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INTRODUCTION

Over the past decade, the speech enhancement (SE) task has been extensively investigated, and numerous novel approaches have been proposed that greatly leverage the advancements and efficacy of deep neural network (DNN) architectures [START_REF] Wang | Supervised speech separation based on deep learning: An overview[END_REF]. The majority of these approaches are based on supervised (discriminative) learning of a DNN over training pairs of clean and noisy speech signals, covering different speakers, noise types, and signal-to-noise ratio (SNR) values. Such an approach depends heavily on the number and diversity of training samples and noise conditions, and thus generalisation to unseen (out-of-domain) environments cannot be guaranteed.

Unsupervised SE based on deep generative models presents an alternative approach with improved generalisation performance [START_REF] Bando | Statistical speech enhancement based on probabilistic integration of variational autoencoder and non-negative matrix factorization[END_REF][START_REF] Bie | Unsupervised speech enhancement using dynamical variational autoencoders[END_REF][START_REF] Bando | Adaptive neural speech enhancement with a denoising variational autoencoder[END_REF]. In contrast to purely supervised methods, the generative-based (unsupervised) framework learns the statistical distribution of clean speech signals and uses it as a prior distribution for inferring the target signal from its noisy observation. In these methods, VAE [START_REF] Kingma | Auto-encoding variational bayes[END_REF] has been commonly used as a generative clean speech prior, which This work was supported by the French National Research Agency (ANR) under the project REAVISE (ANR-22-CE23-0026-01). Experiments presented in this paper were carried out using the Grid'5000 testbed, supported by a scientific interest group hosted by Inria, and including CNRS, RENATER, and several universities as well as other organizations (see https://www.grid5000.fr).

is combined with a non-negative matrix factorization (NMF)-based observation model to estimate clean speech following a statistical EM framework.

Recently, diffusion-based generative models have emerged as a powerful and state-of-the-art framework to model complex data distributions [START_REF] Sohl-Dickstein | Deep unsupervised learning using nonequilibrium thermodynamics[END_REF][START_REF] Song | Score-based generative modeling through stochastic differential equations[END_REF]. These models learn an implicit distribution by estimating the score, i.e., the gradient of the log probability density (with respect to data). This is done by gradually diffusing data samples into noise and then learning a score approximating model that can reverse the noising process for different noise scales. The forward process of corrupting data is modelled as a stochastic differential equation (SDE), which can be reversed and yields a corresponding reverse SDE that depends only on the score of the perturbed data and may easily be solved numerically. Diffusion-based models have been widely applied to the SE task in a supervised way [START_REF] Lu | Conditional diffusion probabilistic model for speech enhancement[END_REF][START_REF] Serrà | Universal speech enhancement with score-based diffusion[END_REF][START_REF] Welker | Speech enhancement with score-based generative models in the complex STFT domain[END_REF][START_REF] Richter | Speech enhancement and dereverberation with diffusion-based generative models[END_REF][START_REF] Yen | Cold diffusion for speech enhancement[END_REF] by incorporating noisy speech signals in the diffusion process as conditioning information.

In this paper, we develop an unsupervised speech enhancement framework leveraging diffusion-based generative models as data-driven priors. Specifically, in a training step, the statistical characteristics of clean speech signals are learnt in the complex STFT domain through the use of a score-based diffusion model. At test time, we perform posterior sampling by combining the learnt implicit clean speech prior with a parametric statistical model for noise to infer the clean speech signal. The noise parameters are estimated alongside the clean speech signal by following an iterative EM-based approach. To our knowledge, this is the first work that proposes using diffusion-based generative models for unsupervised SE, and explores their potential. We conduct experiments comparing the proposed framework with a VAE-based unsupervised approach [START_REF] Bie | Unsupervised speech enhancement using dynamical variational autoencoders[END_REF] as well as a state-of-the-art diffusion-based supervised method [START_REF] Richter | Speech enhancement and dereverberation with diffusion-based generative models[END_REF]. The results demonstrate the effectiveness and promising performance of the proposed diffusion-based unsupervised approach, paving the path for future research in this direction.

The rest of the paper is organised as follows: Section 2 reviews score-based diffusion modelling and VAE-based SE as two closely related problems to our work. The proposed speech generative modelling and enhancement frameworks are detailed in Section 3. Experimental results are then presented in Section 4, followed by a conclusion and suggestions for future lines of work in Section 5.

