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POSTERIOR SAMPLING ALGORITHMS FOR UNSUPERVISED SPEECH ENHANCEMENT WITH
RECURRENT VARIATIONAL AUTOENCODER

Mostafa Sadeghi, Romain Serizel

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

ABSTRACT

In this paper, we address the unsupervised speech enhancement
problem based on recurrent variational autoencoder (RVAE). This
approach offers promising generalization performance over the su-
pervised counterpart. Nevertheless, the involved iterative variational
expectation-maximization (VEM) process at test time, which relies
on a variational inference method, results in high computational
complexity. To tackle this issue, we present efficient sampling tech-
niques based on Langevin dynamics and Metropolis-Hasting algo-
rithms, adapted to the EM-based speech enhancement with RVAE.
By directly sampling from the intractable posterior distribution
within the EM process, we circumvent the intricacies of variational
inference. We conduct a series of experiments, comparing the pro-
posed methods with VEM and a state-of-the-art supervised speech
enhancement approach based on diffusion models. The results re-
veal that our sampling-based algorithms significantly outperform
VEM, not only in terms of computational efficiency but also in over-
all performance. Furthermore, when compared to the supervised
baseline, our methods showcase robust generalization performance
in mismatched test conditions.

Index Terms— Unsupervised speech enhancement, deep gen-
erative model, variational autoencoder, posterior sampling.

1. INTRODUCTION

Speech enhancement is a fundamental signal processing tech-
nique, aiming to improve the quality and intelligibility of a noisy
speech signal corrupted by acoustic noise [1]. Over the past
few years, and with the unprecedented success of deep learning,
speech enhancement approaches have shifted from traditional sta-
tistical methods to data-driven approaches based on deep neu-
ral networks (DNNs) [2–6]. Predominantly, current DNN-based
speech enhancement techniques adopt a supervised (discriminative)
paradigm, wherein a DNN is trained to map noisy speech inputs
to their corresponding clean counterparts, leading to state-of-the-
art performance. However, a notable challenge pervasive in these
methods concerns generalization to test conditions not encountered
during training, such as distinct noise types and noise levels that
deviate from training conditions.

In contrast, unsupervised speech enhancement methods based
on deep generative models do not learn noise characteristics during
the training process [7–10]. Specifically, a deep generative model,
most commonly based on the variational auto-encoder (VAE) [11],

This work was supported by the French National Research Agency (ANR)
under the project REAVISE (ANR-22-CE23-0026-01). Experiments presented in
this paper were carried out using the Grid’5000 testbed, supported by a scien-
tific interest group hosted by Inria, and including CNRS, RENATER, and several
universities as well as other organizations (see https://www.grid5000.fr).

is trained solely on clean speech signals. This trained model then
serves as a prior distribution for estimating clean speech from noisy
input using an expectation-maximization (EM) approach. This gives
them a generalization advantage over discriminative approaches.
However, unsupervised methods remain significantly less explored
than their supervised counterparts and suffer from some challenges,
including their notably high computational complexity. This com-
plexity originates from the iterative EM process during inference,
which requires sampling from an intractable posterior distribution.
For instance, the current state-of-the-art method for unsupervised
speech enhancement relies on recurrent VAE (RVAE) [8, 12], as
a dynamical and more efficient version of the standard VAE. This
approach adopts a variational EM (VEM) strategy, involving the
fine-tuning of the trained encoder at each EM iteration on the input
noisy speech. Its computational complexity thus grows with the
complexity (number of parameters) of the encoder.

