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Monte Carlo simulation of water diffusion through cardiac tissue models

Introduction

Water diffusion is a complex process inferred from larger scale observations [START_REF] Le Bihan | Diffusion magnetic resonance imaging: What water tells us about biological tissues[END_REF]. Diffusion MRI reveals tissue microarchitecture by tracking the displacements of water molecules [START_REF] Bammer | Basic principles of diffusion-weighted imaging[END_REF]. The "apparent diffusion coefficient" (ADC) is used to describe the diffusion process at the voxel scale [START_REF] Le Bihan | MR imaging of intravoxel incoherent motions: ap-34 plication to diffusion and perfusion in neurologic disorders[END_REF]. A tensor model based on the diffusion anisotropy assesses the principal eigenvector of the diffusion tensor [START_REF] Basser | Estimation of the effective selfdiffusion tensor from the nmr spin echo[END_REF], providing 3D information on the structures of white matter fibers [START_REF] Mori | Diffusion magnetic resonance imaging: its principle and applications[END_REF][START_REF] Lenglet | Statistics on the manifold of multivariate normal distributions: Theory and application to diffusion tensor mri processing[END_REF][START_REF] Assaf | Diffusion tensor imaging (dti)-based white matter mapping in brain research: a review[END_REF] or myocardial fibers [START_REF] Frindel | A graphbased approach for automatic cardiac tractography[END_REF][START_REF] Bernus | Comparison of diffusion tensor imaging by cardiovascular magnetic resonance and gadolinium enhanced 3d image intensity approaches to investigation of structural anisotropy in explanted rat hearts[END_REF]. Additionally, the size and permeability of tissue structures can be accessed based on the three eigenvalues of the diffusion tensor [START_REF] Novikov | Random walks with barriers[END_REF][START_REF] Fieremans | In vivo measurement of membrane permeability and myofiber size in human muscle using time-dependent diffusion tensor imaging and the random permeable barrier model[END_REF][START_REF] Berry | Varying diffusion time to discriminate between simulated skeletal muscle injury models using stimulated echo diffusion tensor imaging[END_REF].

To understand water diffusion in biological tissues, analytical models have been proposed, including simple models with impermeable geometric objects [START_REF] Callaghan | Pulsed-gradient spin-echo nmr for planar, cylindrical, and spherical pores under conditions of wall relaxation[END_REF][START_REF] Codd | Spin echo analysis of restricted diffusion under generalized gradient waveforms: planar, cylindrical, and spherical pores with wall relaxivity[END_REF] and bi-exponential models that decompose the diffusion signal into two components [START_REF] Clark | Water diffusion compartmentation and anisotropy at high b values in the human brain[END_REF][START_REF] Nilsson | On the effects of a varied diffusion time in vivo: is the diffusion in white matter restricted?[END_REF]. To account for membrane permeability, various approaches have been suggested [START_REF] Kärger | Nmr self-diffusion studies in heterogeneous systems[END_REF][START_REF] Szafer | Theoretical model for water diffusion in tissues[END_REF][START_REF] Novikov | Random walks with barriers[END_REF][START_REF] Fieremans | In vivo measurement of membrane permeability and myofiber size in human muscle using time-dependent diffusion tensor imaging and the random permeable barrier model[END_REF], but they are limited in complex tissue systems [START_REF] Balinov | The nmr self-diffusion method applied to restricted diffusion. simulation of echo attenuation from molecules in spheres and between planes[END_REF][START_REF] Callaghan | Pulsed-gradient spin-echo nmr for planar, cylindrical, and spherical pores under conditions of wall relaxation[END_REF][START_REF] Berry | Varying diffusion time to discriminate between simulated skeletal muscle injury models using stimulated echo diffusion tensor imaging[END_REF][START_REF] Fieremans | Monte carlo study of a two-compartment exchange model of diffusion[END_REF][START_REF] Jing | Simulation of water diffusion through a simple virtual cardiac cell model: optimization of monte carlo parameters and observation by simulated mri[END_REF]. Monte Carlo (MC) simulations have been proposed as an alternative approach to simulate water diffusion in complex conditions [START_REF] Brusini | Monte carlo simulations of water exchange through myelin wraps: implications for diffusion mri[END_REF][START_REF] Landman | Complex geometric models of diffusion and relaxation in healthy and damaged white matter[END_REF][START_REF] Nilsson | The importance of axonal undulation in diffusion mr measurements: a monte carlo simulation study[END_REF][START_REF] Hall | Diffusion in hierarchical systems: A simulation study in models of healthy and diseased muscle tissue[END_REF][START_REF] Wang | Multiscale modeling and simulation of the cardiac fiber architecture for dmri[END_REF][START_REF] Rose | Novel insights into in-vivo diffusion tensor car-diovascular magnetic resonance using computational modelling and a histology-based virtual microstructure[END_REF][START_REF] Wang | Connecting macroscopic diffusion metrics of cardiac diffusion tensor imaging and microscopic myocardial structures based on simulation[END_REF] by constructing geometric models of biological tissues and using a MC approach to simulate water molecule movement.

To study cardiac tissue, previous MC simulations revealed that features such as cell shape, size, arrangement, volume fraction, membrane permeability, and diffusivity could influence diffusion [START_REF] Lashgari | Three-dimensional micro-structurally informed in silico myocardium-towards virtual imaging trials in cardiac diffusion weighted mri[END_REF][START_REF] Bates | Monte carlo simulations of diffusion weighted mri in myocardium: validation and sensitivity analysis[END_REF][START_REF] Wang | Multiscale modeling and simulation of the cardiac fiber architecture for dmri[END_REF][START_REF] Rose | Novel insights into in-vivo diffusion tensor car-diovascular magnetic resonance using computational modelling and a histology-based virtual microstructure[END_REF]. However, these simulators are computationally expensive, and simplification of tissue models is common [START_REF] Rafael-Patino | Robust monte-carlo simulations in diffusion-mri: Effect of the substrate complexity and parameter choice on the reproducibility of results[END_REF]. Inappropriate MC simulation parameters can introduce errors, and attempts at optimization have been made for brain tissue models [START_REF] Hall | Convergence and parameter choice for monte-carlo simulations of diffusion mri[END_REF][START_REF] Rafael-Patino | Robust monte-carlo simulations in diffusion-mri: Effect of the substrate complexity and parameter choice on the reproducibility of results[END_REF][START_REF] Hall | Realistic voxel sizes and reduced signal variation in monte-carlo simulation for diffusion MR data synthesis[END_REF], but not for cardiac tissue models.

