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UNSUPERVISED SPEECH ENHANCEMENT WITH DIFFUSION-BASED GENERATIVE MODELS

Berné Nortier, Mostafa Sadeghi, Romain Serizel

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

ABSTRACT

Recently, conditional score-based diffusion models have gained sig-
nificant attention in the field of supervised speech enhancement,
yielding state-of-the-art performance. However, these methods may
face challenges when generalising to unseen conditions. To address
this issue, we introduce an alternative approach that operates in an
unsupervised manner, leveraging the generative power of diffusion
models. Specifically, in a training phase, a clean speech prior distri-
bution is learnt in the short-time Fourier transform (STFT) domain
using score-based diffusion models, allowing it to unconditionally
generate clean speech from Gaussian noise. Then, we develop a
posterior sampling methodology for speech enhancement by com-
bining the learnt clean speech prior with a noise model for speech
signal inference. The noise parameters are simultaneously learnt
along with clean speech estimation through an iterative expectation-
maximisation (EM) approach. To the best of our knowledge, this
is the first work exploring diffusion-based generative models for
unsupervised speech enhancement, demonstrating promising re-
sults compared to a recent variational auto-encoder (VAE)-based
unsupervised approach and a state-of-the-art diffusion-based super-
vised method. It thus opens a new direction for future research in
unsupervised speech enhancement.

Index Terms— Unsupervised speech enhancement, diffusion-
based models, expectation-maximisation, posterior sampling.

1. INTRODUCTION

Over the past decade, the speech enhancement (SE) task has been
extensively investigated, and numerous novel approaches have been
proposed that greatly leverage the advancements and efficacy of deep
neural network (DNN) architectures [1]. The majority of these ap-
proaches are based on supervised (discriminative) learning of a DNN
over training pairs of clean and noisy speech signals, covering dif-
ferent speakers, noise types, and signal-to-noise ratio (SNR) values.
Such an approach depends heavily on the number and diversity of
training samples and noise conditions, and thus generalisation to un-
seen (out-of-domain) environments cannot be guaranteed.

Unsupervised SE based on deep generative models presents an
alternative approach with improved generalisation performance [2–
4]. In contrast to purely supervised methods, the generative-based
(unsupervised) framework learns the statistical distribution of clean
speech signals and uses it as a prior distribution for inferring the
target signal from its noisy observation. In these methods, VAE [5]
has been commonly used as a generative clean speech prior, which

This work was supported by the French National Research Agency (ANR)
under the project REAVISE (ANR-22-CE23-0026-01). Experiments presented in
this paper were carried out using the Grid’5000 testbed, supported by a scien-
tific interest group hosted by Inria, and including CNRS, RENATER, and several
universities as well as other organizations (see https://www.grid5000.fr).

is combined with a non-negative matrix factorization (NMF)-based
observation model to estimate clean speech following a statistical
EM framework.

Recently, diffusion-based generative models have emerged as a
powerful and state-of-the-art framework to model complex data dis-
tributions [6, 7]. These models learn an implicit distribution by esti-
mating the score, i.e., the gradient of the log probability density (with
respect to data). This is done by gradually diffusing data samples
into noise and then learning a score approximating model that can
reverse the noising process for different noise scales. The forward
process of corrupting data is modelled as a stochastic differential
equation (SDE), which can be reversed and yields a corresponding
reverse SDE that depends only on the score of the perturbed data
and may easily be solved numerically. Diffusion-based models have
been widely applied to the SE task in a supervised way [8–12] by
incorporating noisy speech signals in the diffusion process as condi-
tioning information.

In this paper, we develop an unsupervised speech enhance-
ment framework leveraging diffusion-based generative models as
data-driven priors. Specifically, in a training step, the statistical
characteristics of clean speech signals are learnt in the complex
STFT domain through the use of a score-based diffusion model. At
test time, we perform posterior sampling by combining the learnt
implicit clean speech prior with a parametric statistical model for
noise to infer the clean speech signal. The noise parameters are
estimated alongside the clean speech signal by following an iterative
EM-based approach. To our knowledge, this is the first work that
proposes using diffusion-based generative models for unsupervised
SE, and explores their potential. We conduct experiments com-
paring the proposed framework with a VAE-based unsupervised
approach [3] as well as a state-of-the-art diffusion-based super-
vised method [11]. The results demonstrate the effectiveness and
promising performance of the proposed diffusion-based unsuper-
vised approach, paving the path for future research in this direction.