BACKGROUND

Score-based diffusion models

Diffusion models are a state-of-the-art class of probabilistic generative models that have recently achieved remarkable performance in generating high-quality samples in different applications [START_REF] Song | Score-based generative modeling through stochastic differential equations[END_REF]. These models transform an unknown data distribution p0 to a tractable prior distribution, usually N (0, I), by gradually adding noise to training data in a forward process. Then, in a reverse process, a parameterised model is learnt to iteratively generate samples starting from noise and transform these into samples from the unknown data distribution. This action of smoothly injecting noise into training samples may be described by a SDE. Specifically, consider a diffusion process {st} t∈[0,1] , indexed by a continuous time-step variable t, which solves the following general linear SDE

dst = f (st)dt + g(t)dw, (1) 
where w denotes a standard Wiener process, the vector-valued f is the drift coefficient term, and the scalar function g is the diffusion coefficient. Here, the forward process transforms a clean training sample s0 = s to a noise sample s1, whose distribution converges to p1 ∼ N (0, I). Under some light regularity conditions [START_REF] Anderson | Reverse-time diffusion equation models[END_REF], the SDE in (1) also has an associated reverse-time SDE:

dst = [f (st)dt -g(t) 2 ∇s t log pt(st)]dt + g(t)d w, (2) 
where w is a standard Wiener process running backwards in time, dt is an infinitesimal negative time-step, and ∇s t log pt(st) is called the score function. In practice, the score is approximated by a timedependent neural network (NN) S θ * (st, t) ≈ ∇s t log pt(st), called the score model, where θ * denotes the learnt weights of the NN.

By plugging the score model in (2), we can solve the resulting SDE using a variety of solvers to sample from the unknown data distribution [START_REF] Song | Score-based generative modeling through stochastic differential equations[END_REF]. In this paper, we make use of the Predictor-Corrector (PC) sampler [START_REF] Song | Score-based generative modeling through stochastic differential equations[END_REF].

VAE-based unsupervised speech enhancement

Previous works on unsupervised SE use VAE to learn the prior distribution of clean speech signals, which is then combined with an observation model to estimate clean speech within a statistical framework. Specifically, in the STFT domain, a latent variable-based generative model is assumed as p θ (s, z) = p θ (s|z)p θ (z), where s denotes the STFT representation of clean speech and z represents the associated (latent) low-dimensional embedding. Some parameterised Gaussian forms for the generative distributions are usually assumed, whose parameters are learnt over clean speech data, following the evidence lower-bound optimisation principle [START_REF] Kingma | Auto-encoding variational bayes[END_REF].

For SE, it is assumed that x = s + n, where x, s, and n denote STFT representations of noisy (mixture) speech, clean speech, and background noise, respectively. The likelihood p ϕ (x|s) is usually a proper complex Gaussian distribution N C with mean s, whose variance is parameterised with a low-rank NMF factorisation. SE then amounts to inferring the latent variable z associated with s from x. This necessitates learning the NMF parameters, denoted ϕ, via an EM process formulated below

max ϕ E p ϕ (z|x) {log p ϕ (x|z)} . (3) 
This could be solved using, e.g., the variational EM procedure developed in [START_REF] Bie | Unsupervised speech enhancement using dynamical variational autoencoders[END_REF][START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF], which approximates p ϕ (z|x).

PROPOSED FRAMEWORK

Diffusion-based speech generative modeling

Following [START_REF] Richter | Speech enhancement and dereverberation with diffusion-based generative models[END_REF], we work with the complex-valued STFT representations of speech signals and apply an exponential amplitude transformation to balance the heavy-tailed distribution of STFT amplitudes.

