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1. Introduction 1.1. Lake equations. The purpose of this article is to investigate the meanfield limit of point vortices (which are dirac masses in the vorticity field of a fluid) in a lake of non-constant depth. Namely we want to establish the convergence of an empirical distribution of point vortices to a continuous density solving the lake equations, as the number of vortices becomes very large. These equations describe the evolution of the horizontal velocity field of an incompressible fluid in a lake, when:

• The depth is small with respect to the lengthscale of horizontal variations of the fluid velocity. • The surface of the fluid is almost flat (small Froude number).

• The vertical velocity is small with respect to the horizontal velocity. For a rigorous derivation of these equations from the shallow water system we refer to the work of Bresch, Gisclon and Lin in [START_REF] Bresch | An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit[END_REF]. A more general introduction to depth-averaged models can be found in [START_REF] Greenspan | The theory of rotating fluids[END_REF]Chapter 5] and a discussion on the three upper hypothesis can be found in [START_REF] Richardson | Vortex motion in shallow water with varying bottom topography and zero Froude number[END_REF].

These equations are similar to the planar Euler equations, but they take into account the depth of the lake, given by a positive function b. If b is constant, then one recovers the usual planar Euler equations. The wellposedness of the lake equations on bounded domains have been first investigated by Levermore, Oliver and Titi in [START_REF] Levermore | Global well-posedness for the lake equations[END_REF]. In this paper they studied an analogue of the Yudovich theorem for Euler equations (see [START_REF] Yudovich | Non-stationary flow of an ideal incompressible liquid[END_REF]). This result was extended later by Bresch and Métivier in [START_REF] Bresch | Global existence and uniqueness for the lake equations with vanishing topography: elliptic estimates for degenerate equations[END_REF] to include the case where the depth function b vanishes at the boundary and by Lacave, Nguyen and Pausader in [START_REF] Lacave | Topography influence on the lake equations in bounded domains[END_REF] to deal with the case of rough bottoms. The existence and uniqueness of global classical solutions have been established by Al Taki and Lacave in [START_REF] Énard | Degenerate lake equations: classical solutions and vanishing viscosity limit[END_REF].

In this paper we will study the case of an infinite lake modeled by the whole plane R 2 . We are interested in the following vorticity form of the equations:

(1.1)

         ∂ t ω + div u -α ∇ ⊥ b b ω = 0 div(bu) = 0 curl(u) = ω
where

• ⊥ denotes the rotation by π 2 (that is (x 1 , x 2 ) ⊥ := (-x 2 , x 1 )).

• α ∈ [0, +∞) is a forcing parameter.

• b : R 2 -→ (0, +∞) is the depth function satisfying Assumption 1.5 below. • u : [0, +∞) × R 2 -→ R 2 is the velocity field of the fluid.

• ω : [0, +∞) × R 2 -→ R is the vorticity field of the fluid, defined by

ω = curl(u) := ∂ 1 u 2 -∂ 2 u 1 .
The true lake equations have no forcing term (α = 0), but we will study this more general model as it could arise as a mean-field limit of point vortices (in the regime where the self-interaction of the vortices are not negligible). It is a particular case of a model studied by Duerinckx and Fischer (see [23, Equation (1.9)]). In this work the authors proved the global existence and uniqueness of weak solutions and the local well-posedness of strong solutions. We will consider the following definition of weak solutions: Definition 1.1. Let T > 0 and ω 0 ∈ L ∞ (R 2 ) with compact support. We say that (ω, u) is a weak solution of (1.1) 

on [0, T ] with initial condition ω 0 if ω ∈ L 1 ([0, T ], L ∞ (R 2 , R 2 ))∩C 0 ([0, T ], L ∞ (R 2 )-w * ) with compact support in space for all t ∈ [0, T ], u ∈ L 2 loc ([0, T ] × R 2 , R 2 )
, for almost every t ∈ [0, T ], div(bu) = 0 and curl(u) = ω distributionally and for all ϕ smooth with compact support in [0, T ) × R 2 and t ∈ [0, T ),

(1.2) ¨[0,t]×R 2 ∂ t ϕω + ∇ϕ • u -α ∇ ⊥ b b ω = ˆR2 ϕ(t)ω(t) - ˆR2 ϕ(0)ω 0 .
In the regime where the self-interaction of the point vortices is predominant, the system of point vortices will converge in an accelerated timescale to a transport equation along the level sets of the topography:

(1.3) ∂ t ω -div ∇ ⊥ b b ω = 0.
For this equation we will use the following definition of weak solutions: Definition 1.2. Let T > 0 and ω 0 ∈ L ∞ (R 2 ) with compact support. We say that is a weak solution of (1.3) on [0, T ] with initial condition ω 0 if ω ∈ L 1 ([0, T ], L ∞ (R 2 , R 2 )) ∩ C 0 ([0, T ], L ∞ (R 2 ) -w * ) with compact support in space for all t ∈ [0, T ] and for all ϕ smooth with compact support in [0, T ) × R 2 and t ∈ [0, T ), (1.4)

¨[0,t]×R 2 ∂ t ϕω -∇ϕ • ∇ ⊥ b b ω = ˆR2 ϕ(t)ω(t) - ˆR2 ϕ(0)ω 0 .
1.2. Point vortices for the lake equations. The forced lake equations (1.1) have been derived as the mean-field limit of complex Ginzburg-Landau vortices with forcing and pinning effects by Duerinckx and Serfaty in [START_REF] Duerinckx | Mean-field dynamics for Ginzburg-Landau vortices with pinning and forcing[END_REF]. The dynamics of these vortices comes from the physics of supraconductors or superfluids and is very different from the dynamics of vortices in a lake.

In this paper we are interested in deriving Equations (1.1) as the meanfield limit of a model introduced by Richardson in [START_REF] Richardson | Vortex motion in shallow water with varying bottom topography and zero Froude number[END_REF]. In that work he established by a formal computation the equation followed by the center of vorticity q(t) of a small vortex of size ε in a lake of depth b. To leading order in ε, this equation gives

(1.5) q(t) ≈ - Γ| ln(ε)| 4π ∇ ⊥ b(q(t)) q(t)
where Γ is the intensity of vorticity (that is Γ = ˆB(q(0),ε) ω).

This means that to leading order in ε, a very small vortex follows the level lines of the topography without seeing the interaction with other vortices remaining far from him. The latter equation was rigourously justified by Dekeyser and Van Schaftingen in [START_REF] Dekeyser | Vortex motion for the lake equations[END_REF] for the motion of a single vortex and this result was extended later to the case of a finite number of vortices by Hientzsch, Lacave and Miot in [START_REF] Hientzsch | Dynamics of several point vortices for the lake equations[END_REF].

We want to investigate the behavior of N point vortices of intensity N -1 as N becomes large. We will see in Section 2 that the elliptic problem div(bu) = 0 curl(u) = ω has a unique solution given by the kernel

g b (x, y) := b(x)b(y)g(x -y) + S b (x, y)
where S b is a function solving a certain elliptic equation (see Equation (2.9)) and g(x) := -1 2π ln |x| is the opposite of the Green kernel of the Laplacian on the plane R 2 . More precisely, we have

u(x) = - 1 b(x) ˆR2 ∇ ⊥
x g b (x, y)ω(y) dy.

Recall that a point vortex is asymptotically represented by a dirac mass of vorticity. Therefore using the kernel ∇ ⊥ x g b we can compute the velocity field generated by N -1 vortices δ q j of intensity 1 N on a vortex δ q i :

- 1 N N j=1 j =i 1 b(q i )
∇ ⊥ x g b (q i , q j ).

This term correspond to the term u reg given by Richardson in [START_REF] Richardson | Vortex motion in shallow water with varying bottom topography and zero Froude number[END_REF]Equation (2.90)]. Combining this equation with the self-interaction term of (1.5) we get the model of point vortices we will study in this paper:

(1.6) qi = -α N ∇ ⊥ b(q i ) b(q i ) - 1 N N j=1 j =i 1 b(q i ) ∇ ⊥ x g b (q i , q j )
where we have denoted

α N := | ln(ε N )| 4πN
where ε N is the size of the vortices.

Remark 1.3. Up to now there is no mathematical justification of Equation (1.6): We do not even expect this equation to describe precisely the motion of a fixed number of small vortices as we have neglected all self-interaction terms of order smaller than | ln(ε)|. However Theorem 1.8 will justify that this simplified model is statistically relevant when N becomes very large.

Remark 1.4. There are several works establishing approximate analytical trajectories of vortices in a lake for some specific depth profiles, and also other numerical and experimental results related to vortex dynamics in lakes. For more details we refer to the results of [START_REF] Richardson | Vortex motion in shallow water with varying bottom topography and zero Froude number[END_REF] and the associated bibliography.

Two quantities will be of interest for the study of this system. The interaction energy

E N (t) := 1 N 2 N i=1 N j=1 j =i
g b (q i (t), q j (t))

and the moment of inertia

I N (t) := 1 N N i=1 |q i (t)| 2 .
One could prove that the total energy

E tot N := E N + α N N N i=1 b(q i )
is a conserved quantity for the point vortex system (1.6) or that if ω is a solution of (1.1) with enough regularity and decay, the quantity ¨R2 ×R 2 g b (x, y)ω(t, x)ω(t, y) dx dy + α ˆR2 b(x)ω(t, x) dx is conserved by the flow. The moment of inertia I N and the interaction energy E N are not conserved quantity but they are bounded in time, and this will be useful both for our mean-field limit result and for the wellposedness of System (1.6) (see Section 3).

If α N -→ N →+∞
+∞ the self-interactions are predominant. In order to study this regime we will study an accelerated timescale as it was done in [START_REF] Dekeyser | Vortex motion for the lake equations[END_REF] and [START_REF] Hientzsch | Dynamics of several point vortices for the lake equations[END_REF] to study the motion of a finite number of vortices. Therefore we define:

q i (t) := q i (α -1 N t). This gives (1.7) qi = - ∇ ⊥ b(q i ) b(q i ) - 1 N α N N j=1 j =i 1 b(q i ) ∇ ⊥ x g b (q i , q j )
We also define the rescaled interaction energy

E N (t) := E N (α -1 N t
) and the rescaled moment of inertia

I N (t) := I N (α -1 N t). 1.3.
Mean-field limits. Mean-field limits consist in studying the convergence of a system of ordinary differential equations modeling the evolution of a finite number of particles

(1.8) ẋi = 1 N N i=1 K(x i -x j )
to a Euler-like equation modeling the evolution of a continuous density µ(t, x):

(1.9)

∂ t µ + div((K * µ)µ) = 0
when the number of particles becomes large (here K : R d -→ R d is an interaction kernel). For systems of order two we are interested in the convergence of a system of particles following Newton's second law

ẍi = 1 N N i=1 K(x i -x j )
to a Vlasov-like equation modeling the evolution of a continuous density f (t, x, v):

(1.10)    ∂ t f + div x (f v) + div v ((K * µ)f ) = 0 µ(t, x) = ˆRd f (t, x, v) dv.
A mean-field limit result consists in proving that if at time zero, the empirical distribution of the particles

1 N N i=1 δ x i (t) respectively 1 N N i=1 δ (x i (t), ẋi (t))
converges to the continuous density µ(t, x) solution of (1.9) (respectively f (t, x, v) solution of (1.10)) then the convergence also holds for any finite time.

When K is Lipschitz the mean-field limit of the upper system was established by compactness arguments in [START_REF] Braun | The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles[END_REF][START_REF] Neunzert | Die Approximation der Lösung von Integro-Differentialgleichungen durch endliche Punktmengen[END_REF] or by optimal transport theory and Wasserstein distances by Dobrushin in [START_REF] Dobrushin | Vlasov equations[END_REF]. If K is singular there are numerous results establishing the mean-field limit of systems of order one:

Schochet proved in [START_REF] Schochet | The point-vortex method for periodic weak solutions of the 2-D Euler equations[END_REF] the mean-field convergence of the point vortex system (that is K = 1 2π

x ⊥ |x| 2 in dimension 2) to a measure-valued solution of Euler equations up to a subsequence, using arguments previously developed in [START_REF] Delort | Existence de nappes de tourbillon en dimension deux[END_REF] and [START_REF] Schochet | The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation[END_REF] to prove existence of such solutions.

For sub-coulombic interactions, that is |K(x)|, |x||∇K(x)| C|x| -α with 0 < α < d -1, the mean-field limit of (1.8) was proved by Hauray in [START_REF] Hauray | Wasserstein distances for vortices approximation of Euler-type equations[END_REF] assuming div(K) = 0 and using a Dobruschin-type approach (following the idea of [START_REF] Hauray | N -particles approximation of the Vlasov equations with singular potential[END_REF][START_REF] Hauray | Approximation particulaire des équations de Vlasov avec noyaux de force singuliers : la propagation du chaos[END_REF]). It was also used by Carillo, Choi and Hauray to study with the mean-field limit of some aggregation models in [START_REF] Carrillo | The derivation of swarming models: Meanfield limit and Wasserstein distances[END_REF].

In [START_REF] Duerinckx | Mean-field limits for some Riesz interaction gradient flows[END_REF] Duerinckx gave another proof of the mean-field limit of several Riesz interaction gradient flows using a "modulated energy" that was introduced by Serfaty in [START_REF] Serfaty | Mean field limits of the Gross-Pitaevskii and parabolic Ginzburg-Landau equations[END_REF].

In [START_REF] Serfaty | Mean field limit for Coulomb-type flows[END_REF], Serfaty used this modulated energy approach to prove the meanfield convergence of such systems where K was a kernel given by Coulomb, logarithmic or Riesz interaction, that is K = ∇g for g(x) = |x| -s with max(d -2, 0) s < d for d 1 or g(x) = -ln |x| for d = 1 or 2. For this purpose K * µ was supposed to be Lipschitz.

Rosenzweig proved in [START_REF] Rosenzweig | Mean-field convergence of point vortices to the incompressible Euler equation with vorticity in L ∞[END_REF] the mean-field convergence of the point vortex system without assuming Lipschitz regularity for the limit velocity field, using the same energy as in [START_REF] Serfaty | Mean field limit for Coulomb-type flows[END_REF] with refined estimates. Remark that it ensures that the point vortex system converges to any Yudovich solutions of the Euler equations (see [START_REF] Yudovich | Non-stationary flow of an ideal incompressible liquid[END_REF]). This result was extended later for higher dimensional systems (d 3) in [START_REF] Rosenzweig | The mean-field approximation for higher-dimensional Coulomb flows in the scaling-critical L ∞ space[END_REF] by the same author.

In [START_REF] Nguyen | Mean-field limits of riesz-type singular flows[END_REF] Nguyen, Rosenzweig and Serfaty extended the modulated energy approach to a more general class of potentials g using the commutator structure of the equations.

With a modulated energy approach, Bresch, Jabin and Wang defined a modulated entropy functionnal which allowed them to prove mean-field limit of interacting particles with noise in [START_REF] Bresch | On mean-field limits and quantitative estimates with a large class of singular kernels: application to the Patlak-Keller-Segel model[END_REF][START_REF] Bresch | Mean-field limit and quantitative estimates with singular attractive kernels[END_REF][START_REF] Bresch | Modulated free energy and mean field limit[END_REF]. This method was used later to obtain uniform in time convergence for Riesz-type flows by Rosenzweig and Serfaty in [START_REF] Rosenzweig | Global-in-time mean-field convergence for singular Riesz-type diffusive flows[END_REF] and by Rosenzweig, Serfaty and Chodron de Courcel in [START_REF] De Courcel | Sharp uniform-in-time mean-field convergence for singular periodic riesz flows[END_REF].

For systems of order two, the mean-field limit has been established for several singular kernels:

In [START_REF] Hauray | N -particles approximation of the Vlasov equations with singular potential[END_REF][START_REF] Hauray | Approximation particulaire des équations de Vlasov avec noyaux de force singuliers : la propagation du chaos[END_REF], Hauray and Jabin dealt with the case of some sub-coulombian interactions (or more precisely |K(x)| c|x| -s with 0 < s < 1) by using a Dobrushin-type approach.

In [START_REF] Jabin | Mean field limit and propagation of chaos for Vlasov systems with bounded forces[END_REF][START_REF] Jabin | Quantitative estimates of propagation of chaos for stochastic systems with W -1,∞ kernels[END_REF], Jabin and Wang studied the case of bounded and W -1,∞ gradients.

In [START_REF] Boers | On mean field limits for dynamical systems[END_REF][START_REF] Huang | On the mean-field limit for the Vlasov-Poisson-Fokker-Planck system[END_REF][START_REF] Lazarovici | The Vlasov-Poisson dynamics as the mean field limit of extended charges[END_REF][START_REF] Lazarovici | A mean field limit for the Vlasov-Poisson system[END_REF] the same kind of results is proved with some cutoff of the interaction kernel.

In the appendix of [START_REF] Serfaty | Mean field limit for Coulomb-type flows[END_REF], Duerinckx and Serfaty studied the case of particles interacting with a Coulomb or a Riesz interaction kernel to the Vlasov equation in the monokinetic regime, that is the pressureless Euler-Poisson equations. The same method have been used to study the mean-field limit of more general models coming from quantum physics, biology or fluid dynamics (see for example [START_REF] Carrillo | Mean-field limits: from particle descriptions to macroscopic equations[END_REF][START_REF] Ménard | Mean-field limit derivation of a monokinetic spray model with gyroscopic effects[END_REF][START_REF] Porat | Derivation of euler's equations of perfect fluids from von neumann's equation with magnetic field[END_REF]).