The rest of the paper is organised as follows: Section 2 reviews
score-based diffusion modelling and VAE-based SE as two closely
related problems to our work. The proposed speech generative mod-
elling and enhancement frameworks are detailed in Section 3. Ex-
perimental results are then presented in Section 4, followed by a
conclusion and suggestions for future lines of work in Section 5.

2. BACKGROUND

2.1. Score-based diffusion models

Diffusion models are a state-of-the-art class of probabilistic genera-
tive models that have recently achieved remarkable performance in
generating high-quality samples in different applications [7]. These
models transform an unknown data distribution p0 to a tractable prior
distribution, usually N (0, I), by gradually adding noise to training



data in a forward process. Then, in a reverse process, a parame-
terised model is learnt to iteratively generate samples starting from
noise and transform these into samples from the unknown data distri-
bution. This action of smoothly injecting noise into training samples
may be described by a SDE. Specifically, consider a diffusion pro-
cess {st}t∈[0,1], indexed by a continuous time-step variable t, which
solves the following general linear SDE

dst = f(st)dt+ g(t)dw, (1)

where w denotes a standard Wiener process, the vector-valued f is
the drift coefficient term, and the scalar function g is the diffusion
coefficient. Here, the forward process transforms a clean training
sample s0 = s to a noise sample s1, whose distribution converges
to p1 ∼ N (0, I). Under some light regularity conditions [13], the
SDE in (1) also has an associated reverse-time SDE:

dst = [f(st)dt− g(t)2∇st log pt(st)]dt+ g(t)dw̄, (2)

where w̄ is a standard Wiener process running backwards in time,
dt is an infinitesimal negative time-step, and∇st log pt(st) is called
the score function. In practice, the score is approximated by a time-
dependent neural network (NN) Sθ∗(st, t) ≈ ∇st log pt(st), called
the score model, where θ∗ denotes the learnt weights of the NN.
By plugging the score model in (2), we can solve the resulting SDE
using a variety of solvers to sample from the unknown data distribu-
tion [7]. In this paper, we make use of the Predictor-Corrector (PC)
sampler [7].

2.2. VAE-based unsupervised speech enhancement

Previous works on unsupervised SE use VAE to learn the prior distri-
bution of clean speech signals, which is then combined with an ob-
servation model to estimate clean speech within a statistical frame-
work. Specifically, in the STFT domain, a latent variable-based
generative model is assumed as pθ(s, z) = pθ(s|z)pθ(z), where
s denotes the STFT representation of clean speech and z represents
the associated (latent) low-dimensional embedding. Some param-
eterised Gaussian forms for the generative distributions are usually
assumed, whose parameters are learnt over clean speech data, fol-
lowing the evidence lower-bound optimisation principle [5].

For SE, it is assumed that x = s+ n, where x, s, and n denote
STFT representations of noisy (mixture) speech, clean speech, and
background noise, respectively. The likelihood pϕ(x|s) is usually a
proper complex Gaussian distribution NC with mean s, whose vari-
ance is parameterised with a low-rank NMF factorisation. SE then
amounts to inferring the latent variable z associated with s from x.
This necessitates learning the NMF parameters, denoted ϕ, via an
EM process formulated below

max
ϕ

Epϕ(z|x) {log pϕ(x|z)} . (3)

This could be solved using, e.g., the variational EM procedure de-
veloped in [3, 14], which approximates pϕ(z|x).

3. PROPOSED FRAMEWORK

3.1. Diffusion-based speech generative modeling

Following [11], we work with the complex-valued STFT representa-
tions of speech signals and apply an exponential amplitude transfor-
mation to balance the heavy-tailed distribution of STFT amplitudes.

