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FI1GURE 1. Wetting of a square well by a droplet. On the left, the droplet does not reach the bottom

WETTING ON A WALL AND WETTING IN A WELL:
OVERVIEW OF EQUILIBRIUM PROPERTIES

QUENTIN BERGER AND BRUNE MASSOULIE

ABSTRACT. We study the wetting model, which considers a random walk constrained to remain
above a hard wall, but with additional pinning potential for each contact with the wall. This
model is known to exhibit a wetting phase transition, from a localized phase (with trajectories
pinned to the wall) to a delocalized phase (with unpinned trajectories). As a preamble, we take
the opportunity to present an overview of the model, collecting and complementing well-known
and other folklore results. Then, we investigate a version with elevated boundary conditions, which
has been studied in various contexts both in the physics and the mathematics literature; it can
alternatively be seen as a wetting model in a square well. We complement here existing results,
focusing on the equilibrium properties of the model, for a general underlying random walk (in the
domain of attraction of a stable law). First, we compute the free energy and give some properties
of the phase diagram; interestingly, we find that, in addition to the wetting transition, a so-called
saturation phase transition may occur. Then, in the so-called Cramér’s region, we find an exact
asymptotic equivalent of the partition function, together with a (local) central limit theorem for
the fluctuations of the left-most and right-most pinned points, jointly with the number of contacts
at the bottom of the well.

Keywords: wetting, pinning, polymers, random walk, large deviations, central limit theorem.
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of the well (dry phase); on the right the droplet reaches the bottom of the well (wet phase).
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1. INTRODUCTION

The goal of the present article is to study the random walk wetting model, which has been
introduced following the work of [Abr80, Abr81] as an effective model for interfaces in the 2D Ising
model, and quickly drew a lot of interest from the physics community, see for instance the seminal
paper [Fis84]. The model is based on a random walk trajectory which is constrained to remain
above a hard wall, with a reward (or penalty) for every point of contact with the wall. It can be
used as an effective model for a one-dimensional interface interacting with a substrate, or a model
for the adsorption of polymers on a substrate. Over the last decades, the wetting model has been
widely studied, both in the physics and in the mathematical literature, either in its homogeneous
or disordered version. We refer to [Gia07, Gial0] for a general overview of the model and its
relation to the pinning model.

Here, we study a version of the (homogeneous) wetting model with elevated boundary conditions,
in analogy with [dCD87, Pat98] (for the Solid-On-Solid model), [AdCD89, PV99] (for interfaces in
the 2D Ising model) or [BFO09] (for d-dimensional Gaussian random walks pinned to a subspace).
This can also be seen as a model for the wetting of a (square) well or cavity, see Figure 1. One
motivation of the latter interpretation is the description of a wetting transition for droplets on a
grooved surface, see [dCDH11]. In [dCDH11, LT15], the authors study this model from a dynamical
point of view: in particular, they show that for some region of parameters in the phase diagram,
the model exhibits a metastable transition (the dry phase might be stable whereas the equilibrium
measure is in the wet phase, or vice versa). In the present paper, we investigate further the
properties of the equilibrium measure.

We consider a general setting where the underlying random walk is in the domain of attraction
of some a-stable law, with « € (0,2]. To our knowledge, the literature mostly focuses on specific
cases, such as simple or Gaussian random walks in [LT15], resp. [BFO09], integer or real valued
Solid-On-Solid (SOS) models in [Pat98], resp. [dCD87]. This also seems to generalize the setting
usually considered for the standard wetting model, see e.g. [Gia07, §1.3] and references therein
(authors consider random walks in the domain of attraction of the normal law, i.e. « = 2). The
wetting model is known to undergo a phase transition between a delocalized (or unpinned) phase
where trajectories wander away from the wall, and a localized (or pinned) phase where trajectories
stick the wall. The remarkable fact noticed by Fisher [Fis84] (for the simple random walk) is
that the critical point and the critical behavior of this model can be understood precisely. For
convenience (and because our setting is a bit more general than in the literature), we provide in
Section 2 a complete introduction of the model.

Overview of the results. Our first main result consists in providing an expression for the free energy
of the wetting model with elevated boundary condition: it is based on an optimization between the
free energy of the wetting model and the large deviation rate functions of the underlying random
walk (in analogy with [LT15, Prop. 2.1]). As a byproduct of the proof, we also obtain the location
of the left-most and right-most point of contact of the interface with the bottom of the well. We
also provide some properties of the phase diagram. We show in particular that if the rate functions
are non-trivial (which occurs only in the case where the random walk admits a finite variance, i.e.
a = 2), then the wetting phase transition is always of first order, in contrast with what happens in
the standard wetting model where the phase transition is of second order. Interestingly, depending
on the underlying random walk, another (or two other) phase transition may occur: it corresponds
to a saturation transition, when the bottom corners of the well become wet.
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Our second set of results deals with the so-called Cramér regime of the model, when the op-
timization problem that defines the free energy attains its maximum at points where the rate
functions are strictly convex. In that case, we are able to obtain an exact asymptotic for the
partition function, together with sharp trajectory estimates. In particular, we are able to prove a
(local) central limit theorem for the left and right-most points of contact, jointly with the number
of contacts of the walk with the bottom of the well.

Overview of the article. Let us now briefly present the organization of the paper.

In Section 2, we introduce the wetting model in a general setting; we consider either discrete
or continuous random walks, in the domain of attraction of a stable law. Since this setting is not
usually the one presented in the literature (as far as we know), we give a complete overview of
the model: we explain its relation to the pinning model, give an implicit expression for the free
energy and provide the critical behavior of the model. This section mostly collects well-known
facts on the model and could serve as a rather complete overview of the homogeneous model; to
complete the overview, we also include some (folklore) integrable models where the free energy
admits an explicit expression, in Appendix A. Readers familiar with the subject may skip this
section entirely.

In Section 3, we turn our attention to the wetting model with elevated boundary conditions
or wetting in a (square) well. We present our main results on the free energy (see Theorem 3.1),
together with some properties of the phase diagram, in particular regarding the critical curve. We
also make the maximizer(s) of the variational problem that defines the free energy explicit (see
Lemma 3.5, there are cases where the maximizer is not unique!). We then give some consequences
on the behavior of path trajectories. Finally, we state our sharper results in Cramér’s region (see
Theorem 3.10) and we also give some properties of the phase transition.

In Section 4, we discuss several natural questions one is led to consider. The rest of the paper
is devoted to the proofs of the different results.

2. A REVIEW OF THE (STANDARD) WETTING MODEL

2.1. Wetting of a random walk on a hard wall. Let (X;);>1 be ii.d. real valued random
variables and let (S, )n>0 be the associated random walk, that is S, = > ;" | X; for n > 0 (with
So = 0 by convention); we denote by P its law. For N € N, the directed random walk (n, Sy, )o<n<n
is used to describe an effective interface between two solvents or alternatively the trajectory of a
polymer of length N (with (n, S,) representing the position of the n-th monomer), see Figure 2.
We focus on two specific cases: either the random walk is Z-valued and aperiodic (discrete case)
or the X;’s are have a density with respect to the Lebesgue measure (continuous case). We denote
by f(-) the density of the law of X; with respect to u, where p is the counting measure on Z in
the discrete case and p is the Lebesgue measure in the continuous case: P(X; € dz) = f(x)u(dx).

For A > 0, we introduce the following family of Gibbs measures Py ) on the space of trajectories
of (So,...,SN), known as the (0-pinning) wetting model:
| N

(21) dPN,)\(Sla--«aSn) = =

N
7 (ﬂ{s >0},u(ds ) + )\50 dS H f — S8;—1 )\50((15]\[)
) =1

i=1
with §p denoting the Dirac mass at 0 and sg = 0 by convention. The quantity Zy ) i the partition
function of the model, that normalizes Py ) to a probability. Let us stress that the measure Py )
puts weights only on trajectories that stay above the wall, and gives a weight A to each contact
with the wall. We refer to Figure 2 for an illustration.
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(n, Sn)o<n<N

Wall

FIGURE 2. Illustration of the wetting of a random walk on a hard wall — the random walk trajectory
(n, Sn)o<n<n may represent a directed polymer or some effective interface. The trajectory is subject to
a hard wall constraint (i.e. one cannot have S; < 0) and the measure Py, additionally gives weight A
to each contact with the hard wall (represented by dots in the figure).

We will see in Section 2.2 below that the wetting model (2.1) reduces to a renewal pinning
model, somehow forgetting the underlying random walk path and considering only the instants of
return to 0. However, it is important in our setting to keep the random walk interpretation, in
particular if we want to consider a model with elevated boundary conditions.