In this work, we propose four models of cardiac tissue with different degrees of realism. These are then coupled to a multi-scale MC water diffusion simulator in order to propose a ground truth adapted to the observation scale. In Section 2, we review the theory of these two steps as well as the existing state of the art, then in Section 3 and 4 we detail how we create ground truths from the coupling of cardiac tissue models and simulation based on the optimization of MC simulation parameters. Finally, we discuss these results with regard to previous work in Section 5 before the conclusion in Section 6.

Theory

In this section, we present the theory for creating a geometric representation of the cardiac tissue and the MC simulation.

Cardiac tissue

Here we summarize the structural features of cardiac tissue observed in histology and explain how these features are incorporated into a virtual model to create a geometric representation of the tissue.

Histology

Studies in tissue engineering have demonstrated that cardiac tissue is composed of myocyte cells and an intricate extracellular matrix [START_REF] Rienks | Myocardial extracellular matrix: an ever-changing and diverse entity[END_REF], as depicted in Figure 1. A cardiac myocyte has an elongated shape and roughly circular crosssection, with a diameter between 12-20 µm, length between 50-150 µm, and volume between 2.2 × 10 3 -18.8 × 10 3 µm 3 [START_REF] Vliegen | Morphometric quantification of myocyte dimensions validated in normal growing rat hearts and applied to hypertrophic human hearts[END_REF][START_REF] Kilner | Histology of human myocardial laminar microstructure and consideration of its cyclic deformations with respect to interpretation of in vivo cardiac diffusion tensor imaging[END_REF][START_REF] Severs | The cardiac muscle cell[END_REF]. The cytoplasm of myocytes contains 78% water, of which 8% is mobile water. Given that the estimated volume occupied by a single water molecule is about 3.3×10 -11 µm 3 [START_REF] Iaizzo | Handbook of cardiac anatomy, physiology, and devices[END_REF], the density of mobile water molecules in the cytoplasm is approximately 1.89 × 10 9 per µm 3 . The myocyte membrane has a permeability of P = 0.008-0.022 µm/ms [START_REF] Ogura | Osmometric and watertransporting properties of guinea pig cardiac myocytes[END_REF]. The diffusivity of water is lower in the intracellular space (ICS) with D ICS ≈ 1 µm 2 /ms than in the extracellular space (ECS) where D ECS ≈ 2.5 µm 2 /ms [START_REF] Seland | Determination of water compartments in rat myocardium using combined d-t1 and t1-t2 experiments[END_REF]. The cellular volume fraction, R ICS , varies between 50% and 86% [START_REF] Mayhew | Stereological estimates of nuclear number in human ventricular cardiomyocytes before and after birth obtained using physical disectors[END_REF] The microstructure of cardiac tissue is highly organized, despite its complexity: myocytes are arranged in laminar microstructures, with 3-5 myocytes forming an aggregate [START_REF] Legrice | Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog[END_REF][START_REF] Axel | Probing dynamic myocardial microstructure with cardiac magnetic resonance diffusion tensor imaging[END_REF][START_REF] Pinali | Three-dimensional structure of the inter-calated disc reveals plicate domain and gap junction remodeling in heart failure[END_REF]. These aggregates have a coherent alignment, with a local average orientation that varies from -90 • at the epicardial surface to 0 • at the middle wall, and finally to 90 • at the endocardial surface [START_REF] Hales | Histo-anatomical structure of the living isolated rat heart in two contraction states assessed by diffusion tensor mri[END_REF]. The rate of change of orientation is approximately 29 ± 5 • /mm in normal myocardium and 42 ± 14 • /mm in infarcted myocardium zones [START_REF] Chen | Remodeling of cardiac fiber structure after infarction in rats quantified with diffusion tensor mri[END_REF].

Virtual tissue models

In simulations, myocytes are often represented as elongated cylinders [START_REF] Wang | Multiscale modeling and simulation of the cardiac fiber architecture for dmri[END_REF][START_REF] Wang | Connecting macroscopic diffusion metrics of cardiac diffusion tensor imaging and microscopic myocardial structures based on simulation[END_REF][START_REF] Jing | Simulation of water diffusion through a simple virtual cardiac cell model: optimization of monte carlo parameters and observation by simulated mri[END_REF]. Using this simplified model reduces computational complexity and allows for control of size and orientation. The cylindrical approximation is suitable for most regions of the cardiac wall, with myocyte length being 10 times its diameter. For heterogeneous tissue, modifications are shortening and thickening of myocytes (length is 5 times the diameter) and a modified 3D tissue arrangement. This simplification is expected to have minimal impact on water diffusion simulations due to the small size of water molecules compared to myocyte structures.

The geometrical and physical characteristics of the virtual tissue models are adjusted according to the anatomical parameters of the heart tissue [START_REF] Wang | Multiscale modeling and simulation of the cardiac fiber architecture for dmri[END_REF][START_REF] Wang | Simulation of dynamic dti of 3d cardiac fiber structures[END_REF][START_REF] Bates | Monte carlo simulations of diffusion weighted mri in myocardium: validation and sensitivity analysis[END_REF][START_REF] Rose | Novel insights into in-vivo diffusion tensor car-diovascular magnetic resonance using computational modelling and a histology-based virtual microstructure[END_REF][START_REF] Alemany | Random walk diffusion simulations in semi-permeable layered media with varying diffusivity[END_REF][START_REF] Wang | Connecting macroscopic diffusion metrics of cardiac diffusion tensor imaging and microscopic myocardial structures based on simulation[END_REF][START_REF] Lashgari | Three-dimensional micro-structurally informed in silico myocardium-towards virtual imaging trials in cardiac diffusion weighted mri[END_REF]. The diffusivity D controls simulated water molecule movement speed, the membrane permeability P controls passive diffusion probability, and the cellular volume fraction R ICS affects diffusivity differences between ICS and ECS. Some virtual models consider heterogeneity in microstructure, such as myocyte diameter [START_REF] Wang | Multiscale modeling and simulation of the cardiac fiber architecture for dmri[END_REF][START_REF] Wang | Connecting macroscopic diffusion metrics of cardiac diffusion tensor imaging and microscopic myocardial structures based on simulation[END_REF][START_REF] Rose | Novel insights into in-vivo diffusion tensor car-diovascular magnetic resonance using computational modelling and a histology-based virtual microstructure[END_REF][START_REF] Alemany | Random walk diffusion simulations in semi-permeable layered media with varying diffusivity[END_REF][START_REF] Lashgari | Three-dimensional micro-structurally informed in silico myocardium-towards virtual imaging trials in cardiac diffusion weighted mri[END_REF] and orientation [START_REF] Bates | Monte carlo simulations of diffusion weighted mri in myocardium: validation and sensitivity analysis[END_REF][START_REF] Wang | Connecting macroscopic diffusion metrics of cardiac diffusion tensor imaging and microscopic myocardial structures based on simulation[END_REF][START_REF] Rose | Novel insights into in-vivo diffusion tensor car-diovascular magnetic resonance using computational modelling and a histology-based virtual microstructure[END_REF][START_REF] Lashgari | Three-dimensional micro-structurally informed in silico myocardium-towards virtual imaging trials in cardiac diffusion weighted mri[END_REF], to match histological data statistics (Section 2.1.1).