Like VAE, the diffusion-based generative model is indepen-
dently defined for each time-frequency (TF) bin. Therefore, as
done in [11], all the vector-valued variables st in boldface contain
flattened TF representations of speech signals. For concrete instan-
tiations of the forward and reverse SDE ((1) and (2) respectively),
we use an alternative form of the well-known variance-exploding
stochastic differential equation (VESDE) [15] inspired by [11], and
adapt it to obtain the drift and diffusion coefficients as follows

f(st) = −γst, g(t) = σmin

(σmax

σmin

)t
√

2 log
(σmax

σmin

)
, (4)

where γ is a constant parameter, and σmin and σmax are parameters
defining the noise schedule of the Wiener process. The SDE in (1)
then has the perturbation kernel defined below, which allows one to
sample st directly given s0

p0t(st|s0) = NC(δts0, σ(t)
2I), (5)

where δt = e−γt and the variance term is given by

σ(t)2 =
σ2

min

(
(σmax/σmin)

2t − δt
2
)
log(σmax/σmin)

γ + log(σmax/σmin)
. (6)

To learn the NN parameters θ, a weighted Fisher divergence [15] be-
tween the true and approximated score is solved, which, after some
mathematical manipulation, leads to the following training objec-
tive [11]

θ∗ = argmin
θ

Et,s,ζ,st|s

[
∥Sθ(st, t) +

ζ

σ(t)
∥22
]
, (7)

where ζ ∼ NC(0, I), i.e., complex-valued Gaussian noise.

3.2. Diffusion-based unsupervised speech enhancement

We now describe the unsupervised SE framework based on diffusion-
based generative models. The prior clean speech distribution
p = p(s) is unknown, but can be obtained by training a diffu-
sion model as described in Section 3.1, yielding an implicit prior, as
opposed to the explicit VAE-based speech prior modelling frame-
work. This implicit diffusion-based speech prior only allows for
iterative sampling, without an explicit density form. As such, the
SE procedure adopted in VAE-based modelling cannot directly be
used for diffusion-based learnt speech priors. Assuming the same
observation model as before, i.e., x = s + n, and NMF-based
likelihood parameterisation, we here propose to sample from the
following intractable posterior distribution to estimate the clean
speech s directly

pϕ(s|x) ∝ pϕ(x|s)pθ∗(s), (8)

where θ∗ denotes the pretrained, and thus fixed, diffusion model’s
parameters. We model the noise by n ∼ NC(0, diag(vec(WH)))
where W, H are low-rank matrices with non-negative entries and
rank r and vec(WH) denotes the vectorised form of WH. The
likelihood pϕ(x|s) then writes as pϕ(x|s) = NC(s, diag(vϕ)),
where vϕ = vec(WH). Learning the NMF parameters, i.e.,
ϕ = {W,H}, is done by solving

max
ϕ

Epϕ(s|x) {log pϕ(x|s)} . (9)

An overview of the proposed Unsupervised Diffusion-Based Speech
Enhancement (UDiffSE) approach is provided in Algorithm 1. The
following sections detail the E-step and M-step.



Algorithm 1 UDiffSE

1: ϕ0 = {W0,H0}
2: for k = 1, . . . ,K do
3: ŝ ∼ pϕk−1(s|x) ▷ (E-Step)
4: ϕk ← argmaxϕ log pϕ(x|ŝ) ▷ (M-Step)
5: end for
6: return ŝ

3.2.1. E-Step

Given a current estimate of ϕ, the E-step (posterior sampling) en-
tails the generation of speech samples from the posterior distribution
pϕ(s|x) to approximate the expectation in (9). This is done via the
construction of a stochastic process {st|x}t∈[0,1] by conditioning
the original process {st}t∈[0,1] on the observation x to obtain an es-
timate ŝ ∼ pϕ(s|x). To this end, we modify the reverse SDE (2) as
follows

dst =
[
f(st)dt− g(t)2∇st log pt(st|x)

]
dt+ g(t)dw̄

=
[
f(st)dt− g(t)2(∇st log pϕ(x|st)+∇st log pt(st))