Let us observe that, because of the term dp(dsy,) in (2.1), the endpoint of the walk is pinned to
the wall: this is the constrained version of the model. It is also possible to consider the free version
of the model, removing the last constraint dg(ds;,) in (2.1); results would then be very similar and
we refer to [Gia07, Ch. 1&2] for more discussion on the free case (that we do not discuss further).

Remark 2.1. In the discrete setting, which is the one considered originally in [Fis84] (and in
most of the literature), the Gibbs measure Py x can be written as

N

1 ,

(2-2) dPN,)\(S) = RAHN(S)HQJ]\;(S)H{SN:O}dP(Sl, ey SN> s with HN(S) = Z H{Sn:O} R
) n=1

where we have set Q% (S) := {S1 > 0,...,Sy > 0}; this corresponds to the Gibbs measure con-
sidered in [LT15]. The assumption that (Sp)n>0 s aperiodic is needed here so that the constraint
{Sn = 0} can be verified, at least for N large; if the random walk were periodic of period d, then
one would simply need to restrict to lengths N € dN.

Our setting is similar to that of [DGZ05, CGZ06], where the density f(-) of the X;’s is put in
the form f(z) = e~V (@) for some potential V; the authors assume there that the increments X; are
centered and in the domain of attraction of the normal law. Our main assumption is the following
(it is similar for instance to [CC13, Hyp. 2.1}).

Assumption 1. The random walk (Sy)n>0 is in the domain of attraction of a strictly stable
law with index o € (0,2] and positivity parameter o € (0,1). More precisely, there exists a se-
quence (ap)p>1 which is regularly varying with indexr 1/a such that a,'S, converges weakly to
some (strictly) a-stable random variable Z with positivity parameter o € (0,1).

In the discrete case, we assume that (Sy)n>0 is aperiodic; in the continuous case, we assume
that the density fy, of Sy, verifies f,(0) < +oo for alln > 1 and is essentially bounded for some n.

We denote by f, the density of the limiting a-stable random variable Z. We stress that f,(0) > 0
thanks to the fact that ¢ € (0,1).
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2.2. Renewal representation of the model. As noticed in [CGZ06], the wetting model (2.1)
can be rewritten using a renewal process. Let us define, for n > 1,

n

n—1
(2.3) £50) ;_/ O L= s [Lutds) . with s =5, =0,
§1>0,...,8n-1> i=1 i=1

This corresponds to the density f,(z) = (dx)P(Sl >0,...,%-1>0,5, € dz) at z = 0. In
particular, in the discrete case, we have f,F(0) = P(S; > 0, ceeySp—1>0,5, =0).

Let us denote x := Y>> | f7(0) and observe that x € (0, +00) holds under Assumption 1, thanks
to Lemma 2.3 below (and formula (B.1) to see that f,7(0) < +oo for all n in the continuous case).
Then we define the following probability density on N:

(2.4) K(n) :=x"1£H(0) forall n>1.
Now, if we write explicitly the partition function
N-1
Iy = / IT (1gsi503me(dsi) + Ado(ds;)) Hf — ;1) AMo(dsy),
RN 55

then decomposing it with respect to the number and p031t10ns of contact with the wall, i.e. de-
composing the integral over the possible sets I = {i € {1,..., N}, s; = 0}, we obtain

N k N
Zva=> > ML o=> > WHK

k=1 0=:ip<i1 < <ip=N j=1 k=1 0=:ip<i1 < <ip=N

Introducing a (recurrent) renewal process 7 = (7;);>0 with inter-arrival dlstrlbutlon K(-), i.e.
letting 79 := 0 and (7; — 7i—1)i;>1 be i.i.d. N-valued random variables with law P(m = n) = K(n),
the above partition function can be rewritten as

ZN,)\ =E (K})\)HN(T)H{NET} ; with HN Z ]l{nET}
(With some abuse of notation, we also interpret 7 = {7;}i>0 as a subset of NU{0}.) In this context

we can rewrite the Gibbs measure (2.1) as

dP y \ 1 T
1P (7—) = ZN/\(,{)\)HN( )I]-{NET} , with HN Z Il{nET}

(2.5)

This is the usual formulation of the homogeneous pinning model, see [Gia07, Ch. 2] (write e = r\).

Notice here that the wall constraint has been absorbed in the definition of 7 (see the defi-
nition (2.3) of f,;F(0)) and we have reduced to a recurrent renewal 7 at the cost of a change
of parameter A ~» xA. This way, one can interpret 7 as the return times of the random walk
(Sn)o<n<n to 0 conditioned on staying non-negative (due to the definition of f,(0)) and having
finite excursions away from 0 (due to the normalization by X in (2.4)). Let us also stress that
the Gibbs law (2.5) describes only the distribution of the renewal process 7, but this is enough to
describe completely the measure (2.1) on random walk trajectories: indeed, conditionally on the
return times to 0, the law of the excursions of (S,)n>0 between 7;_1 and 7 is unchanged by (2.1).

Analogously to what is observed in [CGZ06, App. A}, under Assumption 1 we are able to obtain
information on the law of the renewal process 7. In particular, we have the following results.
Lemma 2.2 is a direct consequence of [AD99]. Lemma 2.3 is given in [CC13, Prop. 4.1-(4.5)] for
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the discrete case and [CC13, Thm. 5.1-(5.2)] for the continuous case. For the sake of completeness,
we provide (simple) proofs of these results in Appendix B.1.

Lemma 2.2. Let T} := min{n > 1,5, < 0} and H; = —S, be the first (weak) ladder epoch and
ladder height of the random walk. Then, we have

Z £40) P(H; =0) in the discrete case,
R =
fa,(0) in the continuous case,

where fg, s the density of Hy w.r.t. the Lebesque measure in the continuous case.

Lemma 2.3. Suppose that Assumption 1 holds and let f,F(0) be defined as in (2.3). Then,
f;(O)NC—O as n — oo,
nan,
with co == fo(0)P(H; > 0), where we recall that f, is the density of the limiting a-stable random
variable Z; observe also that P(Hy > 0) =1 in the continuous case.

Note that if 0? := B[X}] < 400 (E[X1] =0), then f;F(0) ~ cyn=%/2 with ¢; := ﬁP(ﬁl > 0).

Let us now highlight one consequence of Lemma 2.3 on the inter-arrival probability distribution
of 7. Since the normalizing sequence a,, in Assumption 1 is regularly varying with index 1/a, we
find that there exists a function L(-) slowly varying at infinity! such that

(2.6) K(n) = P(r = n) = L(n)n~1+a) .

To summarize, we have rewritten the Gibbs measure (2.1) in terms of the standard homoge-
neous pinning model, see (2.5), with underlying (recurrent) renewal 7 whose inter-arrival distri-
bution K (-). The relation (2.6) is often the underlying assumption when studying the pinning
model (with a wider range for the parameter <, which is here restricted to [3,+00)). We refer
to [Gia07, Ch. 2] for a complete overview of the (homogeneous) pinning model, but we collect (and

complement) below some of the results.

2.3. Free energy and phase transition. An important physical quantity of the wetting (or
pinning) model is the free energy, defined by
1
F(\) = A}linoo N log Zn -

The fact that the limit exist follows easily once one realizes that the sequence (log Zy x)n>1 is
super-additive. It is standard to see that the free energy F(\) verifies:

(i) F(X) > 0, since we have Zy y > kAP (7 = N) and (2.6), and F(\) = 0 for all kA < 1;

(ii) A — F(A) is non-decreasing, since A — log Zy » is non-decreasing for any N > 1.

(iii) B ~— F(e?) is convex, since 3 + log Z e is convex for any N > 1.
Hence, we can define a critical point

Ae = sup{\, F(A) = 0} = inf{\,F(\) > 0}.

Let us stress that from convexity arguments, we obtain that whenever ¥'(\) exists (from Theo-
rem 2.4 below, this is the case for all A > 0 except possibly at A = A.), we have

1
F(A) = lim 2—logZN,A:A‘I m ENA[ Zﬂ{n@}}

1A function L(-) is said to be slowly varying at infinity if for any a > 0, lims 00 L(az)/L(z) =
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Hence, F'()\) is (A~! times) the limiting density of contacts under the Gibbs measure (2.5). This
shows that A\. marks the transition between a delocalized phase for A < A\, (with F/(\) = 0, zero
density of contact) and a localized phase (with F'(X) > 0, positive density of contacts)

We now collect a number of results on the free energy: they show that the wetting model (or
the pinning model when considering the definition (2.5)) is solvable. We state the results with our
notation, but we refer to [Gia07, Ch. 2] for the general context of the pinning model. Define the
Laplace transform of 71 (recall that )~ ; K(n) = 1): for any ¥ > 0,

(2.7) K@) :=> K(n)e " =E[e""].
n=1

Let us note that K : (0,400) — (0,1) is decreasing and analytic.
Theorem 2.4 ([Gia07], Thm. 2.1). The free energy is characterized by the following relation:
(2.8) F(\) is the solution of KK(¥) = (kX\) ™! if a solution exists, and F(\) = 0 otherwise.

