d(m− ω)⊗2(x, y)

=

¨

R2×R2

u(x) · ∇xgb(x, y)ω(x) dxd(m− νk)(y)

+

¨

R2×R2

u(x) · ∇xgb(x, y)ω(y) dy d(m− νk)(x)

+

¨

R2×R2

u(x) · ∇xgb(x, y) d(νk ⊗ νk −m⊗m)(x, y)

=:I1 + I2 + I3.

We have

|I1| =
∣∣∣∣
ˆ

R2

u · ∇Gb[m− νk]ω

∣∣∣∣ 6 ‖u‖L∞ ‖ω‖L2 ‖∇Gb[m− νk]‖L2

6 C ‖u‖L∞ ‖ω‖L2 ‖m− νk‖Ḣ−1

by Lemma 2.12 and therefore I1 −→
k→+∞

0. Recall that (m− νk) converges to

zero for the weak-∗ topology of probability measures. Therefore

I2 =

ˆ

R2

u · ∇Gb[ω] d(m− νk) −→
k→+∞

0

since u and ∇Gb[ω] are continuous and bounded by assumption. Now we
want to show that I3 converges to zero. Remark that writing µk = νk − ω
and proving that I1 and I2 converge to zero allowed us to restrict ourself to
study the convergence of

¨

R2×R2

u(x) · ∇xgb(x, y) dνk(x) dνk(y)

for νk nonnegative (which will be crucial for using Delort’s argument below).
We use the definition of gb (2.10) to write

I3 =

¨

R2×R2

u(x) · ∇
√
b(x)

√
b(y)g(x− y) d(νk ⊗ νk −m⊗m)(x, y)

+

¨

R2×R2

√
b(x)b(y)u(x) · ∇g(x− y) d(νk ⊗ νk −m⊗m)(x, y)

+

¨

R2×R2

u(x) · ∇xSb(x, y) d(νk ⊗ νk −m⊗m)(x, y)

=:I3,1 + I3,2 + I3,3.
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We write

(6.2)

I3,1 =

¨

R2×R2

u(x) · ∇
√
b(x)

√
b(y)g(x− y) d(νk −m)(x) dνk(y)

+

¨

R2×R2

u(x) · ∇
√
b(x)

√
b(y)g(x− y) dm(x) d(νk −m)(y)

=

ˆ

R2

(u · ∇
√
b)(g ∗ [

√
bνk]) d(νk −m)

+

ˆ

R2

(u · ∇
√
b)(g ∗ [

√
b(νk −m)]) dm.

Recall that B(0, R) is a ball containing the supports of m and νk. Consider
a smooth probability density ρ with support in B(0, R). We define

χk =

(
ˆ

R2

√
bνk

)
ρ,

χ∞ =

(
ˆ

R2

√
b dm

)
ρ

and write

(6.3)

∇g ∗ (
√
b(νk −m)) =∇g ∗ (

√
bνk − χk + χ∞ −

√
bm)

+

(
ˆ

R2

√
bνk −

ˆ

R2

√
bdm

)
∇g ∗ ρ.

Now
∥∥∥∇g ∗ (

√
bνk − χk + χ∞ −

√
bm)

∥∥∥
2

L2

= C

ˆ

R2

1

|ξ|2 |
√̂
bνk(ξ)− χ̂k(ξ) + χ̂∞(ξ)−

√̂
bm(ξ)|2 dξ.

Remark that αk =
√
bνk−χk+χ∞−

√
bm is a Radon measure with support

included in B(0, R) such that α̂k(0) = 0. Therefore
∣∣∣∣
ˆ

R2

e−ix·ξ dαk(x)

∣∣∣∣ =
∣∣∣∣
ˆ

R2

(e−ix·ξ − 1) dαk(x)

∣∣∣∣

= 2

∣∣∣∣
ˆ

R2

sin

(
x · ξ
2

)
dαk(x)

∣∣∣∣

6 CR|ξ|
ˆ

R2

d|αk|(x)

6 Cb,R|ξ|.
It follows that for ε > 0

ˆ

|ξ|6ε

1

|ξ|2 |α̂k(ξ)|2 dξ 6 Cb,Rε
2.

Moreover,
ˆ

|ξ|>ε

1

|ξ|2 |
√̂
bνk(ξ)− χ̂k(ξ) + χ̂∞(ξ)−

√̂
bm(ξ)|2 dξ

6 Cε

(
ˆ

R2

|χ̂k(ξ)− χ̂∞(ξ)|2 dξ +
ˆ

R2

1

1 + |ξ|2 |
√̂
bνk(ξ)−

√̂
bm(ξ)|2

)
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6 Cε

(
‖χk − χ∞‖L2 +

∥∥∥
√
bνk −

√
bm
∥∥∥
H−1

)
−→

k→+∞
0

since b is smooth. Therefore

lim sup
k→+∞

∥∥∥∇g ∗ (
√
bνk − χk + χ∞ −

√
bm)

∥∥∥
2

L2
6 Cb,Rε

2(6.4)

for all ε > 0 so

(6.5) ∇g ∗ (
√
bνk − χk + χ∞ −

√
bm)

L2

−→
k→+∞

0.

By Hardy-Littlewood-Sobolev inequality (see for example [2, Theorem 1.7]),
∇g ∗ ρ ∈ Lp for all 2 < p < +∞ so

(
ˆ

R2

√
bνk −

ˆ

R2

√
bm

)
∇g ∗ ρ −→

k→+∞
0 in L2(B(0, R)).