Water diffusion

The apparent diffusion coefficient (ADC) in biological tissues is 2 to 10 times smaller than that of free water diffusion [START_REF] Bihan | Apparent diffusion coefficient and beyond: what diffusion mr imaging can tell us about tissue structure[END_REF] due to high viscosity, macro-molecular crowding, and spatial restriction, especially in the intracellular space (ICS), despite the diffusion coefficient of water in a free environment being approximately D = 3.0µm 2 /ms at 37 • C with normal displacement distribution.

Diffusion tensor

The diffusion of water molecules in a confined space within the virtual tissue can be characterized by a diffusion tensor ADC, which has the following structure:

ADC =       ADCxx ADCxy ADCxz ADCyx ADCyy ADCyz ADCzx ADCzy ADCzz       , (1) 
where ADC xx , ADC yy , ADC zz represent the apparent diffusion coefficient (ADC) according to the directions of the x, y and z axes respectively; ADC xy , ADC xz , ADC yz correspond to the correlation of ADC between pair of axes, ADC yx = ADC xy and ADC the global apparent diffusion tensor in a given voxel.

ADC along a specific direction mn, noted ADC mn (∆) from Equation 1, is calculated by:

ADC mn (∆) = 1 2∆ lim N →∞ 1 N N i=1 L i,m (∆) × L i,n (∆), (2) 
where L i,m (∆) holds for the displacement of molecule i along direction m.

Three eigenvalues (the primal, secondary and tertiary eigenvalues represented by λ 1 , λ 2 and λ 3 respectively) can be calculated from the diffusion tensor and the primal eigenvector indicates the local orientation of the virtual tissue.

Simulation of water diffusion by Monte Carlo method

Monte-Carlo method can simulate the movement of particles dynamically in space and time in any tissue structure. It thus offers the possibility of studying not only Brownian motion in an arbitrary environment, but also all models of interactions between particles and tissue membranes.

More concretely, Monte Carlo approach mimics the Brownian motion of water molecules by simulating the movement of a given number N of molecules, using K updates, to imitate the process of continuous diffusion of water for the duration ∆. Each elementary displacement or update of a molecule has a duration τ = ∆/K and is randomly oriented in space. The length of the path l during each update τ , is such that

l = √ 6Dτ p(l), (3) 
where p(l) is the probability of l. In practice, we chose a fixed-length step p(l) ≡ 1 [START_REF] Wang | Simulation of diffusion anisotropy in dti for virtual cardiac fiber structure[END_REF][START_REF] Hall | Convergence and parameter choice for monte-carlo simulations of diffusion mri[END_REF], simpler to generate than Gaussian distributed lengths and leading to an improvement in the speed of execution. Some authors [START_REF] Hall | Convergence and parameter choice for monte-carlo simulations of diffusion mri[END_REF] also demonstrated that a fixed-length step reduced fluctuations in the mean- 

squared
       p ICS-ECS = P 4τ l ICS p ECS-ICS = P 4τ l ECS (4)
with p ICS-ECS ̸ = p ECS-ICS when l ICS ̸ = l ECS , i.e. D ICS ̸ = D ECS according to Equation 3.

Materials and Methods

In this session, we describe our two steps simulation pipeline to access a ground truth modeling the diffusion of water molecules in a tissue. It includes simulation of four biological tissue models and simulation of the diffusion of water molecules inside these models with recommended MC parameters. 

Step I -Virtual cardiac tissue models

We simulated four tissue models I, II, III and IV (Figure 2) with increasing realism with regard to cardiac tissue. The cells were represented by cylinders with infinite length. The models have identical cell locations, mean cell diameter µ d , cellular volume fraction R ICS , wall permeability P , and diffusivity coefficient D. d is set to 10µm or 20µm, R ICS = 70%, D ICS = 1µm 2 /ms, D ECS = 2.5µm 2 /ms and P = 0.02µm/ms (cf. Section 2.1.1). To maintain a consistent R ICS of approximately 70%, a s and a l are set to 3µm, 20µm for d = 20µm, and 1.5µm, 10µm for d = 10µm (cf. Figure 2), where a s or a l are respectively the narrowest or widest spatial restriction of ECS in the most restricted diffusion direction.

The models differ in the distribution of cell diameters and orientations.

Model I has non-overlapping and parallel cells with a constant diameter d.

Model II introduces heterogeneity in cell diameters using a gamma distribution Γ(k, θ) [START_REF] Rafael-Patino | Robust monte-carlo simulations in diffusion-mri: Effect of the substrate complexity and parameter choice on the reproducibility of results[END_REF][START_REF] Hall | Convergence and parameter choice for monte-carlo simulations of diffusion mri[END_REF], where the mean diameter µ d = k × θ and the standard

deviation σ d = √ k × θ 2 .
We chose a constant ratio between σ d and µ d values as 0.1 according to histological knowledge [START_REF] Vliegen | Morphometric quantification of myocyte dimensions validated in normal growing rat hearts and applied to hypertrophic human hearts[END_REF]. We therefore simulated two situations with Γ(100, 0. The ICS is idealized as a collection of infinite cylinders and the ECS is simplified as a collection of interconnected corridors among the cylinders as most studies [START_REF] Alemany | Random walk diffusion simulations in semi-permeable layered media with varying diffusivity[END_REF][START_REF] Rose | Novel insights into in-vivo diffusion tensor car-diovascular magnetic resonance using computational modelling and a histology-based virtual microstructure[END_REF][START_REF] Rafael-Patino | Robust monte-carlo simulations in diffusion-mri: Effect of the substrate complexity and parameter choice on the reproducibility of results[END_REF]. We consider two situations: one situation of an impermeable environment with the two impermeable compartments ICS and ECS separately and another situation of a permeable environment with P = 0.02µm/ms.