In particular, the critical point is given by A. = 1/k, and the implicit function theorem shows that
A = F(N) is analytic on (Ae, +00). Additionally, we have

(2.9) F(Ae + 1) ~ L(uw)u™»1he) asu 0,
where L is some slowly varying function (which depends explicitly on L, o in (2.6)).

In the context of the wetting model, where K (n) := X f(0) with some explicit expressions for
and f,;7(0) from Lemma 2.2-2.3, one is able to describe the critical behavior of F more explicitly
than in (2.9). The proof is identical to that of [Gia07, Thm. 2.1], making some inversion formulas
explicit; we refer to Appendix B.2 for details.

Proposition 2.5. Suppose Assumption 1 holds and choose the normalization (an)n>1 as follows:
— if a €(0,2), let (an)n>1 be such that P(|X1| > an) ~ = as n — oo;
— if a =2, let (an)n>1 be such that o*(ay)a,? ~ L, where o2(z) == E[(X1)?1{x,|<})-

Then, we have the following asymptotic behaviors, as u | 0:

o If Y% L < oo, i if the random walk (Sy)n>0 is transient (in particular if o < 1), then

n=1 a,
(2.10) F(Ae +u) ~ ciu with ¢, = %2/ > nfH0).
n=1

o [fa=1and Y2, - = +o0, letting co := fo(0)P(H; > 0) as in Lemma 2.3, we have

n=1 an

/{2 u

. ® ds
(2.11) P+ )~ Mm“@%zl;ﬁpw&k>@’

o Ifac(1,2), then

(2.12) F(Ae +u) ~ P(|X1] > ca/u) with ¢ == acol' (21 /K%
e If a=2, then

(2.13) F(Ae 4+ u) ~ czu’o?(1/u) with c3 := 3kt /P(H; > 0)2.
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2.4. Sharp asymptotic of the partition function and some path properties. Let us stress
that the sharp asymptotic of the partition function are known, in the delocalized (A < A.), critical
(A = A¢) and localized (A > A.) regimes, as can be found in Theorem 2.2 of [Gia07]. All these
asymptotic behaviors are derived from the following representation:

(2.14) Zyy=eV"VIP\(N €7),
where P » is the law of a renewal 7 with inter-arrival distribution given by
(2.15) Py (71 = n) = kAK (n)e " forn>1.

Indeed, writing Zy \(A) := E[(/i/\)HN(T)]l{NeT}]lA] for any event A, we have for 0 =: igp < i1 <
... <ip =N,

k k
Zya(r [0, N = {in,...,ix}) = (RN [ Ky — ij-1) = "V [ Pa(® = i; —ij-1)
=1 i=1

= eF()‘)Nf),\(Tﬁ [0, N] = {i1,... ,Zk}) .

Summing over k > 1 and 41,...,ix_1, we obtain (2.14). Let us stress that in general, since we
have Py \(A) = Z; ~ZN(A), we obtain the following representation for the pinning (or wetting)

measure Py y (see also [Gia07, Rem. 2.8]):
(2.16) Pya(TN[0,N]€:) =P,\(7N[0,N]€-|Ne€7).

Note that, in view of (2.8), 7 defined by (2.15) is recurrent if A > . and transient if A < A.. In the
super-critical case A > A., we have that P)(71 = j) decays exponentially fast (with exponential

decay rate F(A) > 0), so 71 is positive recurrent. Therefore, using the renewal theorem, we get
from (2.14) that

1 . oo

(2.17) Iy~ — eIV as N 0o, with my = Ey\[7] = /1)\2 nK (n)e "N

X n=1
We refer to [Gia07, Thm. 2.2] for the corresponding results in the critical (A = A;) and sub-critical
(A < A¢) cases: we have

KA

(1 —rN)?
E[min(r, N)] 7! if w € (0,1],
2 sin(ra) N* 1 /L(N) ifae(1,2].

if A< A ZN’)\N K(N),

i\ = A\ ZN,AN{

To complement the above results, let us also give an application of (2.16) in the super-critical
case. Indeed, it gives that for any k € {0,..., N},
~ ~ 1 ~
(2.18) Py (Hn(m)=k)=P\(|7N[0,n]] =k|ne7) = =——P\(Ta =n).
Py(ner)
Indeed, using the local central limit theorem for 73, see e.g. [GK54, Ch. 9, §50], and the renewal
theorem, one directly obtains the following result.
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LHNJW\WWT\\
ANA f\/\/_\/\/\/\ /\/\N\/\/\ A

ZIa 000 0

"N
FIGURE 3. Wetting of a lazy random walk in a rectangular well of depth |aN]. On the left, the

system is in the delocalized regime; on the right it is in the localized regime.

Proposition 2.6. For any A > ., we have the following local limit theorem for Hy = Hy(T)
under Py y:

0.

N — kmx)‘ N—oo
VN

2 ~ ~
where ¢g(t) = —= e 27 is the density of N'(0,0?%), and my := Ey\[71], ox = Var,(71).

1
sup'MﬁJAAfIUmA(Eﬁv::k)——¢0A<
k>0 m)

V2ro
As a direct consequence of a Riemann sum approximation, we obtain that under Py, the
rescaled number of contacts \ﬁ(H N — —N ) converges in distribution to N'(0, 03 /m3).

3. WETTING WITH ELEVATED BOUNDARY CONDITIONS

3.1. Wetting in a square well. We now turn to the wetting model with elevated boundary
condition, also seen as a model of wetting of a square well. We will focus here on the discrete case,
so from now on (Sp)n>0 is an aperiodic centered random walk on Z; the continuous case can be
treated analogously. The model consists in lowering the hard wall to a depth —|aN |, where a > 0
is a parameter tuning the depth of the well, see Figure 3.

APy 1 S, -
(31) dP7 (S) = ZX[)\AHN(S)ILQRG(S)IL{SNZO}’ with HN(S) = Z :[l{Sn:fLaNJ}?

with Z§  the partition function of the model and Q},Q(S) ={S1>—-1]aN|,...Sy > —|aN|}.

The definition (3.1) is equivalent to considering the wetting model (2.2) with elevated boundary
conditions Sy = Sy = |alN|. One could also consider non-symmetric boundary conditions Sy =
laN |, Sy = |bN] with a,b > 0, as done for instance in [Pat98, PV99, BFO09]. We chose for
simplicity to focus on the symmetric case a = b; we comment below how some of our results would
be modified.

3.2. First results: free energy, left-most and right-most points of contact. Here again,
one may define the free energy of the wetting model with elevated boundary condition:

1
(3.2) F(A,a) = lim N log Z}y » -

N—oo
For simplicity, we keep the notation F(A) = F(A, 0) for the free energy of the original wetting model.

Theorem 3.1 below shows that the free energy exists and makes it explicit in terms of F(A) and of
the left and right large deviation rate functions for S,.
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3.2.1. Free energy and large deviations. First, let us define the (left and right) log-moment gener-
ating functions of Xi: for ¢ > 0, let

(33) AL (t) :=log E[e"], A_(t) :=log E[e %],
Let us also define the Fenchel-Legendre transforms of Ay: for x > 0,

(3.4) Ii(x):= i;lg{t:r — Ay (D)}, I_(x):= i;lg{t:v —A_(t)}.

Let also A(t) := Ay (t) L0y +A— (=) L0y and [(z) = [ (2) L{z>0y +1- (=7) L 1z<0y- By Cramér’s
theorem, I, 1_ are the (upward and downward) large deviation rate functions for the random walk
(Sn)n>0, see e.g. [DZ09, Thm. 2.2.3] or Section 5 below, (5.1). Our first result is to obtain the
value of the free energy in terms of I ,I_, in analogy with [LT15, Prop. 2.1].

Theorem 3.1. The free energy F(A, a) defined in (3.2) ezists and (A, a) = max{y (A, a),0}, where

w()\aa) = sup g)\,a(u,v),
0<u<v<1
(3.5) suss

with g q(u,v) := (v —u)F(A) —ul_ (%) —(1—-v) I+<1 i U) .