]
dt

+ g(t)dw̄ (10)

where again the score function can be approximated by Sθ∗(st, t).
However, the conditional score function∇st log pϕ(x|st) is, in fact,
intractable to compute in closed form, due to its dependence on time.
That is,

pϕ(x|st) =
∫

pϕ(x|s0)pt0(s0|st)ds0, (11)

where pt0(s0|st) ∝ p0t(st|s0)p(s0) is intractable. As an approx-
imation, we follow [16] and assume an uninformative prior p(s0),
which, along with (5), results in

p̃t0(s0|st) = NC

(st
δt
,
σ(t)2

δ2t
I
)
. (12)

Plugging this approximation in (11) gives us the following noise-
perturbed pseudo-likelihood

p̃ϕ(x|st) ∼ NC

(st
δt
,
σ(t)2

δ2t
I+ diag(vϕ)

)
. (13)

The conditional reverse process is then approximated as

dst =
[
f(st)dt− g(t)2Sθ∗(st, t)

]
dt+ g(t)dw̄

−g(t)2∇st log p̃ϕ(x|st)dt.
(14)

This is exactly the unconditional reverse process (2) for sampling
clean speech, plus an additional term which imposes data consis-
tency. We use the change of variables formula and take the gradient
to compute∇st log p̃ϕ(x|st), the noise-perturbed pseudo-likelihood
score, as

∇st log p̃ϕ(x|st) =
1

δ t

[σ(t)2
δ2t

I+ diag(vϕ)
]−1

(
st
δt
− x). (15)

Lastly, we introduce an additional weighting parameter λ to the
pseudo-likelihood as in [16] to balance the effect of the mixture
signal on the estimated sample. We experimentally observed that
performing the full posterior reverse step at each iteration enforces

Algorithm 2 Posterior sampling (E-step) of UDiffSE

Require: x, N, ℓ, λ, r(signal-to-noise ratio)
1: s1 ∼ NC(x, I),∆τ ← 1

N

2: for i = N, . . . , 1 do
3: τ ← i

N

4: ϵτ ← (στ · r)2
5: ζc ∼ NC(0, I) ▷ (Corrector)
6: sτ ← sτ + ϵτSθ∗(sτ , τ) +

√
2ϵτζc

7: ζp ∼ NC(0, I) ▷ (Predictor)
8: sτ ← sτ − fτ∆τ + g2τSθ∗(sτ , τ)∆τ + gτ

√
∆τζp

9: if i ≡ 0 (mod ℓ) then ▷ (Posterior)

10: ∇sτ log p̃ϕ(x|sτ )←
1

δτ

[σ2
τ

δ2τ
I+ diag(vϕ)

]−1

(
sτ
δτ
−x)

11: sτ ← sτ + λg2τ∇sτ log p̃ϕ(x|sτ )∆τ
12: end if
13: end for
14: return ŝ = s0

strongly the data consistency condition, causing the sample to con-
verge to the mixture signal. To prevent this, we only perform the
posterior step every ℓ iterations. We solve the reverse SDE using
a PC sampler [7] - a numeric sampler consisting of a discretisation
of (2) - the predictor - followed by a Langevin sampling step - the
corrector - to ‘correct‘ the marginal at time t. The overall E-step is
summarised in Algorithm 2. The variable τ denotes discrete time-
step in [0, 1]. For simplicity, we employ the shorthand στ , fτ , gτ for
σ(τ), f(τ), g(τ), respectively.

3.2.2. M-Step

Having obtained a clean speech estimate ŝ in the E-step, we now
consider updating the noise parameters ϕ = {W,H} via (9), re-
placing the expectation with a Monte-Carlo estimate as follows:

ϕ← argmax
{W,H}≥0

log pϕ(x|ŝ)

= argmin
{W,H}≥0

∑
i

(x− ŝ)∗i (x− ŝ)i
vϕ(i)

+ log(vϕ(i)), (16)

where (·)∗ denotes the conjugate operation. The above problem can
be solved using a variety of algorithms, e.g., the multiplicative up-
date rules [17, 18].