Step II -Monte Carlo water diffusion simulation and implementation

This section covers all the points necessary for a robust MC simulation, namely the conditions to be respected, the implementation, the metrics used to optimize the parameters of the simulation and associated computer resources.

Conditions on the MC parameters

To be valid and lead to robust results, MC-type methods simulating the diffusion of water through a tissue must meet four fundamental conditions:

• Condition K. According to Einstein's theory [START_REF] Einstein | Investigations on the Theory of the Brownian Movement[END_REF], the duration τ of each update must be very small compared to the whole diffusion duration ∆ in order to ensure the independence of every update, i.e. the number of updates K = ∆/τ must be large enough. The results from [START_REF] Landman | Complex geometric models of diffusion and relaxation in healthy and damaged white matter[END_REF] showed that ∆/τ ≥ 10 was required in a free diffusion environment.

• Condition l/s. This condition concerns the ratio between the length of the path l traveled by a water molecule during an update τ and the narrowest spatial restriction s of a compartment in the most restricted diffusion direction [START_REF] Balinov | The nmr self-diffusion method applied to restricted diffusion. simulation of echo attenuation from molecules in spheres and between planes[END_REF][START_REF] Fieremans | Monte carlo study of a two-compartment exchange model of diffusion[END_REF], l/s << 1, where s = d in ICS or s = a s in ECS as shown in Figure 2.

• Condition N. This condition concerns the number of molecules N . The simulation process must consider a large number of water molecules N to ensure the accuracy and realism of the results in terms of biology [START_REF] Hall | Convergence and parameter choice for monte-carlo simulations of diffusion mri[END_REF][START_REF] Rafael-Patino | Robust monte-carlo simulations in diffusion-mri: Effect of the substrate complexity and parameter choice on the reproducibility of results[END_REF].

• Condition V. This condition concerns the scale of the MC simulation V . According to [START_REF] Hall | Realistic voxel sizes and reduced signal variation in monte-carlo simulation for diffusion MR data synthesis[END_REF], in the case of tissue models with heterogeneous cell diameters, a too-small simulation scale leads to an unstable distribution of statistical moments associated with the cell diameter as well as with the cellular volume fraction and diffusion characteristics. Thus, a sufficiently large simulation scale associated with a sufficiently large number of cells is necessary to build a stable diffusion environment.

State of the Art

In the case of Condition l/s and Condition N, Hall et al. [START_REF] Hall | Convergence and parameter choice for monte-carlo simulations of diffusion mri[END_REF] have analyzed the simulation error of MC simulated signal while varying the number of particles N and of updates K for a fixed ∆. These simulations were processed in the case of an impermeable environment with parallel cylinder-shaped cells and they used as a reference an analytical model that assimilated the tissue to a two-compartments system: the Gaussian phase distribution approximation was used to generate the intracellular signal and the Szafer et al.'s tortuosity approximation of regularly packed cylinders [START_REF] Szafer | Theoretical model for water diffusion in tissues[END_REF] in the extracellular compartment. The simulation error measured the standard deviation of the synthetic signal and the differences between the MC and analytical models. Rafael-Patino et al. [START_REF] Rafael-Patino | Robust monte-carlo simulations in diffusion-mri: Effect of the substrate complexity and parameter choice on the reproducibility of results[END_REF] used the same methodology, however they did not resort to an analytical model for the extracellular compartment but used as a reference a MC simulation with a very high number of particles and updates.

Concerning Condition V, Hall et al. [START_REF] Hall | Realistic voxel sizes and reduced signal variation in monte-carlo simulation for diffusion MR data synthesis[END_REF] studied the mean cell diameter and mean volume fraction for different simulation scales and demonstrated that their variation around the mean decreases with increasing simulation scale size. Rafael-Patino et al. [START_REF] Rafael-Patino | Robust monte-carlo simulations in diffusion-mri: Effect of the substrate complexity and parameter choice on the reproducibility of results[END_REF] have investigated the radial anisotropy of the DW-MRI signal for different simulation scales. They showed that a large enough simulation scale was needed for the simulated signal to converge.

Implementation

The practical implementation of the MC method is important in order to guarantee the quality of the results. The simulation of the diffusion of water molecules is performed locally in a finite-dimensional region of interest, in our case a voxel.

• Voxel sizes

For our study, we used three different voxel sizes: small V s = 100 × 100 × 100µm 3 , medium V m = 250 × 250 × 250µm 3 , and large V b = 500 × 500 × 500µm 3 respectively (Figure 3).

• Extended Voxels

Whatever the size of the voxel, it is necessary to cope with the edge effects when simulating the diffusion of water molecules. Different approaches have been considered in the literature, as depicted in Figure 4.

In [START_REF] Hall | Convergence and parameter choice for monte-carlo simulations of diffusion mri[END_REF] the authors proposed, when a cylinder (a cell) overlaps the edges of the voxel (Figure 4-a), to create a copy of the cell overlapping on the opposite edge, thus allowing the molecules to diffuse from one edge towards its opposite edge while keeping the same number of molecules in the voxel. This allows molecules to diffuse in an environment of similar spatial restriction but requires a particular arrangement (parallel organization) which cannot allow cells with various orientations to be considered. In [START_REF] Bates | Monte carlo simulations of diffusion weighted mri in myocardium: validation and sensitivity analysis[END_REF] the authors proposed to extend the edge of the voxel (Figure 4-b) to ensure that none of the cells gets truncated and to distribute the simulated molecules randomly in the extended voxel.

This allows to consider non-parallel geometries while ensuring that the molecules diffuse in a similar restricted environment.

In our simulation, we defined an extended voxel with an edge L ex larger than the edge of the voxel related to the scale of observation (Fig- ure 4-c). At the beginning of the simulation, molecules were placed randomly in the voxel to ensure that only a very limited number of molecules will escape from the extended voxel (contrary to Figure 4-b).

We determined the length of L ex based on water molecules diffusing in a free environment, with a normal probability distribution of displacements L in a given direction during t, and a standard deviation of σ = √ 2Dt. For t = 100ms, over 99.9992% of water molecules remain within L = 4.5σ (i.e., L = 100µm). Therefore, if L ex = 100µm when t = ∆ = 100ms (as in our simulations), all water molecules' movements, whether inside or outside the voxel, will remain within the extended voxel at this scale.

