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ABSTRACT

Brain imaging plays a central role in the management of
stroke patients, where the two main modalities are magnetic
resonance imaging and computed tomography from which
automatic segmentation of the lesion is done to help physi-
cians. However current methods are not yet satisfying as they
do not consider the diversity of patients. Curriculum learning
is a method in machine learning that consists in introducing
training examples progressively according to their difficulty.
The objective of this work is to study difficulty metrics to
establish an order within the data for curriculum-based stroke
lesion segmentation. Three difficulty metrics are tested, le-
sion area, image contrast and a metric based on gradient loss,
for two types of segmentation architectures and two imaging
modalities. Although the gradient loss metric is the most
correlated with the performance results, curriculum learn-
ing with image contrast gives equally good results with an
increase in Dice up to 13%.

Index Terms— Curriculum learning, difficulty metric,
segmentation, MRI, CT, stroke.

1. INTRODUCTION

Ischemic stroke is a major cause of acquired disability and
death. Reperfusion therapies are the current standard-of-care
to promote clinical recovery. Brain imaging plays a critical
role in patients management. Computed tomography (CT)
and magnetic resonance imaging (MRI) are the two main
imaging modalities used to establish the diagnosis and spec-
ify the size and location of the lesion. MRI is more expensive,
time consuming and less available than CT but offers images
with better contrast. Having a robust tool to automatically
segment the lesion would save clinicians considerable time
in assessing patient prognosis and response to treatment.
However, this task remains a methodological challenge, as
the existence of the Ischemic Stroke Lesion Segmentation
Challenge (ISLES) [1] illustrates every year. The U-Net ar-
chitecture [2] and its variants are so far the most successful

approaches in the state of the art. If the performances in MRI
are satisfactory (Dice of 0.82 on the last ISLES edition), on
the other hand the results are less convincing in CT and are
still poorly represented in the literature due to the lower con-
trast of the stroke lesion. An explanation of the poor results
is the fact that stroke is often considered like one disease
but actually there is a great diversity of strokes considering
the lesion size, its location, its shape [3] or the delay from
symptoms onset to imaging [4]. Curriculum learning (CL) is
a method that allows to spread out the examples during the
learning process given a difficulty measure. Therefore we
searched metrics that could explain the difficulty of the task
and study the distribution of patients in term of lesion area,
contrast, and gradient loss. To the best of our knowledge it
has never been used for stroke lesion segmentation except for
one approach proposed to ISLES challenge 2017 [5] but on
the basis of synthetic data.

2. RELATED WORK

CL was introduced by analogy with the way humans learns
step by step in progressive and organized tasks. Initially,
vanilla CL [6] was defined as follows: more difficult exam-
ples are added over time based on human-defined criteria.
Then variations were developed, such as anti-CL [7], where
examples are presented from difficult to easy during the train-
ing. Many other methods like self-paced learning (SPL) [8]
were created where the difficulty is not fixed and the order
is not known before the learning: it is fixed according to the
performances of the model. Recently, master-student CL [9]
is widely used in which an auxiliary model learns the best pa-
rameters for the main network. Hence, the key in CL is to
define the difficulty metric of the training examples.

We used vanilla CL model based on difficulty metrics in-
spired by clinical priors that are lesion area —as we work in
2D to expand the training set— and image contrast. We com-
pared them to a well known difficulty metric in deep learning
which is the gradient of the loss as defined in [10].



3. MATERIAL AND METHODS

3.1. Difficulty metrics

To study the heterogeneity of the dataset and understand
which slices would be more complicated to segment, we in-
troduced three difficulty metrics. The first is lesion area based
on FLAIR MRI masks and calculated for each slice thanks to
pixels size referenced in the header of the images.

For the contrast of the lesion, as Gaussian distribution of

FLAIR MRI and CT images have been demonstrated [11],
% where 7, is the mean
value of pixels in healthy tissue of hemisphere of the lesion
(respectively i, in the lesion), and o7 (and o7) the standard
deviation associated. It represents the difference between the
lesion and the healthy tissue according to their intensity tak-
ing into account the homogeneity of intensity in each tissue.
To evaluate the difficulty of slices through gradient de-
scent, we used weights from already trained models (U-Net
and Mask R-CNN introduced in 3.2) on our data to initialize
new models that are retrained with all the slices. We kept the
loss variation induced by each slice at each iteration during
this second training with the idea that a large loss decrease
means that the slice brings more information and is consid-
ered easy [10]. We used models that had already converged
because randomly initialized models would have much larger
loss differences at the beginning of training and the order of
the slices would have a huge impact on the difficulty assess-
ment. The experiment was repeated five times to further mod-
erate the effect of slice order. In addition, this second training
was run over 100 epochs to collect a sufficient number of val-
ues of loss variation per slice and during the whole training
process. For each slice, we averaged the change in loss across
epochs and for each fold, then they were normalized and a fi-
nal score - called gradient difficulty - was calculated per slice.
As seen in Figure 1, the distribution of lesion area is very
uneven: a majority of images show a very small lesion and
are more difficult to segment. As for lesion area, the Fisher
ratio distribution in CT is also monotonic whereas in FLAIR
MRI it is Gaussian, which reveals one of the major discrep-
ancies between the two imaging modalities. The distribution
is also Gaussian for the gradient difficulty. In both imaging
modalities, there is a core group of slices that have a similar
value of gradient difficulty, but some slices stand out from the
rest. These are not necessarily from the same patients in both
modalities but all are from patients with smaller lesions.