4. EXPERIMENTS

In this section, we provide a performance evaluation of our pro-
posed UDiffSE framework as compared against an unsupervised
speech enhancement approach based on recurrent VAE (RVAE)1 [3,
14], as well as a state-of-the-art diffusion-based supervised SE
method, called score-based generative model for speech enhance-
ment (SGMSE+)2 [11].
Evaluation Metrics. To measure the quality of the enhanced speech
signals, we use standard instrumental evaluation metrics, including
the scale-invariant signal-to-distortion ratio (SI-SDR) in dB [19], the
extended short-time objective intelligibility (ESTOI) measure [20]
ranging in [0, 1], and the perceptual evaluation of speech qual-
ity (PESQ) score [21] ranging in [−0.5, 4.5]. We also use the

1https://github.com/XiaoyuBIE1994/DVAE_SE/
2https://github.com/sp-uhh/sgmse

https://github.com/XiaoyuBIE1994/DVAE_SE/
https://github.com/sp-uhh/sgmse


Table 1: Speech enhancement results under both matched and mismatched conditions. ‘S’: supervised, ‘U’: unsupervised. Bold and italicised
indicate the best and second best performances, respectively.

Method Type SI-SDR (dB) PESQ ESTOI SIG-MOS BAK-MOS OVR-MOS

Input (WSJ0-QUT) - -2.60 ± 0.17 1.83 ± 0.02 0.50 ± 0.01 4.04 ± 0.01 2.93 ± 0.02 3.13 ± 0.01
RVAE [3, 14] U 4.39 ± 0.21 2.20 ± 0.02 0.59 ± 0.01 3.88 ± 0.02 3.32 ± 0.02 3.13 ± 0.02
UDiffSE (Ours) U 4.80 ± 0.23 2.21 ± 0.02 0.63 ± 0.01 4.33 ± 0.01 3.74 ± 0.02 3.74 ± 0.02
SGMSE+ [11] S 9.41 ± 0.18 2.66 ± 0.02 0.77 ± 0.01 4.48 ± 0.01 4.51 ± 0.01 4.19 ± 0.01
Input (TCD-TIMIT) - -8.74 ± 0.29 1.84 ± 0.02 0.35 ± 0.01 3.52 ± 0.02 2.22 ± 0.03 2.68 ± 0.01
RVAE [3, 14] U 1.44 ± 0.31 2.02 ± 0.02 0.35 ± 0.01 3.08 ± 0.03 3.18 ± 0.02 2.61 ± 0.02
UDiffSE (Ours) U 0.37 ± 0.25 2.01 ± 0.02 0.41 ± 0.01 3.91 ± 0.01 2.88 ± 0.03 3.08 ± 0.02
SGMSE+ [11] S -3.97 ± 0.41 2.04 ± 0.03 0.38 ± 0.01 3.79 ± 0.02 3.43 ± 0.02 3.13 ± 0.02

DNS-MOS [22], a non-intrusive speech quality metric, which pro-
vides scores for the speech quality (SIG), background noise quality
(BAK), and overall quality (OVRL) of speech. For all the metrics,
higher values indicate improved performance.
Datasets. To learn the clean speech prior model, we train on the
‘si tr s‘ subset of the Wall Street Journal (WSJ) corpus [23], which
amounts to roughly 25 hours of data. The STFT is computed using
a window size of 510, a hop-length of 128 (≈ 75% overlap), and a
Hann window, which gives F = 256 frequency bins. All signals
have a sampling rate of 16 kHz. To ensure similarity across sam-
ples of different lengths during training, subsamples are randomly
selected from STFT data so that we get T = 256 time frames with
start and end positions randomly generated.