The size of extended voxels and the related density of water molecules used are listed in Table 1.

Table 1: Extended voxels: inner and outer voxels edges when L ex = 100µm with their corresponding water molecules density ρ at the beginning of simulation when N = 10 5 .

V s V m V b Inner voxel 100 µm 250 µm 500 µm Extended voxel 300 µm 450 µm 700 µm ρ 0.1 /µm 3 6 × 10 -3 /µm 3 8 × 10 -4 /µm 3 The number of cells (cylinders) contained in each inner voxel of size V s, V m, and V b depends on the model (I, II, III, or IV). Their number is given in Table 3.

Evaluation

All simulations are performed at equilibrium which means that the density of water molecules ρ is the same in the two compartments ICS and ECS.

Optimization of τ and N

In order to satisfy Condition K, Condition l/s and Condition N, we optimized the MC water diffusion simulation parameters τ and N in an extended voxel with big voxel size V b (more stable result according to the Condition V) for the four tissue models. We extracted the eigenvalues and analyzed their behavior when the values of τ and N vary. The simulation error of eigenvalues [START_REF] Rafael-Patino | Robust monte-carlo simulations in diffusion-mri: Effect of the substrate complexity and parameter choice on the reproducibility of results[END_REF][START_REF] Hall | Convergence and parameter choice for monte-carlo simulations of diffusion mri[END_REF] was given by the normalized standard deviation defined by: in the ECS. We considered separately the two compartments ICS and ECS contained in the voxel (impermeable environment with P = 0µm/ms) and calculated the limitation ratio between l and s respectively in ICS and ECS according to the Condition l/s , which must be applied for any compartment spatial restriction size and diffusivity.

std λ i = 1 n-1 n j=1 (λ j i -λ ref i ) 2 λ ref i , (5) 

Optimal voxel size for a stable water diffusion simulation

To satisfy Condition V, we controlled the stability of eigenvalues across the virtual global tissue models, successively for the three voxel sizes V s, V m and V b (see Figure 3) by observing the values of eigenvalues through the different voxels constituting the global virtual tissue and by calculating their average value as well as their standard deviation. We performed the analysis for both impermeable (separated ICS and ECS) and permeable environments.

The number of voxels contained in the global tissue models was respectively equal to 5 × 35, 5 × 14 and 5 × 7.

Critical diffusion duration ∆

We optimized the value of ∆ to satisfy the condition of long diffusion duration: this ensures that micro-structural information can be detected when a long diffusion duration ∆ is applied where most molecules can reach the edges of the cell and therefore testify to the spatial restriction. To do so the following condition must be fulfilled [START_REF] Price | Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part 1. basic theory[END_REF][START_REF] Jing | Simulation of water diffusion through a simple virtual cardiac cell model: optimization of monte carlo parameters and observation by simulated mri[END_REF]: This was also confirmed by following the evolution of the different eigenvalues as a function of the ∆ value.

       ξ ∆,ICS = ∆ × D ICS /(d/2) 2 ≥ 1, ξ ∆,ECS = ∆ × D ECS /(a l /2) 2 ≥ 1. (6) 

Computer resources

We ran the simulations on the cluster of our laboratory CREATIS. It 

Results

This section presents our main results on the proposed simulation pipeline and according to the evaluation methods described in Section 3. It aims to optimize the parameters of the Monte Carlo simulator for the four tissue models in order to provide a ground truth for further investigations. 
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the ECS. In the case of µ d = 10, τ ≤ 0.01ms is selected for the ICS (Figure 5-a) and τ ≤ 0.001ms for the ECS (Figure 5-c) and the whole voxel with P = 0.02µm/ms (Figure 5-e). These selected values of τ chosen according to the analysis of the Figure 5 are represented in white in Table 2. They satisfy the Condition l/s. For the ICS, τ ≤ 0.01ms is selected for µ d = 10µm and τ ≤ 0.1ms for µ d = 20µm, i.e. l ICS /µ d ≤ 0.04. For the ECS, τ ≤ 0.001ms is selected for µ d = 10µm

and τ ≤ 0.01ms for µ d = 20µm, so l ECS /µ as ≤ 0.13.

Finally, the computation time T for MC simulations of Figure 5 using small (V s) and big (V b) voxel sizes, as shown in Figure 6. We calculated the mean and standard deviation of λ 1 and λ 3 for 25 × 35 × 5 and 5 × 7 × 1 constitutive voxels of the global model for V s and V b, respectively. We studied the ICS and ECS independently (in an impermeable environment), as well as the whole voxel (with permeability values of P = 0 and 0.02µm/ms).

The eigenvalues in Figure 6 provide insight into the nature of the diffusion phenomenon. λ 1 measures ADC along the long axis of the virtual cell and remains similar to the free diffusion coefficient, irrespective of ∆. λ 2 and λ 3 measure ADC in a circular section of the cell perpendicular to the long axis and decrease similarly with ∆, indicating restricted diffusion. The eigenvalues decrease with increasing ∆ until they reach a stationary point, in agreement with the condition long duration of diffusion stated in Section 3.3.3. However, if ∆ is too small compared to the size of the spatial restriction, the diffusion may still be in the transient regime. For example, a ∆ value Under the impermeable environment, the eigenvalues from the whole voxel closely equals the volumetric average of the results from ICS and ECS [START_REF] Hall | Convergence and parameter choice for monte-carlo simulations of diffusion mri[END_REF]:

V s (a) (b) V b (c) (d)
λ whole,P =0 = λ ICS × R ICS + λ ECS × (1 -R ICS ). (7) 
In ICS and ECS, λ 1 equals free diffusivity, but the whole voxel's values vary due to local restricted intracellular space (R ICS ) for P = 0 and P = 0.02. For model IV, R ICS has a standard deviation of about 2.3% and 0.5% for V s and V b respectively, as shown in Table 3. λ 3 variations between voxels are mainly caused by the local differences of d as well as the difference in diffusivity between ICS and ECS (D ICS and D ECS ). This variability is not very marked in ICS due to relatively limited variation of d (µ d ) among the voxels (standard deviation about 0.35 µm and 0.07 µm for V s and V b, respectively, in Table 3 for model IV). However, it is accentuated in ECS, explained by the great possibility of cells arrangement, leading to locally very different spatial restriction values. This phenomenon is present throughout the whole voxel (for P = 0 and P = 0.02) [START_REF] Szafer | Theoretical model for water diffusion in tissues[END_REF].