we used the Fisher ratio: F' =

3.2. Models

Two different neural networks architectures were studied to
observe whether CL would be more effective. The first one is
the U-Net architecture [2], a multi-scale convolutional neural
network — today the most used in segmentation — used as a
reference method. Probability maps with two classes (back-

ground and lesion) are produced, thresholded at 0.5 to obtain
the final segmentation. The second method performs segmen-
tation in two steps: first object detection with bounding boxes
around the regions of interest, and then segmentation within
the box. There are two main architectures to perform this
type of task: Mask R-CNN [12] and poly-YOLO [13]. The
first one was chosen because the segmentation output is more
accurate since it is not based on bounding polygons.
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Fig. 1: Distribution of difficulty metrics. Top to bottom: le-
sion area, Fisher ratio, gradient difficulty. Left: CT images,
right: FLAIR MRI. Vertical dotted lines represent quantiles
for 6 groups based on the difficulty metrics.

4. EXPERIMENTAL SETUP

4.1. Dataset

We used the single-center HIBISCUS-STROKE cohort [14]
for this study. Inclusion criteria were (1) patients with an-
terior circulation stroke related to proximal intracranial oc-
clusion, (2) diffusion MRI as baseline imaging, (3) patients
treated with thrombectomy, (4) CT imaging 24 hours after in-
clusion, (5) FLAIR MRI 6 days after inclusion from which
the ground truth for both CT and MRI is extracted by an ex-
pert (THC) with a semi-automatic method [15] as the lesion
is more visible and easier to segment manually on it.
Pre-processings were done before training: (1) skull strip-
ping with FSL improved for CT images [16] [17] and HD-
BET [18] for MRI, (2) non linear registration on DWI MRI
as reference frame with ANTs [19], (3) separation of 3D vol-
umes into 2D slices ; only the slices with lesion according to



ground truth are kept, (4) selective horizontal flipping to place
all the lesions in the same hemisphere to establish a prior posi-
tion of the lesion, (5) resizing to 192x192 pixels without crop-
ping, (6) grayscale normalization. Steps 3 and 4 are based on
the assumption that a rough location of the lesion is known
from the preliminary clinical examinations. In the end, 108
patients were included which represents 3887 CT images and
753 MRI slices to be segmented.

4.2. Implementation

The original architecture of U-Net [2] with 5 layers was used
for the experiments with the sum of cross-entropy and Dice
between two classes as loss function. The optimizer is RM-
Sprop [20]. For Mask R-CNN, detectron [21] implementation
was used. The loss of object detection is a smooth L.1-loss and
the one for the segmentation is a sigmoid cross entropy. The
optimizer applied is SGD [20] for both steps of learning. The
ResNet50 [22] weights were used for object detection and ini-
tialized with a model trained with ImageNet [23].
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Fig. 2: Curriculum learning vs. classical implementation:
more difficult data is added to training through the epochs.

For each experiment (two architectures and two modal-
ities), a 5-fold cross-validation is performed: the dataset is
separated into 5 groups of patients, each used once as a vali-
dation set. The training lasts 200 epochs with 12 images per
batch. When applying CL as represented in figure 2, we kept
these parameters but adapted the distribution of images. For
each difficulty metric, the training data is separated into 6
groups. For the first 25 epochs, only one-sixth of the slices
are given for training. The second group is added to the pre-
vious one for the next 25 epochs, and the same process is
applied with epoch gaps of 35, 35, 40, and 40, leading to 200
epochs. A non-uniform distribution of epochs was chosen be-
cause initially the images are easier to learn.

The evaluation is done thanks to the detection rate which
reports the ratio between the number of slices on which a pre-
diction is made via a model on the number of slices with a
lesion according to the ground truth, and two other metrics to
evaluate the quality of the segmentation which are the Dice
score and the Hausdorff distance (HD).

5. RESULTS

5.1. Correlation of performances with difficulty metrics

Prior to CL, we trained the models in a classical manner. The
associated results were used to calculate the gradient diffi-
culty metric with the method detailed in 3.1. We then studied

the performance on each slice considering its difficulty ac-
cording to the three chosen metrics of lesion area, contrast
and gradient difficulty. Table 1 gathers the R? coefficients
between the performances (Dice and HD) of each patient and
the difficulty metric for the two imaging modalities. We hy-
pothesize that performance increases when a slice is easier ac-
cording to the difficulty metric (larger lesion, better contrast,
or higher loss gradient), which means that Dice is higher and
positively correlated with the difficulty metric, whereas HD is
smaller and negatively correlated. The closer the R? is to 1,
respectively -1, the better the correlation and thus the metric
could have an impact when using CL.

area contrast gradient difficulty
CT FLAIR CT FLAIR CT FLAIR
Dice U-Net 042 043 -0.01 0.50  0.30 0.69
R-CNN 043 040 -003 054 033 0.65
HD U-Net 0.14 -0.12 -0.04 -023 -0.20 -0.25
R-CNN 0.08 001 -0.004 -032 -0.24 -0.28

Table 1: R? between performances and difficulty metrics.