In [START_REF] Han-Kwan | From Newton's second law to Euler's equations of perfect fluids[END_REF], Han-Kwan and Iacobelli proved the mean-field limit of particles following Newton's second law to the Euler equation in a quasineutral regime or in the gyrokinetic limit. This result was extended later by Rosenzweig in [START_REF] Rosenzweig | On the rigorous derivation of the incompressible Euler equation from Newton's second law[END_REF] to allow a larger choice of scaling between the number of particles and the coupling constant.

Recently, Bresch, Jabin and Soler were able in [START_REF] Bresch | A new approach to the mean-field limit of vlasov-fokker-planck equations[END_REF] to prove the meanfield limit derivation of the Vlasov-Fokker-Planck equation with the true Coulomb interactions using the BBGKY hierarchy and the diffusivity in the velocity variables to get estimates on the marginals. Numerous other mean-field limit results were proved for interacting particles with noise with regular or singular kernels. See for example [START_REF] Berman | Propagation of chaos for a class of first order models with singular mean field interactions[END_REF][START_REF] Bolley | Dynamics of a planar Coulomb gas[END_REF][START_REF] Carrillo | A mass-transportation approach to a one dimensional fluid mechanics model with nonlocal velocity[END_REF][START_REF] Fournier | Propagation of chaos for the 2D viscous vortex model[END_REF][START_REF] Jabin | Mean field limit and propagation of chaos for Vlasov systems with bounded forces[END_REF][START_REF] Jabin | Quantitative estimates of propagation of chaos for stochastic systems with W -1,∞ kernels[END_REF][START_REF] Lacker | Hierarchies, entropy, and quantitative propagation of chaos for mean field diffusions[END_REF][START_REF] Li | On the mean field limit for Brownian particles with Coulomb interaction in 3D[END_REF][START_REF] Nguyen | Mean-field limits of riesz-type singular flows[END_REF][START_REF] Osada | Propagation of chaos for the two-dimensional Navier-Stokes equation[END_REF]. For a more complete bibliography on the mean-field limit of interacting particles with noise we refer to the bibliography of [START_REF] De Courcel | Sharp uniform-in-time mean-field convergence for singular periodic riesz flows[END_REF].

For a general introduction to the subject of mean-field limits we refer to the reviews [START_REF] Golse | On the Dynamics of Large Particle Systems in the Mean Field Limit[END_REF][START_REF] Jabin | A review of the mean field limits for Vlasov equations[END_REF].

1.4. Notations and assumptions.

1.4.1. Notations. • For u ∈ L 1 loc (R 2 , R 2 ), we denote curl(u) = ∂ 1 u 2 -∂ 2 u 1 . • For h ∈ Ḣ1 (R 2 ), we denote (1.11) [h, h] i,j := 2∂ i h∂ j h -|∇h| 2 δ i,j .
It is the stress-energy tensor used in [START_REF] Serfaty | Mean field limit for Coulomb-type flows[END_REF] to prove the mean-field limit of several singular ODE's. Remark that for h smooth enough, we have div[h, h] = 2∆h∇h.

• We denote < x >= (1 + |x| 2 ) 1 2 .
• g is the opposite of the Green function of the laplacian:

g(x) := - 1 2π ln |x|. • | • | C 0,s is the semi-norm associated to the Hölder space C 0,s : |f | C 0,s = sup x =y |f (x) -f (y)| |x -y| s .
• When 1 p +∞, p ′ denotes the dual exponent of p.

• If ν is a probability measure on R 2 , we will denote ν ⊗2 := ν ⊗ ν.

• C is a generic constant. We will denote C A,B when a constant depends on some quantities A and B. • P(R 2 ) is the space of probability measures on R 2 .

• For Q N = (q 1 , ..., q N ) ∈ (R 2 ) N we denote I(Q N ) = 1 N N i=1 |q i | 2 .
1.4.2. Assumptions. We will make the following assumption on the depth function b:

Assumption 1.5. We assume that b is a smooth function, inf b > 0, sup b < +∞ and that there exists γ > 0 such that

(1 + |x|) 4+γ (|∇b(x)| + |D 2 b(x)|) < +∞.
We will consider regular solutions of (1.1) and (1.3) in the following sense:

Assumption 1.6. We say that a function ω(t, x) satisfies Assumption 1. This assumption will be crucial to apply Proposition 6.1 and prove the mean-field limit Theorem 1.8. The existence and uniqueness of sufficiently regular solutions of (1.1) locally in time is ensured by [START_REF] Duerinckx | Well-posedness for mean-field evolutions arising in superconductivity[END_REF]Theorem 2]. One could also prove that ω

6 if ω ∈ L ∞ ([0, T ], L ∞ (R 2 ) ∩ P(R 2 )) ∩ C 0 ([0, T ], L ∞ (R 2 ) -w * ), if there exists a compact K such that for every t ∈ [0, T ], supp(ω(t)) ⊂ K and if ∇G b [ω] ∈ L ∞ ([0, T ], W
∈ L ∞ ([0, T ], C 0,s ) is sufficient to have ∇G b [ω] ∈ L ∞ ([0, T ], W 1,∞ ).
1.5. Main result and plan of the paper. The main result of this paper is the following theorem which gives the mean-field limit of the point vortex system (1.6) and its rescaled version (1.7) (we recall that the kernel g b is defined by (2.10)):

Theorem 1.8. Assume that b satisfies Assumption 1.5. We have mean-field convergence of the point-vortex system in the two following regimes: [START_REF] Énard | Degenerate lake equations: classical solutions and vanishing viscosity limit[END_REF] Let ω be a solution of (1.1) with initial datum ω 0 in the sense of Definition 1.1, satisfying Assumption 1.6 and (q 1 , ..., q N ) be a solution of (1.6). Assume that:

• (I N (0)) N is bounded. • 1 N N i=1 δ q 0 i * --⇀ N →+∞
ω 0 for the weak- * topology of probability measures.

• α N -→ N →+∞ α. • 1 N 2 1 i =j N g b (q 0 i , q 0 j ) -→ N →+∞ ¨R2 ×R 2 g b (x, y)ω 0 (x)ω 0 (y) dx dy.
Then for all t ∈ [0, T ], 1

N N i=1 δ q i (t) * --⇀ N →+∞ ω(t)
for the weak- * topology of probability measures and

1 N 2 1 i =j N g b (q i (t), q j (t)) -→ N →+∞ ¨R2 ×R 2 g b (x, y)ω(t, x
)ω(t, y) dx dy.

(2) Let ω be a solution of (1.3) with initial datum ω 0 in the sense of Definition 1.2, satisfying Assumption 1.6 and (q 1 , ..., q N ) be a solution of (1.7). Assume that:

• (I N (0)) N is bounded. • 1 N N i=1 δ q 0 i * --⇀ N →+∞
ω 0 for the weak- * topology of probability measures.

• α N -→ N →+∞ +∞. • 1 N 2 1 i =j N g b (q 0 i , q 0 j ) -→ N →+∞ ¨R2 ×R 2 g b (x, y)ω 0 (x)ω 0 (y) dx dy.
Then for all t ∈ [0, T ], 1

N N i=1 δ q i (t) * --⇀ N →+∞ ω(t)
for the weak- * topology of probability measures and

1 N 2 1 i =j N g b (q i (t), q j (t)) -→ N →+∞ ¨R2 ×R 2 g b (x, y)ω(t, x)ω(t, y) dx dy.
Remark that in the case α N -→ N →+∞ 0 we recover the classical lake equations ((1.1) with α = 0). The boundedness of (I N (0)) is a technical assumption made to ensure that not too much vorticity is going to infinity. This assumption was not necessary in the original papers of Duerinckx in [START_REF] Duerinckx | Mean-field limits for some Riesz interaction gradient flows[END_REF] and of Serfaty in [START_REF] Serfaty | Mean field limit for Coulomb-type flows[END_REF] but we will need it to deal with the heterogeneity of the kernel g b (defined in (2.10)).

The convergence of the interaction energy and the weak- * convergence of (ω N ) to ω ensure the convergence of (ω N ) to ω in a stronger sense: We will prove in Corollary 5.4 that provided certain technical assumptions are satisfied, it is equivalent to the convergence to zero of a "modulated energy" functionnal. For an empirical measure of point vortices (q 1 , ..., q N ) and a vorticity field ω ∈ L ∞ with compact support, this modulated energy is defined by:

(1.12) F b (Q N , ω) := ¨(R 2 ×R 2 )\∆ g b (x, y) d 1 N N i=1 δ q i -ω (x) d 1 N N i=1 δ q i -ω (y)
where

∆ := {(x, x) ; x ∈ R 2 }.
We will use this energy to control the distance between solutions ω and Q N of (1.1) and (1.6) or solutions ω and Q N of (1.3) and (1.7) at any given time t:

(1.13) F b,N (t) := F b (Q N (t), ω(t))
and

(1.14) F b,N (t) := F b (Q N (t), ω(t)).
The proof of Theorem 1.8 relies on Grönwall-type estimates on these two quantities. The paper is organised as follows:

• In Section 2 we prove the well-posedness of the elliptic problem linking a velocity field satisfying div(bu) = 0 and its vorticity, the existence of a Green kernel for this elliptic problem and we establish several regularity estimates. • In Section 3 we prove that the point-vortex system is well-posed and give some estimates on the interaction energy and on the moment of inertia of the system that we will need in Section 7.

• In Section 4 we compute the time derivative of F b,N and of F b,N .

• In Section 5 we state several properties of the modulated energy.

We prove that it controls the convergence in H s for s < -1 (see Corollary 5.3) and that having the convergence of the modulated energy is equivalent to have weak- * convergence of the point vortex system and convergence of its interaction energy (see Corollary 5.4). • In Section 6 we bound the main term appearing in the derivatives of the modulated energies. • In Section 7 we use the results of the other sections to prove Theorem 1.8. The modulated energy F b is similar to the modulated energy defined in [START_REF] Serfaty | Mean field limit for Coulomb-type flows[END_REF]Equation (1.16)] and the proofs of Sections 4 to 7 follow the same global ideas. The main difference between Theorem 1.8 and other mean-field limit results using modulated energies is that the kernel g b is not of the form a(x, y) = a(x -y). Most of the difficulties adressed by this paper consist in dealing with the heterogeneity of the kernel g b .
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Velocity reconstruction

There exists a Biot-Savart type law to reconstruct a velocity field u satisfying div(bu) = 0 from its vorticity. In this section we prove several results concerning this reconstruction. In Subsection 2.1 we prove that the elliptic equations linking u with its vorticity are well-posed. In Subsection 2.2 we prove some results related to the asymptotic behavior of the velocity field as |x| -→ ∞. In Subsection 2.3, we give an analogue of the Biot-Savart law for a velocity field satisfying System (2.1). Finally, in Subsection 2.4 we define some regularisations of the Coulomb kernel and of the dirac mass that we will need in Sections 5 and 6.

2.1. Well-posedness of the elliptic problem. In this subsection we justify the well-posedness of the elliptic equations satisfied by the velocity field:

(2.1) div(bu) = 0 curl(u) = ω.
As we will write u = -1 b ∇ ⊥ ψ we will also consider the "stream function" formulation of the upper system:

(2.2) -div 1 b ∇ψ = ω.
For this purpose we will consider the following weighted Sobolev spaces:

Definition 2.1. For 1 < p < ∞ we consider the Banach space W 2,p -1 (R 2 ) defined by

W 2,p -1 (R 2 ) := {u ∈ D ′ (R 2 ) ; ∀α ∈ N 2 , |α| 2, < • > |α|-1 D α u ∈ L p (R 2
)} and equipped with its natural norm

u W 2,p -1 :=   |α| 2 < • > |α|-1 D α u p L p   1 p
. These weighted spaces were first introduced by Cantor in [START_REF] Cantor | Spaces of functions with asymptotic conditions on R[END_REF] and have been investigated to study elliptic equations on unbounded domains. For a more precise study of these spaces and further references we refer to [START_REF] Lockhart | On elliptic systems in R n[END_REF][START_REF] Mcowen | The behavior of the Laplacian on weighted Sobolev spaces[END_REF][START_REF] Mcowen | On elliptic operators in R n[END_REF]. The following proposition is a straightforward consequence of [START_REF] Lockhart | On elliptic systems in R n[END_REF]Theorem 2] (which is the combination of two theorems proved in [START_REF] Mcowen | The behavior of the Laplacian on weighted Sobolev spaces[END_REF] and [START_REF] Mcowen | On elliptic operators in R n[END_REF]) and states that Equations (2.1) and (2.2) are well-posed.

Proposition 2.2. Let 2 < p < +∞, assume that < • > ω ∈ L p (R 2 ), then there exists a unique solution ψ of (2.2) in W 2,p -1 (R 2 )/R. Morever if u ∈ L p (R 2 , R 2 ) is a solution of (2.1) in the sense of distributions, then u = - 1 b ∇ ⊥ ψ.
Proof. We can rewrite Equation (2.2) as

-∆ψ -b∇ 1 b • ∇ψ = bω.
We have that:

• -∆ is an elliptic operator with constant coefficients and homogeneous of degree 2.

• b∇

1 b ∈ C 0 and lim |x|→+∞ < x > 2-1+0 b(x)∇ 1 b (x) = 0 since b satisfies Assumption 1.5. • < • > bω ∈ L p . • -1 - 2 p and 1 - 2 p / ∈ N.
Therefore by [START_REF] Lockhart | On elliptic systems in R n[END_REF]Theorem 2], there exists a unique solution ψ (up to a constant) of Equation (2.2) in W 2,p -1 (R 2 ). Now if u ∈ L p is a solution of (2.1), then

< • > curl(bu) L p = < • > bω L p + < • > ∇ ⊥ b • u C b ( < • > ω L p + u L p ) since b satisfies Assumption 1.5. Let us consider π ∈ W 2,p -1 (R 2
) to be the unique solution (up to a constant) of -∆π = curl(bu) given by [45, Theorem 1]. Then bu + ∇ ⊥ π is a div-curl free vector field in L p so it is zero. Moreover,

-div 1 b ∇π = -curl 1 b ∇ ⊥ π = curl(u) = ω
so ∇π = ∇ψ by uniqueness of solutions of (2.2) in W 2,p -1 (R 2 )/R. Now we state several estimates for solutions of Equation (2.2), proved by Duerinckx in [START_REF] Duerinckx | Well-posedness for mean-field evolutions arising in superconductivity[END_REF]:

Lemma 2.3. [From [23, Lemma 2.6]] Let p > 2, ω be such that < • > ω ∈ L p (R 2 ). If ψ ∈ W 2,p -1 (R 2 ) is the solution of (2.

2) given by Proposition 2.2, then:

(1) There exists p 0 > 2 depending only on b such that for all 2 < p p 0 ,

∇ψ L p C p ω L 2p p+2
.

(2) For all 0 < s < 1,

|∇ψ| C 0,s C s ω L 2 1-s . (3) ∇ψ L ∞ C ω L 1 ∩L ∞ .
Remark 2.4. In [START_REF] Duerinckx | Well-posedness for mean-field evolutions arising in superconductivity[END_REF], this lemma was stated for any solution of (2.2) with decreasing gradient (which is the case for a solution given by Proposition 2.2 since its gradient is in W 1,p ) and for ω smooth with compact support but by density it can be extended to all ω such that < • > ω ∈ L p (R 2 ) and such that the upper inequalities make sense.

Asymptotic behavior of the velocity field.

The main result of this subsection is the following proposition giving the asymptotic behavior of a velocity field satisfying (2.1). Proposition 2.5. Let ω ∈ L ∞ with compact support and u = -

1 b ∇ ⊥ ψ
where ψ is the solution of (2.2) given by Proposition 2.2. There exists C > 0 depending only on b and ω such that for all x ∈ R 2 \{0},

(2.3) u(x) - 1 2π ˆR2 ω x ⊥ |x| 2 C |x| 2 .
Moreover there exists δ ∈ (0, 1) and C such that

(2.4) |ψ(x)| C(1 + |x| δ ).
To prove this proposition we will need to use the following result about the asymptotic behavior of a velocity field given by the usual Biot-Savart law:

Lemma 2.6. Let us assume that µ is a measurable function such that µ ∈ L 1 ((1 + |x| 2 ) dx) and | • | 2 µ ∈ L p for some p > 2. Then there exists C, R > 0 depending only on µ such that for all x ∈ R 2 \{0}, ˆR2 x -y |x -y| 2 dµ(y) - ˆR2 dµ(y) x |x| 2 C |x| 2 .
In particular if

ˆR2 dµ = 0, then ˆR2 x -y |x -y| 2 dµ(y) = O |x|→+∞ (|x| -2 ).
This lemma is a classical result in fluid dynamics (see for example [START_REF] Majda | Vorticity and incompressible flow[END_REF]Proposition 3.3]) that we will prove for the sake of completeness.