Like VAE, the diffusion-based generative model is independently defined for each time-frequency (TF) bin. Therefore, as done in [START_REF] Richter | Speech enhancement and dereverberation with diffusion-based generative models[END_REF], all the vector-valued variables st in boldface contain flattened TF representations of speech signals. For concrete instantiations of the forward and reverse SDE ((1) and ( 2) respectively), we use an alternative form of the well-known variance-exploding stochastic differential equation (VESDE) [START_REF] Song | Generative modeling by estimating gradients of the data distribution[END_REF] inspired by [START_REF] Richter | Speech enhancement and dereverberation with diffusion-based generative models[END_REF], and adapt it to obtain the drift and diffusion coefficients as follows

f (st) = -γst, g(t) = σmin σmax σmin t 2 log σmax σmin , (4) 
where γ is a constant parameter, and σmin and σmax are parameters defining the noise schedule of the Wiener process. The SDE in (1) then has the perturbation kernel defined below, which allows one to sample st directly given s0

p0t(st|s0) = N C (δts0, σ(t) 2 I), (5) 
where δt = e -γt and the variance term is given by

σ(t) 2 = σ 2 min (σmax/σmin) 2t -δt 2 log(σmax/σmin) γ + log(σmax/σmin) . (6) 
To learn the NN parameters θ, a weighted Fisher divergence [START_REF] Song | Generative modeling by estimating gradients of the data distribution[END_REF] between the true and approximated score is solved, which, after some mathematical manipulation, leads to the following training objective [START_REF] Richter | Speech enhancement and dereverberation with diffusion-based generative models[END_REF] θ

* = argmin θ E t,s,ζ,s t |s ∥S θ (st, t) + ζ σ(t) ∥ 2 2 , (7) 
where ζ ∼ N C (0, I), i.e., complex-valued Gaussian noise.

Diffusion-based unsupervised speech enhancement

We now describe the unsupervised SE framework based on diffusionbased generative models. The prior clean speech distribution p = p(s) is unknown, but can be obtained by training a diffusion model as described in Section 3.1, yielding an implicit prior, as opposed to the explicit VAE-based speech prior modelling framework. This implicit diffusion-based speech prior only allows for iterative sampling, without an explicit density form. As such, the SE procedure adopted in VAE-based modelling cannot directly be used for diffusion-based learnt speech priors. Assuming the same observation model as before, i.e., x = s + n, and NMF-based likelihood parameterisation, we here propose to sample from the following intractable posterior distribution to estimate the clean speech s directly 

p ϕ (s|x) ∝ p ϕ (x|s)p θ * (s), (8) 
An overview of the proposed Unsupervised Diffusion-Based Speech Enhancement (UDiffSE) approach is provided in Algorithm 1. The following sections detail the E-step and M-step. 

where again the score function can be approximated by S θ * (st, t).

However, the conditional score function ∇s t log p ϕ (x|st) is, in fact, intractable to compute in closed form, due to its dependence on time. That is,

p ϕ (x|st) = p ϕ (x|s0)pt0(s0|st)ds0, (11) 
where pt0(s0|st) ∝ p0t(st|s0)p(s0) is intractable. As an approximation, we follow [START_REF] Meng | Diffusion model based posterior sampling for noisy linear inverse problems[END_REF] and assume an uninformative prior p(s0), which, along with (5), results in

pt0(s0|st) = N C st δt , σ(t) 2 δ 2 t I . (12) 
Plugging this approximation in [START_REF] Richter | Speech enhancement and dereverberation with diffusion-based generative models[END_REF] gives us the following noiseperturbed pseudo-likelihood

pϕ (x|st) ∼ N C st δt , σ(t) 2 δ 2 t I + diag(v ϕ ) . (13) 
The conditional reverse process is then approximated as

dst = f (st)dt -g(t) 2 S θ * (st, t) dt + g(t)d w -g(t) 2 ∇s t log pϕ (x|st)dt. (14) 
This is exactly the unconditional reverse process (2) for sampling clean speech, plus an additional term which imposes data consistency. We use the change of variables formula and take the gradient to compute ∇s t log pϕ (x|st), the noise-perturbed pseudo-likelihood score, as

∇s t log pϕ (x|st) = 1 δ t σ(t) 2 δ 2 t I + diag(v ϕ ) -1 ( st δt -x). (15) 
Lastly, we introduce an additional weighting parameter λ to the pseudo-likelihood as in [START_REF] Meng | Diffusion model based posterior sampling for noisy linear inverse problems[END_REF] to balance the effect of the mixture signal on the estimated sample. We experimentally observed that performing the full posterior reverse step at each iteration enforces if i ≡ 0 (mod ℓ) then ▷ (Posterior)