Combining the upper limit with (6.3) and (6.5) we get that

∇g ∗ (
√
bνk) −→

k→+∞
∇g ∗ (

√
bm) in L2(B(0, R)).

Now, by convolution inequality, we have

(6.6)
∥∥∥g ∗ [

√
bνk]

∥∥∥
L2(B(0,R))

6 Cb ‖g‖L2(B(0,2R)) ‖νk‖L1 6 Cb ‖g‖L2(B(0,2R))

so (g ∗ [
√
bνk]) is bounded in H1(B(0, R)) which is compactly embedded in

L2(B(0, R)). Therefore by (6.5), up to extraction, (g ∗ [
√
bνk]) converges to

g∗ [
√
bm]+C where C is a constant. If x0 ∈ B(0, R) is at a positive distance

from the supports of νk and m then g(x0 − ·) is continuous on the supports
of νk and m and therefore

g ∗ [
√
bνk](x0) −→

k→+∞
g ∗ [

√
bm](x0)

by dominated convergence theorem. It follows that C = 0, thus

g ∗ [
√
bνk] −→

k→+∞
g ∗ [

√
bm] in H1(B(0, R)).

We recall that since b is smooth,
√
bνk −→

k→+∞

√
bm in H−1.

Moreover, m ∈ H−1 with compact support and u ·∇
√
b ∈W 1,∞ so it follows

by Decomposition 6.2 that

I3,1 −→
k→+∞

0.

Since ∇g is antisymmetric we can write

I3,2 =
1

2

¨

R2×R2

Hu(x, y) d(
√
bνk)(x) d(

√
bνk)(y)

− 1

2

¨

R2×R2

Hu(x, y) d(
√
bm)(x) d(

√
bm)(y)

where

Hu(x, y) =
1

2
(u(x) − u(y)) · ∇g(x− y).
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We recall that (
√
bνk) is a sequence of nonnegative functions with supports in

B(0, R) converging to
√
bm in H−1 and for the weak-∗ topology of measures

with finite mass. Moreover, since u is Lipschitz, Hu is continuous outside
of the diagonal and bounded. Therefore we can use Delort’s argument (see
[20, Proposition 1.2.6] or [60, Inequalities (3.4) and (3.5)]) to prove that

I3,2 −→
k→+∞

0.

Finally we write

I3,3 =

ˆ

R2

u(x) ·
(
ˆ

R2

∇xSb(x, y) dνk(y)

)
d(νk −m)(x)

+

ˆ

R2

u(x) ·
(
ˆ

R2

∇xSb(x, y) dm(x)

)
d(νk −m)(y).

By Proposition 2.7 u(x) · ∇xSb(x, y) is locally Hölder with respect to both
variables and therefore since νk ⊗ νk −m⊗m has compact support we have
that I3,3 −→

k→+∞
0. �

It follows from Claim 6.2 that

|T1| 6 Cb ‖u‖W 1,∞

ˆ

R2

|∇HN,η|2.

Hence by Proposition 5.1 we get

(6.7)

|T1| 6Cb ‖u‖W 1,∞

(
|Fb(QN , ω)|+

g(η)

N
+ I(QN )(η +N−1)

+ ‖ω‖L1((1+|x|) dx)∩L∞ g(η)η

)
.

Now let us split T2 in three parts:

T2 =− 1

N

N∑

i=1

¨

R2×R2

(
u(x) · ∇xgb(x, y)

+ u(y) · ∇xgb(y, x)
)
ω(x) dxd(δqi − δ̃(η)qi

)(y)

=− 1

N

N∑

i=1

¨

R2×R2

(
u(x) · ∇

√
b(x)

√
b(y)

+ u(y) · ∇
√
b(y)

√
b(x)

)
g(x− y)ω(x) dxd(δqi − δ̃(η)qi

)(y)

− 1

N

N∑

i=1

¨

R2×R2

√
b(x)b(y)(u(x)− u(y))

· ∇g(x− y)ω(x) dxd(δqi − δ̃(η)qi
)(y)

− 1

N

N∑

i=1

¨

R2×R2

(
u(x) · ∇xSb(x, y)

+ u(y) · ∇xSb(y, x)
)
ω(x) dxd(δqi − δ̃(η)qi

)(y)

=:− (T2,1 + T2,2 + T2,3).

We will bound the three terms separately:
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Claim 6.3. There exists 0 < s < 1 such that

|T2,1| 6 Cb ‖u‖W 1,∞ ‖ω‖L1((1+|x|) dx)∩L∞ (1 + I(QN ))ηs.

Proof of the claim. Since δ̃
(η)
qi is a probability measure, we can write

T2,1 =
1

N

N∑

i=1

¨

R2×R2

∇
√
b(x) · u(x)ω(x)(

√
b(qi)g(x− qi)

−
√
b(y)g(x− y)) dδ̃(η)qi

(y) dx

+
1

N

N∑

i=1

¨

R2×R2

√
b(x)ω(x)(∇

√
b(qi) · u(qi)g(x− qi)

−∇
√
b(y) · u(y)g(x − y)) dδ̃(η)qi

(y) dx

=
1

N

N∑

i=1

¨

R2×R2

(∇
√
b · uω)(x)(

√
b(qi)−

√
b(y))g(x− y) dδ̃(η)qi

(y) dx

+
1

N

N∑

i=1

¨

R2×R2

(∇
√
b · uω)(x)

√
b(qi)

× (g(x − qi)− g(x− y)) dδ̃(η)qi
(y) dx

+
1

N

N∑

i=1

¨

R2×R2

√
b(x)ω(x)(∇

√
b(qi) · u(qi)

−∇
√
b(y) · u(y))g(x − y) dδ̃(η)qi

(y) dx

+
1

N

N∑

i=1

¨

R2×R2

√
b(x)ω(x)∇

√
b(qi) · u(qi)

× (g(x − qi)− g(x− y)) dδ̃(η)qi
(y) dx.