Proof. If x = 0, we have ˆR2 µ(y) x -y |x -y| 2 - x |x| 2 dy = 1 |x| 2 ˆR2 µ(y) |x| 2 (x -y) -x|x -y| 2 |x -y| 2 dy. Now remark that |x| 2 (x -y) -x|x -y| 2 = |x| 2 (x -y) -(x -y)(|x| 2 + |y| 2 -2x • y) -y|x -y| 2 = (x -y)(|y| 2 -2(x -y) • y -2|y| 2 ) -y|x -y| 2 = -y|x -y| 2 -2[(x -y) • y](x -y) -|y| 2 (x -y). Thus ˆR2 µ(y) x -y |x -y| 2 - x |x| 2 dy C |x| 2 ˆR2 |y||µ(y)| dy + ˆR2 |y| 2 |µ(y)| |x -y| dy .
Now we have that for any p > 2,

ˆR2 |y| 2 |µ(y)| |x -y| dy | • | 2 µ p-2 2p-2 L 1 | • | 2 µ p 2p-2
L p (see for example [35, Lemma 1]) and therefore we get the proof of Lemma 2.6.

With this result we can now study the asymptotic behavior of a velocity field satisfying System (2.1):

Proof of Proposition 2.5. We write

(2.5) µ := div(u) = div 1 b bu = ∇ 1 b • bu = - ∇b • u b .
By Helmholtz decomposition we can write

(2.6) u = -∇g * µ -∇ ⊥ g * ω.
Let 2 < p < +∞, then by Assumption 1.5,

ˆR2 (1 + |y| 2 )|µ(y)| dy C b ˆR2 1 + |y| 2 (1 + |y|) 4+γ |u(y)| dy C b (1 + | • |) -(2+γ) L p ′ u L p < +∞ and ˆR2 |y| 2p |µ(y)| p dy C b ˆR2 |y| 2p (1 + |y|) -p(4+γ) |u(y)| p dy C b ˆR2 |u(y)| p dy < +∞.
If we apply Lemma 2.6 on each term of (2.6) we only need to show that ˆµ = 0 to obtain (2.3). We define

b ∞ := lim |x|→+∞ b(x).
Remark that the existence of this limit is guaranteed by Assumption 1.5.

Let us prove by induction that for any integer n,

(2.7) n k=0 ln k (b ∞ ) k! ˆR2 µ = 1 n! ˆR2 ln n (b)µ.
If n = 0 then this equality reduces to ˆµ = ˆµ. Now let us assume that it holds for some n 0. Using Equation (2.5), we get

ln n (b)µ = - 1 n + 1 ∇ ln n+1 (b) • u.
Inserting Equation (2.6), we get

ln n (b)µ = 1 n + 1 ∇ ln n+1 (b) • (∇g * µ + ∇ ⊥ g * ω).
Integrating over a ball of center 0 and radius R and integrating by parts we get (2.8)

ˆB(0,R) ln n (b)µ = 1 n + 1 ˆ∂B(0,R) ln n+1 (b)(∇g * µ + ∇ ⊥ g * ω) • d S - ˆB(0,R) ln n+1 (b) div(∇g * µ + ∇ ⊥ g * ω) = 1 n + 1 ˆ∂B(0,R) ln n+1 (b)(∇g * µ + ∇ ⊥ g * ω) • d S + ˆB(0,R) ln n+1 (b)µ
where d S(x) = 2πx dσ(x) and σ is the uniform probability measure on ∂B(0, R). Using Lemma 2.6, we get that for x ∈ ∂B(0, R),

(∇g * µ + ∇ ⊥ g * ω)(x) • x = - 1 2π ˆR2 µ x |x| 2 + ˆR2 ω x ⊥ |x| 2 + O(R -2 ) • x = - 1 2π ˆR2 µ + O(R -1
).

Thus we get that

1 n + 1 ˆ∂B(0,R) ln n+1 (b)(∇g * µ + ∇ ⊥ g * ω) • d S -→ R→+∞ - ln n+1 (b ∞ ) n + 1 ˆR2 µ.
Combining the upper equality with Equations (2.7) and (2.8) we get that

n+1 k=0 ln k (b ∞ ) k! ˆR2 µ = 1 (n + 1)! ˆR2 ln n+1 (b)µ
which ends the proof of Equality (2.7). Now if n goes to infinity, this gives e ln(b∞) ˆR2 µ = 0 and thus ˆR2 µ = 0. Now by Lemma 2.3 and Morrey's inequality (see for example [13, Theorem 9.12]), for any 2 < p p 0 ,

|ψ(x)| |ψ(x) -ψ(0)| + |ψ(0)| C p ∇ψ L p |x| 1-2 p + |ψ(0)|.
Taking δ = 1 -2 p we obtain (2.4).

Construction of the Green kernel.

The main result of this subsection is a Biot-Savart type law for the lake equations, given by Proposition 2.8. Let us begin by giving the definition and some estimates on the function S b that appears in the definition of the kernel g b (see Equation (2.10)):

Lemma 2.7. For y ∈ R 2 , let S b (•, y) be a solution of (2.9) -div 1 b ∇S b (•, y) = -g(• -y) b(y)∆ 1 √ b
given by Proposition (2) There exists s 0 ∈ (0, 1) such that for all 0 < s < s 0 ,

|∇ x S b (x, •)| C 0,s (B(y,1)) C b,s (1 + |y|) |∇ x S b (•, y)| C 0,s (R 2 ) C b,s (1 + |y|).
Proof. For any p such that 1 p < +∞, we have

b(y) < • > ∆ 1 √ b g(• -y) L p b 1 2 L ∞ g(• -y) < • > ∆ 1 √ b L p and < • > g(• -y)∆ 1 √ b p L p ˆB(y,1) < x > p |g(x -y)| p ∆ 1 √ b (x) p dx + ˆB(y,1) c < x > p |g(x -y)| p ∆ 1 √ b (x) p dx C g p L p (B(0,1)) < • > ∆ 1 √ b p L ∞ + ˆB(y,1) c (1 + |x| 2 ) p 2 (|x| + |y|) p ∆ 1 √ b (x) p dx.
By Assumption 1.5, we have that

ˆB(y,1) c (1 + |x| 2 ) p 2 (|x| + |y|) p ∆ 1 √ b (x) p dx ˆR2 (1 + |x| 2 ) p 2 (|x| + |y|) p (1 + |x|) (4+γ)p dx C b (1 + |y|) p .
Therefore we can apply Proposition 2.2 to show that there exists a solution

S b (•, y) of (2.9) in W 2,p -1 (R 2 ), unique up to a constant. Since < x > 1 we also have that b(y)g(• -y)∆ 1 √ b L p C b,p (1 + |y|).
By Lemma 2.3, there exists p 0 such that for any 2 < p p 0 and 0 < s < 1:

∇ x S b (•, y) L p b(y)∆ 1 √ b g(• -y) L 2p p+2 C b,p (1 + |y|)
and

|∇ x S b (•, y)| C 0,s C s b(y)∆ 1 √ b g(• -y) L 2 1-s C b,s (1 + |y|)
that is the second inequality of Claim [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF]. Using that

• L ∞ C( • L p + | • | C 0,s )
(see for example the proof of Morrey's embedding theorem in [13, Theorem 9.12]), we get the bound we want on ∇ x S b :

∇ x S b (•, y) L ∞ C b (1 + |y|).
If we interpolate the inequalities on ∇ x S b (•, y) L ∞ and ∇ x S b (•, y) L p for 2 < p p 0 we find that for any p > 2,

∇ x S b (•, y) L p C b,p (1 + |y|).
For the first inequality of Claim (2), let us consider z such that |z| is small and remark that

S b (x, y + z) -S b (x, y) solves div 1 b (∇ x S b (•, y + z) -∇ x S b (•, y)) = b(y + z)g(y + z -•) -b(y)g(y -•) ∆ 1 √ b .
Let us find a bound for the second member in L p :

b(y + z)g(y + z -x) -b(y)g(y -x) ∆ 1 √ b (x) =( b(y + z) -b(y))g(y -x)∆ 1 √ b (x) + b(y + z)(g(y + z -x) -g(y -x))∆ 1 √ b (x).
For the first term,

( b(y + z) -b(y))g(y -x)∆ 1 √ b (x) C b |z| g(y -x)∆
1 √ b and we can bound its L p norms by C b (1 + |y|)|z| as in the proof of Claim [START_REF] Énard | Degenerate lake equations: classical solutions and vanishing viscosity limit[END_REF]. For the second term,

ˆR2 b(y + z)(g(y + z -x) -g(y -x))∆ 1 √ b (x) p dx C b ˆR2 (g(x + z) -g(x))∆ 1 √ b (y -x) p dx C b ˆB(0,|z| α ) |g(x + z) -g(x)| p dx + C b ˆB(0,|z| α ) c |g(x + z) -g(x)| p ∆ 1 √ b (y -x) p dx for any 0 < α < 1. Now, if |z| is small enough, ˆB(0,|z| α ) |g(x + z) -g(x)| p dx C ˆB(0,|z| α ) g(x + z) p + g(x) p dx.
Now we use a classical rearrangement procedure to bound

ˆB(0,|z| α ) g(x + z) p - ˆB(0,|z| α ) g(x) p dx = ˆB(z,|z| α ) g(x) p - ˆB(0,|z| α ) g(x) p dx = ˆB(0,|z| α ) g(x) p (1 B(z,|z| α ) (x) -1) dx + ˆB(0,|z| α ) c ∩B(z,|z| α ) g(x) p dx Now remark that for x ∈ B(0, |z| α ), g(x) p - 1 2π ln p (|z| α ) and therefore ˆB(0,|z| α ) g(x) p (1 B(z,|z| α ) (x) -1) dx - 1 2π ln p (|z| α ) ˆB(0,|z| α ) (1 B(z,|z| α ) (x) -1) dx - 1 2π ln p (|z| α )(|B(0, |z| α ) ∩ B(z, |z| α )| -|B(0, |z| α )|) and on B(0, |z| α ) c , g(x) -1 2π ln(|z| α ) so ˆB(0,|z| α ) c ∩B(z,|z| α ) g(x) p dx - 1 2π ln p (|z| α )|B(0, |z| α ) c ∩ B(z, |z| α )|.
We get

ˆB(0,|z| α ) g(x + z) p - ˆB(0,|z| α ) g(x) p dx 0 and therefore ˆB(0,|z| α ) |g(x + z) -g(x)| p dx 2 ˆB(0,|z| α ) g(x) p dx C|z| 2α ˆB(0,1) g(|z| α y) p dy C|z| 2α ˆB(0,1) (αg(z) + g(y)) p dy C b |z| 2α g(z) p . Now if |z| is small enough, C b ˆB(0,|z| α ) c |g(x + z) -g(x)| p dx ∆ 1 √ b (y -x) p C b |z| C |z| α p ˆR2 ∆ 1 √ b (y -x) p dx C b |z| p(1-α)
by Assumption 1.5. Finally, using Lemma 2.3 as for the first claim, we get that for any 0 < α < 1 and some p > 2,

|∇ x S b (x, y + z) -∇ x S b (x, y)| C b (1 + |y|)|z| + C b (|z| 2α p g(z) + |z| 1-α ).
Dividing both sides by |z| s for s small enough proves the first inequality of Claim [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF].

With this lemma we are now able to construct the lake kernel. The construction is similar to the one established in [19, Proposition 3.1] for bounded domains.

Proposition 2.8. There exists a symmetric solution S b of Equation (2.9) such that S b (0, 0) = 0. We define g b as

(2.10) g b (x, y) := b(x)b(y)g(x -y) + S b (x, y).
Let ω ∈ L ∞ with compact support. We define

(2.11) G b [ω](x) = ˆR2 g b (x, y) dω(y). Then G b [ω] is a distributional solution of (2.2). Moreover for 2 < p < +∞, G b [ω] is the unique solution (up to a constant) of (2.2) in W 2,p -1 (R 2 )
given by Proposition 2.2. Proof of Proposition 2.8. Let us first define

g b (x, y) := b(x)b(y)g(x -y) + S b (x, y)
where S b is a solution of Equation (2.9) given by Proposition 2.2 (not necessarily symmetric). Then we have the following result: Claim 2.9. If ϕ is smooth with compact support, then

- ˆR2 g b (x, y) div 1 b ∇ϕ (x) dx = ϕ(y).
Proof of the Claim. We have

- ˆR2 g b (x, y) div 1 b ∇ϕ (x) dx = - ˆR2 b(x)b(y)g(x -y) div 1 b ∇ϕ (x) dx - ˆR2 S b (x, y) div 1 b ∇ϕ (x) dx =:T 1 + T 2 .
We have

T 1 = -b(y) ˆR2 b(x)g(x -y) div 1 b ∇ϕ (x) dx = b(y) ˆR2 g(x -y) 1 2b(x) b(x) ∇b(x) • ∇ϕ(x) dx + b(y) ˆR2 1 b(x) ∇g(x -y) • ∇ϕ(x) dx =:L 1 + L 2 .
Integrating by parts in the first integral we get

L 1 = -b(y) ˆR2 ϕ(x) 1 2b(x) b(x) ∇g(x -y) • ∇b(x) dx -b(y) ˆR2 ϕ(x)g(x -y) div 1 2b √ b ∇b (x) dx.
For L 2 , we use

∇ 1 √ b ϕ = 1 √ b ∇ϕ -ϕ 1 2b √ b ∇b to get L 2 = b(y) ˆR2 ϕ(x) 1 2b(x) b(x) ∇b(x) • ∇g(x -y) dx + b(y) ˆR2 ∇ 1 b(x) ϕ(x) • ∇g(x -y) dx = b(y) ˆR2 ϕ(x) 1 2b(x) b(x) ∇b(x) • ∇g(x -y) dx + ϕ(y)
since -∆ x g(x -y) = δ y distributionally. Now let us compute T 2 :

T 2 = - ˆR2 S b (x, y) div 1 b ∇ϕ (x) dx = - ˆR2 div 1 b ∇ x S b (•, y) (x)ϕ(x) dx = -b(y) ˆR2 g(x -y)∆ 1 √ b (x)ϕ(x) dx
where we used that S b is a solution of (2.9) in the last line. Now just remark that

∆ 1 √ b = -div 1 2b √ b ∇b
and thus adding L 1 and L 2 we get

- ˆR2 g b (x, y) div 1 b ∇ϕ (x) dx = ϕ(y)
and we get the proof of Claim 2.9.

Now let ω ∈ L ∞ (R 2 ) with compact support. We have - ˆR2 ˆR2 g b (x, y)ω(y) dy div 1 b ∇ϕ (x) dx = - ˆR2 ˆR2 g b (x, y) div 1 b ∇ϕ (x) dx ω(y) dy = ˆR2 ϕ(y)ω(y) dy
where we used Claim 2.9 in the last equality. Therefore G b [ω] is a distributional solution of (2.2). Now we prove that with this kernel we recover solutions in the sense of Proposition 2.2: Claim 2.10. Let ω ∈ L ∞ with compact support, then for all p ∈ (2, +∞), we have that ∇G b [ω] ∈ L p . Moreover if ψ is the solution of (2.2) given by Proposition (2.2), then ψ = G b [ω] up to a constant.

Proof of the claim. We have:

∇G b [ω](x) = ˆR2 ∇b(x) 2 b(x) b(y)g(x -y)ω(y) dy + ˆR2 b(x)b(y)∇g(x -y)ω(y) dy + ˆR2 ∇ x S b (x, y)ω(y) dy =:T 1 + T 2 + T 3 . Now, |T 1 | C b |∇b(x)| ˆB(x,1) |(ln |x -y|)ω(y)| dy + ˆsupp(ω)\B(x,1) (|x| + |y|)|ω(y)| dy C b ω L 1 ((1+|x|) dx)∩L ∞ (1 + |x|) -(3+γ)
by Assumption 1.5. Hence T 1 ∈ L p . For the second term, we have

T 2 = b(x)∇g * ( √ bω)
and therefore T 2 ∈ L p by Hardy-Littlewood-Sobolev inequality (see for example [2, Theorem 1.7]). For the third term,

|T 3 | ˆR2 |ω| ˆR2 |∇ x S b (x, y)| |ω(y)| dy ´|ω|
and thus by Jensen inequality

T 3 p L p ˆR2 |ω| p-1 ¨R2 ×R 2 |∇ x S b (x, y)| p |ω(y)| dy dx.
We have that

∇S b (•, y) L p C b (1 + |y|)
by Claim (1) of Lemma 2.7. Therefore

T 3 p L p C b ˆR2 |ω| p-1 ˆR2 (1 + |y|) p |ω(y)| dy and it follows that ∇G b [ω] ∈ L p . By Proposition 2.2 we get that G b [ω] = ψ up to a constant.
We are only left to justify that there exists a symmetric solution of (2.9). Consider ω 1 , ω 2 two smooth functions with average zero, then by Claim 2.10, we have

¨R2 ×R 2 g b (x, y)ω 1 (x)ω 2 (y) dx dy = ˆR2 (ψ 2 (x) + C)ω 1 (x) dx = - ˆR2 ψ 2 (x) div 1 b ∇ψ 1 (x) dx
where ψ i is the solution of

-div 1 b ∇ψ i = ω i
given by Proposition 2.2. If R > 0, we have that

- ˆB(0,R) ψ 2 (x) div 1 b ∇ψ 1 (x) dx = - ˆ∂B(0,R) 1 b ψ 2 ∇ψ 1 • d S + ˆB(0,R) 1 b ∇ψ 2 • ∇ψ 1 .
Using Proposition 2.5, we obtain

ˆ∂B(0,R) 1 b ψ 2 ∇ψ 1 • d S 2πR b -1 L ∞ C(1 + R δ ) C R 2 -→ R→+∞ 0 and therefore ¨R2 ×R 2 g b (x, y)ω 1 (x)ω 2 (y) dx dy = ˆR2 1 b ∇ψ 2 • ∇ψ 1
which is a symmetric expression of ψ 1 and ψ 2 . It follows that Now we fix χ, ω 1 , ω 2 smooth functions with compact support such that ˆR2 ω 2 = 0 and ˆR2 χ = 1. Remark that we no longer assume that

¨R2 ×R 2 g b (x, y)ω 1 (x)ω 2 (y) dx dy = ¨R2 ×R 2 g b (y, x)ω 1 (x)ω 2 (y) dx dy. Since b(x)b(y)g(x -y) is symmetric we get that ¨R2 ×R 2 S b (x, y)ω 1 (x)ω 2 (y) dx dy = ¨R2 ×R 2 S b (y, x)ω 1 (x)ω 2 (
ˆR2 ω 1 = 0.
We define

A 2 (x) := ˆR2 A(x, y)ω 2 (y) dy.
We have

ˆR2 A 2 ω 1 = ˆR2 A 2 ω 1 - ˆR2 ω 1 χ + ˆR2 ω 1 ˆR2 A 2 χ = 0 + ˆR2 ω 1 ˆR2 A 2 χ. Thus A 2 is constant so for every x ∈ R 2 , ˆR2 ∇ x A(x, y)ω 2 (y) dy = 0
for all ω 2 with mean zero and therefore which proves that S b a symmetric solution of (2.9). Up to adding a constant we can also assume that S b (0, 0) = 0.