10: end if 13: end for 14: return ŝ = s0 strongly the data consistency condition, causing the sample to converge to the mixture signal. To prevent this, we only perform the posterior step every ℓ iterations. We solve the reverse SDE using a PC sampler [START_REF] Song | Score-based generative modeling through stochastic differential equations[END_REF] -a numeric sampler consisting of a discretisation of ( 2) -the predictor -followed by a Langevin sampling step -the corrector -to 'correct' the marginal at time t. The overall E-step is summarised in Algorithm 2. The variable τ denotes discrete timestep in [0, 1]. For simplicity, we employ the shorthand στ , fτ , gτ for σ(τ ), f (τ ), g(τ ), respectively.

∇s τ log pϕ (x|sτ ) ← 1 δτ σ 2 τ δ 2 τ I + diag(v ϕ ) -1 ( sτ δτ -x)

M-Step

Having obtained a clean speech estimate ŝ in the E-step, we now consider updating the noise parameters ϕ = {W, H} via (9), replacing the expectation with a Monte-Carlo estimate as follows:

ϕ ← argmax {W,H}≥0 log p ϕ (x|ŝ) = argmin {W,H}≥0 i (x -ŝ) * i (x -ŝ)i v ϕ (i) + log(v ϕ (i)), (16) 
where (•) * denotes the conjugate operation. The above problem can be solved using a variety of algorithms, e.g., the multiplicative update rules [START_REF] Févotte | Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis[END_REF][START_REF] Sadeghi | Robust unsupervised audio-visual speech enhancement using a mixture of variational autoencoders[END_REF].

EXPERIMENTS

In this section, we provide a performance evaluation of our proposed UDiffSE framework as compared against an unsupervised speech enhancement approach based on recurrent VAE (RVAE)1 [START_REF] Bie | Unsupervised speech enhancement using dynamical variational autoencoders[END_REF][START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF], as well as a state-of-the-art diffusion-based supervised SE method, called score-based generative model for speech enhancement (SGMSE+)2 [START_REF] Richter | Speech enhancement and dereverberation with diffusion-based generative models[END_REF]. Evaluation Metrics. To measure the quality of the enhanced speech signals, we use standard instrumental evaluation metrics, including the scale-invariant signal-to-distortion ratio (SI-SDR) in dB [START_REF] Le Roux | SDRhalf-baked or well done?[END_REF], the extended short-time objective intelligibility (ESTOI) measure [START_REF] Jensen | An algorithm for predicting the intelligibility of speech masked by modulated noise maskers[END_REF] ranging in [0, 1], and the perceptual evaluation of speech quality (PESQ) score [START_REF] Rix | Perceptual evaluation of speech quality (PESQ)-a new method for speech quality assessment of telephone networks and codecs[END_REF] ranging in [-0.5, 4.5]. We also use the For performance evaluation, we use the WSJ0-QUT dataset created by [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF], comprising 651 synthetic mixtures (about 1.5 hours of noisy speech data) which uses clean speech signals from the 'si et 05' subset of WSJ dataset and noise signals from the QUT-NOISE corpus [START_REF] Dean | The QUT-NOISE-SRE protocol for the evaluation of noisy speaker recognition[END_REF]. These include Café, Home, Street, and Car and have SNR values of -5 dB, 0 dB, and 5 dB. We also evaluate generalisation capability of different methods in mismatched conditions by using pre-computed noisy versions of the TCD-TIMIT data presented in [START_REF] Abdelaziz | NTCD-TIMIT: A new database and baseline for noise-robust audio-visual speech recognition[END_REF]. This set contains noise types Living Room (from the second CHiME challenge [START_REF] Vincent | The second 'CHiME' speech separation and recognition challenge: Datasets, tasks and baselines[END_REF]), White, Car, and Babble (from the RSG-10 corpus [START_REF] Steeneken | Description of the RSG-10 noise database[END_REF]) with SNR values of -5 dB, 0 dB, and 5 dB and. This yields 540 test speech signals (or approximately 45 minutes). Stochastic Differential Equation. The SDE in (4) has parameter values γ = 1.5, σmin = 0.05, σmax = 0.5. To avoid instabilities around 0, we adopt standard practice and set a minimum process time with tmin = 0.03. Models architecture. We adapt the SGMSE+ architecture developed in [START_REF] Welker | Speech enhancement with score-based generative models in the complex STFT domain[END_REF], which is based on a multi-resolution U-Net structure, by removing their x term and adapting the number of channels. RVAE consists of an encoder-decoder architecture composing bidirectional long short-term memory (BLSTM) networks. For both RVAE and SGMSE+, we use the pretrained models that are available in their associated public code repositories. Training setup. We train the score model S θ * for 220 epochs using an Adam optimiser with a learning rate of 0.0001 and a batch size of 16. Our loss is an exponential moving average of the network's weights, initialised with a decay of 0.999. EM settings. The reverse process in ( 14) is solved using a PC sampler with step size ϵτ := (στ /2) 2 , i.e., r = 0.5. The number of reverse sampling steps is set to N = 30. The posterior update step is performed every ℓ = 2 steps, and the NMF matrices possess a rank of 4. For each sample, we perform 5 EM iterations. We observe that performing the same denoising procedure over b samples in parallel and then averaging the result yields much better performance; we thus set the batch size to b = 4. The weighting parameter λ is set to 1.5. These parameter choices are motivated by an extensive set of experimental studies provided in the supplementary material. Results. We report our SE results in Table 1. Competing methods are evaluated in the matched and mismatched cases. Inspecting the results, we can make a number of conclusions: As may be expected, the supervised framework outperforms its unsupervised counterpart in the matched case, but at the cost of utilising labelled data. Our UDiffSE framework outperforms the alternative unsupervised RVAE on almost all metrics under both matched and mismatched conditions. In particular, it achieves much higher ESTOI, SIG-MOS, and OVR-MOS scores than RVAE, which is more noticeable in the mismatched condition.