To address this issue, we propose alternative, more efficient pos-
terior sampling-based methods for speech enhancement with RVAE.
The first approach extends the Langevin dynamics EM (LDEM)
method for standard, non-dynamical VAE presented in [13] to
RVAE. This technique involves sampling from the intractable poste-
rior using gradient descent steps combined with Gaussian noise in-
jection. Additionally, we develop a Metropolis-Hastings (MH) sam-
pling technique [14], relying on a proposal and acceptance/rejection
mechanism, to generate a sequence of samples. Lastly, a Metropolis-
adjusted Langevin algorithm (MALA) [15] is proposed, combining
the strengths of both LDEM and MH methods. We assess the effec-
tiveness of these algorithms for RVAE-based speech enhancement
by comparing them to the VEM method and a state-of-the-art super-
vised speech enhancement approach based on diffusion models [4],
in both matched and mismatched test conditions. The results demon-
strate that our proposed speech enhancement algorithms outperform
VEM significantly in terms of performance and computational
efficiency. Furthermore, they exhibit more robust generalization
performance when compared to the supervised baseline method.

The paper is organized as follows: In Section 2, we present an
overview of unsupervised speech enhancement based on RVAE. Sec-
tion 3 introduces the proposed posterior sampling methods. Our ex-
perimental results are detailed in Section 4. Lastly, Section 5 pro-
vides some conclusions.

2. BACKGROUND

2.1. RVAE as a deep speech prior

We denote by s ≜ s1:T = {s1, . . . , sT } a sequence of clean speech
time-frequency representations computed using short-time Fourier
transform (STFT), where st = [sft]

F
f=1 ∈ CF . RVAE [12], as a la-

tent variable-based deep generative model, considers the following



generative model for the speech time frames s:

pθ(s, z) =

T∏
t=1

pθ(st|z)p(zt) (1)

where z = {z1, . . . , zT }, zt ∈ RL (L ≪ F ), are low-dimensional
latent variables associated with s. Moreover,

pθ(st|z) = Nc(0, diag(vθ,t(z))) (2)

is a circularly-symmetric complex Gaussian distribution, with a di-
agonal covariance matrix whose entries, given by vθ,t(z), are mod-
eled by a recurrent neural network (RNN), called decoder. Here,
vθ,t(z) refers to the output at time frame t of the RNN with z as the
input. This dynamical modeling makes RVAE more efficient than the
standard VAE. Similar to VAE, the prior p(zt) is set to a standard
Gaussian distribution.

Training the generative model (1) involves learning the RNN
parameters θ following an EM procedure. The intractable posterior
pθ(z|s) is approximated with a parametric Gaussian distribution as
follows

qϕ(z|s) =
T∏
t=1

qϕ(zt|z1:t−1, st:T ), (3)

where similarly as in (2), the mean and variance are modeled via an
RNN, called encoder, with parameters denoted ϕ. The encoder and
decoder parameters, i.e., {θ, ϕ}, are then jointly learned by optimiz-
ing an evidence lower-bound [11].

2.2. Variational EM for speech enhancement

The observation model for speech enhancement is assumed to be
xt = st + bt, with bt corresponding to noise. As a statistical
model for clean speech st, the pretrained RVAE model, i.e., pθ(s, z)
is used. Moreover, noise is modeled based on a non-negative matrix
factorization (NMF) model [7], where a circularly symmetric Gaus-
sian form pψ(bt) ∼ Nc(0, diag([WH]t)) is considered. The non-
negative matrices W,H form the noise parameters ψ to be learned
from x. This is done following an EM approach, that is

ψ∗ = argmax
ψ

Epψ(z|x) {log pψ(x, z)} , (4)

where pψ(x, z) =
∏
t pψ(xt|z)p(zt), with likelihood computed as

pψ(xt|z) = Nc(0, diag(vθ,t(z) + [WH]t)) [12]. Here, the poste-
rior pψ(z|x) in (4), needed for the E-step, is intractable to compute.
The variational EM (VEM) approach proposed in [12] fine-tunes the
pretrained encoder qϕ(z|s) on x at each E-step, to serve as an ap-
proximation of pψ(z|x). This approach aligns with the principles of
standard variational inference methods. Then, at the M-step, using
latent variables sampled from the approximate posterior, the NMF
parameters are updated by optimizing (4). Once the EM steps con-
verge, the speech signal is estimated as ŝ = Epψ∗ (s|x) {s}.