Regarding lesion area, the Dice score is positively cor-
related with area with an R? of about 0.4 ; segmentation is
easier for patients with larger lesions. However, this is not
consistent with the fact that HD increases with lesion area for
CT images while we expected it to decrease, this phenomenon
is less marked for FLAIR MRI. This could be related to the
definition of HD, which corresponds to the greater distance
between ground truth and segmentation, so for larger lesions
the probability of being further from ground truth is higher.
While when the contrast increases, the HD decreases and the
Dice score improves. For FLAIR MRI, the R? is 0.52 for
Dice and -0.28 for HD, whereas for CT there is no correlation
(R? of -0.02 for Dice and HD). The distribution of the Fisher
ratio could be one of the reasons: the vast majority of slices
correspond to very small values and this dense region dras-
tically reduces the correlation (figure 1); this difference be-
tween modalities is shown in figure 4. Finally for the gradient
based-difficulty metric (right part of Figure 4), it is more cor-
related with performance than lesion area or contrast, which
can be explained by the fact that the metric is derived from
the machine learning model itself.
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Fig. 3: U-Net training loss curves of contrast based-CL on CT
images with two patients separation strategies: left separation
according to difficulty steps and right separation in quantiles.
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Fig. 5: Segmentation results. Red: true positive, blue: false negative, green: false
positive. Number under each slice is the DSC. Segmentation is better for MRI, CL
increase the performances.

U-Net Mask R-CNN
no CL  CL on contrast CL d??ﬁifﬁ?;em no CL  CL on contrast CL d??ﬁifﬁ?;ent

detection 805 82+3 79+4 75+2 67£10 ** T16 **

CT dice 0.34+£0.04 0.46%0.09 ** 0.47+0.1 **  0.35£0.05 0.41+0.07 * 0.39+0.07
HD 30+4 29+11 30+6 262 2044 *3* 2044 **

detection 97+1 9443 ** 9443 ** 95+2 Q7] ** 98] ki

FLAIR dice 0.66£0.04 0.79+0.02 ***  (0.79+0.02 *** (.59+0.03 0.60+0.03 0.60+0.03

HD 202 1744 * 163 *** 192 20+1 192

Table 2: Results of CL with two difficulty metrics. One-tailed unpaired Mann-Whitney statistical test if a CL method is
significantly different from classical method (*** if p < 0.01, ** if p < 0.05, * if p < 0.08).

5.2. Curriculum learning

Given the previous results, we applied the CL strategy as
explained in 4.2. We decided to divide the patients into 6
quantiles of the same size even if the differences in difficulty
metric between the groups could be very unequal rather than
selecting patients on the basis of homogeneous steps in dif-
ficulty metric. We tested both methods, all results are not
presented here, and the second one did not allow a stable con-
vergence as represented in figure 3 for the CT images.

Since the correlation between HD and lesion area was in-
versely proportional, we decided to eliminate it and focus on
the other two difficulty measures. Gradient difficulty seems
more promising to have an impact in CL because it correlates
well with performance. But we also kept contrast because
it was strongly related to FLAIR MRI. The first gain of CL
is the training time: there are 73600 iterations without CL for
200 epochs and a batch size of 12 while there are about 47000
with CL (depending on the difficulty metric) because the im-
ages are added incrementally. All results are depicted in table
2 and some visualization are given in figure 5.

In all cases, CL allows to have better Dice, the best in-
crease of 0.13 is obtained with U-Net (p = 0.003 with FLAIR
MRI and p = 0.024 with CT images). But for FLAIR MRI
this implies a degradation of the detection rate whereas with
the Mask R-CNN this rate is increased using CL with FLAIR
MRI. This significant improvement, obtained for FLAIR im-

ages, is probably explained by the nature of the distribution of
difficulty metrics for this modality, where groups of patients
can be of similar size and with a homogeneous difference in
difficulty. The two selected difficulty metrics (contrast and
gradient difficulty) produce similar results. From a compu-
tational cost perspective, the contrast-based one is the more
interesting as it does not require additional training and is di-
rectly related to the image properties.

6. CONCLUSION

As all stroke cases cannot be considered equally, we evalu-
ated the difficulty associated with each slice for brain lesion
segmentation according to three difficulty metrics and applied
CL to improve the segmentation results. Considering corre-
lation between performance and difficulty, gradient difficulty
is the best. When we look at segmentation performances both
gradient difficulty-based and contrast-based CL are effective
with a promising increase of quality of segmentation. This
work also provides a broader view of what a good difficulty
metric for CL is and opens perspectives to other clinical ap-
plications than stroke.
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