For the first integral, we use the Lipschitz regularity of
√
b to bound

∣∣∣∣
¨

R2×R2

(∇
√
b · uω)(x)(

√
b(qi)−

√
b(y))g(x− y) dδ̃(η)qi

(y) dx

∣∣∣∣

6 Cbη

¨

R2×R2

|(∇
√
b · uω)(x)g(x − y)|dδ̃(η)qi

(y) dx.

Moreover for y ∈ ∂B(qi, η), we have
ˆ

R2

|(∇
√
b · uω)(x)g(x − y)|dx

6

ˆ

B(y,1)
|(∇

√
b · uω)(x)g(x − y)|dx

+

ˆ

B(y,1)c
|(∇

√
b · uω)(x)g(x − y)|dx

6

∥∥∥∇
√
b · uω

∥∥∥
L∞

‖g‖L1(B(0,1)) +

ˆ

B(y,1)c
|(∇

√
b · uω)(x)|(|x| + |y|) dx

6Cb ‖u‖L∞ ‖ω‖L∞ (1 + |qi|)
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since b satisfies Assumption 1.5. Therefore
∣∣∣∣
¨

R2×R2

(∇
√
b · uω)(x)(

√
b(qi)−

√
b(y))g(x− y) dδ̃(η)qi

(y) dx

∣∣∣∣
6 Cb ‖u‖L∞ ‖ω‖L∞ (1 + |qi|)η.

The third integral can be bounded in the same way:∣∣∣∣
¨

R2×R2

√
b(x)ω(x)(∇

√
b(qi) · u(qi)−∇

√
b(y) · u(y))g(x − y) dδ̃(η)qi

(y) dx

∣∣∣∣

6Cb ‖u‖W 1,∞ η

¨

R2×R2

|
√
b(x)ω(x)g(x − y)|dδ̃(η)qi

(y) dx

6Cb ‖u‖W 1,∞ ‖ω‖L1((1+|x|) dx)∩L∞ (1 + |qi|)η.
Summing over N we get that both the first and the third line can be bounded
by

(6.8) Cb ‖u‖W 1,∞ ‖ω‖L1((1+|x|) dx)∩L∞ (1 + I(QN ))η.

Now the second integral is equal to

1

N

N∑

i=1

√
b(qi)

ˆ

R2

(g ∗ (∇
√
b · uω)(qi)− g ∗ (∇

√
b · uω)(y)) dδ(η)qi

(y)

and thus by Morrey’s inequality (see [13, Theorem 9.12]) its absolute value
can be bounded by

Cb,pη
1− 2

p

∥∥∥∇g ∗ (∇
√
b · uω)

∥∥∥
Lp

for any finite p > 2. The fourth integral can be bounded in the same way
by

Cb,pη
1− 2

p

∥∥∥∇g ∗ (
√
bω)
∥∥∥
Lp
.

Using Hardy-Littlewood-Sobolev inequality (see for example [2, Theorem 1.7])
we have

(6.9) Cbη
1− 2

p

∥∥∥∇g ∗ (
√
bω)
∥∥∥
Lp

6 Cbη
1− 2

p ‖ω‖
L

2p
p+2

.

Combining (6.8) and (6.9) we get that

|T2,1| 6 Cb ‖u‖W 1,∞ ‖ω‖L1((1+|x|) dx)∩L∞ (1 + I(QN ))ηs

for some 0 < s < 1. �

Now we bound T2,2:

Claim 6.4.
|T2,2| 6 Cb ‖∇u‖L∞ ‖ω‖L1∩L∞ η.

Proof of the claim. Let us recall that

δ̃(η)q = mb(q, η)
dδ

(η)
q√
b

and thus
¨

R2×R2

√
b(x)b(y)(u(x)− u(y)) · ∇g(x− y)ω(x) dxd(δqi − δ̃(η)qi

)(y)
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=mb(qi, η)

¨

R2×R2

√
b(x)(u(x)− u(y)) · ∇g(x− y)ω(x) dxd(δqi − δ(η)qi

)(y)

+

(
1− mb(qi, η)√

b(qi)

)
ˆ

R2

√
b(x)b(qi)(u(x)− u(qi)) · ∇g(x− qi)ω(x) dx.

The first integral is exactly the term defined in [52, Equation (4.10)] with
s = 0 and m = 0 (remark that we can choose m = 0 since no extension
procedure is needed for s = 0 and d = 2, for more details we refer to the
introduction of [52, Section 4]). It can be bounded by the right hand side
of [52, Equation (4.24)] :

C ‖∇u‖L∞

∥∥∥|∇|−1(
√
bω)
∥∥∥
L∞

η 6 Cb ‖∇u‖L∞

∥∥|∇|−1ω
∥∥
L∞

η

6 Cb ‖∇u‖L∞ ‖ω‖L1∩L∞ η.

A proof of the last inequality can be found for example in [35, Lemma 1].
Now by (2.16) and the Lipschitz regularity of u we can bound the second
line by

Cb ‖∇u‖L∞ ‖ω‖L1 η.

Combining the two upper equations we get

|T2,2| 6 Cb ‖∇u‖L∞ ‖ω‖L1∩L∞ η.

�

Claim 6.5.

|T2,3| 6 Cb,s ‖u‖W 1,∞ ‖ω‖L1((1+|x|) dx) (1 + I(QN ))ηs.