3. POSTERIOR SAMPLING ALGORITHMS

In this section, we present our EM-based speech enhancement
frameworks, utilizing RVAE as a deep speech prior. These frame-
works share a common structure but vary in the E-step, where each
employs a distinct strategy to draw samples from the intractable
posterior pψ(z|x). We provide a concise summary of the overall

Algorithm 1 EM-based speech enhancement

1: Inputs: x = {xt}Tt=1 (noisy STFT data),H (hyperparameters).
2: Initialize: z = {zt}Tt=1, ψ ={W, H}.
3: for j = 1, · · · , J do
4: E-step: z← Samplerψ(z,H)
5: M-step: ψ ← argmaxψ log pψ(x|z)
6: end for
7: Clean speech estimation: ŝ =

{
vθ,t(z)

vθ,t(z)+[WH]t
⊙ xt

}T
t=1

speech enhancement process in Algorithm 1. Specifically, the first
approach extends the LDEM method, as proposed in [13], to RVAE.
The second approach utilizes the Metropolis-Hastings sampling al-
gorithm, while the third algorithm is a Metropolis-adjusted version
of LDEM.

3.1. Langevin dynamics (LD)

In the conventional VAE-based speech enhancement method de-
scribed in [13], the process of sampling from the posterior distribu-
tion is carried out independently for each latent variable. To capture
temporal dependencies, a total variation (TV) regularization term is
introduced. However, in the context of RVAE, latent variables are
naturally interconnected through an RNN model, making the TV
regularization term redundant.

Langevin dynamics enables the generation of a sequence of sam-
ples from the posterior distribution pψ(z|x) solely using its score
function, defined as follows:

fψ(z) = ∇z log pψ(z|x)

= ∇z

(
log pψ(x|z) + log p(z)

)
= ∇z

( T∑
t=1

log pψ(xt|z) + log p(zt)
)
. (5)

In contrast to VAE, this score function cannot be decomposed over
individual latent variables, meaning that fψ(z) ̸=

∑
t fψ(zt). Con-

sequently, each zt must be sampled individually, akin to the sequen-
tial Gibbs sampling procedure [14]. This sequential approach would
significantly increase complexity. Instead, we adopt a parallel sam-
pling strategy, wherein all latent variables are sampled simultane-
ously. Furthermore, following the methodology employed in LDEM
for VAE, we generate multiple samples for each latent variable to
obtain a more robust and efficient approximation of the expectation
in (4). Therefore, starting from z = (z1, · · · , zT ), we initially draw
M distinct samples (states) for each latent variable zt, denoted as
z̄(0) =

{
z
(0)
t,i

}
t,i

, with t = 1, . . . T and i = 1, . . .M , using a ran-

dom walk approach by sampling from the following proposal distri-
bution:

z
(0)
t,i |zt ∼ N (zt, σ

2I), ∀t, i (6)

or z(0)t,i = zt + σϵt,i, where ϵt,i ∼ N (0, I) and σ2 > 0. The next
states are produced by sampling from the following distribution:

z
(k)
t,i |z̄

(k−1) ∼ N (z
(k−1)
t,i +

η

2
fψ(z̄

(k−1)), ηI), (7)

or, equivalently

z
(k)
t,i = z

(k−1)
t,i +

η

2
fψ(z̄

(k−1)) +
√
ηζt,i, (8)



Algorithm 2 LD sampler

1: Inputs: z̄(0) =
{
z
(0)
t,i

}
t,i

,H (hyperparameters).

2: for k = 1, · · · ,K do
3: ζ =

{
ζt,i

}
t,i

, with ζt,i ∼ N (0, I)

4: z̄(k) = z̄(k−1) + η
2
fψ(z̄

(k−1)) +
√
ηζ,

5: end for
6: Output: z̄(K) =

{
z
(K)
t,i

}
t,i

Algorithm 3 MH sampler

1: Require: z(0) =
{
z
(0)
t

}
t
,H (hyperparameters).