Furthermore, the proposed UDiffSE method outperforms the supervised SGMSE+ framework for both the ESTOI and SIG-MOS metrics in the mismatched condition, with a comparable OVR-MOS score. While all three frameworks have very similar PESQ results in the mismatched case, the unsupervised methods significantly outperform SGMSE+ in terms of SI-SDR (by more than 4 dB). The performance of UDiffSE on the TCD-TIMIT dataset showcases its capacity to generalise to unseen data, which could possibly imply that it has learnt a good representation of general clean speech as the underlying prior. Supplementary material, including audio samples, is available online. 3

CONCLUSION

In this paper, we introduce UDiffSE, an unsupervised generativebased framework to solve the SE task by learning an implicit prior distribution over clean speech data. We do this by defining a continuous diffusion process in the STFT domain in the form of a conditional SDE, and imposing an NMF-based parameterised additive noise model. An EM approach is developed to simultaneously generate clean speech and learn the noise parameters. An approximation of the likelihood term in the E-step then yields a tractable posterior sampling procedure. This method outperforms an unsupervised VAE-based approach to SE for almost all metrics in matched and mismatched test conditions, while showcasing better generalisation performance than a state-of-the-art diffusion-based supervised method. UDiffSE does, however, have the disadvantage of being time-consuming, which originates from the complexity of the reverse diffusion process. Future works include speeding up the reverse process, utilising the recent advancements in diffusion-based image generation, and developing more efficient noise models.

  where θ * denotes the pretrained, and thus fixed, diffusion model's parameters. We model the noise by n ∼ N C (0, diag(vec(WH))) where W, H are low-rank matrices with non-negative entries and rank r and vec(WH) denotes the vectorised form of WH. The likelihood p ϕ (x|s) then writes as p ϕ (x|s) = N C (s, diag(v ϕ )), where v ϕ = vec(WH). Learning the NMF parameters, i.e., ϕ = {W, H}, is done by solving max ϕ E p ϕ (s|x) {log p ϕ (x|s)} .