Proof of the claim. We write T2,3 as

T2,3 =
1

N

N∑

i=1

(
¨

R2×R2

ω(x)u(x) · (∇xSb(x, qi)−∇xSb(x, y)) dδ̃
(η)
qi

(y) dx

+

¨

R2×R2

ω(x)(u(qi)− u(y)) · ∇xSb(qi, x) dδ̃
(η)
qi

(y) dx

+

¨

R2×R2

ω(x)u(y) · (∇xSb(qi, x)−∇xSb(y, x)) dδ̃
(η)
qi

(y) dx

)
.

Using Claims (1) and (2) of Lemma 2.7, we get that for some 0 < s < 1,

|T2,3| 6
1

N

N∑

i=1

(
Cb,s ‖u‖L∞ ‖ω‖L1 (1 + |qi|)ηs

+ ‖∇u‖L∞ ‖ω‖L1((1+|x|) dx) η

+ ‖u‖L∞ ‖ω‖L1((1+|x|) dx) η
s

)

6Cb,s ‖u‖W 1,∞ ‖ω‖L1((1+|x|) dx) (1 + I(QN ))ηs.

�

Combining Claims 6.3, 6.4 and 6.5 we get that

(6.10) |T2| 6 Cb,s ‖u‖W 1,∞ ‖ω‖L1((1+|x|) dx)∩L∞ (1 + I(QN ))ηs.

Now let us write T3 as
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T3 =
1

N2

∑

16i,j6N

¨

(R2×R2)\∆
u(x) · ∇xgb(x, y)

( dδqi(x) dδqj (y)− dδ̃(η)qi
(x) dδ̃(η)qj

(y))

=
1

N2

∑

16i,j6N

¨

(R2×R2)\∆
u(x) · ∇

√
b(x)

√
b(y)g(x− y)

( dδqi(x) dδqj (y)− dδ̃(η)qi
(x) dδ̃(η)qj

(y))

+
1

N2

∑

16i,j6N

¨

(R2×R2)\∆

√
b(x)b(y)u(x) · ∇g(x− y)

( dδqi(x) dδqj (y)− dδ̃(η)qi
(x) dδ̃(η)qj

(y))

+
1

N2

∑

16i,j6N

¨

(R2×R2)\∆
u(x) · ∇xSb(x, y)

( dδqi(x) dδqj (y)− dδ̃(η)qi
(x) dδ̃(η)qj

(y))

=:T3,1 + T3,2 + T3,3.

We bound the first term:

Claim 6.6.

|T3,1| 6 Cb ‖u‖L∞ |Fb(QN , ω)|+ Cb ‖u‖W 1,∞

(
g(η)

N

+ I(QN )(η +N−1) + ‖ω‖L1((1+|x|) dx)∩L∞ g(η)η

)
.

Proof of the claim. We write

T3,1 =− 1

N2

N∑

i=1

¨

R2×R2

u(x) · ∇
√
b(x)

√
b(y)g(x− y) dδ̃(η)qi

(x) dδ̃(η)qi
(y)

+
1

N2

∑

16i 6=j6N

¨

(R2×R2)\∆
u(x) · ∇

√
b(x)

√
b(y)g(x − y)

( dδqi(x) dδqj(y)− dδ̃(η)qi
(x) dδ̃(η)qj

(y))

=:T3,1,1 + T3,1,2.

By the definition of δ̃
(η)
qi (2.13) we have

T3,1,1 =− 1

N2

N∑

i=1

mb(qi, η)
2

¨

R2×R2

u(x) · ∇
√
b(x)√
b(x)

g(x− y) dδ(η)qi
(x) dδ(η)qi

(y)

=− 1

N2

N∑

i=1

mb(qi, η)
2

ˆ

R2

u(x) · ∇
√
b(x)√

b(x)
g(η)(x− qi) dδ

(η)
qi

(x)

by Claim (2.15). It follows by Assumption 1.5 that

(6.11) |T3,1,1| 6
Cb ‖u‖L∞ g(η)

N
.
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Now we write

T3,1,2 =
1

N2

∑

16i 6=j6N

(
(u · ∇

√
b)(qi)

√
b(qj)g(qi − qj)

−
¨

R2×R2

(u · ∇
√
b)(x)

√
b(y)g(x− y) dδ̃(η)qi

(x) dδ̃(η)qj
(y)

)

=
1

N2

∑

16i 6=j6N

(
(u · ∇

√
b)(qi)

√
b(qj)g(qi − qj)

−mb(qj, η)

ˆ

R2

(u · ∇
√
b)(x)g(η)(x− qj) dδ̃

(η)
qi

(x)

)

by the definition of δ̃
(η)
qi (2.13) and Claim (2.15). Now,

T3,1,2 =
1

N2

∑

16i 6=j6N

(u · ∇
√
b)(qi)

√
b(qj)(g(qi − qj)− g(η)(qi − qj))

+
1

N2

∑

16i 6=j6N

(u · ∇
√
b)(qi)

√
b(qj)

×
ˆ

R2

(g(η)(qi − qj)− g(η)(x− qj)) dδ
(η)
qi

(x)

+
1

N2

∑

16i 6=j6N

(u · ∇
√
b)(qi)

√
b(qj)

ˆ

R2

g(η)(x− qj) d(δ
(η)
qi

− δ̃(η)qi
)(x)

+
1

N2

∑

16i 6=j6N

√
b(qj)

×
ˆ

R2

((u · ∇
√
b)(qi)− (u · ∇

√
b)(x))g(η)(x− qj) dδ̃

(η)
qi

(x)

+
1

N2

∑

16i 6=j6N

(
√
b(qj)−mb(qj, η))

×
ˆ

R2

(u · ∇
√
b)(x)g(η)(x− qj) dδ̃

(η)
qi

(x)

= : S1 + S2 + S3 + S4 + S5.