Remark 3.2. For the wetting model (2.2) with non-symmetric elevated boundary conditions
So = |aN|, Sy = [bN], Theorem 3.1 is easily adapted and one obtains that the free energy

is max{w()V a, b)7 0} with w()V a, b) = SupOSuSUSl {(’U - U)F()\) - UI—(%) - (1 - U) I+(1Ev>}'
Then, for any a > 0, we can define the critical point

Ae(a) :==inf{\, F(A,a) > 0} = inf{\,¢p(\,a) > 0},

and one easily sees that a — A.(a) is non-decreasing. The point A.(a) marks a localization or
wetting phase transition, from a delocalized phase F(A,a) = 0 (with zero density of contact) to a
localized phase F(A,a) > 0 (positive density of contact).

Note also that if I} =1_ = 0, then A.(a) = A:(0) = A. for all a > 0, which is in particular the
case if Assumption 1 holds with € (0,2) and o € (1— 1, 1) (this excludes the totally asymmetric

case if a € (1,2)). ¢

3.2.2. About the free energy and the phase diagram. Let us now make more explicit the expressions
of the free energy F(\,a). We also give an expression for the critical line separating the localized
phase £ = {(\,a),F(\,a) > 0} from the delocalized phase D = {(A,a),F(\,a) = 0}:

ac(A) =inf{a > 0:F(\,a) =0} and A.(a)=sup{A>0:F(\ a)=0}.

We refer to Figure 4 for an illustration of the phase diagram.
Before we state the results, let us introduce the radii of convergence for Ay, A_:

(3.6) td i=sup{t > 0,A(t) < +oo} and t; :=sup{t>0,A_(t) < +oc0}.

In the case where ¢t = t; = 0, then we trivially have that I, =1_ = 0 and F()\,a) = F()) for any
a > 0. Our next results therefore have some interest only if t§ > 0 or t; > 0. We stress that Ay
is increasing and analytic on [O,tg ) so it is in fact invertible with analytic inverse A;l on that
interval. We extend this definition on R4 by letting Ajrl be the left-continuous inverse of A; in
particular, A7'(z) = tJ for all z > A4 (t) and A7 = 0 if ¢ = 0. Similar notation holds for A_.
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FIGURE 4. Phase diagram for the wetting in a square well for two integrable models (see Appen-
dix A): the symmetric lazy random walk (on the left) and of the symmetric geometric random walk
of Section A.2 (on the right). We refer to Sections A.1 and A.2 for explicit formulas derived from
Theorem 3.3 (with the parameter v = 0.4 in the figures above).

Theorem 3.3. For any A > 0, we have
(3.7) F(), a) = max{t¥(},a),0} = max {F(A) —aATH(F(N) — aAT (B (N)), o}

(3.8) ac(A) =

Let us now give some properties of F(A, a).

e Similarly as for the free energy of the (standard) wetting model, the function A — F(A,a) is
non-negative and non-decreasing and S — F(eﬁ, a) is convex, for any a > 0.

e The function a — F(\, a) is affine by parts.

Now, define A1, A_ > 0 as follows:

(3.9) F(A) = Ay (t]) if t5 € (0,+00),
' FOA) =A_(ty)  if ty € (0,+00),

and Ay = 400, resp. A_ = +00, if tar =0 or t = 400, resp. if ty = 0 or t; = 4o00. Naturally we
also have Ap = 400 if AL(tF) = +00. Then, the function \ — ATY(F()N)) is analytic on (0, Ay)
and constant (equal to tJ) on [Ai,+00); and similarly for A — A~'(F()\)). Let us therefore make
two observations:

e If A > A, \_, then we have that F(\) = max{F(\) — a(t] +t;),0} and a.()\) = tﬂlrt— F(\).
0 0

e The functions A — F(\, a) is analytic except at A.(a) and at A\, A_; the function A — a.()) is
analytic on (A, +00), except at Ay, A_.

The last observation shows that in addition to the localization phase transition at A.(a), there
might be another phase transition (or two others), at A = A4, A_, provided that Ay, A > A.(a).
The phase transition at A+ is a saturation phase transition, in the sense that the left or right-most
point of contact becomes degenerate when A > A_ or A > Ay, see Section 3.2.4 (and Figure 5).
This second phase transition appears to be absent from other wetting models considered so far
in the literature, and essentially comes from the fact that the rate function I. itself may have a
(saturation) phase transition at some p4, see Section 5 below.
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Example 3.4. Consider a random walk with symmetric increments whose distribution is given by
P(X; = z) = cg(1 + |z|) el for x € Z, where 6 € R is a parameter and cg is a constant that
normalizes P to a probability. Then, we clearly have that tar =t, =1, and Ar(1) = 400 if 0 < 1,
A+ (1) < +oo if 0 > 1. Therefore, the critical point Ay is finite if and only if 6 > 1.

3.2.3. Mazimizers of the variational problem (3.5). As mentioned above, A} is increasing and
analytic on [0,t]), so Ajrl and A/ are well defined on that interval: we extend their definition
on Ry by considering respectively the left-continuous inverse and the left-derivative of Ay. In the
case tg =0, we set A/, o A;l = +00. Similar notation holds for A_. We also denote

(3.10) pt =N (t5) = im A/ (2), p—=A (tg) =lmA’ (¢),
thtd 1ty

where by convention we set pr = 400 if 150jE = 0. Then, for any A > A; and a > 0, we define

A= A’+oA;<F<A>>€[pa+’+°°>’ wl = ooy © oo )

Note that wi > ﬁ if A <Ay and wy = ﬁ if A > A4, and similarly for w*. We then have the
following result.

Lemma 3.5. If w} +w* <1, and in particular if X > Ac(a), we have
sup  {gna(u,0)} = F(A) = aAZH(F(N) — aATH(F(N)),

0<u<v<1

and the the supremum is attained on U* x V* = U;;a X V;a, with

{w*}  if A< A, {1—wi} if A<y,
U =00, 2] if A=A, Vi=dM- 2] ifA=)y,
{0} if A> A, {1} if A> Mg

We show in Lemma 6.5 below that w?} + w* < 1 whenever A\, > A.(a); this proves in particular
the first claim of the lemma.

Remark 3.6. As far as the wetting model (2.2) with non-symmetric elevated boundary conditions
So = |aN |, Sy = |bN] is concerned, one could also adapt Lemma 3.5 (and Theorem 3.8 below):
one simply need to replace a by b in the definition of w? .

Remark 3.7. In the case where Ay (t3),A_(ty) = +oo, then Ay, A_ = +oo and the supremum
in (3.5) is uniquely attained. In fact, the only case when the supremum is not uniquely attained is if
A=A_ (and p— < +00) or A = Ay (and p4 < +00). Considering Example 3.4 as an illustration,
we have Ayx < 400 if and only if 0 > 1 and we additionally have p+ < 400 if and only if 6 > 2.

3.2.4. Left and right-most pinned points. We can extract from Theorem 3.1 and Lemma 3.5 some
properties of the path, in analogy with [LT15, Thm. 2.2]. Let us define the left-most and right-most
points of contact between the walk and the bottom of the well:

Ly =L% :=min{0 <n <N, |aN]| + S, =0},
Ry = R% :=max{0 <n <N, |aN|+ 5, =0}.
By convention, we set Ly, Ry = +oo if H{(S) = 0, i.e. if there is no contact with the bottom

of the well. Note that we focus on the left and right-most point of contact, but physically, an
important quantity to consider is the contact angles between the interface and the bottom of the



WETTING ON A WALL OR IN A WELL 13

ac(N)
D

F1GURE 5. Illustration of the phase diagram in the case where A\, < A_ < A; < +4oo. The
critical curve a.(X) separates a localized phase £ = {(\,a),F(A,a) > 0} and a delocalized phase
D ={(\a),F(A, a) = 0}. We have also represented a typical configuration, depending on the range of
parameters: according to Lemma 3.5, the left-most point of contact is either at w* > p% for A < A_,in
[0, pi_] for A\ = A_ or at 0 for A > A_ (and similarly for the right-most point of contact). Also, in view

of Theorem 3.3, the formula for F(\, a) is different in the regions (A, A_), (A_, Ay) and (A4, +00).

well (or substrate); we refer to Remark 3.9 below for some comments. We prove the following
convergence of (Ly, Ry); we let dist(z, A) :=inf,ca ||z — 2/||.