∇ x A(x, y) = U (x). It follows that A(x, y) = c(x) + d(y). Since A(x, y) = -A(y,
The symmetry of S b allows us to obtain more regularity estimates:

Lemma 2.11. Let S b be the symmetric solution of Equation (2.9) given by Proposition 2.8, then (1

) S b is smooth on R 2 × R 2 \{(x, x) ; x ∈ R 2 }. (2) |S b (x, y)| C b (1 + |x| 2 + |y| 2 ).
Proof. For 0 < r < R, we define C(y, r, R)

:= B(y, R)\B(y, r). We have that S b (•, y) is a solution of      div 1 b ∇S b (•, y) = g(• -y) b(y)∆ 1 √ b in C(y, r, R) S b (•, y) = S b (•, y) ∈ C 0,s in ∂C(y, r, R).
Thus by elliptic regularity (see for example [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 6.13]) we obtain that S b (•, y) ∈ C 2,s ( C(y, r, R)) for all y ∈ R 2 and 0 < r < R. By symmetry we get that S b is C 2,s on

R 2 × R 2 \{(x, x) ; x ∈ R 2 }.
We can iterate the argument by writing the elliptic system satisfied by the derivatives of S b to show that S b is smooth on

R 2 × R 2 \{(x, x) ; x ∈ R 2 }.
The second claim is just a consequence of Lemma 2.7, since

|S b (x, y)| |S b (0, 0) -S b (x, 0)| + |S b (x, 0) -S b (x, y)| |S b (0, 0) -S b (x, 0)| + |S b (0, x) -S b (y, x)| ∇ x S b (•, 0) L ∞ |x| + ∇ x S b (•, x) L ∞ |y| C b |x| + C b (1 + |x|)|y| C b (1 + |x| 2 + |y| 2 ).
We finish this subsection by giving a straightforward consequence of Proposition 2.5 and [23, Lemma 2.7] which will be useful to deal with the regularisation of the dirac mass we will introduce in Subsection 2.4 and use in Sections 5 and 6.

Lemma 2.12. µ → ∇G b [µ] extends into a bounded operator from Ḣ-1 to L 2 .
Proof. Let µ be a smooth function with compact support and average zero. By Proposition 2.5, ∇G b [µ] ∈ L 2 and therefore it follows by [START_REF] Duerinckx | Well-posedness for mean-field evolutions arising in superconductivity[END_REF]Lemma 2.7] that

∇G b [µ] L 2 C b µ Ḣ-1
and the lemma follows from the density of smooth functions with compact support and average zero in Ḣ-1 .

2.4.

Regularisations of the Coulomb kernel and the dirac mass. To study our modulated energy we will need to have suitable regularisations of g and of the dirac mass δ y . For that purpose, let us first define g (η) for any 0 < η < 1 as (2.12)

g (η) (x) :=    - 1 2π ln(η) if |x| η g(x)
if |x| η and we define δ

(η)
y as the uniform probability measure on the circle ∂B(y, η). We also define .

In the following proposition we state several properties related to these regularisations.

Proposition 2.13. For any 0 < η < 1 and y ∈ R 2 , we have

(2.15) ˆg(x -z) dδ (η) y (z) = g (η) (x -y)
and

(2.16) |m b (y, η) -b(y)| C b η.
Proof. By a change of variable we may assume that y = 0. The function

f (x) := ˆ∂B(0,η) g(x -z) dδ (η) 0 (z)
is locally bounded and satisfies ∆f = -δ (η) 0

= ∆g (η) . Now if |x| η, we have 

ˆ∂B(0,η) g(x -z) dδ (η) 0 (z) -g (η) (x) = ˆ∂B(0,η) (g(x -z) -g(x)) dδ (η) 0 (z) = ˆ∂B(0,η) g x |x| - z |x| dδ (η) 0 (z) -→ |x|→∞ ˆ∂B(0,η) - 1 2π ln(1) = 0 by dominated convergence theorem. Thus f -g (η) is a harmonic bounded function so it is constant. Since f (z) = g(η) = g (η) (z)

Point vortices

To prove Theorem 1.8 we will need to control the evolution of the interaction energy and of the moment of inertia. We recall that the moment of inertia is not conserved for the lake equations, nor for the point vortex system. Due to the self-interactions, the interaction energy E N is also not conserved.

The following proposition gives bounds on the interaction energy and on the moment of inertia and the global well-posedness of the lake point-vortex system (1.6). Proposition 3.1. Let T > 0 and (q 0 1 , ..., q 0 N ) be such that q 0 i = q 0 j if i = j. There exists a unique smooth solution of (1.6) on [0, T ]. Moreover, we have the following estimates:

(3.1) |E N (t)| e C b (1+α N )t (|E N (0)| + I N (0) + 1) (3.2) I N (t) e C b (1+α N )t (|E N (0)| + I N (0) + 1).
We also have similar estimates for the rescaled moment of inertia and for the interaction energy:

(3.3) |E N (t)| e C b (1+α -1 N )t (|E N (0)| + I N (0) + 1) (3.4) I N (t) e C b (1+α -1 N )t (|E N (0)| + I N (0) + 1).
Proof. Since b is regular (see Assumption 1.5) and S b , g, ∇g are regular outside of the diagonal (see Claim (1) of Lemma 2.11), System (1.6) is wellposed up to the first collision time by Cauchy-Lipschitz theorem. We will first prove the bounds on E N and I N and then deduce that there is no collision between the points (this is the classical strategy to prove that the Euler point vortex system is well-posed when all the vorticities are positive, as explained for example in [START_REF] Marchioro | Mathematical theory of incompressible nonviscous fluids[END_REF]Chapter 4.2]). Let us assume that there is no collision up to some time T * T . We first compute the time derivative of E N . Since g b is symmetric, we have

ĖN = 1 N 2 N i=1 N j=1 j =i qi • ∇ x g b (q i , q j ) + qj ∇ y g b (q i , q j ) = 2 N 2 N i=1 -α N ∇ ⊥ b(q i ) b(q i ) - 1 N b(q i ) N k=1 k =i ∇ ⊥ x g b (q i , q k ) • N j=1 j =i ∇ x g b (q i , q j ) = - 2α N N 2 N i=1 ∇ ⊥ b(q i ) b(q i ) • b(q i ) 2 b(q j )
g(q i -q j )∇b(q j ) + b(q i )b(q j )∇g(q i -q j ) + ∇ x S b (q i , q j ) and thus we get that (3.5)

ĖN = - 2α N N 2 N i=1 ∇ ⊥ b(q i ) b(q i ) • N j=1 j =i b(q i )b(q j )∇g(q i -q j ) + ∇ x S b (q i , q j ) .
Now let us bound the right-handside of the upper equality. Using Claim (1) of Lemma 2.7 and Assumption 1.5, we have

∇ ⊥ b(q i ) b(q i ) • ∇ x S b (q i , q j ) C b (1 + |q j |)
and thus

(3.6) 2α N N 2 N i=1 ∇ ⊥ b(q i ) b(q i ) • N j=1 j =i ∇ x S b (q i , q j ) C b α N (1 + I N ). Now remark that 2α N N 2 N i=1 ∇ ⊥ b(q i ) b(q i ) • N j=1 j =i b(q i )b(q j )∇g(q i -q j ) = α N N 2 N i=1 N j=1 j =i b(q j ) b(q i ) ∇ ⊥ b(q i ) - b(q i ) b(q j ) ∇ ⊥ b(q j ) • ∇g(q i -q j ). Moreover, b(q j ) b(q i ) ∇ ⊥ b(q i ) - b(q i ) b(q j ) ∇ ⊥ b(q j ) = b(q j ) b(q i ) (∇ ⊥ b(q i ) -∇ ⊥ b(q j )) + b(q j ) -b(q i ) b(q i )b(q j ) ∇ ⊥ b(q j )
and thus using the Lipschitz regularity of b and ∇b (see Assumption 1.5) and |∇g(q i -q j )| = C|q i -q j | -1 we get that

(3.7) 2α N N 2 N i=1 ∇ ⊥ b(q i ) b(q i ) • N j=1 j =i b(q i )b(q j )∇g(q i -q j ) C b α N .
Combining inequalities (3.6) and (3.7) we get that

(3.8) | ĖN | C b (1 + I N )α N .
Now we compute the time derivative of

I N : İN = 2 N N i=1 q i • qi = - 2α N N N i=1 q i • ∇ ⊥ b(q i ) b(q i ) - 2 N N i=1 N j=1 j =i b(q j ) 2b(q i ) b(q i ) g(q i -q j )q i • ∇ ⊥ b(q i ) - 2 N N i=1 N j=1 j =i b(q i )b(q j ) b(q i ) q i • ∇ ⊥ g(q i -q j ) - 2 N N i=1 N j=1 j =i q i • ∇ ⊥ x S b (q i , q j ) =:2(T 1 + T 2 + T 3 + T 4 ).
Using Assumption 1.5 we have

(3.9) |T 1 | C b α N .
For the second term, using Assumption 1.5 we have

|T 2 | C b N 2 N i=1 N j=1 j =i |g(q i -q j )| C b N 2 N i=1 N j=1 j =i g(q i -q j )1 |q i -q j | 1 + |q i | 2 + |q j | 2 C b I N + C b N 2 1 i =j N |q i -q j | 1 g(q i -q j ).
Now by Assumption 1.5, we have that

1 N 2 1 i =j N |q i -q j | 1 g(q i -q j ) C b N 2 1 i =j N b(q i )b(q j )g(q i -q j ) + S b (q i , q j ) + C b N 2 1 i =j N |q i -q j | 1 |g(q i -q j )| + C b N 2 1 i =j N |S b (q i , q j )| C b E N + 1 N 2 1 i =j N |q i -q j | 1 |g(q i -q j )| + 1 N 2 1 i =j N |S b (q i , q j )| . Moreover, C b N 2 1 i =j N |q i -q j | 1 |g(q i -q j )| C b N 2 1 i =j N |q i -q j | 1 |q i | 2 + |q j | 2 C b I N and using Claim (2) of Lemma 2.11, 1 N 2 1 i =j N |S b (q i , q j )| C b N 2 1 i =j N (1 + |q i | 2 + |q j | 2 ) C b (1 + I N ). Therefore (3.10) |T 2 | C b (1 + |E N | + I N ).
For the third term we write

T 3 = - 1 N 2 N i=1 N j=1 j =i b(q j ) -b(q i ) b(q i ) ∇ ⊥ g(q i -q j ) • q i - 1 2N 2 N i=1 N j=1 j =i ∇ ⊥ g(q i -q j ) • (q i -q j ) = - 1 N 2 N i=1 N j=1 j =i b(q j ) -b(q i ) b(q i ) ∇ ⊥ g(q i -q j ) • q i -0
and thus using the Lipschitz regularity of b (see Assumption 1.5) we get

(3.11) |T 3 | C b (1 + I N ).
For the fourth term, using Claim (1) of Lemma 2.7 we get (3.12)

|T 4 | = - 1 N 2 N i=1 N j=1 j =i 1 b(q i ) q i • ∇ ⊥ x S b (q i , q j ) C b 1 N 2 N i=1 N j=1 |q i |(1 + |q j |) C b (1 + I N ).
Combining with inequalities (3.9), (3.10), (3.11) and (3.12) we get that

(3.13) | İN | C b (1 + α N + |I N | + |E N |).
Let us write U N := (E N , I N ). By equations (3.8) and (3.13) we have

| UN | C b (1 + α N )(1 + |U N |)
therefore by Grönwall's lemma we have

|U N (t)| e C b (1+α N )t (|U N (0)| + 1) -1
from which (3.1) and (3.2) follows.

Let us use these bounds to prove that there is no collision (and it will follow that System (1.6) is globally well-posed). If i = j, then

g(|q i -q j |) C b E N + 1 N 2 1 k =l N |S b (q k , q l )| - 1 N 2 1 k =l N (k,l) =(i,j) g(q k -q l ) C b E N + 1 N 2 1 k =l N (1 + |q k | 2 + |q l | 2 ) .
where we used Claim (2) of Lemma 2.11 and ln |x -y| |x| + |y|. Thus by inequalities (3.1) and (3.2) we get

g(|q i -q j |) C b (e C b (1+α N )t (|E N (0)| + I N (0) + 1) + 1)
and therefore

|q i (t) -q j (t)| exp -2πC b (e C b (1+α N )t (|E N (0)| + I N (0) + 1) + 1) > 0.
It follows that there is no collision on [0, T ]. The bounds on E N and I N follow directly from Inequalities (3.1) and (3.2) applied to t = α -1 N τ .

Time derivatives of the modulated energies

The time derivatives of F b,N and of F b,N , defined in (1.13) and (1.14), are given by the two following propositions: Proposition 4.1. Let ω be a weak solution of (1.1) in the sense of Definition 1.1, (q 1 , ..., q N ) be solutions of (1.6). We denote

ω N = 1 N N i=1 δ q i (t) .
Assume that ω satisfies Assumption 1.6. Then F b,N is Lipschitz and for almost every

t ∈ [0, T ], d dt F b,N (t) = 2 ¨(R 2 ×R 2 )\∆ u(t, x) -α ∇ ⊥ b(x) b(x) • ∇ x g b (x, y) d(ω(t) -ω N (t)) ⊗2 (x, y) + 2(α N -α) ¨(R 2 ×R 2 )\∆ ∇ ⊥ b(x) b(x) • ∇ x g b (x, y) dω N (t, x) d(ω(t) -ω N (t))(y).
Proposition 4.2. Let (q 1 , ..., q N ) be solutions of (1.7) and ω be a solution of (1.3) in the sense of Definition 1.2. We denote

ω N = 1 N N i=1 δ q i (t) .
Assume that ω satisfies Assumption 1.6. Denote v = ∇G b [ω]. Then F b,N is Lipschitz and for almost every t ∈ [0, T ], we have

d dt F b,N (t) = -2 ¨(R 2 ×R 2 )\∆ ∇ ⊥ b(x) b(x) • ∇ x g b (x, y) d(ω(t) -ω N (t)) ⊗2 (x, y) + 2 N 2 α N N i=1 N j=1 j =i v(t, q i ) b(q i ) • ∇ x g b (q i , q j ).
Proof of Proposition 4.1. We split F b,N in three terms:

F b,N = ¨R2 ×R 2 g b (x, y)ω(t, x)ω(t, y) dx dy - 2 N N i=1 ˆR2 g b (x, q i )ω(t, x) dx + E N =:T 1 + T 2 + E N .
Let us compute the time derivative of T 1 . For that purpose, we will need to regularize the kernel g b . The regularisation we will use is given by the following Claim: Claim 4.3. There exists a familly of smooth functions (g η b ) 0<η<1 such that:

• |g η b (x, y)| C b (|g(x -y)| + 1 + |x| 2 + |y| 2 ) • |∇ x g η b (x, y)|, |∇ y g η b (x, y)| C b (|x -y| -1 + 1 + |x| + |y|). • For any (x, y) ∈ (R 2 ) 2 such that x = y, g η b (x, y) -→ η→0 g b (x, y) ∇ x g η b (x, y) -→ η→0 ∇ x g b (x, y) ∇ y g η b (x, y) -→ η→0 ∇ y g b (x, y).
Proof of the claim. We define

g η b (x, y) = b(x)b(y)g η (x -y) + S η b (x, y)
where g η is a smooth function satisfying:

• g η (x) = g(x) for |x| η, • |g η (x)| |g(x)|, • |∇g η (x)| C|x| -1 .
that we can obtain by extending ln | x η in a smooth function on R + . We define S η b := S b * χ η where χ η is a mollifier on R 4 . Since S b is locally Lipschitz (see Lemma 2.7), S η b is smooth and we get from Claim (1) of Lemma 2.7 and Claim (2) of Lemma 2.11 that With this regularisation we can compute the time derivative of T 1 : Claim 4.4. T 1 ∈ W 1,∞ ([0, T ]) and for almost every t ∈ [0, T ], we have