Since g − g(η) is nonnegative we can bound

(6.12)

|S1| 6Cb ‖u‖L∞

1

N2

∑

16i 6=j6N

(g(qi − qj)− g(η)(qi − qj))

6Cb ‖u‖L∞ |Fb(QN , ω)| +Cb ‖u‖L∞

(
g(η)

N

+ I(QN )(η +N−1) + ‖ω‖L1((1+|x|) dx)∩L∞ g(η)η

)

by Proposition 5.1. Now remark that if |qi − qj| > 2η and x ∈ ∂B(qi, η),

|qj − x| > |qi − qj| − |qi − x| > 2η − η > η
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and it follows by Claim (2.15) that
ˆ

R2

g(η)(x− qj) dδ
(η)
qi

(x) =

ˆ

R2

g(x− qj) dδ
(η)
qi

(x)

= g(η)(qi − qj).

Hence we can write

S2 =
1

N2

∑

16i 6=j6N

|qi−qj |62η

(u·∇
√
b)(qi)

√
b(qj)

ˆ

R2

(g(η)(qi−qj)−g(η)(x−qj)) dδ(η)qi
(x).

Notice that if |qi − qj| 6 2η and x ∈ ∂B(qi, η), then

|g(η)(qi − qj)− g(η)(x− qj)| 6
∥∥∥∇g(η)

∥∥∥
L∞

η = Cη−1η 6 C.

Therefore,

(6.13)

|S2| 6
Cb ‖u‖L∞

N2
|{(qi, qj); |qi − qj| 6 2η}|

6Cb ‖u‖L∞ |Fb(QN , ω)|+ Cb ‖u‖L∞

(
g(2η)

N

+ I(QN )(2η +N−1) + ‖ω‖L1((1+|x|) dx)∩L∞ g(2η)2η

)

by Corollary 5.2 applied to ε = 2η.

By definition of δ̃
(η)
qi (2.13) we can write

S3 =
1

N2

∑

16i 6=j6N

(u · ∇
√
b)(qi)

√
b(qj)

×
ˆ

R2

g(η)(x− qj)

(
1− mb(qi, η)√

b(x)

)
dδ(η)qi

(x)

and therefore

|S3| 6
Cb ‖u‖L∞ g(η)

N

N∑

i=1

ˆ

R2

∣∣∣∣∣
mb(qi, η)√

b(x)
− 1

∣∣∣∣∣ dδ
(η)
qi

(x).

For x ∈ ∂B(qi, η), we have
∣∣∣∣∣
mb(qi, η)√

b(x)
− 1

∣∣∣∣∣ 6 Cb

∣∣∣∣∣mb(qi, η)
−1 − 1√

b(x)

∣∣∣∣∣

6 Cb

∣∣∣∣∣

ˆ

R2

dδ
(η)
qi (y)√
b(y)

− 1√
b(x)

∣∣∣∣∣
6 Cbη

since b is Lipschitz by Assumption 1.5. It follows that

(6.14) |S3| 6 Cb ‖u‖L∞ g(η)η.

Now by regularity of u, b and Proposition 2.13, we have

|S4|+ |S5| 6 Cb ‖u‖W 1,∞ ηg(η).



MEAN-FIELD LIMIT OF POINT VORTICES FOR THE LAKE EQUATIONS. 57

Combining the upper inequality with (6.11), (6.12), (6.13) and (6.14) we
obtain Claim 6.6. �

For the third term we have the following bound:

Claim 6.7. For s small enough, we have

|T3,3| 6 Cb,s ‖u‖W 1,∞ (1 + I(QN ))ηs.

Proof. We write

T3,3 =
1

N2

∑

16i,j6N

u(qi) · ∇xSb(qi, qj)

− 1

N2

∑

16i,j6N

¨

R2×R2

u(x) · ∇xSb(x, y) dδ̃
(η)
qi

(x) dδ̃(η)qj
(y)

=
1

N2

∑

16i,j6N

¨

R2×R2

(
u(qi) · ∇xSb(qi, qj)− u(qi) · ∇xSb(qi, y)

+ u(qi) · ∇xSb(qi, y)− u(qi) · ∇xSb(x, y)

+ u(qi) · ∇xSb(x, y)− u(x) · ∇xSb(x, y)

)
dδ̃(η)qi

(x) dδ̃(η)qj
(y).

Therefore,

|T3,3| 6
1

N2

∑

16i,j6N

‖u‖L∞ |∇xSb(qi, ·)|C0,s(B(qj ,1))η
s

+
1

N2

∑

16i,j6N

‖u‖L∞ ηs
ˆ

R2

|∇xSb(·, y)|C0,s dδ̃(η)qj
(y)

+
1

N2

∑

16i,j6N

¨

R2×R2

‖u‖W 1,∞ η|∇xSb(x, y)|dδ̃(η)qi
(x) dδ̃(η)qj

(y).

By Proposition 2.7, for s small enough we have

|T3,3| 6
Cb,s

N2

∑

16i,j6N

‖u‖L∞ |(1 + |qj |)ηs

+
Cb,s

N2

∑

16i,j6N

‖u‖L∞ ηs(1 + |qj |)

+
Cb

N2

∑

16i,j6N

‖u‖W 1,∞ η(1 + |qj |)

6Cb,s ‖u‖W 1,∞ (1 + I(QN ))ηs.