Theorem 3.8. In the super-critical case, that is for A > A.(a), we have that for any e > 0,
(312) lim P(]lv)\ <d1St<J{7(LN, RN); []>k X V*) > €> = 0,
n—oo ’

where U* x V* is defined in Lemma 3.5 (and are the maximizers of the variational problem (3.5)).
In the subcritical case, that is for A < A:(a), if we assume that lim,_, %an = 400 (so the bottom
of the well is much further than the typical fluctuations of the random walk), then we have

(3.13) lim P4\ (Hf(S) =0) =1.

In the case where Ay (tf),A_(t;) = +o00, Lemma 3.5 shows that the supremum in (3.5) is
uniquely attained, and from Theorem 3.8 we get that the left and right-most points of contact are
located at (u*,v*) = (w*,1—w?) with p% <uf <v*< 1—&, for any a > 0, A > A\.(a). The most
unexpected case occurs when A (t]) < +oo and/or A_(t;) < +oc. Let us focus on the left-most
point for simplicity. Recalling the critical value A_ defined in (3.9), Lemma 3.5-Theorem 3.8 show
that the left-most point is located at u* = w* > ﬁ for A < A_ and then drops (or saturates) to
u* = 0 for A > A_, either continuously if p_ = 400 or discontinuously if p_ < +o0; at A = A_,
the left-most point is located in an interval [0, p%] We refer to Figure 5 for an illustration.

Let us mention that, as far as the critical case A = A.(a) is concerned, one needs some extra
assumption to obtain a result analogous to Theorem 3.8. For instance, if t('f = t, = 0 we have
Ac(a) = 0: then we can easily show that (3.13) holds also at A = A.(a). On the other hand,
if one have A.(a) < min{A;, A_}, i.e. if one is inside the so-called Cramér’s region, we prove in
Theorem 3.10 below that (3.12) holds at A = A.(a), with a unique maximizer (u*,v*) verifying
0<u* <v" <L
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Remark 3.9. One could improve Theorem 3.8 to obtain in the super-critical case the convergence
of the full trajectory (%SLtNJ)te[O,l], as done for instance in [BFO09]. If A > A.(a) and if the maz-
imizers U*,V* are reduced to one point w* ,w’ , one can easily show that the trajectory converges
under P , to three line segments joining the points (0,0), (w, —a), (w}, —a), (1,0); we refer to
Figure 5 for an illustration.

Some interesting quantities considered for instance in [Pat98, PV99] are the contact angles
0_,0, between the bottom of the well and the first and last segment of the trajectory. Since we
have tan0_ = a/w* , tanfy = a/w? , then in view of the formula (3.11) for w’ , w*, we observe
the contact angles 6_, 64 do not depend on a but only on \ (this remains true for non-symmetric
elevated boundary conditions) — note that in the case of a symmetric random walk one additionally
has 01 = 6_. This was already noticed in [Pat98, PV99] for the pinning of interfaces in the 2D
Ising model, the angle verifying the so-called Herring—Young equation.

3.3. Cramér’s region and Gaussian fluctuations. We now wish to obtain more precise es-
timates on the partition function and on the left and right-most pinned point, sharpening in
particular Theorem 3.8. For that, we are going to assume that Cramér’s condition holds, which
ensures in particular that the rate functions I,I_ are non-trivial.

Assumption 2 (Cramér’s condition). There is some ty > 0 such that E[e!*1] < +oo for |t| < to.
In other words, tar >0 and t; > 0.

Under that assumption, we call Cramér’s region the interval (—p_, p), where p_, p4 € (0, +0o0]
are defined in (3.10). In particular, one can show that the rate function I is strictly convex inside
Cramér’s region (—p_, p4); we refer to Section 5 for more comments. In the super-critical and
critical case A > A.(a), Assumption 2 allows us to obtain inside Cramér’s region a sharp estimate
on the partition function and on the distribution of Ly, Ry under P?\/, \-

More precisely, we will assume that A.(a) < A < min{A4,A\_}, which ensures: first that A\ >
Ac(a) thanks to Lemma 6.5 below; second that w? ,w* defined in (3.11) verify w* > oo wh >
In that case, we set

* a *

a
(3.14) u=uy,=w"= — , V=0 ,=1—-wl =1- — ,
: A o A~Y(F(V)) : - Ao ATHE(N)

which verify pi <uF<vt<1l-— ﬁ; hence & and == are both inside Cramérs’s region.

Theorem 3.10. Suppose that Assumption 2 holds, that a > 0 and that Ac(a) < XA < min{Ay, A_}.
Let (u*,v*) be defined as in (3.14).

(i) There are some constants ¢y = co(a, A) >0, ¢1 = c1(a, \) > 0 (explicit in the proof) such that
(3.15) Zya~ cef NN Feofal} as N = 400,

where {aN} = aN — |aN| is the fractional part of aN.

(i) There are some constants o1 = o1(a,\) > 0, o9 = o2(a, \) > 0 (explicit in the proof, see (8.11))
such that uniformly for 6y := |%€ —u*|, 0, := ]%r —v*| <en with ey — 0, we have as N — oo

* 2 * 2
14o0(1) Y525 (1+6,0(1) -5 (145,0(1))
(316) P?V)\(LN:&RN:T) = — "¢ 201N e 202]\] )
’ 2rNoios

As a consequence, as N — oo, under P§, , we have that (LNJJNV“ , RN\;%V” ) converges weakly to

(Z1, Z5), where Z1 ~ N(0,0%) and Zy ~ N(0,03) are independent.
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This result is analogous to Theorem 1.5 in [BFOO09], which has been obtained in the context
of the pinning or wetting of a d-dimensional Gaussian random walk on a subspace M; see also
Remark 4.1 in [FO10], which considers the pinning version of the model, under the assumption that
the random walk has all finite exponential moments (i.e. t = t; = +00). Here we provide a local
limit theorem for Ly, Ry (and the number of contacts Hy(.S)), under much milder conditions.

Notice that under P, ,, conditionally on Ly = ¢, Ry = r, the number of contacts Hy = Hy(S)
with the bottom of the well as the same distribution as under P,_; ). In particular, combining
Theorem 3.10 with Proposition 2.6, we prove the following corollary.

Corollary 3.11. Suppose that Assumption 2 holds, that a > 0 and that A.(a) < A < min{A;, \_}.
Then, as N — oo, we have the following joint convergence in distribution under PYa:

<LN—u*N Ry —v*N HN—mgl(v*—u*)N) P§a
vVN = VN VN

where (Z1, Zs, Z3) is a Gaussian vector of density

(3.17) (Zl,ZQ,ZS) as N = oo,

N—oo

1
(27)3/20 0903

)

2 2 -1 2
z z z3—my (20 — 2
e~ 3Q(122,23) i Q(21,22,23) = =% + = (=5 A (22 1)
o1 03 03
for some constants o1, 09,03 explicit in the proof. In particular, Z3 is Gaussian, but not indepen-
dent of (Z1, Zs2). (We actually obtain a local version of this convergence in distribution, see (8.13).)

As a consequence, the density of contact %H ~(S) converges in P9 y-probability to n%(v* —u"),
with v* —u* > 0, even at the critical point A = A.(a).

Remark 3.12. Obtaining detailed results when A > min{\y,A\_}, i.e. at the border or outside
Cramér’s region is left open. It would actually require further assumptions on the underlying ran-
dom walk, in particular to obtain sharp local large deviation estimates, in the spirit of Theorem 8.2
below. We do not pursue the investigation further, but the situation at A = AL when py+ < +00
(hence the variational problem has no unique mazximizer) is particularly intriguing.

3.4. About the phase transitions. In this section, we also focus on the case where Cramér’s
condition is satisfied, i.e. both tar ,to > 0. This is only to simplify the statements, but the results
could be adapted to the case where only one of tar,ta is non-zero (up to a factor 1/2 in some
constants). On the other hand, the case tJ = t; = 0 is trivial, since F(\,a) = F()\) for all a > 0.

3.4.1. About the localization (or wetting) phase transition. As far as the critical behavior near the
localization transition (at A.(a)) is concerned, we have the following result. It shows in particular
that, as soon as a > 0, the phase transition in A is of first order. Note we have already observed
that a — F(\, a) is affine on (0, a.()\)).