• |S η b (x, y)| C b (1 + |x| 2 + |y| 2 ), • |∇ x S η b (x, y)|, |∇ y S η b (x, y)| C b (1 + |x| + |y|).
dT 1 dt = 2 ¨R2 ×R 2 u(t, x) -α ∇ ⊥ b(x) b(x) • ∇ x g b (x, y)ω(t, x)ω(t, y) dx dy.
Proof of the claim. For 0 s, t T and 0 < η < 1 we have: 

T 1 (t) -T 1 (s) = ¨R2 ×R 2 g b (x, y)(ω(t,
ˆt s ˆR2 ∇ y g η b (x, y) • u(τ, y) -α ∇ ⊥ b(y) b(y) ω(τ, y) dy dτ.
Let us write

ϕ(t, x) := ˆR2 g η b (x, y)ω(t, y) dy.
Since g η b is smooth we have that for any compact

K ⊂ R 2 , (t, x) → ˆR2 ∇ y g η b (x, y) • u(t, y) -α ∇ ⊥ b(y) b(y) ω(t, y) dy ∈ L ∞ ([0, T ], C ∞ (K))
and thus ϕ ∈ W 1,∞ ([0, T ], C ∞ (K)) and for almost every t ∈ [0, T ],

∂ t ϕ(t, x) = ˆR2 ∇ y g η b (x, y) u(τ, y) -α ∇ ⊥ b(y) b (y) ω(t, y) dy. 
Therefore we can use ϕ as a test function in (1.2) (remark that we defined (1.2) for smooth functions only but by density we can extend it to functions which are only W 1,∞ in time) and we get that

¨R2 ×R 2 g η b (x, y)(ω(t, x)ω(t, y) -ω(s, x)ω(s, y)) dx dy = ˆt s ¨R2 ×R 2 ∇ y g η b (x, y) • u(τ, y) -α ∇ ⊥ b(y) b(y) ω(τ, y)ω(τ, x) dy dx dτ + ˆt s ¨R2 ×R 2 ∇ x g η b (x, y) • u(τ, x) -α ∇ ⊥ b(x) b(x) ω(τ, x
)ω(τ, y) dx dy dτ. Now we have that for almost every x and y such that x = y and almost every τ ∈ [0, T ],

|∇ x g η b (x, y) • u(τ, x) -α ∇ ⊥ b(x) b(x) ω(τ, x)ω(τ, y)| C b (|x -y| -1 + 1 + |x| 2 + |y| 2 )| u(τ, x) -α ∇ ⊥ b(x) b(x) |ω(τ, y)||ω(τ, x)| and ˆt s ¨R2 ×R 2 (|x -y| -1 + 1 + |x| 2 + |y| 2 ) × u(τ, x) -α ∇ ⊥ b(x) b(x) |ω(τ, y)||ω(τ, x)| dx dy < +∞.
Applying dominated convergence theorem we find that

ˆt s ¨R2 ×R 2 ∇ x g η b (x, y) • u(τ, x) -α ∇ ⊥ b(x) b(x) ω(τ, x)ω(τ, y) dx dy dτ -→ η→0 ˆt s ¨R2 ×R 2 ∇ x g b (x, y) • u(τ, x) -α ∇ ⊥ b(x) b(x) ω(τ, x
)ω(τ, y) dx dy dτ.

We can do the same for the first term to get that

ˆt s ¨R2 ×R 2 ∇ y g η b (x, y) • u(τ, y) -α ∇ ⊥ b(y) b(y) ω(τ, y)ω(τ, x) dy dx dτ -→ η→0 ˆt s ¨R2 ×R 2 ∇ y g b (x, y) • u(τ, y) -α ∇ ⊥ b(y) b(y) ω(τ, y)ω(τ, x) dy dx dτ.
Using that ∇ y g b (x, y) = ∇ x g b (y, x) and (4.1) we get that T 1 ∈ W 1,∞ ([0, T ]) and for almost every t ∈ [0, T ], we get Claim 4.4.

We know by Equation 3.5 that

ĖN = - 2α N N 2 N i=1 ∇ ⊥ b(q i ) b(q i ) • N j=1 j =i ∇ x g b (q i , q j )
and therefore

(4.2) ĖN = -2α N ¨R2 ×R 2 \∆ ∇ ⊥ b(x) b(x) • ∇ x g b (x, y) dω N (x) dω N (y).
Now we compute the derivative of the second term:

Claim 4.5. T 2 is Lipschitz and for almost every t ∈ [0, T ], we have

d dt T 2 (t) = -2 ¨R2 ×R 2 u(t, x) -α ∇ ⊥ b(x) b(x) • ∇ x g b (x, y)ω(t, x) dx dω N (t, y) + 2α N ¨R2 ×R 2 ∇ ⊥ b(x) b(x) • ∇ x g b (x, y) dω N (x)ω(t, y) dy + 2 ¨(R 2 ×R 2 )\∆ u(t, x) • ∇ x g b (x, y) dω N (x) dω N (y).
Proof of the Claim. If we use the regularisation g η b we defined in Claim 4.3, Equation (1.2) and if we let η tends to zero as we did for the proof of Claim 4.4, we can show that T 2 is Lipschitz and that for almost every t ∈ [0, T ], we have

dT 2 dt = T 2,1 + T 2,2
where (4.3)

T 2,1 := - 2 N N i=1 ˆR2 u(t, x) -α ∇ ⊥ b(x) b(x) • ∇ x g b (x, q i )ω(t, x) dx = -2 ¨R2 ×R 2 u(t, x) -α ∇ ⊥ b(x) b(x) • ∇ x g b (x, y)ω(t, x) dx dω N (t, y)
and

T 2,2 := - 2 N N i=1 qi • ˆR2 ∇ y g b (x, q i )ω(t, x) dx = - 2 N N i=1 qi • ˆR2 ∇ x g b (q i , x)ω(t, x) dx = 2α N N N i=1 ∇ ⊥ b(q i ) b(q i ) • ˆR2 ∇ x g b (q i , x)ω(t, x) dx + 2 N 2 N i=1 N j=1 j =i 1 b(q i ) ∇ ⊥ x g b (q i , q j ) • ˆR2 ∇ x g b (q i , x)ω(t, x) dx =:T 2,2,1 + T 2,2,2 .
Now we have (4.4)

T 2,2,1 = 2α N N N i=1 ∇ ⊥ b(q i ) b(q i ) • ˆR2 ∇ x g b (q i , x)ω(t, x) dx = 2α N ¨R2 ×R 2 ∇ ⊥ b(x) b(x)
• ∇ x g b (x, y) dω N (x)ω(t, y) dy and using

ˆR2 ∇ x g b (q i , y)ω(y) dy = b(q i )u ⊥ (t, q i ) (see Proposition 2.8), we get T 2,2,2 = 2 N 2 N i=1 u(t, q i ) • N j=1 j =i ∇ ⊥ x g b (q i , q j ) =2 ¨(R 2 ×R 2 )\∆ u(t, x) • ∇ x g b (x, y) dω N (x) dω N (y).
Combining the upper equality with (4.3) and(4.4) we get the proof of Claim (4.5).

Now remark that

¨R2 ×R 2 u(x) • ∇ x g b (x, y) dω N (x) dω(y) = ˆR2 u • bu ⊥ dω N = 0.
Thus combining Claim 4.4, Equation (4.2) and Claim 4.5 we obtain Proposition 4.1.

We now compute the derivative of the rescaled modulated energy:

Proof of Proposition 4.2. We split F b,N in three terms:

F b,N = ¨R2 ×R 2 g b (x, y)ω(t, x)ω(t, y) dx dy - 2 N N i=1 ˆR2 g b (x, q i )ω(t, x) dx + E N =:T 1 + T 2 + E N .
Let us compute the time derivative of the first term. Using the regularisation g η b we defined in Claim 4.3 and using (1.2) and letting η tends to zero as we did for the proof of Claim 4.4, one can show that T 1 is Lipschitz and that for almost every t ∈ [0, T ], we have (4.5) dT

1 dt = -2 ¨R2 ×R 2 ∇ ⊥ b(x) b(x) • ∇ x g b (x, y)ω(t, x)ω(t, y) dx dy.
For the derivative of E N we rescale Equation (4.2) to get

(4.6) d dt E N = -2 ¨R2 ×R 2 \∆ ∇ ⊥ b(x) b(x) • ∇ x g b (x, y) dω N (x) dω N (y).

Now let us compute the derivative of the second term:

Claim 4.6.

(4.7)

dT 2 dt =2 ¨R2 ×R 2 ∇ ⊥ b(x) b(x) • ∇ x g b (x, y)ω(t, x) dx dω N (t, y) + 2 ¨R2 ×R 2 ∇ ⊥ b(x) b(x) • ∇ x g b (x, y) dω N (x) dω(y) + 2 N 2 α N N i=1 N j=1 j =i v(t, q i ) b(q i ) • ∇ x g b (q i , q j ).
Proof of (4.7). Using the regularisation g η b we defined in Claim 4.3 and using (1.2) and letting η tends to zero as we did for the proof of Claim 4.4, one can show that T 2 is Lipschitz and that for almost every t ∈ [0, T ], we have

dT 2 dt = T 2,1 + T 2,2
where

T 2,1 := 2 N N i=1 ˆR2 ∇ ⊥ b(x) b(x) • ∇ x g b (x, q i )ω(t, x) dx = 2 ¨R2 ×R 2 ∇ ⊥ b(x) b(x) • ∇ x g b (x, y)ω(t, x) dx dω N (t, y)
and

T 2,2 := - 2 N N i=1 qi • ˆR2 ∇ y g b (x, q i )ω(t, x) dx = - 2 N N i=1 qi • v(t, q i ) = 2 N N i=1 v(t, q i ) • ∇ ⊥ b(q i ) b(q i ) + 1 N α N N j=1 j =i 1 b(q i ) ∇ x g b (q i , q j ) =2 ¨(R 2 ×R 2 )\∆ ∇ ⊥ b(x) b(x) • ∇ x g b (x, y) dω N (x) dω(y) + 2 N 2 α N N i=1 N j=1 j =i v(t, q i ) b(q i ) • ∇ x g b (q i , q j )
and thus we have (4.7).

Combining Equations (4.5), (4.6) and (4.7) we get (4.2).

Properties of the modulated energy

For 0 < η < 1, we denote

H N,η := G b 1 N N i=1 δ (η) q i -ω .
If b = 1 this quantity is the electric potential introduced by Serfaty in [63, Equation (3.12)] divided by N .

Proposition 5.1. Let ω ∈ P(R 2 ) ∩ L ∞ (R 2 ) with compact support and q 1 , ..., q N ∈ R 2 be such that q i = q j if i = j. Then the following inequality holds:

ˆR2 1 b |∇H N,η | 2 + C b N 2 1 i =j N (g(q i -q j ) -g (η) (q i -q j )) F b (Q N , ω) + C b g(η) N + I(Q N )(η + N -1 ) + ω L 1 ((1+|x|) dx)∩L ∞ g(η)η
where g (η) is defined by (2.12).

From this proposition we see that even if it is not necessarily positive, the modulated energy is bounded from below by some negative power of N (provided that (I(Q N )) is bounded). We will also prove the three following corollaries: Corollary 5.2. If ω and Q N satisfy the hypothesis of Proposition 5.1, then there exists c > 0 such that c N 2 |{(q i , q j );

|q i -q j | ε}| F b (Q N , ω) + C b g(ε) N + I(Q N )(ε + N -1 ) + ω L 1 ((1+|x|) dx)∩L ∞ g(ε)ε .
Corollary 5.3. Let α ∈ (0, 1) and ξ be a test function (for example smooth with compact support or in the Schwartz space), then if ω and Q N satisfy the hypothesis of Proposition 5.1 we have

ˆR2 ξ 1 N N i=1 δ q i -ω C b |ξ| C 0,α N -α + C b ˆR2 1 b |∇ξ| 2 1 2 F b (ω, Q N ) + ln(N ) N + I(Q N )N -1 + ω L 1 ((1+|x|) dx)∩L ∞ ln(N ) N 1 2
.

In particular, there exists β > 0 such that for all s < -1,

1 N N i=1 δ q i -ω H s C b ((1 + I(Q N ) + ω L 1 ((1+|x|) dx)∩L ∞ )N -β + F b (ω, Q N )).
Corollary 5.4. If ω and Q N satisfy the hypothesis of Proposition 5.1 and if (I(Q N )) is bounded, then the two following assertions are equivalent:

(1)

F b (ω, Q N ) -→ N →+∞ 0. (2) 1 N N i=1 δ q i * --⇀ N →+∞
ω for the weak- * topology of probability measures and 1 N 2 1 i =j N g b (q i , q j ) -→ ¨R2 ×R 2 g b (x, y)ω(x)ω(y) dx dy.

Proposition 5.1 and Corollaries 5.2, 5.3 and 5.4 are analogues of other results obtained in [START_REF] Duerinckx | Mean-field limits for some Riesz interaction gradient flows[END_REF][START_REF] Nguyen | Mean-field limits of riesz-type singular flows[END_REF][START_REF] Serfaty | Mean field limit for Coulomb-type flows[END_REF]. Proposition 5.1 is an equivalent of [START_REF] Serfaty | Mean field limit for Coulomb-type flows[END_REF]Proposition 3.3] or [52, Proposition 2.2] and the proof will follow the same steps: regularise the modulated energy and control the remainders. Some terms are very similar to the ones obtained in the Coulomb case whereas other terms are specific to the lake kernel and will be handled using the estimates proved in Section 2. Corollary 5.4 is an equivalent of [START_REF] Duerinckx | Mean-field limits for some Riesz interaction gradient flows[END_REF]Lemma 2.6] and its proof proceeds in the same way. Due to the bound we assumed on the moment of inertia, tightness issues will be easier to handle.

Let us begin by proving the main proposition of this section:

Proof of Proposition 5.1. Let us regularise the modulated energy (1.12) using the regularisation of the dirac mass δ defined in (2.13). We have

F b (Q N , ω) = ¨R2 ×R 2 g b (x, y) d 1 N N i=1 δ (η) q i -ω (x) d 1 N N i=1 δ (η) q i -ω (y) + 1 N 2 1 i =j N ¨R2 ×R 2 ( b(q i )b(q j )g(q i -q j ) -b(x)b(y)g(x -y)) d δ (η) q i (x) d δ (η) q j (y) + 1 N 2 1 i =j N ¨R2 ×R 2 (S b (q i , q j ) -S b (x, y)) d δ (η) q i (x) d δ (η) q j (y) - 1 N 2 N i=1 ¨R2 ×R 2 g b (x, y) d δ (η) q i (x) d δ (η) q i (y) + 2 N N i=1 ¨R2 ×R 2 b(x)b(y)g(x -y) -b(x)b(q i )g(x -q i ) ω(x) dx d δ (η) q i (y) + 2 N N i=1 ¨R2 ×R 2 (S b (x, y) -S b (x, q i ))ω(x) dx d δ (η) q i (y) =:T 1 + T 2 + T 3 + T 4 + T 5 + T 6 .
Claim 5.5. We have

T 1 = ˆR2 1 b |∇H N,η | 2 .
Proof of the claim. Let us first fix µ smooth with compact support and average zero and write

H µ = G b [µ]
. By Proposition 2.8, we have

¨R2 ×R 2 g b (x, y)µ(x)µ(y) dx dy = ˆR2 H µ (x)µ(x) dx = - ˆR2 H µ (x) div 1 b ∇H µ (x) dx.
Let R > 0, then integrating by parts we get

- ˆB(0,R) H µ div 1 b ∇H µ = - ˆ∂B(0,R) 1 b H µ ∇H µ • d S + ˆB(0,R) 1 b |∇H µ | 2 .
Using Proposition 2.5 applied to ω = µ, u = -

1 b ∇ ⊥ H µ and ψ = H µ , we have ˆ∂B(0,R) 1 b H µ ∇H µ • d S C R 2 (1 + R δ )R -→ R→+∞ 0
and therefore

¨R2 ×R 2 g b (x, y)µ(x)µ(y) dx dy = ˆR2 1 b |∇H µ | 2 .
Now consider a sequence (µ k ) of smooth functions with compact support and average zero converging to m := 1 N N i=1 δ (η) q i -ω in Ḣ-1 , then by Lemma 2.12,

∇H µ k -→ k→+∞ ∇H N,η in L 2 .
and therefore

ˆR2 1 b |∇H µ k | 2 -→ k→+∞ ˆR2 1 b |∇H N,η | 2 and ¨R2 ×R 2 g b (x, y)µ k (x)µ k (y) dx dy - ¨R2 ×R 2 g b (x, y) dm(x) dm(y) = ˆR2 G b [µ k -m] dµ k + ˆR2 G b [m] d(µ k -m) C ∇G b [µ k -m] L 2 µ k Ḣ-1 + C ∇G b [m] L 2 µ k -m Ḣ-1 C µ k -m Ḣ-1
by Lemma 2.12 so we get Claim 5.5.