For performance evaluation, we use the WSJ0-QUT dataset cre-
ated by [14], comprising 651 synthetic mixtures (about 1.5 hours of
noisy speech data) which uses clean speech signals from the ‘si et
05‘ subset of WSJ dataset and noise signals from the QUT-NOISE
corpus [24]. These include Café, Home, Street, and Car and have
SNR values of −5 dB, 0 dB, and 5 dB. We also evaluate generalisa-
tion capability of different methods in mismatched conditions by us-
ing pre-computed noisy versions of the TCD-TIMIT data presented
in [25]. This set contains noise types Living Room (from the second
CHiME challenge [26]), White, Car, and Babble (from the RSG-10
corpus [27]) with SNR values of −5 dB, 0 dB, and 5 dB and. This
yields 540 test speech signals (or approximately 45 minutes).
Stochastic Differential Equation. The SDE in (4) has parameter
values γ = 1.5, σmin = 0.05, σmax = 0.5. To avoid instabilities
around 0, we adopt standard practice and set a minimum process
time with tmin = 0.03.
Models architecture. We adapt the SGMSE+ architecture devel-
oped in [10], which is based on a multi-resolution U-Net structure,
by removing their x term and adapting the number of channels.
RVAE consists of an encoder-decoder architecture composing bidi-
rectional long short-term memory (BLSTM) networks. For both
RVAE and SGMSE+, we use the pretrained models that are avail-
able in their associated public code repositories.
Training setup. We train the score model Sθ∗ for 220 epochs using
an Adam optimiser with a learning rate of 0.0001 and a batch size
of 16. Our loss is an exponential moving average of the network’s
weights, initialised with a decay of 0.999.
EM settings. The reverse process in (14) is solved using a PC sam-
pler with step size ϵτ := (στ/2)

2, i.e., r = 0.5. The number of
reverse sampling steps is set to N = 30. The posterior update step
is performed every ℓ = 2 steps, and the NMF matrices possess a rank
of 4. For each sample, we perform 5 EM iterations. We observe that
performing the same denoising procedure over b samples in parallel

and then averaging the result yields much better performance; we
thus set the batch size to b = 4. The weighting parameter λ is set
to 1.5. These parameter choices are motivated by an extensive set of
experimental studies provided in the supplementary material.
Results. We report our SE results in Table 1. Competing methods
are evaluated in the matched and mismatched cases. Inspecting the
results, we can make a number of conclusions: As may be expected,
the supervised framework outperforms its unsupervised counterpart
in the matched case, but at the cost of utilising labelled data. Our
UDiffSE framework outperforms the alternative unsupervised RVAE
on almost all metrics under both matched and mismatched condi-
tions. In particular, it achieves much higher ESTOI, SIG-MOS, and
OVR-MOS scores than RVAE, which is more noticeable in the mis-
matched condition.

Furthermore, the proposed UDiffSE method outperforms the su-
pervised SGMSE+ framework for both the ESTOI and SIG-MOS
metrics in the mismatched condition, with a comparable OVR-MOS
score. While all three frameworks have very similar PESQ results
in the mismatched case, the unsupervised methods significantly out-
perform SGMSE+ in terms of SI-SDR (by more than 4 dB). The
performance of UDiffSE on the TCD-TIMIT dataset showcases its
capacity to generalise to unseen data, which could possibly imply
that it has learnt a good representation of general clean speech as the
underlying prior. Supplementary material, including audio samples,
is available online. 3

5. CONCLUSION

In this paper, we introduce UDiffSE, an unsupervised generative-
based framework to solve the SE task by learning an implicit prior
distribution over clean speech data. We do this by defining a con-
tinuous diffusion process in the STFT domain in the form of a con-
ditional SDE, and imposing an NMF-based parameterised additive
noise model. An EM approach is developed to simultaneously gen-
erate clean speech and learn the noise parameters. An approxima-
tion of the likelihood term in the E-step then yields a tractable pos-
terior sampling procedure. This method outperforms an unsuper-
vised VAE-based approach to SE for almost all metrics in matched
and mismatched test conditions, while showcasing better generalisa-
tion performance than a state-of-the-art diffusion-based supervised
method. UDiffSE does, however, have the disadvantage of being
time-consuming, which originates from the complexity of the re-
verse diffusion process. Future works include speeding up the re-
verse process, utilising the recent advancements in diffusion-based
image generation, and developing more efficient noise models.

3https://team.inria.fr/multispeech/demos/udiffse/

https://team.inria.fr/multispeech/demos/udiffse/
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