Algorithm 2 1 N 2 : 6 :√ 2ϵτ ζc 7 : 8 :

 212678 Posterior sampling (E-step) of UDiffSERequire: x, N, ℓ, λ, r(signal-to-noise ratio) 1: s1 ∼ N C (x, I), ∆τ ← for i = N, . . . , sτ ← sτ + ϵτ S θ * (sτ , τ ) + ζp ∼ N C (0, I) ▷ (Predictor) sτ ← sτfτ ∆τ + g 2 τ S θ * (sτ , τ )∆τ + gτ √ ∆τ ζp 9:

  Given a current estimate of ϕ, the E-step (posterior sampling) entails the generation of speech samples from the posterior distribution p ϕ (s|x) to approximate the expectation in[START_REF] Serrà | Universal speech enhancement with score-based diffusion[END_REF]. This is done via the construction of a stochastic process {st|x} t∈[0,1] by conditioning the original process {st} t∈[0,1] on the observation x to obtain an estimate ŝ ∼ p ϕ (s|x). To this end, we modify the reverse SDE (2) as follows

	Algorithm 1 UDiffSE
	1: ϕ0 = {W0, H0}
	2: for k = 1, . . . , K do
	3:	ŝ ∼ p ϕ k-1 (s|x)	▷ (E-Step)
	4:	ϕ k ← argmax ϕ log p ϕ (x|ŝ)	▷ (M-Step)
	5: end for
	6: return	ŝ
	3.2.1. E-Step

dst = f (st)dt -g(t) 2 ∇s t log pt(st|x) dt + g(t)d w = f (st)dt -g(t)

2 (∇s t log p ϕ (x|st)+∇s t log pt(st)) dt + g(t)d w

Table 1 :

 1 Speech enhancement results under both matched and mismatched conditions. 'S': supervised, 'U': unsupervised. Bold and italicised indicate the best and second best performances, respectively. To learn the clean speech prior model, we train on the 'si tr s' subset of the Wall Street Journal (WSJ) corpus[START_REF] Garofolo | CSR-I (WSJ0) complete LDC93S6B[END_REF], which amounts to roughly 25 hours of data. The STFT is computed using a window size of 510, a hop-length of 128 (≈ 75% overlap), and a Hann window, which gives F = 256 frequency bins. All signals have a sampling rate of 16 kHz. To ensure similarity across samples of different lengths during training, subsamples are randomly selected from STFT data so that we get T = 256 time frames with start and end positions randomly generated.

	Method	Type SI-SDR (dB)	PESQ	ESTOI	SIG-MOS	BAK-MOS	OVR-MOS
	Input (WSJ0-QUT)	-	-2.60 ± 0.17 1.83 ± 0.02 0.50 ± 0.01 4.04 ± 0.01 2.93 ± 0.02 3.13 ± 0.01
	RVAE [3, 14]	U	4.39 ± 0.21	2.20 ± 0.02 0.59 ± 0.01 3.88 ± 0.02 3.32 ± 0.02 3.13 ± 0.02
	UDiffSE (Ours)	U	4.80 ± 0.23	2.21 ± 0.02 0.63 ± 0.01 4.33 ± 0.01 3.74 ± 0.02 3.74 ± 0.02
	SGMSE+ [11]	S	9.41 ± 0.18	2.66 ± 0.02 0.77 ± 0.01 4.48 ± 0.01 4.51 ± 0.01 4.19 ± 0.01
	Input (TCD-TIMIT)	-	-8.74 ± 0.29 1.84 ± 0.02 0.35 ± 0.01 3.52 ± 0.02 2.22 ± 0.03 2.68 ± 0.01
	RVAE [3, 14]	U	1.44 ± 0.31	2.02 ± 0.02 0.35 ± 0.01 3.08 ± 0.03 3.18 ± 0.02 2.61 ± 0.02
	UDiffSE (Ours)	U	0.37 ± 0.25	2.01 ± 0.02 0.41 ± 0.01 3.91 ± 0.01 2.88 ± 0.03 3.08 ± 0.02
	SGMSE+ [11]	S	-3.97 ± 0.41 2.04 ± 0.03 0.38 ± 0.01 3.79 ± 0.02 3.43 ± 0.02 3.13 ± 0.02
	DNS-MOS [22], a non-intrusive speech quality metric, which pro-			
	vides scores for the speech quality (SIG), background noise quality			
	(BAK), and overall quality (OVRL) of speech. For all the metrics,			
	higher values indicate improved performance.				
	Datasets.						

https://github.com/XiaoyuBIE1994/DVAE_SE/

https://github.com/sp-uhh/sgmse

https://team.inria.fr/multispeech/demos/udiffse/