Proposition 3.13. Suppose that Assumption 2 holds. For any a > 0 with \.(a) < 400, we have
F(Ac(a) +u,a) ~ Chu asu 0.

for some explicit constant Cy > 0 given in (6.11). The constant C,, verifies Cq ~ v/8cza as a ] 0,
with c3 defined in (2.13).
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3.4.2. About the saturation phase transition. Let us also give some information on the saturation
transition(s) (at Ay, A_): we show that it is of first order if py < +oo and of second order if

pt =00
Assume that Ac(a) < A_ < Ay < +o0; the case A < A_ is symmetric and the case where
A4+ = 400 is simpler. We introduce the excess free energies as follows: recalling Theorem 3.3 (and

the fact that AL (F(A\+)) = t2), define for A\.(a) < A

=F(\a) — (F(\) — aAT (F(N)) — aty),
(3.18) =F(\a) — (F(/\) —atf — ata) .

In particular, we have that F*(\,a) = 0 for A € (A_, A\;) and F**(\,a) = 0 for A € (A4, +00). In
the case where A\_ = A4 then F* = F**. We then have the following result.

Proposition 3.14. Suppose that Assumption 2 holds. If \_ < Ay < 400, then as u | 0 we have
"(A_ "(A

O 0y —wa) = (14 0(1) TR,
pP- P+

If A== Ay < +o0, then F*(A\x — u,a) = (14 0(1))ar’ (A\+) (G- + =) u as u | 0,

F'(A_ —u,a) = (1+o0(1))

In particular, we find that F*(Ay — u,a) = o(u) if px = +oc.

3.4.3. About the critical curve. Let us now provide some information about the critical curve, in
particular close to A. and A_, Ay (again, assume A\_ < A} < 4+00). To study a.(\) as A crosses
the values A_, Ay, we define similarly as above (recalling the formulas of Theorem 3.3):

F(\) ) = g () — _FA)
o YT s

(3.19) ar(N) = ac(\) —

=0for A € (A_,A\y) and a>*(N\) =0 for A € (A4, +00). Also, a} = a}* in the case

so that a’(\)
== >\+.

where A_
Proposition 3.15. Suppose that Assumption 2 holds.
(i) We have

ac(Ae +u)~7\fu asu 0,

where o2 is the variance of X1 and c3 is defined in (2.13).
(ii) If A= < Ay < +o0, then as u ] 0 we have
F(A_)F' (A
OISy —w) = (14 0(1))
(AL (F(A)) + 19 )%p-

If Ao = Ap < +o0, then al(Ay —u) = (1 —1—0(1))%(% + p%)u as u 0.

F(AL)F (A1)

ag(A- —u) = (1+0(1)) (ty +1t3)2p+

In particular, we find that A — a.()\) remains differentiable at Ay if p1 = +o0; if p1 < +00, the
left and right derivative at Ay differ.
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4. SOME RELATED MODELS AND OPEN QUESTIONS

4.1. Wetting on a tilted wall or in a convex well. Let (X;);>1 be i.i.d. real random variables,
with a density f(-) with respect to the Lebesgue measure. For a given function ¢ : [0,1] — R we
define for N > 1 the function ¢y : {0,... N} — R by setting ¢n (i) = +¢(+). Then, we introduce
the following Gibbs measure, analogously to (2.1):

N-1 N
1
AP \(51,.-+,50) = v T (Csimenprldsi) + Mgy (dsi)) TT £(si = sim1)Adpy (v (dsn) -
N =1 i=1

This corresponds to a wetting model on a wall of shape ¢; note that we consider only the continuous
model so that there is no restriction on the function . Two natural examples are the following

(i) If ¢(x) = px for some p € R, it corresponds to a wetting model on a wall with slope p;
(ii) If p(0) = ¢(1) = 0 and ¢ is convex, this corresponds to a wetting model in a convex well.

We then define the free energy F(X, ) = limy_o0 7 log Z5 , (one has to show that it exits) and
one would like to obtain some explicit expression for it.

(1) For a wall of slope p. If p(x) = pa, let us denote F(A, ¢) =: F,(A). In that case, in the Cramér
region, that is if u € (p—, p+), then we should have that

Fu(N) = PO~ T(n),

where F(“)()\) is the free energy of the wetting model with a wall of slope 0 but with underlying
random walk with i.i.d. increments X; = X — i, where X{“) has the tilted law P®) (dz) =

i

et =AMt P (dz) with ¢, chosen so that E®) [X£“)] = p. For instance, in the case of a (standard)
Gaussian random walk, since I(n) = 42 and PW ~ N (p,1), we should get 7, (\) = F()\) — T2,

(ii) For a convex well. In the case where ¢(0) = ¢(1) = 0 and ¢ is convex, then we should get the
following. For 0 < u <wv <1, set

(1, 0) = /u P (Ndt - ul( ‘901“)') — (1 -o)1( \f(v)vl) |

where F¢/(t)(A) is the free energy of the wetting model on a wall of slope ¢'(t). Then, setting
P(A, ) = SUPg<y<p<1 Grp (U, V), We expect that

F()‘> 90) = maX{¢(>\> ‘10)’ 0} )

generalizing the formula found in Theorem 3.1. For instance, the formulas should slightly simplify
for a (standard) Gaussian random walk: we should get gy ,(u,v) = (v — u)F(A) — Ey (), with

EU,U(SD) = %f; ‘Pl(t)th + ﬁ‘?(uy + 2(11_U)CP(U)2~

4.2. Wetting on a random walk. Another model that seems natural to consider but has not
been studied in the literature (to our knowledge) is the wetting model in the case where the wall
is random (but quenched), given by the realization of another random random walk (Y7,)n>0.

More precisely, let Y = (Y,)n>0 be a random walk and consider, for a fixed (i.e. quenched)
realization of Y, the Gibbs measure

N-1 N
1
dPxA(Sl, ceey8p) = ﬁ/\ H (]l{si>Yi}M(d5i) + Ady; (dSZ')) H fsi— Si—l))\(SYN (dsn) -
A =1 =1
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It corresponds to a wetting model of the random walk (S;,),>0 above the (quenched) wall (Y;,)n>0.
In the discrete case, this can be rewritten and

dPY; | 1
(4.1) =(5) =
dp ZY

A net Hsn=va} 1 .
{S;>Y; for all i€{1,....N}} -

By Kingman’s super-additive ergodic theorem, one can show that the quenched free energy
exists and is a.s. constant, i.e. almost surely does not depend on the specific realization of Y

1 1
FAU(A) == A}gnoo N log Z%,/\ = A}gnoo NEy[log ZJ%,A] Py-a.s. and in L'(Py).

Additionally, one may define the quenched critical point Ad"® := inf{\, F4"¢()\) > 0}.

Let us observe that the annealed model, with partition function Ey [Z%, )\}, corresponds to the
usual wetting model of Section 2, with underlying random walk (X,, —Y},)n,>0. Hence its critical
point A2" (and the critical behavior of the annealed free energy) is explicit, see Theorem 3.1. Fur-
thermore, applying Jensen’s inequality Ey [log Z}\/,, \J < logEy [Z}\/, 4J, one obtains that the annealed

)\(c]ue Z A?nn

free energy dominates the quenched one, and in particular . The question of then to

know whether one has the strict inequality A¢" > A2™™ or not.

Quenched vs. annealed critical point. A variant of (4.1), where the constraint that S; > Y; for
all 1 < ¢ < N is removed, is known as the Random Walk Pinning Model and has been studied
in several instances, see [BT10, BS10, BS11]. For this model, the question of the strict inequality
between the quenched and annealed critical point has some consequences in several interacting
stochastic systems, see [BGdH11]. The above references mostly consider the case of the simple
symmetric random walk on Z?: they show that quenched and annealed critical points are equal
(to 1) in dimension d = 1,2 and that they differ in dimension d > 3. The case of symmetric
random walks on Z with Assumption 1 is also (partially) treated in [BGdH11]: they prove that
the quenched and annealed critical points are equal if & > 1 and different if a < %

The question of the strict inequality between the quenched and annealed critical point for the
wetting on a random walk (4.1) is however slightly different and remains open. Abiding by Harris’
predictions [Har74] for disorder relevance in physical systems?, since the annealed model has a
critical exponent v = min(1, &), which is smaller than 2 in the case a < 2, disorder should then be
relevant, meaning that Ad"¢ > A2", The case a = 2 (of random walks in the Gaussian domain of
attraction) is marginal for the question of disorder relevance and there is no clear prediction; one
might expect that in analogy with the pinning models [BL18, GLT10], one has Ad"® > A" also in
that case, but this is a questionable conjecture here.