�

We are only remained to bound T3,2:

Claim 6.8. For ε > 2η small enough, we have

|T3,2| 6
Cb

N
‖∇u‖L∞ +

Cbη ‖∇u‖L∞

ε
+ Cb ‖∇u‖L∞

(
|Fb(QN , ω)|+

g(ε)

N
+ η

+ I(QN )(ε+N−1) + ‖ω‖L1((1+|x|) dx)∩L∞ g(ε)ε

)
.
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Proof. Let us denote

ku(x, y) = (u(x)− u(y)) · ∇g(x− y)

and remark that

(6.15) |ku(x, y)| 6 C ‖∇u‖L∞ .

Since ∇g is antisymmetric we can write T3,2 as

T3,2 =

1

2N2

∑

16i,j6N

¨

(R2×R2)\∆

√
b(x)b(y)ku(x, y) d(δqi + δ̃

(η)
qi

)(x) d(δqj − δ̃(η)qj
)(y).

Using the definition of δ̃
(η)
qi (2.13) we can write

d(δqi + δ̃(η)qi
)(x) d(δqj − δ̃(η)qj

)(y)

=d

(
δqi +

mb(qi, η)√
b

δ(η)qi

)
(x) d

(
δqj −

mb(qj , η)√
b

δ(η)qj

)
(y)

=
mb(qi, η)mb(qj, η)√

b(x)b(y)
d(δqi + δ(η)qi

)(x) d(δqj − δ(η)qj
)(y)

+

(
1− mb(qi, η)mb(qj , η)√

b(qi)b(qj)

)
dδqi(x) dδqj (y)

+
mb(qi, η)√

b(qi)

(
1− mb(qj , η)√

b(qj)

)
dδ(η)qi

(x) dδqj (y)

+
mb(qj , η)√

b(y)

(
mb(qi, η)√

b(qi)
− 1

)
dδqi(x) dδ

(η)
qj

(y).

We will use some inequalities proved in [52] and Corollary 5.2 to control the
first line, but let us begin by controling the three last remainders. Using the
bound (6.15) and (2.16) we can bound

T3,2,2 :=
1

2N2

∑

16i,j6N

¨

(R2×R2)\∆

√
b(x)b(y)ku(x, y)

((
1− mb(qi, η)mb(qj, η)√

b(qi)b(qj)

)
dδqi(x) dδqj(y)

+
mb(qi, η)√

b(qi)

(
1− mb(qj, η)√

b(qj)

)
dδ(η)qi

(x) dδqj (y)

+
mb(qj, η)√

b(y)

(
mb(qi, η)√

b(qi)
− 1

)
dδqi(x) dδ

(η)
qj

(x)

)
.

by

(6.16) |T3,2,2| 6 Cb ‖∇u‖L∞ η.
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We are remained to bound

T3,2,1 :=
1

2N2

∑

16i,j6N

mb(qi, η)mb(qj , η)

×
¨

(R2×R2)\∆
ku(x, y) d(δqi + δ(η)qi

)(x) d(δqj − δ(η)qj
(y).

Using decomposition (4.26) and inequalities (4.27), (4.28) and (4.31) of [52]
with s = 0 and m = 0 (remark that we can choose m = 0 since no extension
procedure is needed for s = 0 and d = 2, for more details we refer to the
introduction of [52, Section 4]), we get that for any small parameter ε > 2η,

|T3,2,1| 6
Cb

N
‖∇u‖L∞ +

Cb ‖∇u‖L∞

N2
|{(qi, qj); |qi − qj| 6 ε}| + Cη ‖∇u‖L∞

ε
.

Using Corollary 5.2, we get that

(6.17)

T3,2,1 6
Cb

N
‖∇u‖L∞ +

Cbη ‖∇u‖L∞

ε
+ Cb ‖∇u‖L∞

(
|Fb(QN , ω)|

+
g(ε)

N
+ I(QN )(ε+N−1) + ‖ω‖L1((1+|x|) dx)∩L∞ g(ε)ε

)
.

And we get Claim 6.8 by combining (6.17) with (6.16). �

We finish the proof of Proposition 6.1 using Decomposition (6.1), Inequal-
ities (6.7), (6.10) and Claims 6.6, 6.7 and 6.8. That gives

∣∣∣∣
¨

(R2×R2)\∆
u(x) · ∇xgb(x, y) d

(
1

N

N∑

i=1

δqi − ω

)⊗2

(x, y)

∣∣∣∣

6Cb ‖u‖W 1,∞

(
|Fb(QN , ω)|+

g(η)

N
+ I(QN )(η +N−1)

+ ‖ω‖L1((1+|x|) dx)∩L∞ g(η)η

)

+ Cb,s ‖u‖W 1,∞ ‖ω‖L1((1+|x|) dx)∩L∞ (1 + I(QN ))ηs

+ Cb ‖u‖L∞ Fb(QN , ω) + Cb ‖u‖W 1,∞

(
g(η)

N

+ I(QN )(η +N−1) + ‖ω‖L1((1+|x|) dx)∩L∞ g(η)η

)

+ Cb,s ‖u‖W 1,∞ (1 + I(QN ))ηs

+
Cb

N
‖∇u‖L∞ +

Cbη ‖∇u‖L∞

ε
+ Cb ‖∇u‖L∞

(
|Fb(QN , ω)|

+
g(ε)

N
+ η + I(QN )(ε +N−1) + ‖ω‖L1((1+|x|) dx)∩L∞ g(ε)ε

)
.