Now let us bound the fourth term:

Claim 5.6.

|T 4 | C b N (g(η) + I(Q N )).
Proof. We write

T 4 = - 1 N 2 N i=1 ¨R2 ×R 2 b(x)b(y)g(x -y) d δ (η) q i (x) d δ (η) q i (y) - 1 N 2 N i=1 ¨R2 ×R 2 S b (x, y) d δ (η) q i (x) d δ (η) q i (y) =:T 4,1 + T 4,2 .
Using the definition of δ q (2.13) and Equality (2.15) we get

T 4,1 = - 1 N 2 N i=1 m b (q i , η) 2 ¨R2 ×R 2 g(x -y) dδ (η) q i (x) dδ (η) q i (y) = - 1 N 2 N i=1 m b (q i , η) 2 ˆR2 g (η) (x -q i ) dδ (η) q i (x).
Therefore,

|T 4,1 | C b g(η) N .
Now by Claim (2) of Lemma 2.11, we have

|T 4,2 | C b N 2 N i=1 (1 + |q i | 2 ).
We get that

|T 4 | C b N (1 + I(Q N ) + g(η)) C b N (g(η) + I(Q N )).
Now we bound the third and the sixth term:

Claim 5.7.

|T 3 | + |T 6 | C b ( ω L 1 ((1+|x|) dx) + I(Q N ))η.
Proof. For x ∈ ∂B(q i , η), y ∈ ∂B(q j , η), we use Claim (1) of Lemma 2.7 and the symmetry of S b to get

|S b (q i , q j ) -S b (x, y)| |S b (q i , q j ) -S b (x, q j )| + |S b (x, q j ) -S b (x, y)| C b (1 + |q j |)η + C b (1 + |q i |)η C b (1 + |q i | + |q j |)η.
Thus we can bound the third term:

(5.1)

|T 3 | C b (1 + I(Q N ))η.
The sixth term can be bounded in the same way:

|T 6 | C b N N i=1 ¨R2 ×R 2 (1 + |x| + |q i |)ηω(x) dx d δ (η) q i (y).
We get that (5.2)

|T 6 | C b ( ω L 1 ((1+|x|) dx) + I(Q N ))η.
and combining (5.1) with (5.2) we get Claim 5.7.

Now let us bound the fifth term:

Claim 5.8.

|T 5 | C b ω L 1 ∩L ∞ ηg(η).
Proof. Using Proposition 2.13 we write T 5 as

T 5 = 2 N N i=1 ˆR2 (m b (q i , η)g (η) (x -q i ) -b(q i )g(x -q i )) b(x)ω(x) dx = 2 N N i=1 (m b (q i , η) -b(q i )) ˆR2 g (η) (x -q i ) b(x)ω(x) dx + 2 N N i=1 b(q i ) ˆR2 (g (η) (x -q i ) -g(x -q i )) b(x)ω(x) dx.
and thus by (2.16) and since

|g (η) (x -q i )| C(g(η) + |x| + |q i |) we have |T 5 | C b ω L 1 ηg(η) + C b ω L 1 (|x| dx) η + C b ω L 1 (1 + I(Q N ))η + C b ω L ∞ ˆB(0,η) |g (η) (x) -g(x)| dx.
We get that

|T 5 | C b ω L 1 ((1+|x|) dx)∩L ∞ ηg(η) + (1 + I(Q N ))η
since ω is a probability density.

We are only remained to estimate from below the second term:

Claim 5.9.

T 2 C b N 2 1 i =j N (g(q i -q j ) -g (η) (q i -q j )) -C b ηg(η).
Proof. We also split T 2 in two terms:

T 2 = 1 N 2 1 i =j N b(q i )b(q j )g(q i -q j ) -m b (q i , η)m b (q j , η) ¨R2 ×R 2 g(x -y) dδ (η) q i (x) dδ (η) q j (y) = 1 N 2 1 i =j N b(q i )b(q j )g(q i -q j ) -m b (q i , η)m b (q j , η) ˆR2 g (η) (q i -y) dδ (η) q j (y) = 1 N 2 1 i =j N ( b(q i )b(q j ) -m b (q i , η)m b (q j , η)) × ˆR2 g (η) (q i -y) dδ (η) q j (y) + 1 N 2 1 i =j N b(q i )b(q j ) g(q i -q j ) - ˆR2 g (η) (q i -y) dδ (η) q j (y) =T 2,1 + T 2,2 . Writing b(q i )b(q j ) -m b (q i , η)m b (q j , η) = b(q i )( b(q j ) -m b (q j , η)) + m b (q j , η)( b(q i ) -m b (q i , η))
and using (2.16) we get that

(5.3) |T 2,1 | C b ηg(η).
Now by (2.15),

g(q i -q j ) - ˆR2 g (η) (q i -y) dδ (η) q j (y) = g(q i -q j ) -g (η) (q i -q j ) + ˆR2 (g(q i -y) -g (η) (q i -y)) dδ (η) q j (y)
g(q i -q j ) -g (η) (q i -q j ) + 0 and thus

(5.4) T 2,2 C b N 2 1 i =j N
(g(q i -q j ) -g (η) (q i -q j )).

We get Claim 5.9 combining Equations (5.3) with (5.4).

Combining Claims 5.5, 5.6, 5.7, 5.8 and 5.9 we get the proof of Proposition 5.1.

Now we prove the "counting close particles" Corollary:

Proof of Corollary 5.2. The proof is exactly the same as the proof of [START_REF] Rosenzweig | Mean-field convergence of point vortices to the incompressible Euler equation with vorticity in L ∞[END_REF]Lemma 3.7].

If |q i -q j | ε then g(q i -q j ) -g (2ε) (q i -q j ) = - 1 2π ln |q i -q j | + 1 2π ln(2ε) - 1 2π ln(ε) + 1 2π ln(2ε) = 1 2π ln(2) > 0.
Thus, since g -g (2ε) 0, 1 2πN 2 ln(2)|{(q i , q j );

|q i -q j | ε}| 1 N 2 1 i =j N |q i -q j | ε (g(q i -q j ) -g (2ε) (q i -q j )) 1 N 2 1 i =j N (g(q i -q j ) -g (2ε) (q i -q j )) F b (Q N , ω) + C b g(ε) N + I(Q N )(ε + N -1 ) + ω L 1 ((1+|x|) dx)∩L ∞ g(ε)ε .
where we used Proposition 5.1 in the last inequality.

Now we prove the coercivity result:

Proof of Corollary 5.3. We have

ˆR2 ξ 1 N N i=1 δ q i -ω = 1 N ˆR2 ξ N i=1 δ q i -δ (η) q i + ˆR2 ξ 1 N N i=1 δ (η) q i -ω = : T 1 + T 2 . Now, T 1 = 1 N N i=1 ξ(q i ) -m b (q i , η) ˆ∂B(q i ,η) ξ(x) b(x) dδ (η) q i (x) = 1 N N i=1 m b (q i , η) ˆ∂B(q i ,η) ξ(q i ) -ξ(x) b(x) dδ (η) q i (x). Thus |T 1 | C b |ξ| C 0,α η α .
Using a sequence (µ k ) of smooth functions with compact support and average 0 converging to 1 N N i=1 δ (η) q i -ω as we have done for Claim 5.5 we can show that

T 2 = ˆR2 1 b ∇ξ • ∇H N,η
and therefore

|T 2 | ˆR2 1 b |∇ξ| 2 1 2 ˆR2 1 b |∇H N,η | 2 1 2 C b ˆR2 1 b |∇ξ| 2 1 2 F b (Q N , ω) + g(η) N + I(Q N )(η + N -1 ) + ω L 1 ((1+|x|) dx)∩L ∞ g(η)η 1 2 
.

by Proposition 5.1. We conclude by taking η = N -1 . The bound on

1 N N i=1 δ q i -ω H s
follows from Sobolev embeddings.

We finish this section by proving the weak- * convergence result:

Proof of Corollary 5.4. Let us denote ω N = 1 N N i=1 δ q i and prove that (ω N )
is a tight sequence of probability measures. Let R > 1, then

(5.5) |{i ∈ [1, N ] ; |q i | R}|R 2 N i=1 |q i | R |q i | 2 N I(Q N ).
Dividing by N R 2 both sides of the inequality we get

ˆB(0,R) c dω N I(Q N )R -2
and since (I(Q N )) is bounded we get that (ω N ) is tight. We will now prove the following Claim:

Claim 5.10. Assume that (ω N ) converges to ω for the weak- * topology of probability measures and that (

I(Q N )) is bounded. Then F b (Q N , ω) -→ N →+∞ 0 if and only if we have 1 N 2 1 i =j N g b (q i , q j ) -→ ¨R2 ×R 2 g b (x, y)ω(x)ω(y) dx dy.
Proof. Let ε > 0. We write the modulated energy as the sum of three terms:

(5.6)

F b (Q N , ω) = - ¨R2 ×R 2 g b (x, y)ω(x)ω(y) dx dy + 1 N 2 1 i =j N g b (q i , q j ) -2 ˆR2 ψ(y) d(ω N -ω)(y) where ψ = G b [ω]. Let R 1 be such that supp(ω) ⊂ B(0, R). We have ˆR2 ψ d(ω -ω N ) = - ˆB(0,R) c ψ dω N + ˆB(0,R) ψ d(ω -ω N ).
We bound the first term as we did to obtain (5.5):

ˆB(0,R) c ψ dω N 1 N N i=1 |q i | R |ψ(q i )| C b N N i=1 |q i | R (1 + |q i | δ ) C b (R -2 I(Q N ) + R 2-δ I(Q N ))
for some 0 < δ < 1 (by Proposition 2.5). Therefore,

ˆB(0,R) c ψ dω N ε if R is big enough. Now let χ R,β be a smooth function such that 0 χ 1, χ R,β (x) = 1 if |x| R and χ R,β (x) = 0 if |x| R + β. Then ˆB(0,R) ψ d(ω -ω N ) = ˆχR,β ψ d(ω -ω N ) - ˆR |x| R+β χ R,β ψ d(ω -ω N )
Choosing β small enough we have

ˆR |x| R+β χ R,β ψ d(ω -ω N ) ε.
Now ψ is continuous (see Lemma 2.3) so by weak- * convergence of (ω N ) to

ω we get that ˆψχ R,β d(ω -ω N ) -→ N →+∞ 0 and therefore lim sup N →+∞ ˆR2 ψ d(ω -ω N ) 2ε.
for all ε > 0, so we get

ˆR2 ψ d(ω -ω N ) -→ N →+∞ 0. Using (5.6) we get that F b (Q N , ω) -→ N →+∞ 0 if and only if we have 1 N 2 1 i =j N g b (q i , q j ) -→ ¨R2 ×R 2 g b (x, y)ω(x)ω(y) dx dy.
It follows directly from the Claim that (2) =⇒ [START_REF] Énard | Degenerate lake equations: classical solutions and vanishing viscosity limit[END_REF]. Now if we have (1), using Corollary 5.3 we have convergence of (ω N ) to ω in any H s for any s < -1. It follows by Prokhorov's theorem (ω N ) converges to ω for the weak- * topology of probability measures. By the Claim we also have convergence of the interaction energy and therefore (1) =⇒ (2).

Proof of the main Proposition 6.1

Let us recall that for q ∈ R 2 , Q N = (q 1 , ..., q N ) ∈ (R 2 ) N and 0 < η < 1, we have denoted

I(Q N ) = 1 N N i=1 |q i | 2 , δ (η) q = m b (q, η) dδ (η) q √ b and m b (q, η) = ˆR2 dδ (η) q √ b -1
where δ (η) q is the uniform probability measure on the circle ∂B(q, η). In this Section, we prove the following result:

Proposition 6.1. Let Q N = (q 1 , ..., q N ) ∈ (R 2 ) N such that q i = q j if i = j, u ∈ W 1,∞ (R 2 , R 2 ) and ω ∈ P(R 2 ) ∩ L ∞ (R 2 ) with compact support such that ∇G b [ω]
is continuous and bounded. There exists β ∈ (0, 1) (independent of ω, u and Q N ) such that

¨(R 2 ×R 2 )\∆ u(x) • ∇ x g b (x, y) d 1 N N i=1 δ q i -ω ⊗2 (x, y) C b u W 1,∞ |F b (Q N , ω)| + C b (1 + u W 1,∞ ) ω L 1 ((1+|x|) dx)∩L ∞ (1 + I(Q N ))N -β .
This proposition is an equivalent of [63, Proposition 1.1] or [52, Proposition 4.1] and the proof will follow the same steps: regularise the dirac masses, use the structure of the lake kernel to bound the regular part and control the remainders. Some terms are very similar to the ones obtained in the Coulomb case and we will use both the properties of our regularisation (see Subsection 2.4) and some estimates proved in [START_REF] Nguyen | Mean-field limits of riesz-type singular flows[END_REF] to bound them. As in the proof of Proposition 5.1 some terms are specific to the lake kernel and we will use results of Section 2 to bound them.

Proof. Let us fix 0 < η < 1 8 and write (6.1)

¨(R 2 ×R 2 )\∆ u(x) • ∇ x g b (x, y) d 1 N N i=1 δ q i -ω ⊗2 (x, y) = ¨R2 ×R 2 u(x) • ∇ x g b (x, y) d 1 N N i=1 δ (η) q i -ω ⊗2 (x, y) + - 1 N N i=1 ¨R2 ×R 2 u(x) • ∇ x g b (x, y) dω(x) d(δ q i -δ (η) q i )(y) + d(δ q i -δ (η) q i )(x) dω(y) + 1 N 2 1 i,j N ¨(R 2 ×R 2 )\∆ u(x) • ∇ x g b (x, y) [ dδ q i (x) dδ q j (y) -d δ (η) q i (x) d δ (η) q j (y)] =:T 1 + T 2 + T 3 .
Let us bound the first term. As in Section 5 we write

H N,η := G b 1 N N i=1 δ (η) q i -ω .
We claim: Claim 6.2.

T 1 = - ˆR2 u(x) • ∇H N,η (x)∇ 1 b • ∇H N,η (x) dx + ˆR2 ∇ 1 2b u : [H N,η , H N,η ]
Proof of the Claim. This claim is similar to [START_REF] Serfaty | Mean field limit for Coulomb-type flows[END_REF]Lemma 4.3] and we proceed the same way: Let us first fix µ smooth with compact support and average zero and write

H µ = G b [µ]. Then ¨R2 ×R 2 u(x) • ∇ x g b (x, y) dµ ⊗2 (x, y) = - ˆR2 u(x) • ∇H µ (x) div 1 b ∇H µ (x) dx = - ˆR2 u(x) • ∇H µ (x)∇ 1 b • ∇H µ (x) dx - ˆR2 1 b u • ∇H µ ∆H µ .
For the second integral of the right handside we proceed as in [START_REF] Serfaty | Mean field limit for Coulomb-type flows[END_REF] and use the stress-energy tensor defined by (1.11) (for more details, see [63, (ν k -m) converges to zero in Ḣ-1 and for the weak- * topology of probability measures. If we set µ k = ν k -ω, then

µ k -(m -ω) -→ k→+∞ 0 in Ḣ-1 .

Now we write

¨R2 ×R 2 u(x) • ∇ x g b (x, y) dµ ⊗2 k (x, y) - ¨R2 ×R 2 u(x) • ∇ x g b (x, y) d(m -ω) ⊗2 (x, y) = ¨R2 ×R 2 u(x) • ∇ x g b (x, y)ω(x) dx d(m -ν k )(y) + ¨R2 ×R 2 u(x) • ∇ x g b (x, y)ω(y) dy d(m -ν k )(x) + ¨R2 ×R 2 u(x) • ∇ x g b (x, y) d(ν k ⊗ ν k -m ⊗ m)(x, y) =:I 1 + I 2 + I 3 .
We have

|I 1 | = ˆR2 u • ∇G b [m -ν k ]ω u L ∞ ω L 2 ∇G b [m -ν k ] L 2 C u L ∞ ω L 2 m -ν k Ḣ-1
by Lemma 2.12 and therefore I 1 -→ k→+∞ 0. Recall that (m -ν k ) converges to zero for the weak- * topology of probability measures. Therefore

I 2 = ˆR2 u • ∇G b [ω] d(m -ν k ) -→ k→+∞ 0
since u and ∇G b [ω] are continuous and bounded by assumption. Now we want to show that I 3 converges to zero. Remark that writing µ k = ν k -ω and proving that I 1 and I 2 converge to zero allowed us to restrict ourself to study the convergence of

¨R2 ×R 2 u(x) • ∇ x g b (x, y) dν k (x) dν k (y)
for ν k nonnegative (which will be crucial for using Delort's argument below). We use the definition of g b (2.10) to write

I 3 = ¨R2 ×R 2 u(x) • ∇ √ b(x) b(y)g(x -y) d(ν k ⊗ ν k -m ⊗ m)(x, y) + ¨R2 ×R 2 b(x)b(y)u(x) • ∇g(x -y) d(ν k ⊗ ν k -m ⊗ m)(x, y) + ¨R2 ×R 2 u(x) • ∇ x S b (x, y) d(ν k ⊗ ν k -m ⊗ m)(x, y) =:I 3,1 + I 3,2 + I 3,3 .
We write (6.2)

I 3,1 = ¨R2 ×R 2 u(x) • ∇ √ b(x) b(y)g(x -y) d(ν k -m)(x) dν k (y) + ¨R2 ×R 2 u(x) • ∇ √ b(x) b(y)g(x -y) dm(x) d(ν k -m)(y) = ˆR2 (u • ∇ √ b)(g * [ √ bν k ]) d(ν k -m) + ˆR2 (u • ∇ √ b)(g * [ √ b(ν k -m)]) dm.
Recall that B(0, R) is a ball containing the supports of m and ν k . Consider a smooth probability density ρ with support in B(0, R). We define