4.3. Wetting in higher dimension. Another natural model to consider is the wetting of a
square well in dimension d > 2. For some compact domain B C R? (of connected interior), we
could consider the wetting of an interface in a well of shape B. Let By := (NB)NZ? and consider
the following model of wetting in a well of depth aV:

1 _HO
Py i= gg—e O T (000 Lo fangy + M- o (d62))
BN,)\ veBy

2The prediction is made for a disorder which is i.i.d., but it has been confirmed in the random walk pinning
model, see [BT10, BS10, BS11] and also [AB18].
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where H%N(gb) is a Hamiltonian associated with a random interface ¢ : By — R? (or Z%), with
zero boundary condition (that is such that ¢, =0 on BY,).
A natural choice for the underlying interface model is a gradient model, i.e. a Hamiltonian

Hp (0):= Y Vida—0)+ > Vida),

x,yEBN z€BN,yEBN
T~y T~y

for some potential V(-); we refer to [Fun05] for an overview. The choice V() = z? corresponds to

the massless Gaussian Free Field (GFF); the choice V(z) = |z| corresponds to the Solid-On-Solid
(SOS) model. The wetting of the GFF and SOS has been considered in [CV00], where it is shown
that A; > 1 for the GFF in dimension d = 2 or for the SOS model in any dimension d > 2; on the
other hand, one has that A\, = 1 for the GFF in dimension d > 3, see [BDZ00, GL18|.
A first goal would be to obtain a formula for the free energy of the model, defined as
Fp(ha) = Jim % log 7%,
In the spirit of Theorem 3.1, we expect that one has Fp(\, a) = max{yp(}, a),0}, with

(4.2) vp(A\a) = sup {r(\)|D| - Ip(a,D)} .

Here, F(A) := limy 0 |D | log Z%~ )\ is the free energy per unit volume of the (usual) wetting
model and Ip(a, D) is the rate functlon for the large deviations of the interface:

1
IB(a,D) = ]\}i—{noo_mlogPBN (¢$ < —aN Vx € DN) s

where P, is the law of the underlying interface, that is dP g, (¢) := ﬁeiH%N(d)) [Locn, #(doz).
N

The main difficulty in proving (4.2) should come from the large number of choices for the possible
microscopic “wetted” regions; in analogy with [BI97], a coarse graining of these regions might be
necessary.

We stress that for strictly convex potentials V() with bounded second derivative (in particular
for the GFF), [DGI00] proves a strong large deviation principle for the rescaled surface %qﬁ, with
speed N and rate function %(u) = [, o BO ))d6, where o(-) is the surface tension of the model.
In particular, for the GFF one has o(v ) = 2||UH2, so one obtains that the above rate function
is Ip(a, D) = da*Capg(D), where Capg(D) is the Newtonian capacity of D with respect to B,
namely

Capgp(D) := sup{;d/D |V f(z)||*dz, f € C, f(z) > 1for z € D, f(z) =0 for x € BC}.

In general, if V(x) = ¢o||z||? for some p > 1 (in particular for the SOS model if p = 1), one should

also obtain that Iz(a, D) = 2dcoapCapS§)( D), where Cap(p)( D) is the p-capacity of D with respect
to B, namely

1
Capg)(D) = SUP{Qd/D IVf(x)||Pdx, f € CZ, f(x) > 1forx € D, f(x) =0 for z € Bc}.

Remark 4.1. One could also consider other type of interfaces, for instance with Laplacian interac-
tions (also known as the membrane model), where the Hamiltonian is H%N(¢) = seny V(A0:),
with A the discrete Laplacian. This is already an interesting question in dimension d = 1, where
the wetting model has been considered in [CDO8] (it is shown that A\ > 1). The d-pinning of the
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membrane model has also been considered in [BCK16, Sch22] in dimension d > 4, but many open
questions remain, especially in dimension d = 2,3 where it is not known whether the critical point
is strictly positive or not. We refer to the above references for more details on this model.

5. LARGE DEVIATIONS: NOTATION AND PRELIMINARY OBSERVATIONS

Recall that the rate functions I, I_ defined in (3.4) are (upward and downward) large deviation
rate functions for (S,)n>0, see [DZ09, Thm. 2.2.3], namely

1 .1
(5.1) nlg]go Elog P(S, > azn) = -1 (z), nh_)n(r)lo - logP(S,, < —zn) = -1_(z).

Note that the remark after [DZ09, Thm. 2.2.5] (or simply using Chernov’s exponential inequality)
tells that we have the following useful upper bounds: for any n > 0 and = > 0

(5.2) P(S, > an) < e ™@  P(S, < —zn) < e -0

5.1. Some remarks on the rate functions. Let us recall that for ¢ > 0 we have defined
Ay (t) = log E[e!*'] and A_(t) = log E[e~*X1] and their respective radius of convergence:
5= sup{t > 0, A4 (t) < +00} € [0,+0], f5 = sup{t > 0,A_(t) < +o0} € [0, +oc]

Some standard properties of the log-moment generating functions Ay and of the rate functions I+
are given in [DZ09, Lem. 2.2.5]. Let us summarize some of the properties here for A, and I,
(similar statements hold for A_ and I_):

e A, is non-decreasing and convex and I is a convex non-decreasing rate function;
e If t& =0 then I (z) = 0 for all z > 0;

e Ift§ >0, then A, is differentiable and strictly convex on [0,td) and L is strictly increasing on
{z > 0,11 (z) < +o0}. Additionally, A, (s) = y implies that I (y) = sy — A (s).

Lets us recall the definition of p4,p—, the limiting slope of A when approaching the radius of
convergence, as in (3.10):

pt = lim A, (¢), p— = lim A’ (t).
thtd 1ty

Let us also introduce the extremal points of the support of the random walk increments:
(5.3) T4 :=sup{zx € NP(X; =2x) >0}, Z_:=sup{x e NP(X; = —z) > 0}.

There are mostly four cases that we need to consider (we focus on the “4” case but similar
considerations hold for the “—” case): we summarize them in Table 1 below.

Let us introduce, for ¢ € [0, ta“ ), the tilted measure Py as

AP, e A
ap ) = gy~ © '

(5.4)

Notice that Ay is analytic on [0,¢;) and that A’ (t) = E,[X}] is strictly increasing from [0,¢)
to [0, p+) (Assumption 1 implies that E[X;] = 0 whenever X; has a finite expectation) and that
A’(t) = Var (X;) > 0 (otherwise X; would be a.s. constant).
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ty = +o0 ty < +o0 ty < +o0 ty = +o0
i’+:+00 .’E_A,_:—f—OO .f_:,_:—i-OO .T+:p+<+00
p+ = +00 p+ < +00
I, is strictly convex on R I is strictly convex and finite on [0, p+]| and
and lim, o Iy (2) = +o0 is affine on (p4, +00) is infinite on (p4, +00)
1 (z) L (z) Iy () oo
x : x | — x
P+ P4 =T+

TABLE 1. Summary of the different possibilities if ¢; > 0. In all cases, I, is strictly convex on [0, p ).
Similar statements hold true for I_.

For all z € [0, py), the supremum in the definition (3.4) is attained at ¢, := (A’.)~!(x), such
that A’ (t;) = x. We therefore get, after some classical calculations

Lo (@) = 2ty — Ay () = 2(A) 7 (@) — Ay (M) (@)

1 1
I/ . — A/ —1 I// _ _ <
H =t =W RO = G @) T Van, (40)
Note also that if py < oo and tJ < oo, then I is defined (and affine) on [p4, +00), see Table 1: we
have 1 (z) = zty —AL(t]). In that case, L, is differentiable on Ry, with I', (z) = t5 = (A/,) " (p4)
for x > py,
To summarize, we have that I is differentiable on [0,z ) and left-differentiable at z, with

)= if x
(5.6) T, (z) = {i§+) €9 iix ; (p()jfﬂ,

(5.5)

+o0.

which is continuous in the case where p. < +00. As another useful formula that derives from the
above, we have

Ay o (N ) ()
AL (t])

5.2. A local large deviations result. We complement here Cramér’s large deviations (5.1) with
a local version; we were not able to find a reference for it, so we prove it in Appendix C.

if z € (Ovp-i-))
ifx>pg.

(5.7) I (z) — 2l (z) = — {

Lemma 5.1. Suppose that Assumption 1 holds. For any any sequence of non-negative integers
(Tn)n>1 such that lim, %xn = x < Ty, we have the following local large deviation behavior:

.1
nh_{rgo - logP (S, = zp) = —1i () and

Note that if + = . < 400, then we have P(S, = z4n) = P(X; = z1)", which also gives
limy, o0 = log P(S, = @) = —I(z) since one can easily check that I, (2;) = —log P(X; = Z,).
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However, the result cannot hold for any sequence z,, such that lim, %xn = Zz4; for instance
P(S, = z,) =0 for any x,, > Tyn.