Choosing ε = N−1 and η = N−2, and since ‖ω‖L1((1+|x|) dx)∩L∞ is bounded

by below (because ω is a probability density) we get that

∣∣∣∣
¨

(R2×R2)\∆
u(x) · ∇xgb(x, y) d

(
1

N

N∑

i=1

δqi − ω

)⊗2

(x, y)

∣∣∣∣
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6Cb ‖u‖W 1,∞ |Fb(QN , ω)|
+ Cb(1 + ‖u‖W 1,∞) ‖ω‖L1((1+|x|) dx)∩L∞ (1 + I(QN ))N−β

for some 0 < β < 1. �

7. Mean-field limit

In this section we prove the mean-field limit Theorem 1.8. For this pur-
pose let us first prove the following estimates:

Theorem 7.1. If ω is a weak solution of (1.1) with initial datum ω0 (in
the sense of Definition 1.1) that satisfies Assumption 1.6 and if IN (0) is
bounded, there exists a constant

A := A

(
b, T, ‖u‖L∞([0,T ],W 1,∞) , ‖ω‖L∞([0,T ],L1((1+|x|) dx)∩L∞) , sup

N

IN (0)

)

such that for every t ∈ [0, T ],

(7.1) |Fb,N (t)| 6 A(|Fb,N (0)| + (1 + |EN (0)|)(N−β + |αN − α|)).
If ω is a weak solution of (1.3) with initial datum ω0 (in the sense of Defini-
tion 1.2) that satisfies Assumption 1.6 and if IN (0) is bounded, there exists
a constant

B :=B

(
b, T, ‖ω‖L∞([0,T ],L1((1+|x|) dx)∩L∞) ,

‖∇g ∗ ω‖L∞([0,T ],W 1,∞) , sup
N

IN (0)

)

such that for every t ∈ [0, T ],

(7.2) |Fb,N (t)| 6 B(|F b,N (0)|+ (1 + |EN (0)|)(N−β + α−1
N )).

Proof. By Proposition 4.1, we have that for almost every t ∈ [0, T ],

d

dt
Fb,N (t)

=2

¨

(R2×R2)\∆

(
u(t, x)− α

∇⊥b(x)

b(x)

)
· ∇xgb(x, y) d(ω(t)− ωN (t))⊗2(x, y)

+ 2(αN − α)

¨

(R2×R2)\∆

∇⊥b(x)

b(x)
· ∇xgb(x, y) dωN (t, x) d(ω(t)− ωN (t))(y)

=:L1 + 2(αN − α)L2.

Using Proposition 6.1, we have

|L1| 6Cb

∥∥∥∥u− α
∇⊥b

b

∥∥∥∥
L∞([0,T ],W 1,∞)

|Fb(QN , ω)|

+ Cb

(
1 +

∥∥∥∥u− α
∇⊥b

b

∥∥∥∥
L∞([0,T ],W 1,∞)

)

× ‖ω‖L∞([0,T ],L1((1+|x|) dx)∩L∞) (1 + IN (t))N−β .

By Proposition 3.1, we have

IN (t) 6 Cb,T (1 + |EN (0)| + IN (0))
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since (αN ) is bounded (here we consider the case αN −→
N→+∞

α). Therefore,

(7.3)

|L1| 6Cb

(
1 + ‖u‖L∞([0,T ],W 1,∞)

)
|Fb(QN , ω)|+ Cb,T

(
1 + ‖u‖L∞([0,T ],W 1,∞)

)

× ‖ω‖L∞([0,T ],L1((1+|x|) dx)∩L∞) (1 + IN (0) + |EN (0)|)N−β .

Now

L2 =
1

N

N∑

i=1

∇⊥b(qi)

b(qi)

·
[
ˆ

R2\{qi}

√
b(qi)b(y)∇g(qi − y) d

(
ω(t)− 1

N

N∑

j=1

δqj(t)

)

+

ˆ

R2\{qi}
∇xSb(qi, y) d

(
ω(t)− 1

N

N∑

j=1

δqj(t)

)]

=:L2,1 + L2,2 + L2,3

with

(7.4)
|L2,1| =

∣∣∣∣
1

N

N∑

i=1

∇⊥b(qi)√
b(qi)

·
ˆ

R2

∇g(qi − y)
√
b(y)ω(t, y) dy

∣∣∣∣

6 Cb ‖ω‖L∞([0,T ],L1∩L∞)

(for the last inequality see for example [35, Lemma 1]). For the second term

L2,2 = − 1

N2

N∑

i=1

N∑

j=1
j 6=i

√
b(qi)b(qi)

∇⊥b(qi)

b(qi)
· ∇g(qi − qj).

We can bound it as in (3.7) to get

(7.5) |L2,2| 6 Cb.

For the last term, we use Claim (1) of Lemma 2.7 to get

|L2,3| =
∣∣∣∣
1

N

N∑

i=1

∇⊥b(qi)

b(qi)
·
ˆ

R2

∇xSb(qi, y) d

(
ω(t)− 1

N

N∑

j=1
j 6=i

δqj(t)

)
(y)

∣∣∣∣

6 Cb

ˆ

R2

(1 + |y|) d
(
ω(t) +

1

N

N∑

j=1
j 6=i

δqj(t)

)
(y)

6 Cb(‖ω‖L∞([0,T ],L1((1+|x|) dx)) + IN (t))

6 Cb,T (‖ω‖L∞([0,T ],L1((1+|x|) dx)) + 1 + IN (0) + |EN (0)|)
by Proposition 3.1. Combining the upper inequality with (7.3), (7.4) and
(7.5) we get that for almost every t ∈ [0, T ],∣∣∣∣

d

dt
Fb,N (t)

∣∣∣∣

6Cb(1 + ‖u‖L∞([0,T ],W 1,∞))|Fb,N (t)|+Cb

(
1 + ‖u‖L∞([0,T ],W 1,∞)

)
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× ‖ω‖L∞([0,T ],L1((1+|x|) dx)∩L∞) (1 + IN (0) + |EN (0)|)N−β

+ Cb,T |αN − α|
(
‖ω‖L∞([0,T ],L1((1+|x|) dx)∩L∞) + 1 + IN (0) + |EN (0)|

)
.