Voxel size optimization for Monte Carlo simulation in the global models

As illustrated in Figure 7, the estimated value of λ 3 fluctuates from one voxel to another in the different global models for a permeable diffusion en-vironment with P = 0.02µm/ms when ∆ = 100ms. In the case of models I and III (homogeneous diameters), λ 3 is relatively stable even for the smallest voxel size scale for the two cell diameters d. On the contrary, for models II and IV (heterogeneous diameters), λ 3 is very unstable when the smallest scale V s is used, which is in agreement with the result of Figure 6. Observing the normalized diameter distribution in a voxel explains this point. Indeed, the diameter distribution (Figure 7) is not ideal for V s and poorly fit the theoretical distribution given in Section 3.1. However, as the scale increases, the diameter distribution is closer to the theoretical distribution which contributes to decreasing the spatial variability of λ 3 . There are less variability in the case of µ d = 10µm for the same voxel of size because more cylinders are included.

Table 3 gives to represent, the number of cells, the average diameter of the cells, local R ICS and the estimated eigenvalues for the three sizes of voxels through the global tissue models of type I-II-III-IV. In order to satisfy the stability of the local R ICS as well as the estimate of eigenvalues, we set a limit on the standard deviation of λ 1 and λ 3 which must be less than 0.015 and 0.012 µm 2 /ms respectively. This leads to the conclusion that, for Models II and IV, the largest voxel size V b (500 × 500 × 500µm 3 , more than 500 cylinders) is required for the case of µ d = 20µm and the voxel size V m (250 × 250 × 250µm 3 , more than 500 cylinders) for µ d = 10µm. 

Discussion

In this work, four virtual cardiac tissue models considering homogeneous or heterogeneous cell diameters and/or cell orientations are constructed with realistic physiological parameters compared to histological data. The optimization of the MC simulation parameters is taken into account where the duration of each update τ and the number of molecules N are two decisive parameters to ensure the accuracy of the MC simulation and a realistic calculation speed. Our simulation results show that the same selected parameters can be used for all four types of models, as shown in Figure 5. Our work also verifies that the effect of the cell diameter is decisive on the choice of τ as well as the length of an update step l in the MC simulation in order to satisfy Condition l/s; l ICS /µ d ≤ 0.04 is selected for the impermeable ICS. This ratio was is agreement with that given in other works where l/d < 0.05 through a virtual brain tissue model with a homogeneous diameter of cell [START_REF] Fieremans | Monte carlo study of a two-compartment exchange model of diffusion[END_REF]. And for the impermeable ECS, l ECS /µ as ≤ 0.13 according to our results.

Recent works have proposed to study the appropriate simulation scale to ensure a homogeneous statistical environment from one MC simulation voxel to another when diameter heterogeneity is taken into account for white matter axonal structures [START_REF] Rafael-Patino | Robust monte-carlo simulations in diffusion-mri: Effect of the substrate complexity and parameter choice on the reproducibility of results[END_REF][START_REF] Hall | Realistic voxel sizes and reduced signal variation in monte-carlo simulation for diffusion MR data synthesis[END_REF]. Their results indicate that the number of cylinders (i.e. cells) is the decisive factor and suggest using 10000 cylinders for the case of heterogeneity in brain tissue where the ratio between the standard deviation and the mean value of the cell diameter is equal to 0.5 and the mean diameter of the cells is equal to 2 µm. In our simulations, the cylinders are (0.5-1 • per layer). The result of Bates et al. [START_REF] Bates | Monte carlo simulations of diffusion weighted mri in myocardium: validation and sensitivity analysis[END_REF] showed similar results when cell orientation per voxel changed up to 10 • with an unspecified rate of angle change between layers. There remains a slight statistical inhomogeneity from the point of view of cells diameters and/or local R ICS .

Moreover, our results demonstrate that the radial diffusion is sensitive to cell diameter in the virtual model while λ 1 remains stable. λ 3 decreases with decreasing diameter as shown in Table 3, which is in agreement with previous simulation results [START_REF] Wang | Connecting macroscopic diffusion metrics of cardiac diffusion tensor imaging and microscopic myocardial structures based on simulation[END_REF]. This can be explained by the fact that the absolute displacements of the simulated molecules along the most restricted direction (the direction of λ 3 (λ 2 )) reach a constant value in ICS when the condition long diffusion duration is satisfied [START_REF] Jing | Simulation of water diffusion through a simple virtual cardiac cell model: optimization of monte carlo parameters and observation by simulated mri[END_REF] whenever water molecules have encountered the spatial restriction. This constant value is directly related to the size of the spatial restriction, here the value of the diameter.

The realism of tissue models could be further improved by considering in particular information provided by high spatial resolution imaging techniques such as polarized illumination imaging (PLI) [START_REF] Wang | Connecting macroscopic diffusion metrics of cardiac diffusion tensor imaging and microscopic myocardial structures based on simulation[END_REF] or even morphological characteristics extracted from histological images [START_REF] Rose | Novel insights into in-vivo diffusion tensor car-diovascular magnetic resonance using computational modelling and a histology-based virtual microstructure[END_REF][START_REF] Naughton | Connecting diffusion mri to skeletal muscle microstructure: Leveraging meta-models and gpu-acceleration[END_REF]. Local analysis of diffusion tensors in cardiac muscle has shown that there are larger angular deviations in infarcted regions than in healthy tissues and that these deviations are correlated with the disorder of cardiomyocytes [START_REF] Chen | Remodeling of cardiac fiber structure after infarction in rats quantified with diffusion tensor mri[END_REF][START_REF] Zhang | The correlation of 3d dt-mri fiber disruption with structural and mechanical degeneration in porcine myocardium[END_REF]. Similarly, the distribution of myocyte diameters is modified in the context of certain cardiac pathologies such as cell hypertrophy. [START_REF] Vliegen | Morphometric quantification of myocyte dimensions validated in normal growing rat hearts and applied to hypertrophic human hearts[END_REF][START_REF] Basso | Cardiac hypertrophy at autopsy[END_REF]. These pathological variations of cardiac cells as well as their organizations should be taken into account in future MC simulations.