χ k = ˆR2 √ bν k ρ, χ ∞ = ˆR2 √ b dm ρ and write (6.3) ∇g * ( √ b(ν k -m)) =∇g * ( √ bν k -χ k + χ ∞ - √ bm) + ˆR2 √ bν k - ˆR2 √ b dm ∇g * ρ. Now ∇g * ( √ bν k -χ k + χ ∞ - √ bm) 2 L 2 = C ˆR2 1 |ξ| 2 | √ bν k (ξ) -χ k (ξ) + χ ∞ (ξ) - √ bm(ξ)| 2 dξ. Remark that α k = √ bν k -χ k + χ ∞ - √ bm is a Radon measure with support included in B(0, R) such that α k (0) = 0. Therefore ˆR2 e -ix•ξ dα k (x) = ˆR2 (e -ix•ξ -1) dα k (x) = 2 ˆR2 sin x • ξ 2 dα k (x) CR|ξ| ˆR2 d|α k |(x) C b,R |ξ|. It follows that for ε > 0 ˆ|ξ| ε 1 |ξ| 2 | α k (ξ)| 2 dξ C b,R ε 2 . Moreover, ˆ|ξ| ε 1 |ξ| 2 | √ bν k (ξ) -χ k (ξ) + χ ∞ (ξ) - √ bm(ξ)| 2 dξ C ε ˆR2 | χ k (ξ) -χ ∞ (ξ)| 2 dξ + ˆR2 1 1 + |ξ| 2 | √ bν k (ξ) - √ bm(ξ)| 2 C ε χ k -χ ∞ L 2 + √ bν k - √ bm H -1 -→ k→+∞ 0 since b is smooth. Therefore lim sup k→+∞ ∇g * ( √ bν k -χ k + χ ∞ - √ bm) 2 L 2 C b,R ε 2 (6.4)
for all ε > 0 so (6.5) ∇g * (

√ bν k -χ k + χ ∞ - √ bm) L 2 -→ k→+∞ 0.
By Hardy-Littlewood-Sobolev inequality (see for example [2, Theorem 1.7]), ∇g * ρ ∈ L p for all 2 < p < +∞ so

ˆR2 √ bν k - ˆR2 √ bm ∇g * ρ -→ k→+∞ 0 in L 2 (B(0, R)).
Combining the upper limit with (6.3) and (6.5) we get that

∇g * ( √ bν k ) -→ k→+∞ ∇g * ( √ bm) in L 2 (B(0, R)).
Now, by convolution inequality, we have 

(6.6) g * [ √ bν k ] L 2 (B(0,R)) C b g L 2 (B(0,2R)) ν k L 1 C b g L 2 (B(0,2R)) so (g * [ √ bν k ]) is bounded in H 1 (B(0, R)) which is compactly embedded in L 2 (B(0, R)).
g * [ √ bν k ] -→ k→+∞ g * [ √ bm] in H 1 (B(0, R)).
We recall that since b is smooth,

√ bν k -→ k→+∞ √ bm in H -1 .
Moreover, m ∈ H -1 with compact support and u • ∇ √ b ∈ W 1,∞ so it follows by Decomposition 6.2 that

I 3,1 -→ k→+∞ 0.
Since ∇g is antisymmetric we can write

I 3,2 = 1 2 ¨R2 ×R 2 H u (x, y) d( √ bν k )(x) d( √ bν k )(y) - 1 2 ¨R2 ×R 2 H u (x, y) d( √ bm)(x) d( √ bm)(y)
where

H u (x, y) = 1 2 (u(x) -u(y)) • ∇g(x -y).
We recall that ( √ bν k ) is a sequence of nonnegative functions with supports in B(0, R) converging to √ bm in H -1 and for the weak- * topology of measures with finite mass. Moreover, since u is Lipschitz, H u is continuous outside of the diagonal and bounded. Therefore we can use Delort's argument (see [START_REF] Delort | Existence de nappes de tourbillon en dimension deux[END_REF]Proposition 1.2.6] or [START_REF] Schochet | The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation[END_REF]Inequalities (3.4) and (3.5)]) to prove that

I 3,2 -→ k→+∞ 0.
Finally we write

I 3,3 = ˆR2 u(x) • ˆR2 ∇ x S b (x, y) dν k (y) d(ν k -m)(x) + ˆR2 u(x) • ˆR2 ∇ x S b (x, y) dm(x) d(ν k -m)(y).
By Proposition 2.7 u(x) • ∇ x S b (x, y) is locally Hölder with respect to both variables and therefore since ν k ⊗ ν k -m ⊗ m has compact support we have that I 3,3 -→ k→+∞ 0.

It follows from Claim 6.2 that

|T 1 | C b u W 1,∞ ˆR2 |∇H N,η | 2 .
Hence by Proposition 5.1 we get (6.7)

|T 1 | C b u W 1,∞ |F b (Q N , ω)| + g(η) N + I(Q N )(η + N -1 ) + ω L 1 ((1+|x|) dx)∩L ∞ g(η)η .
Now let us split T 2 in three parts:

T 2 = - 1 N N i=1 ¨R2 ×R 2 u(x) • ∇ x g b (x, y) + u(y) • ∇ x g b (y, x) ω(x) dx d(δ q i -δ (η) q i )(y) = - 1 N N i=1 ¨R2 ×R 2 u(x) • ∇ √ b(x) b(y) + u(y) • ∇ √ b(y) b(x) g(x -y)ω(x) dx d(δ q i -δ (η) q i )(y) - 1 N N i=1 ¨R2 ×R 2 b(x)b(y)(u(x) -u(y)) • ∇g(x -y)ω(x) dx d(δ q i -δ (η) q i )(y) - 1 N N i=1 ¨R2 ×R 2 u(x) • ∇ x S b (x, y) + u(y) • ∇ x S b (y, x) ω(x) dx d(δ q i -δ (η) q i )(y) =: -(T 2,1 + T 2,2 + T 2,3 ).
We will bound the three terms separately: Claim 6.3. There exists 0 < s < 1 such that

|T 2,1 | C b u W 1,∞ ω L 1 ((1+|x|) dx)∩L ∞ (1 + I(Q N ))η s .
Proof of the claim. Since δ (η) q i is a probability measure, we can write

T 2,1 = 1 N N i=1 ¨R2 ×R 2 ∇ √ b(x) • u(x)ω(x)( b(q i )g(x -q i ) -b(y)g(x -y)) d δ (η) q i (y) dx + 1 N N i=1 ¨R2 ×R 2 b(x)ω(x)(∇ √ b(q i ) • u(q i )g(x -q i ) -∇ √ b(y) • u(y)g(x -y)) d δ (η) q i (y) dx = 1 N N i=1 ¨R2 ×R 2 (∇ √ b • uω)(x)( b(q i ) -b(y))g(x -y) d δ (η) q i (y) dx + 1 N N i=1 ¨R2 ×R 2 (∇ √ b • uω)(x) b(q i ) × (g(x -q i ) -g(x -y)) d δ (η) q i (y) dx + 1 N N i=1 ¨R2 ×R 2 b(x)ω(x)(∇ √ b(q i ) • u(q i ) -∇ √ b(y) • u(y))g(x -y) d δ (η) q i (y) dx + 1 N N i=1 ¨R2 ×R 2 b(x)ω(x)∇ √ b(q i ) • u(q i ) × (g(x -q i ) -g(x -y)) d δ (η)
q i (y) dx. For the first integral, we use the Lipschitz regularity of √ b to bound

¨R2 ×R 2 (∇ √ b • uω)(x)( b(q i ) -b(y))g(x -y) d δ (η) q i (y) dx C b η ¨R2 ×R 2 |(∇ √ b • uω)(x)g(x -y)| d δ (η) q i (y) dx.
Moreover for y ∈ ∂B(q i , η), we have

ˆR2 |(∇ √ b • uω)(x)g(x -y)| dx ˆB(y,1) |(∇ √ b • uω)(x)g(x -y)| dx + ˆB(y,1) c |(∇ √ b • uω)(x)g(x -y)| dx ∇ √ b • uω L ∞ g L 1 (B(0,1)) + ˆB(y,1) c |(∇ √ b • uω)(x)|(|x| + |y|) dx C b u L ∞ ω L ∞ (1 + |q i |) since b satisfies Assumption 1.5. Therefore ¨R2 ×R 2 (∇ √ b • uω)(x)( b(q i ) -b(y))g(x -y) d δ (η) q i (y) dx C b u L ∞ ω L ∞ (1 + |q i |)η.
The third integral can be bounded in the same way:

¨R2 ×R 2 b(x)ω(x)(∇ √ b(q i ) • u(q i ) -∇ √ b(y) • u(y))g(x -y) d δ (η) q i (y) dx C b u W 1,∞ η ¨R2 ×R 2 | b(x)ω(x)g(x -y)| d δ (η) q i (y) dx C b u W 1,∞ ω L 1 ((1+|x|) dx)∩L ∞ (1 + |q i |)η.
Summing over N we get that both the first and the third line can be bounded by

(6.8) C b u W 1,∞ ω L 1 ((1+|x|) dx)∩L ∞ (1 + I(Q N ))η. Now the second integral is equal to 1 N N i=1 b(q i ) ˆR2 (g * (∇ √ b • uω)(q i ) -g * (∇ √ b • uω)(y)) dδ (η) q i (y)
and thus by Morrey's inequality (see [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]Theorem 9.12]) its absolute value can be bounded by 

C b,p η 1-
L p C b η 1-2 p ω L 2p p+2 
.

Combining (6.8) and (6.9) we get that

|T 2,1 | C b u W 1,∞ ω L 1 ((1+|x|) dx)∩L ∞ (1 + I(Q N ))η s for some 0 < s < 1. Now we bound T 2,2 : Claim 6.4. |T 2,2 | C b ∇u L ∞ ω L 1 ∩L ∞ η.
Proof of the claim. Let us recall that

δ (η) q = m b (q, η) dδ (η) q √ b and thus ¨R2 ×R 2 b(x)b(y)(u(x) -u(y)) • ∇g(x -y)ω(x) dx d(δ q i -δ (η) q i )(y) =m b (q i , η) ¨R2 ×R 2 b(x)(u(x) -u(y)) • ∇g(x -y)ω(x) dx d(δ q i -δ (η) q i )(y) + 1 - m b (q i , η) b(q i ) ˆR2 b(x)b(q i )(u(x) -u(q i )) • ∇g(x -q i )ω(x) dx.
The first integral is exactly the term defined in [52, Equation (4.10)] with s = 0 and m = 0 (remark that we can choose m = 0 since no extension procedure is needed for s = 0 and d = 2, for more details we refer to the introduction of [START_REF] Nguyen | Mean-field limits of riesz-type singular flows[END_REF]Section 4]). It can be bounded by the right hand side of [START_REF] Nguyen | Mean-field limits of riesz-type singular flows[END_REF]Equation (4.24)] :

C ∇u L ∞ |∇| -1 ( √ bω) L ∞ η C b ∇u L ∞ |∇| -1 ω L ∞ η C b ∇u L ∞ ω L 1 ∩L ∞ η.
A proof of the last inequality can be found for example in [ 

|T 2,2 | C b ∇u L ∞ ω L 1 ∩L ∞ η. Claim 6.5. |T 2,3 | C b,s u W 1,∞ ω L 1 ((1+|x|) dx) (1 + I(Q N ))η s .
Proof of the claim. We write T 2,3 as

T 2,3 = 1 N N i=1 ¨R2 ×R 2 ω(x)u(x) • (∇ x S b (x, q i ) -∇ x S b (x, y)) d δ (η) q i (y) dx + ¨R2 ×R 2 ω(x)(u(q i ) -u(y)) • ∇ x S b (q i , x) d δ (η) q i (y) dx + ¨R2 ×R 2 ω(x)u(y) • (∇ x S b (q i , x) -∇ x S b (y, x)) d δ (η) q i (y) dx .
Using Claims (1) and (2) of Lemma 2.7, we get that for some 0 < s < 1,

|T 2,3 | 1 N N i=1 C b,s u L ∞ ω L 1 (1 + |q i |)η s + ∇u L ∞ ω L 1 ((1+|x|) dx) η + u L ∞ ω L 1 ((1+|x|) dx) η s C b,s u W 1,∞ ω L 1 ((1+|x|) dx) (1 + I(Q N ))η s .
Combining Claims 6.3, 6.4 and 6.5 we get that (6.10)

|T 2 | C b,s u W 1,∞ ω L 1 ((1+|x|) dx)∩L ∞ (1 + I(Q N ))η s .
Now let us write T 3 as

T 3 = 1 N 2 1 i,j N ¨(R 2 ×R 2 )\∆ u(x) • ∇ x g b (x, y) ( dδ q i (x) dδ q j (y) -d δ (η) q i (x) d δ (η) q j (y)) = 1 N 2 1 i,j N ¨(R 2 ×R 2 )\∆ u(x) • ∇ √ b(x) b(y)g(x -y) ( dδ q i (x) dδ q j (y) -d δ (η) q i (x) d δ (η) q j (y)) + 1 N 2 1 i,j N ¨(R 2 ×R 2 )\∆ b(x)b(y)u(x) • ∇g(x -y) ( dδ q i (x) dδ q j (y) -d δ (η) q i (x) d δ (η) q j (y)) + 1 N 2 1 i,j N ¨(R 2 ×R 2 )\∆ u(x) • ∇ x S b (x, y) ( dδ q i (x) dδ q j (y) -d δ (η) q i (x) d δ (η) q j (y)) =:T 3,1 + T 3,2 + T 3,3 .
We bound the first term: Claim 6.6.

|T 3,1 | C b u L ∞ |F b (Q N , ω)| + C b u W 1,∞ g(η) N + I(Q N )(η + N -1 ) + ω L 1 ((1+|x|) dx)∩L ∞ g(η)η .
Proof of the claim. We write

T 3,1 = - 1 N 2 N i=1 ¨R2 ×R 2 u(x) • ∇ √ b(x) b(y)g(x -y) d δ (η) q i (x) d δ (η) q i (y) + 1 N 2 1 i =j N ¨(R 2 ×R 2 )\∆ u(x) • ∇ √ b(x) b(y)g(x -y) ( dδ q i (x) dδ q j (y) -d δ (η) q i (x) d δ (η) q j (y)) =:T 3,1,1 + T 3,1,2 .
By the definition of δ (η) q i (2.13) we have

T 3,1,1 = - 1 N 2 N i=1 m b (q i , η) 2 ¨R2 ×R 2 u(x) • ∇ √ b(x) b(x) g(x -y) dδ (η) q i (x) dδ (η) q i (y) = - 1 N 2 N i=1 m b (q i , η) 2 ˆR2 u(x) • ∇ √ b(x) √ b(x) g (η) (x -q i ) dδ (η) q i (x)
by Claim (2.15). It follows by Assumption 1.5 that (6.11)

|T 3,1,1 | C b u L ∞ g(η) N .
and it follows by Claim (2.15) that ˆR2 g (η) (x -q j ) dδ (η) q i (x) = ˆR2 g(x -q j ) dδ (η) q i (x) = g (η) (q i -q j ).

Hence we can write

S 2 = 1 N 2 1 i =j N |q i -q j | 2η (u•∇ √ b)(q i ) b(q j ) ˆR2 
(g (η) (q i -q j )-g (η) (x-q j )) dδ (η) q i (x).

Notice that if |q i -q j | 2η and x ∈ ∂B(q i , η), then

|g (η) (q i -q j ) -g (η) (x -q j )| ∇g (η) L ∞ η = Cη -1 η C. Therefore, (6.13) |S 2 | C b u L ∞ N 2 |{(q i , q j ); |q i -q j | 2η}| C b u L ∞ |F b (Q N , ω)| + C b u L ∞ g(2η) N + I(Q N )(2η + N -1 ) + ω L 1 ((1+|x|) dx)∩L ∞ g(2η)2η
by Corollary 5.2 applied to ε = 2η. By definition of δ

q i (2.13) we can write

S 3 = 1 N 2 1 i =j N (u • ∇ √ b)(q i ) b(q j ) × ˆR2 g (η) (x -q j ) 1 - m b (q i , η) b(x) dδ (η) q i (x)
and therefore

|S 3 | C b u L ∞ g(η) N N i=1 ˆR2 m b (q i , η) b(x) -1 dδ (η) q i (x).
For x ∈ ∂B(q i , η), we have

m b (q i , η) b(x) -1 C b m b (q i , η) -1 - 1 b(x) C b ˆR2 dδ (η) q i (y) b(y) - 1 b(x) C b η since b is Lipschitz by Assumption 1.5. It follows that (6.14) |S 3 | C b u L ∞ g(η)η.
Now by regularity of u, b and Proposition 2.13, we have

|S 4 | + |S 5 | C b u W 1,∞ ηg(η).
Combining the upper inequality with (6.11), (6.12), (6.13) and (6.14) we obtain Claim 6.6.