2: for k = 1, · · · ,K do
3: ζ = {ζt}t, with ζt ∼ N (0, I)

4: z̃(k) = z(k−1) +
√
ηζ,

5: Accept z̃(k)t (∀t) according to (10)
6: end for
7: Output: z̄ =

{
z(k)

}
k>kburn-in

Algorithm 4 MALA sampler

1: Require: z(0) =
{
z
(0)
t

}
t
,H (hyperparameters).

2: for k = 1, · · · ,K do
3: ζ = {ζt}t, with ζt ∼ N (0, I)

4: z̃(k) = z(k−1) + η
2
fψ(z

(k−1)) +
√
ηζ,

5: Accept z̃(k)t (∀t) according to (12)
6: end for
7: Output: z̄ =

{
z(k)

}
k>kburn-in

where ζt,i ∼ N (0, I), and η > 0 is a step size. The added noise in-
troduces stochasticity, which enhances exploration within the high-
density regions of the posterior. The generated samples converge to
the true posterior distribution under some regularity conditions [16].
The LD sampler is summarized in Algorithm 2.

3.2. Metropolis-Hastings (MH)

Metropolis-Hastings (MH) [17] is a Markov chain Monte Carlo
(MCMC) sampling technique for generating a sequence of samples
from a probability distribution. It begins with initial states and it-
eratively proposes new states using a typically Gaussian proposal
distribution. Candidate states are accepted or rejected based on
defined probabilities.

For RVAE, similarly as done in the LD sampler, the MH algo-
rithm generates samples for all the latent variables in parallel. More
precisely, starting from some initial states z(0) =

{
z
(0)
1 , · · · , z(0)T

}
,

at the k-th iteration, a sequence of candidate states, denoted z̃(k), are
sampled from the following proposal distribution

z̃
(k)
t |z

(k−1)
t ∼ N (z

(k−1)
t , σ2I), ∀t. (9)

Each candidate state z̃
(k)
t in the sequence z̃(k) is then accepted ac-

cording to the following probability:

αt = min
(
1,

pψ(xt|z̃(k))p(z̃(k)t )

pψ(xt|z(k−1))p(z
(k−1)
t )

)
(10)

Let ut be drawn from the continuous uniform distribution over [0, 1].
Then, if ut ≤ αt, the proposal is accepted and z

(k)
t ← z̃

(k)
t . Other-

wise, the current state is retained z
(k)
t ← z

(k−1)
t . A key observation

here is that the acceptance ratios, α1, . . . , αT , are computed in par-
allel, with the same current likelihood pϕ(x|z(k−1)) for all the sam-
ples. Once a sufficient number of iterations is performed, the initial
samples corresponding to the so-called burn-in period are discarded.
The overall MH sampler is summarized in Algorithm 3.

3.3. Metropolis-Adjusted Langevin Algorithm (MALA)

The Metropolis-Adjusted Langevin Algorithm (MALA) [15] aims
at combining the MH and LD mechanisms to achieve a more effi-
cient exploration of the target distribution. MALA follows the same
steps as MH with the difference that the candidate states are gener-
ated using a proposal distribution guided by LD. More precisely, the
proposal distribution takes a similar form as (7), except for the fact
that here we do not generate multiple samples per latent variable:

z̃
(k)
t |z

(k−1)
t ∼ N (z

(k−1)
t +

η

2
fψ(z

(k−1)
t ), ηI), (11)

Nevertheless, in contrast to LD sampler, which always updates the
states according to the update rule (7), MALA considers the updated
states as candidates, similar to MH, and accepts them according to
the following probability

αt = min
(
1,

pψ(xt|z̃(k))p(z̃(k)t )q(z(k)|z̃(k))
pψ(xt|z(k−1))p(z

(k−1)
t )q(z̃(k)|z(k))

)
(12)

where
q(u|v) ∝ exp

(
− 1

2η
∥u− v − η

2
f(v)∥2

)
(13)

is the transition probability density from v to u. Unlike the ba-
sic MH approach, MALA often suggests moves towards regions
of higher probability, thus increasing the probability of their accep-
tance. The overall MALA sampler is described in Algorithm 4.