Conclusion

The main contribution of this work can be summarized in two main points. First, this work presents four virtual models of cardiac tissue -with different degrees of realism -according to the physical and physiological characteristics observed in histology in the literature. Second, this work describes and optimizes the parameters to perform Monte Carlo simulations in the associated virtual models. In overall we found that, for experiments with the models used in this study, simulations with the ratio between the update step size to the narrowest spatial restriction size bigger than 0.05 and 0.13 for the intra-and extra-cellular compartments respectively, and the molecules number less than 10 5 had significant simulation error. Moreover, we found that simulations in environments with less than 500 sampled cylinders induced instability in the estimation of the apparent diffusion coefficient. These results can be immediately used to assess the design of future experiments to study water molecules diffusion in cardiac tissue. 
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Figure 1 :

 1 Figure 1: Histological cuts of human cardiac tissue (×20) courtesy of TIMC, CNRS UMR 5525, France. Hematoxylin and Eosin staining. Cut perpendicular to cells (left) and cut parallel to cells (right).

Figure 2 :

 2 Figure 2: Simulated models of biological tissues. (a) Global tissue model with a ROI. (b) ROIs in models I, II, III and IV. Model I: parallel identical cells placed periodically. Model II: parallel cells with heterogeneous diameters placed periodically. Model III: identical cells with heterogeneous orientations. Model IV: cells with heterogeneous diameters and orientations. The cubic box represents one cell layer. (c) Simulated cylindrical cell (myocyte). The elevation angle α and azimuth angle β provide the 3D orientation of the cell. (d) Spatial restriction of the compartments s = d in ICS and s = a s or a l in ECS.

  2) for a mean cell diameter µ d = 20µm and a standard deviation σ d = 2µm and Γ(100, 0.1) for a mean cell diameter µ d = 10µm and σ d = 1µm. Model III introduces a continuous evolution of the cell orientation from layer to layer. To avoid overlapping cells, we set a constant orientation in each layer of cells. The elevation angle α changed at a rate of 0.5 • or 1 • per layer for µ d = 10µm or µ d = 20µm respectively, and we kept the azimuth angle β = 0 • unchanged (Figure 2). From one layer to the next, cell orientation changes 50 • /mm along the y axis in the range -87 • to 87 • (in agreement with Section 2.1.1). Finally, Model IV combines Models II and III to create a more realistic model with both variability in cell diameters and orientations.

Figure 3 :Figure 4 :

 34 Figure 3: Virtual global tissue model with local change of orientation and three scales (voxel sizes). (a) Global tissue model of size 2500 × 3500 × 500µm 3 . (b) Digitized virtual model with 25 × 35 × 5 voxels of size V s (c) 10 × 14 × 2 voxels of size V m and (d) 5 × 7 × 1 voxels of size V b . (a'-d') Elevation angle α in Models III and IV: α varies only along the y axis while the azimuth angle β remains equal to 0.

for i={1, 2 ,

 2 3} corresponding to the three eigenvalues respectively. The averaged reference λ ref i is the average value of 30 repetitions of λ i obtained with the finest parameter values of the range of values tested i.e. τ = 0.001 ms and N =10 5 in the whole voxel, N = 7 × 10 4 in the ICS and N = 3 × 10 4

∆

  critical is calculated when ξ ∆ = 1. The value of ∆ critical increases with d and a l and when D decreases. ∆ critical whole =max(∆ critical ICS , ∆ critical ECS ), ∆ critical whole = 100ms for d = 20µm, a l = 20µm, D ICS = 1µm 2 /ms and D ECS = 2.5µm 2 /ms; ∆ critical whole = 25ms for d = 10µm, a l = 10µm.

consists of 25

 25 heterogeneous machines on a classical gigabit ethernet network: 64-bit Intel processors with 8 to 32 cores for a total of 300 cores and 16GB to 128GB of RAM for each machine. The computation time for 30 repetitions of MC simulations with different pairs of N and τ , in the ICS and ECS separately and in an extended voxel V b are presented in Figure 5.

4. 1 .Figure 5 :

 15 Figure 5: Model IV: Optimization of τ and N through MC simulation of water diffusion within V b with R ICS = 70% and ∆ = 100ms for two cell sizes. Simulation error std λ3 vs N (ρ): a) ICS, P = 0; c) ECS, P = 0; e) whole voxel, P = 0.2. Computation time T vs N (ρ): (b,d,f) for (a,c,e) respectively.

4 . 2 .

 42 -a-c-e is shown in Figure 5-b-d-f. It increases linearly with N and decreasing τ (K increasing). The simulation takes longer in ECS and the most expensive tasks involve checking water molecule collisions with cell membranes and calculating new positions after reflection. We therefore selected N taking into account the speed of the simulation: we set the threshold of std λ 3 to 0.01, the density ρ being the same in all compartments, corresponding to N = 10 5 in the whole voxel, N = 7 × 10 4 in the ICS and N = 3 × 10 4 in the ECS. This threshold is satisfied for both µ d values of cell diameters. The value of τ thus obtained is valid for Models I, II, III, and IV, for values of ∆ between 10 and 100ms. Recommended diffusion duration ∆ To verify the critical ∆ values given in Section 3.3.3, we observed the mean and standard deviation of λ 1 and λ 3 as ∆ varied for MC simulations of global model IV with heterogeneous cell diameter and orientation (µ d = 20µm)

Figure 6 :

 6 Figure 6: Evolution of the eigenvalues from a transient to a stationary regime according to the diffusion time ∆ in ICS, ECS, and in the whole voxel, respectively. MC simulations were performed for model IV and voxels of size V s (first line) and V b (second line) with D ICS =1, D ECS = 2.5, R ICS =70%, τ = 0.01ms, ρ = 0.1/µm 3 and ρ = 8 × 10 -4 /µm 3 for V s and V b respectively.

of 40 ms

 40 corresponds to a transient state for d = 20µm, whereas a ∆ value of 100 ms represents a convergent state where the diffusion phenomenon is stationary.