For the third term we have the following bound: Claim 6.7. For s small enough, we have

|T 3,3 | C b,s u W 1,∞ (1 + I(Q N ))η s .
Proof. We write

T 3,3 = 1 N 2 1 i,j N u(q i ) • ∇ x S b (q i , q j ) - 1 N 2 1 i,j N ¨R2 ×R 2 u(x) • ∇ x S b (x, y) d δ (η) q i (x) d δ (η) q j (y) = 1 N 2 1 i,j N ¨R2 ×R 2 u(q i ) • ∇ x S b (q i , q j ) -u(q i ) • ∇ x S b (q i , y) + u(q i ) • ∇ x S b (q i , y) -u(q i ) • ∇ x S b (x, y) + u(q i ) • ∇ x S b (x, y) -u(x) • ∇ x S b (x, y) d δ (η) q i (x) d δ (η) q j (y).
Therefore,

|T 3,3 | 1 N 2 1 i,j N u L ∞ |∇ x S b (q i , •)| C 0,s (B(q j ,1)) η s + 1 N 2 1 i,j N u L ∞ η s ˆR2 |∇ x S b (•, y)| C 0,s d δ (η) q j (y) + 1 N 2 1 i,j N ¨R2 ×R 2 u W 1,∞ η|∇ x S b (x, y)| d δ (η) q i (x) d δ (η) q j (y).
By Proposition 2.7, for s small enough we have

|T 3,3 | C b,s N 2 1 i,j N u L ∞ |(1 + |q j |)η s + C b,s N 2 1 i,j N u L ∞ η s (1 + |q j |) + C b N 2 1 i,j N u W 1,∞ η(1 + |q j |) C b,s u W 1,∞ (1 + I(Q N ))η s .
We are only remained to bound T 3,2 : Claim 6.8. For ε > 2η small enough, we have Since ∇g is antisymmetric we can write T 3,2 as

|T 3,2 | C b N ∇u L ∞ + C b η ∇u L ∞ ε + C b ∇u L ∞ |F b (Q N , ω)| + g(ε) N + η + I(Q N )(ε + N -1 ) + ω L 1 ((1+|x|) dx)∩L ∞ g(ε)ε .
T 3,2 = 1 2N 2 1 i,j N ¨(R 2 ×R 2 )\∆
b(x)b(y)k u (x, y) d(δ q i + δ (η) q i )(x) d(δ q j -δ (η) q j )(y).

Using the definition of δ (η) q i (2.13) we can write d(δ q i + δ (η) q i )(x) d(δ q j -δ (η) q j )(y)

= d δ q i + m b (q i , η) √ b δ (η) q i (x) d δ q j - m b (q j , η) √ b δ (η)
q j (y) = m b (q i , η)m b (q j , η) b(x)b(y) d(δ q i + δ (η) q i )(x) d(δ q j -δ (η) q j )(y) + 1 -m b (q i , η)m b (q j , η) b(q i )b(q j ) dδ q i (x) dδ q j (y) + m b (q i , η) b(q i ) 1 -m b (q j , η) b(q j ) dδ (η) q i (x) dδ q j (y) + m b (q j , η) b(y) m b (q i , η) b(q i ) -1 dδ q i (x) dδ (η) q j (y).

We will use some inequalities proved in [START_REF] Nguyen | Mean-field limits of riesz-type singular flows[END_REF] and Corollary 5.2 to control the first line, but let us begin by controling the three last remainders. Using the bound (6.15) and (2.16) we can bound

T 3,2,2 := 1 2N 2 1 i,j N ¨(R 2 ×R 2 )\∆ b(x)b(y)k u (x, y)
1 -m b (q i , η)m b (q j , η) b(q i )b(q j ) dδ q i (x) dδ q j (y) + m b (q i , η) b(q i ) 1 -m b (q j , η) b(q j ) dδ (η) q i (x) dδ q j (y) + m b (q j , η) b(y) m b (q i , η) b(q i ) -1 dδ q i (x) dδ (η) q j (x) . by (6.16)

|T 3,2,2 | C b ∇u L ∞ η.
We are remained to bound T 3,2,1 := 1 2N 2 1 i,j N m b (q i , η)m b (q j , η) × ¨(R 2 ×R 2 )\∆ k u (x, y) d(δ q i + δ (η) q i )(x) d(δ q j -δ (η) q j (y).

Using decomposition (4.26) and inequalities (4.27), (4.28) and (4.31) of [START_REF] Nguyen | Mean-field limits of riesz-type singular flows[END_REF] with s = 0 and m = 0 (remark that we can choose m = 0 since no extension procedure is needed for s = 0 and d = 2, for more details we refer to the introduction of [52, Section 4]), we get that for any small parameter ε > 2η,

|T 3,2,1 | C b N ∇u L ∞ + C b ∇u L ∞ N 2
|{(q i , q j ); |q i -q j | ε}| + Cη ∇u L ∞ ε .

Using Corollary 5.2, we get that (6.17)

T 3,2,1 C b N ∇u L ∞ + C b η ∇u L ∞ ε + C b ∇u L ∞ |F b (Q N , ω)| + g(ε) N + I(Q N )(ε + N -1 ) + ω L 1 ((1+|x|) dx)∩L ∞ g(ε)ε .
And we get Claim 6.8 by combining (6.17) with (6.16).

We finish the proof of Proposition 6.1 using Decomposition (6.1), Inequalities (6.7), (6.10) and Claims 6.6, 6. + ω L 1 ((1+|x|) dx)∩L ∞ g(η)η

+ C b,s u W 1,∞ ω L 1 ((1+|x|) dx)∩L ∞ (1 + I(Q N ))η s + C b u L ∞ F b (Q N , ω) + C b u W 1,∞ g(η) N + I(Q N )(η + N -1 ) + ω L 1 ((1+|x|) dx)∩L ∞ g(η)η + C b,s u W 1,∞ (1 + I(Q N ))η s + C b N ∇u L ∞ + C b η ∇u L ∞ ε + C b ∇u L ∞ |F b (Q N , ω)| + g(ε) N + η + I(Q N )(ε + N -1 ) + ω L 1 ((1+|x|) dx)∩L ∞ g(ε)ε .
Choosing ε = N -1 and η = N -2 , and since ω L 1 ((1+|x|) dx)∩L ∞ is bounded by below (because ω is a probability density) we get that

¨(R 2 ×R 2 )\∆ u(x) • ∇ x g b (x, y) d 1 N N i=1 δ q i -ω ⊗2 (x, y) C b u W 1,∞ |F b (Q N , ω)| + C b (1 + u W 1,∞ ) ω L 1 ((1+|x|) dx)∩L ∞ (1 + I(Q N ))N -β
for some 0 < β < 1.

Mean-field limit

In this section we prove the mean-field limit Theorem 1.8. For this purpose let us first prove the following estimates: Using Proposition 6.1, we have Now

|L 1 | C b u -α ∇ ⊥ b b L ∞ ([0,T ],W 1,∞ ) |F b (Q N , ω)| + C b 1 + u -α ∇ ⊥ b b L ∞ ([0,T ],W 1,∞ ) × ω L ∞ ([
L 2 = 1 N N i=1 ∇ ⊥ b(q i ) b(q i ) • ˆR2 \{q i } b(q i )b(y)∇g(q i -y) d ω(t) - 1 N N j=1
δ q j (t)

+ ˆR2 \{q i } ∇ x S b (q i , y) d ω(t) - 1 N N j=1 δ q j (t) =:L 2,1 + L 2,2 + L 2,3 with (7.4) |L 2,1 | = 1 N N i=1 ∇ ⊥ b(q i ) b(q i ) • ˆR2 ∇g(q i -y) b(y)ω(t, y) dy C b ω L ∞ ([0,T ],L 1 ∩L ∞ )
(for the last inequality see for example [START_REF] Iftimie | Évolution de tourbillon à support compact[END_REF]Lemma 1]). For the second term

L 2,2 = - 1 N 2 N i=1 N j=1 j =i
b(q i )b(q i ) ∇ ⊥ b(q i ) b(q i ) • ∇g(q i -q j ).

We can bound it as in (3.7) to get For the last term, we use Claim (1) of Lemma 2.7 to get 

|L 2,3 | = 1 N N i=1 ∇ ⊥ b(q i ) b(q i ) • ˆR2 ∇ x S b (q i , y) d ω(t) - 1 N N j=1 j =i δ q j (t) (y) C b ˆR2 (1 + |y|) d ω(t) + 1 N N j=1 j =i δ q j (t) (y 
+ 2 N 2 α N N i=1 N j=1 j =i v(t, q i ) b(q i ) • ∇ x g b (q i , q j ) =:L 1 + L 2 .
The first term can be bounded by Proposition 6.1: where we used Proposition 3.1 in the last inequality. We split the second line in three terms:

L 2 = 2 N 2 α N N i=1 N j=1 j =i v(t, q i ) b(q i ) • ∇b(q i ) 2 b(q i ) b(q j )g(q i -q j ) + 2 N 2 α N N i=1 N j=1 j =i v(t, q i ) b(q i ) • ∇g(q i -q j ) b(q i )b(q i ) + 2 N 2 α N N i=1 N j=1 j =i v(t, q i )
b(q i ) • ∇ x S b (q i , q j ) =:L 2,1 + L 2,2 + L 2,3 .

  2.2 applied to ω = -g(• -y) b(y)∆ 1 √ b and ψ = S b (•, y). Then: (1) For any y ∈ R 2 and 2 < p +∞, ∇ x S b (•, y) ∈ L p and ∇ x S b (•, y) L p C b,p (1 + |y|).

  y) dx dy for any ω 1 , ω 2 smooth with compact suport and average zero. Let us define A(x, y) := S b (x, y) -S b (y, x).

  x), we have d = -c. Now let us set S b (x, y) := S b (x, y) + c(y). We have: S b (x, y) -S b (y, x) = S b (x, y) -S b (y, x) + c(y) -c(x) = c(x) -c(y) + c(y) -c(x) = 0

1 b

 1 for any z of norm η, we get that f = g(η) .Let us now prove (2.16): m b (y, η) -b(y) = m b (y, η) b(y) |m b (y, η)b(y)| C b η by Assumption 1.5.

  Since S b is locally Lipschitz, S η b and ∇S η b converge locally uniformly to S b and ∇S b (see for example [13, Proposition 4.21]) and therefore we get the convergence of g η b (x, y) and ∇g η b (x, y) to g b (x, y) and ∇g b (x, y) for any x = y.

  Corollary 5.2 is an equivalent of [52, Corollary 2.3] and Corollary 5.3 is an equivalent of [63, Proposition 3.6]. Both can be deduced from Proposition 5.1 in the same way [52, Corollary 2.3] and [63, Proposition 3.6] are deduced from [63, Proposition 3.3] or [52, Proposition 2.2].

  Therefore by(6.5), up to extraction, (g* [ √ bν k ]) converges to g * [ √ bm] + C where C is a constant. If x 0 ∈ B(0, R) isat a positive distance from the supports of ν k and m then g(x 0 -•) is continuous on the supports of ν k and m and therefore g * [ √ bν k ](x 0 ) -→ k→+∞ g * [ √ bm](x 0 ) by dominated convergence theorem. It follows that C = 0, thus

Proof.

  Let us denotek u (x, y) = (u(x) -u(y)) • ∇g(x -y)and remark that(6.15) |k u (x, y)| C ∇u L ∞ .

C

  7 and 6.8. That gives¨(R 2 ×R 2 )\∆ u(x) • ∇ x g b (x, y) b u W 1,∞ |F b (Q N , ω)| + g(η) N + I(Q N )(η + N -1 )

Theorem 7 . 1 .

 71 If ω is a weak solution of (1.1) with initial datum ω 0 (in the sense of Definition 1.1) that satisfies Assumption 1.6 and if I N (0) is bounded, there exists a constantA := A b, T, u L ∞ ([0,T ],W 1,∞ ) , ω L ∞ ([0,T ],L 1 ((1+|x|) dx)∩L ∞ ) , sup N I N (0) such that for every t ∈ [0, T ], (7.1) |F b,N (t)| A(|F b,N (0)| + (1 + |E N (0)|)(N -β + |α N -α|)).If ω is a weak solution of (1.3) with initial datum ω 0 (in the sense of Definition 1.2) that satisfies Assumption 1.6 and if I N (0) is bounded, there exists a constantB :=B b, T, ω L ∞ ([0,T ],L 1 ((1+|x|) dx)∩L ∞ ) , ∇g * ω L ∞ ([0,T ],W 1,∞ ) , sup N I N (0)such that for every t ∈ [0, T ],(7.2) |F b,N (t)| B(|F b,N (0)| + (1 + |E N (0)|)(N -β + α -1 N )). Proof. By Proposition 4.1, we have that for almost every t ∈ [0, T ], d dt F b,N (t) =2 ¨(R 2 ×R 2 )\∆ u(t, x) -α ∇ ⊥ b(x) b(x) • ∇ x g b (x, y) d(ω(t) -ω N (t)) ⊗2 (x, y) + 2(α N -α) ¨(R 2 ×R 2 )\∆ ∇ ⊥ b(x) b(x) • ∇ x g b (x, y) dω N (t, x) d(ω(t) -ω N (t))(y) =:L 1 + 2(α N -α)L 2 .

|L 1 |

 1 0,T ],L 1 ((1+|x|) dx)∩L ∞ ) (1 + I N (t))N -β .By Proposition 3.1, we haveI N (t) C b,T (1 + |E N (0)| + I N (0)) since (α N ) is bounded (here we consider the case α N -→ C b 1 + u L ∞ ([0,T ],W 1,∞ ) |F b (Q N , ω)| + C b,T 1 + u L ∞ ([0,T ],W 1,∞ ) × ω L ∞ ([0,T ],L 1 ((1+|x|) dx)∩L ∞ ) (1 + I N (0) + |E N (0)|)N -β .

(7. 5 )

 5 |L 2,2 | C b .

  )C b ( ω L ∞ ([0,T ],L 1 ((1+|x|) dx)) + I N (t)) C b,T ( ω L ∞ ([0,T ],L 1 ((1+|x|) dx)) + 1 + I N (0) + |E N (0)|)by Proposition 3.1. Combining the upper inequality with (7.3),(7.4) and (7.5) we get that for almost every t ∈ [0, T ],d dt F b,N (t) C b (1 + u L ∞ ([0,T ],W 1,∞ ) )|F b,N (t)| + C b 1 + u L ∞ ([0,T ],W 1,∞ ) × ω L ∞ ([0,T ],L 1 ((1+|x|) dx)∩L ∞ ) (1 + I N (0) + |E N (0)|)N -β + C b,T |α N -α| ω L ∞ ([0,T ],L 1 ((1+|x|) dx)∩L ∞ ) + 1 + I N (0) + |E N (0)| .Therefore there exists a constant A depending only on the quantities b, T , u L ∞ ([0,T ],W 1,∞ ) , ω L ∞ ([0,T ],L 1 ((1+|x|) dx)∩L ∞ ) and I N (0) (which is uniformly bounded in N by assumption) such that for almost every t ∈ [0, T ],d dt F b,N (t) A(|F b,N (t)| + (1 + |E N (0)|)(N -β + |α N -α|)).ByGrönwall's lemma (up to taking another constant A depending on the same quantities) we get (7.1). Now let us study the rescaled regime where α N -→ N →+∞ +∞. By Proposition 4.2 we have d dt F b,N (t) = -2 ¨(R 2 ×R 2 )\∆ ∇ ⊥ b(x) b(x) • ∇ x g b (x, y) d(ω(t) -ω N (t)) ⊗2 (x, y)

(7. 6 )

 6 |L 1 | C b ∇b b W 1,∞ |F b,N (t)| + C b 1 + ∇b b W 1,∞ × ω L ∞ ([0,T ],L 1 ((1+|x|) dx)∩L ∞ ) (1 + I(Q N ))N -β C b |F b,N (t)| + C b,T ω L ∞ ([0,T ],L 1 ((1+|x|) dx)∩L ∞ ) × (1 + I N (0) + |E N (0)|)N -β

  1,∞ ) where G b is the operator defined by Equation (2.11).

	Remark 1.7. A weak solution of (1.1) in the sense of Definition 1.1 (or a weak
	solution of (1.3) in the sense of Definition 1.2) does not necessarily verify
	Assumption 1.6 because of the regularity we ask for the velocity field ∇G b [ω].

  35, Lemma 1]. Now by (2.16) and the Lipschitz regularity of u we can bound the second line by C b ∇u L ∞ ω L 1 η. Combining the two upper equations we get

Equality (1.25)] and the associated references):

Integrating over a ball of radius R and integrating by parts we get ˆB(0,R)

Using Proposition 2.5 (applied to ω = µ and ψ = H µ ) we have

) is a sequence of smooth functions with compact support and average zero such that

then by Lemma 2.12 we have

and therefore since u ∈ W 

as k -→ +∞. We are only left to justify that

We define

Let us consider a sequence (ν k ) of smooth probability densities with support included in a ball B(0, R) independent of k (containing supp(m)), such that Now we write

by the definition of δ (η) q i (2.13) and Claim (2.15). Now,

Since g -g (η) is nonnegative we can bound (6.12)

by Proposition 5.1. Now remark that if |q i -q j | 2η and x ∈ ∂B(q i , η),

We can bound the first term by

and applying Lemma 2.3 we get

We can bound

|g(q i -q j )| as we did for Inequality (3.10) to get

The second term L 2,2 can be bounded as in (3.7) to get

N and the last term can be bounded directly using Claim (1) of Lemma 2.7:

N . Combining these three inequalities with (7.6) and using Proposition 3.1 to bound I N we get that for almost every t ∈ [0, T ],

And therefore there exists a constant B depending only on the quantities b, T , ω L ∞ ([0,T ],L 1 ((1+|x|) dx)∩L ∞ ) and I N (0) (which is uniformly bounded in N by assumption) such that for almost every t ∈ [0, T ],

By Grönwall's lemma (up to taking another constant B depending on the same quantities) we get (7.2). 

Proof of