4. EXPERIMENTS

4.1. Baselines

This section presents and discusses the speech enhancement results
of the proposed EM-based approaches, i.e., LDEM, MHEM, and
MALAEM, with RVAE [12] as the generative model. We compare
against the VEM method1 [8, 12], and SGMSE+2 [4], as a state-of-
the-art diffusion-based speech enhancement method.

4.2. Evaluation metrics

To evaluate the speech enhancement performance, we use standard
metrics, including the extended short-time objective intelligibility
(ESTOI) measure [18], ranging in [0, 1], the perceptual evaluation
of speech quality (PESQ) metric [19], ranging in [−0.5, 4.5], and
the scale-invariant signal-to-distortion ratio (SI-SDR) metric [20] in
dB. For all these metrics, the higher the better. Moreover, as a rough
measure of the computational complexity of different methods, we
report the average real-time factor (RTF), which is defined as the
time (in seconds) required to enhance one second of speech sig-
nal. Our experiments were conducted using a machine with an AMD
EPYC 7351 CPU and an NVIDIA Tesla T4 GPU.

1https://github.com/XiaoyuBIE1994/DVAE_SE/
2https://github.com/sp-uhh/sgmse

https://github.com/XiaoyuBIE1994/DVAE_SE/
https://github.com/sp-uhh/sgmse


4.3. Model architectures

We utilized pretrained models from the respective code reposito-
ries for both RVAE and SGMSE+. In the RVAE architecture, the
encoder and decoder employ bidirectional long short-term memory
(BLSTM) networks with an internal state dimension of 128, and the
latent space is of dimension L = 16. The input data consists of
STFT power spectrograms with a dimension of F = 513. This
model was trained on the training subset of the Wall Street Journal
(WSJ0) corpus. The architecture of SGMSE+ is detailed in [4], and
its core network is based on the Noise Conditional Score Network
(NCSN++) [21], adapted for processing complex-valued STFT fea-
tures. The overall model was trained using the same clean training
utterances as RVAE, combined with noise signals from the CHiME3
dataset [22]. The input data for SGMSE+ comprises STFT repre-
sentations with F = 256, and training was conducted on sequences
with a length of T = 256, as opposed to T = 50 used for RVAE.

4.4. Parameter settings

For the inference parameters of SGMSE+, we adhered to their de-
fault values. In the case of RVAE-based methods, we conducted a
total of J = 100 EM iterations. The learning rate for VEM, with the
Adam optimizer, as well as for LDEM and MALAEM (denoted as
η), was consistently set at 0.005. For LDEM and VEM, we empir-
ically selected K = 1, while for MHEM and MALAEM, we opted
for K = 10, and included a burn-in period of kburn-in = 5. Addi-
tionally, we set σ2 = 0.02 in both (6) and (9).

4.5. Evaluation datasets

For performance evaluation, we used the test set from of the WSJ0-
QUT corpus [12], created by mixing clean speech signals from
WSJ0 (distinct speakers from training) with noise signals from the
QUT-NOISE corpus [23]. It includes Café, Home, Street, and Car
noise types, with signal-to-noise ratio (SNR) values of −5 dB,
0 dB, and 5 dB. The test set amounts to 651 noisy speech signals
with a total duration of 1.5 hours. Furthermore, we evaluated the
generalization performance of various methods under mismatched
conditions by incorporating pre-computed noisy versions of the
TCD-TIMIT data as introduced in [24]. The noisy test set that we
used includes Living Room (LR) (from the second CHiME chal-
lenge [25]), White, Car, and Babble (from the RSG-10 corpus [26]),
with SNR3 values of −5 dB, 0 dB, and 5 dB, yielding 540 test
speech signals, with a total duration of about 0.75 hours.

4.6. Results

The average speech enhancement metrics, under both matched
(WSJ0-QUT) and mismatched (TCD-TIMIT) conditions, are pre-
sented in Table 1, with the associated average RTF values reported in
Table 2. From these results, we can make several observations. First
of all, among the RVAE-based algorithms, the proposed posterior
sampling methods outperform VEM with a significant margin. The
performance gap is even more remarkable in the mismatched condi-
tions, which demonstrates that VEM is not as generalizable as our
proposed methods. This could be due to the fact that VEM relies on
fine-tuning the trained encoder on the new data, which might not be
efficient. For instance, in the mismatched condition, MALAEM out-
performs VEM by around 3 dB in SI-SDR, 0.19 in PESQ, and 0.07

3Here, the protocol used to compute SNR is different than the one used in [12].