Figure 7 :

 7 Figure 7: Spatial representation of estimated values of λ 3 (µm 2 /ms) for the four tissue models with three scales (V s, V m and V b) when ∆ = 100ms displayed using the colorbar given on the right. Normalized distribution of cell diameters displayed in one voxel in Models II and IV (the case of heterogeneous cell diameter) with µ d = 20, P = 0.02µm/ms, D ICS = 1, D ECS = 2.5µm 2 /ms, R ICS = 70%, N = 10 5 , τ = 0.01ms for the case of µ d = 20µm and τ = 0.001ms for 10µm.

l 3 × 3

 33 Mean cell diameter in the tissue σ d Standard deviation of cell diameter in the tissue a s Narrowest spatical restriction of ECS a l Widest spatical restriction of ECS Length of an update l ICS Length of an update with diffusivity D ICS l ECS Length of an update with diffusivity D ECS K Number of updates during ∆ L Displacement of a molecule during ∆ N Number of simulated molecules V Voxel size of the MC model ρ Density of simulated molecules number ADC Apparent diffusivity coefficient ADC Apparent diffusivity coefficient tensor λ(λ 1 , λ 2 , λ 3 ) Three eigenvalues calculated from ADC

  displacement of molecules as a function of time, improving convergence in the model. Molecules located in ICS diffuse inside virtual cells with l = l ICS steps and D = D ICS diffusivity. Molecules belonging to the ECS diffuse outside the virtual cells with l = l ECS steps and D = D ECS diffusivity.

	When a simulated molecule meets the virtual cell membrane, it elastically re-
	flects or cross the wall. The transmission probabilities across the membrane
	from ICS to ECS and ECS to ICS are p ICS-ECS and p ECS-ICS respectively,
	which can be calculated according to the membrane's permeability value P
	[23]:

Table 2 :

 2 Condition l/s. µ d and µ as are identical for the four models with voxel size V b. The white cells satisfy the results of optimization of τ obtained from the analysis of Figure5τ l ICS l ECS µ d l ICS /µ d µ as l ECS /µ as

	ms	µm µm µm		µm	
	0.1	0.77 1.22 10	0.08	1.5	0.83
		20	0.04	3	0.41
	0.01 0.24 0.39 10	0.02	1.5	0.26
		20	0.01	3	0.13
	0.001 0.08 0.12 10	0.008	1.5	0.08
		20	0.004	3	0.04

Table 3 :

 3 Voxel size optimisation for models I, II, III and IV when ∆ = 100ms. We report the voxel size V , cell diameter d (mean ± std), cells number, cellular volume fraction R ICS and estimated λ 1 and λ 3 (mean ± std). White cells correspond to a standard deviation of λ 3 < 0.012 and λ 1 < 0.015. The parameters values are: P = 0.02µm/ms, D ICS = 1, D ECS = 2.5µm 2 /ms, R ICS = 70%, N = 10 5 , τ = 0.01ms for µ d = 20µm and τ = 0.001ms for µ d = 10µm.

	Size	d	Cells number R ICS (%) λ 1 (µm 2 /ms) λ 3 (µm 2 /ms)
				Model I		
	Vs	20	23	68	1.49±0.007	0.74±0.005
	Vm	20	137	70	1.49±0.006	0.74±0.005
	Vb	20	537	69	1.49±0.006	0.74±0.003
	Vs	10	93	69	1.50±0.007	0.59±0.004
	Vm	10	537	69	1.49±0.006	0.59±0.003
	Vb	10	2219	70	1.49±0.006	0.59±0.003
				Model II		
	Vs 20 ± 0.37	23	69±2.7	1.49±0.039	0.72±0.034
	Vm 20 ± 0.14	137	70±1.1	1.48±0.018	0.72±0.014
	Vb 20 ± 0.06	537	70±0.5	1.48±0.013	0.71±0.006
	Vs 10 ± 0.09	93	69±1.4	1.49±0.022	0.54±0.020
	Vm 10 ± 0.03	537	69±0.5	1.49±0.013	0.54±0.010
	Vb 10 ± 0.01	2219	70±0.3	1.49±0.008	0.54±0.004
				Model III		
	Vs	20	28±4	68±0.2	1.50±0.008	0.74±0.005
	Vm	20	181±17	70±0.1	1.50±0.007	0.74±0.005
	Vb	20	695±57	69±0.02	1.50±0.007	0.74±0.005
	Vs	10	123±12	69±0.2	1.50±0.007	0.59±0.004
	Vm	10	695±57	69±0.02	1.50±0.007	0.59±0.004
	Vb	10	2831±148	70±0.005 1.50±0.007	0.59±0.003
				Model IV		
	Vs 20 ± 0.35	28±4	69±2.3	1.49±0.037	0.73±0.031
	Vm 20 ± 0.14	181±17	70±1.2	1.48±0.019	0.73±0.015
	Vb 20 ± 0.07	695±57	70±0.5	1.48±0.014	0.73±0.010
	Vs 10 ± 0.09	123±12	69±1.5	1.50±0.024	0.56±0.020
	Vm 10 ± 0.04	695±57	69±0.5	1.48±0.014	0.56±0.009
	Vb 10 ± 0.01	2831±148	70±0.3	1.49±0.009	0.57±0.005
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larger and the heterogeneity of the diameters is lower with a ratio between standard deviation and mean of 0.1 in order to mimic the heart tissue [START_REF] Vliegen | Morphometric quantification of myocyte dimensions validated in normal growing rat hearts and applied to hypertrophic human hearts[END_REF].

We show in particular that in our optimal scale, which includes 500 cylinders (voxel size of 500 × 500 × 500µm 3 for µ d = 20µm and 250 × 250 × 250 for

), the stability of the simulation is almost acquired (Table 3). This is in line with clinical studies that demonstrated that a dMRI voxel of ∼ 1 -2mm may eliminate the local geometrical heterogeneity [START_REF] Naughton | Connecting diffusion mri to skeletal muscle microstructure: Leveraging meta-models and gpu-acceleration[END_REF].

The density of water molecules ρ used in Monte Carlo simulations in literature is typically much lower than the density observed in biology (see Section 2.1.1). Reported values of density ρ range from 1.8 × 10 -7 per µm 3

[27] to 0.1 per µm 3 [START_REF] Bates | Monte carlo simulations of diffusion weighted mri in myocardium: validation and sensitivity analysis[END_REF]. This is because density is an indirect indicator and the main parameter to control in Monte Carlo simulations is the number of water molecules N . This number must be large enough to achieve reasonable simulation errors (Figure 5) for a given voxel size to ensure a reliable estimation of the diffusion tensor. For example, we selected N = 10 5 water molecules in a voxel V b of size 500 × 500 × 500µm 3 , leading to a value of ρ = 8 × 10 -4 molecules per µm 3 . When a small voxel V s is used, the density increases to 0.1 per µm 3 as listed in Table 1.

When the heterogeneity of cell orientation is taken into account in the virtual tissue model, there is no obvious difference between the homogeneous (Model I) and heterogeneous case (Model III) according to Table 3. Indeed, even if the orientation of the cells per voxel varies up to 25 
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