Therefore there exists a constant A depending only on the quantities b,
T , ‖u‖L∞([0,T ],W 1,∞), ‖ω‖L∞([0,T ],L1((1+|x|) dx)∩L∞) and IN (0) (which is uni-

formly bounded in N by assumption) such that for almost every t ∈ [0, T ],

∣∣∣∣
d

dt
Fb,N (t)

∣∣∣∣ 6 A(|Fb,N (t)|+ (1 + |EN (0)|)(N−β + |αN − α|)).

By Grönwall’s lemma (up to taking another constant A depending on the
same quantities) we get (7.1).

Now let us study the rescaled regime where αN −→
N→+∞

+∞. By Proposi-

tion 4.2 we have

d

dt
Fb,N (t) =− 2

¨

(R2×R2)\∆

∇⊥b(x)

b(x)
· ∇xgb(x, y) d(ω(t)− ωN (t))⊗2(x, y)

+
2

N2αN

N∑

i=1

N∑

j=1

j 6=i

v(t, qi)

b(qi)
· ∇xgb(qi, qj)

=:L1 + L2.

The first term can be bounded by Proposition 6.1:

(7.6)

|L1| 6Cb

∥∥∥∥
∇b
b

∥∥∥∥
W 1,∞

|F b,N (t)|+Cb

(
1 +

∥∥∥∥
∇b
b

∥∥∥∥
W 1,∞

)

× ‖ω‖L∞([0,T ],L1((1+|x|) dx)∩L∞) (1 + I(QN ))N−β

6Cb|F b,N (t)|+ Cb,T ‖ω‖L∞([0,T ],L1((1+|x|) dx)∩L∞)

× (1 + IN (0) + |EN (0)|)N−β

where we used Proposition 3.1 in the last inequality. We split the second
line in three terms:

L2 =
2

N2αN

N∑

i=1

N∑

j=1
j 6=i

v(t, qi)

b(qi)
· ∇b(qi)
2
√
b(qi)

√
b(qj)g(qi − qj)

+
2

N2αN

N∑

i=1

N∑

j=1
j 6=i

v(t, qi)

b(qi)
· ∇g(qi − qj)

√
b(qi)b(qi)

+
2

N2αN

N∑

i=1

N∑

j=1

j 6=i

v(t, qi)

b(qi)
· ∇xSb(qi, qj)

=:L2,1 + L2,2 + L2,3.
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We can bound the first term by

|L2,1| 6
Cb

N2αN
‖v‖L∞

N∑

i=1

N∑

j=1

j 6=i

|g(qi − qj)|

and applying Lemma 2.3 we get

‖v‖L∞ = ‖∇Gb[ω]‖L∞ 6 Cb ‖ω‖L∞([0,T ],L1∩L∞) .

We can bound

N∑

i=1

N∑

j=1
j 6=i

|g(qi − qj)| as we did for Inequality (3.10) to get

|L2,1| 6 Cb ‖ω‖L∞([0,T ],L1∩L∞) (1 + |EN |+ IN )α−1
N .

The second term L2,2 can be bounded as in (3.7) to get

|L2,2| 6 Cb(1 + ‖v‖L∞([0,T ],W 1,∞))α
−1
N

and the last term can be bounded directly using Claim (1) of Lemma 2.7:

|L2,3| 6 Cb ‖v‖L∞ (1 + IN )α−1
N 6 Cb ‖ω‖L∞([0,T ],L1∩L∞) (1 + IN )α−1

N .

Combining these three inequalities with (7.6) and using Proposition 3.1 to
bound IN we get that for almost every t ∈ [0, T ],

∣∣∣∣
d

dt
Fb,N (t)

∣∣∣∣ 6Cb|Fb,N (t)|+ Cb(‖ω‖L∞([0,T ],L1((1+|x|) dx)∩L∞)

+ ‖v‖L∞([0,T ],W 1,∞))

× (1 + |IN (0)|+ |EN (0)|)(N−β + α−1
N ).

And therefore there exists a constant B depending only on the quantities b,
T ,‖ω‖L∞([0,T ],L1((1+|x|) dx)∩L∞) and IN (0) (which is uniformly bounded in N

by assumption) such that for almost every t ∈ [0, T ],
∣∣∣∣
d

dt
Fb,N (t)

∣∣∣∣ 6B(|F b,N (t)|+ (1 + |EN (0)|)(N−β + α−1
N )).

By Grönwall’s lemma (up to taking another constant B depending on the
same quantities) we get (7.2). �

Proof of Theorem 1.8. By Corollary 5.4, weak-∗ convergence and conver-
gence of the interaction energy gives that (Fb,N (0)) and (Fb,N (0)) converge
to zero. Using convergence of the interaction energy we also get that |EN (0)|
and |EN (0)| are bounded. Thus by Inequalities (7.1) and (7.2) we get that
for any t ∈ [0, T ] (Fb,N (t)) and (Fb,N (t)) converge to zero and the theorem
follows by Corollary 5.4. �
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