Table 1: Speech enhancement results under matched (WSJ0-QUT)
and mismatched (TCD-TIMIT) test conditions.

Metric SI-SDR (dB) PESQ ESTOI
Input (WSJ0-QUT) -2.60 ± 0.16 1.83 ± 0.02 0.50 ± 0.01

RVAE

VEM [8] 4.5 ± 0.21 2.21 ± 0.02 0.60 ± 0.01
MHEM 5.15 ± 0.20 2.24 ± 0.02 0.62 ± 0.01
MALAEM 5.52 ± 0.21 2.28 ± 0.02 0.62 ± 0.01
LDEM 5.58 ± 0.20 2.32 ± 0.02 0.63 ±0.01

SGMSE+ [4] 9.41 ± 0.18 2.66 ± 0.02 0.77 ± 0.01

Input (TCD-TIMIT) -8.74 ± 0.29 1.84 ± 0.02 0.35 ± 0.01

RVAE

VEM [8] 1.44 ± 0.30 2.02 ± 0.02 0.35 ± 0.01
MHEM 3.72 ± 0.27 2.12 ± 0.02 0.42 ± 0.01
MALAEM 4.49 ± 0.29 2.21 ± 0.02 0.42 ± 0.01
LDEM 4.18 ± 0.29 2.21 ± 0.02 0.42 ± 0.01

SGMSE+ [4] -3.97 ± 0.41 2.04 ± 0.02 0.38 ± 0.01

Table 2: RTF values (average processing time per 1-sec speech).

VEM [8] MHEM MALAEM LDEM SGMSE+ [4]
12.55 ± 0.01 0.92 ± 0.01 2.49 ± 0.01 0.21 ± 0.01 3.85 ± 0.01

in ESTOI. Furthermore, the LDEM algorithm consistently stands
out with the highest or second-highest scores in all three metrics
under both test conditions. The observation that LDEM outperforms
MALAEM could be because of their different sampling strategies.
That is, LDEM creates multiple parallel sequences of samples at
each E-step, whereas MALAEM has only one sequential sequence
of samples, where the final retained samples are chosen based on a
probabilistic acceptance strategy.

On the other hand, SGMSE+, as the supervised baseline, show-
cases remarkable performance in the matched condition, achieving
much higher speech enhancement metrics than those of the unsuper-
vised RVAE-based methods. Nevertheless, when tested in the mis-
matched condition, the performance of SGMSE+ drops significantly,
under-performing our proposed methods with a large margin. This
confirms the generalization dilemma of supervised methods.

In terms of computational complexity at inference time, all the
proposed methods achieve much smaller RTF values than VEM,
making them more applicable. In particular, the LDEM algorithm
demonstrates a competitive RTF of 0.21 sec, as compared to 12.55
sec for VEM and 3.85 sec for SGMSE+, showcasing its high com-
putational efficiency in enhancing speech signals

5. CONCLUSIONS

In this paper, we present new posterior sampling techniques for EM-
based unsupervised speech enhancement using RVAE. These meth-
ods serve as viable alternatives to the computationally intensive vari-
ational inference-based VEM approach. Our experimental results il-
lustrate the efficiency of the proposed techniques—LDEM, MHEM,
and MALAEM—which not only significantly reduce computational
complexity but also outperform VEM. Notably, the LDEM algo-
rithm demonstrates high efficiency and competitive enhancement
outcomes. In contrast, the supervised baseline, SGMSE+, excels
under matched conditions but faces challenges in mismatched sce-
narios, highlighting generalization limitation of supervised methods.
In summary, our proposed methods offer a promising avenue for ef-
ficient and effective unsupervised speech enhancement.
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