6. OPTIMIZERS OF @D()\, a), FORMULA FOR THE FREE ENERGY AND PHASE TRANSITIONS

In this section, we prove Lemma 3.5 that gives the location of the maximizers of (A, a). We then
derive from it the formulas for the free energy F()\) and the critical line a.(\) given in Theorem 3.3,
and we deduce the critical behavior of F(A,a) and a.(\) of Proposition 3.13.

Before that, let us make one simple observation on the limitation of the depth of the well.

Lemma 6.1. Recall the definition (5.3) of Ty,T_; notice also that T+ = sup{x,l(x) < 4o00}.
Let us define

(6.1) i = (i + é) o T (0,400,

T Ty Ty + -

with the convention é =0 and % = +00 in cases where T4 and/or T_ are infinite. Then, if a > a,
the walk cannot reach the bottom of the well, i.e. P(H%(S) > 1) =0.

Proof. If the walk has a contact with the bottom of the well, i.e. H{(S) > 1, then by definition of
Z4, T, the left-most contact point P-a.s. verifies Ly > % and the right-most one N — Ry >

LG?JXJ_ Since we must have Ly + N — Ry < N, this implies that a(i% + i) <1,thatisa<a. O

Remark 6.2. In the case a = a, 'nce HN(S) < Ry — Ly + 1, the same reasoning gives that

HN(S)SN—LZLNJ(E% )+1< +——|—1 where we hcwe used that |aN| > aN — 1 with
a(i%_ + i) =1. This shows that in the case a = @, the number of contacts is bounded by a~' + 1.

Remark 6.3. The reasoning of Lemma 6.1 also translates into the fact that we have ¥(\, a) = —oo
for any a > a. Indeed, having ul_(2) + (1 —v)I (%) < +oo with u < v means that % <Zz_ and
7% < 7% < Ty, since Ip(x) = o0 if x > T We therefore end up with (11 = %—&- ¢ > %—I—i,
which implies that a < a. )

In the case a = a < +oo, the only non-zero term in the supremum (3.5) is at ug = = and

vozl—%:uo, so that
a

(6.2) Y(A, a) = gra(uo,vo) = ——1_(2_) — 71 +(Z4) € (—00,0).
X _— 1’+

6.1. Optimizers of 1)(\,a): proof of Lemma 3.5. Let us fix A\,a < a and recall the definition
of grq in (3.5): for (u,v) € D= {(u,v), 0 <u<v <1},
a
1-—- v) ’

a
(6.3) Ira(u,v) == (v — w)F(N) — ul_ (a) (1) 1+(
so that ¥(A, a) := sup(,, ,)ep 9r,a(u, v). Notice that since IL(x) = +o00 if 2 > T4, then if there is a
maximum for gy , it must be reached for (u,v) € Dy = {7~ <u<v<1-— %}
Let us first deal with the degenerate cases. Recall the definition (3.6) of td, ¢,

Case ty =t; = 0. In that case, we have I} =1_ =0, s0 gy o(u,v) = (v —u)F()), which is clearly
maximized for (u*,v*) = (0,1). Note that the value of (u*,v*) matches the formula for U* x V*
since w® = w’ = 0 in that case.
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Case a = a < +00. Since & =1— %, then as noticed in Remark 6.3, the supremum in (3.5) is

attained at the unique value (ug,vo) and ¥(A,a) = gx.a(uo,v0) < 0, see (6.2). This in turn shows
that A < Ac(a), and in particular F(A,a) = 0. Note that the value (ug, vg) does not match here the
formula for U* x V* since w* +w? > 1 in that case (note that we have tj = +oo if 2 < 400,

see Table 1, so in view of the formula (3.11) we have w} > % = ).
P+  E+

Case a < a. In that case we have ¥()\,a) > —oo. Note that we can write
(6.4) g/\,a(uv v) =F(A) — g):a(u) - g)—ta(l —v),
with

_ a a
Iyq(w1) = wiF(A) +wil- (w—1> , g)‘ta(wg) = woF(\) + ngr(w—Q) )

As a first (and central) step, we therefore identify the minimizers of g;\r 2 ()s resp. gy (+).

Lemma 6.4. We have inf,,>¢ g)ta(w) =aA7'(F(N)), and the infimum is attained on W, with
{wr} PN < AL(t]) " "
W= 0] iE0) = Aclts), withwl = o € [;,+oo) .
{0} if F(N) > A(tg), T
Proof. Recalling (5.5)-(5.6) and (5.7), we have that for any w > e

a a a o(AN Y 1l(a if @
65 gotam =)+ 1 (1)~ o1 () :F(A)_{t<t(t(>A+) o i

I

Let us now consider different cases; we refer to Table 1 for an overview, see also (5.7).

o If p. = 400, then

0 _i/a
gt a(w) = F(N) = Ay 0 (A7 (E) for all w > 0.

« If t§ = 400, then Ay and A/, are increasing bijections from (0, +00) to (0,400). From (6.5)
we get that %gf{a(w) > 0for & < A o AT (F(N)) and %gj\“a <0for & > A, oA7'(F(N)). Letting

wi = IRTSITEV] this shows that g;: . 1s decreasing on [0, w? ] and increasing on [w? , 400). We

therefore get that gj\r , has a unique minimum at w? € (0, +00).
Using the formulas (5.5) for I, (:%) (and the fact that a/w} < p; = +00), the minimal value

¢
Wi

of g)ta is then

. . v 4/ G 4/ a _1
(6.6) Iluréfog)ta(w) =wiF(A\) +w} (wi(A;) 1 (wj_) —Ayo (A (wi>> =alAl (F(N)).
where we have also used the formula for w? together with the fact that A;, A/, are proper bijections.

x If t§ < +o0, then Ay is an increasing bijections from (0,t]) to (0,zA4(t])) and A, is an
increasing bijection from (0,7 ) to (0, +o0) (recall p; = +00). In view of (6.5), we distinguish two
subcases.

IfP(A) < Ay (tg), then Ayo(A )~ (z) = F(\) if and only if 2 = A, o AT (F(N)) < A/ (t]) = +oo

we then get that w? = WI(F()\)) > 0 is the unique minimizer of g;:a.
+00
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If F(A) > A4 (td), then F(\) > A4 o (A))7!(z) for any @ < 400 (since (A/)~(x) < tJ): this
shows that gj\r is increasing on (0, +-00) so it attains its unique minimum at w* = 0. Note that it

also corresponds to the formula w? := m since A:Ll(F(/\)) =tg and A, (tg) = p4+ = +o0.
The minimal value of g/\ . 1s then
. aATH(F(N)) if P(\) < Ay (ty) .
CUBN VeCR { il (2) =t irRO) > AL () = 9SO
Here, we have used in the second line that liminf, er( r) =t Wthh follows from the fact

that er(Aﬁr(y)) =y 2, E ; which goes to td as y Tt (1ndeed, i E g goes to 0 since we are
only concerned with the case A+(t0) < F()\) < 400 and A/ (t]) = p4 = +oo).

o If p. < 400, then we again have two subcases.

« If t§ = +oo. Then py = T < +o0, and gy (w) = +oo for w < a/Z4. On the other hand,
A/, an increasing bijection from [0,Z] to [0, p4] and A4 an increasing bijection from (0, 4+00) to
(0, 4+00). From (6. 5) we get as above that gy is decreasing on [0, w? ] and increasing on [w? , +00),

with w+ m S [i,—f—OO)
As in (6.6), we have that the minimal value of gy  is
(6.5) inf g} () = aA (F(V).

x If t& < +00. Then p; < Z4 = +00. Then in view of (6.5), we distinguish as above in several
subcases.
First, if F(A\) < Ay(td), then Ay o (A})71(2) = F()\) if and only if # = A/, o ATY(F(N)) <

/ a
A+(t0 ) = +00: we then get that w := NoAL GO0 > L p+ is the unique minimizer of g)\ o

Second, if F(A) = Ay (td), then gy is constant on [0,w}] and then increasing, where w? =

a — a
P+ A oA (R(N))

Third, if F(A) > Ay (t]), then gj\' is increasing on (0, 400) so it attains its unique minimum at

> 0. In that case the minimum of gj is attained on the whole interval [0, -2 oy 2],

w’ = 0. Note that it does not corresponds to the formula w* := m since A;l(F()\)) = tar

and A/, (t) = p+ < +o0.
The minimal value of gj\r o 18 then

aA7 (F(V) it P < A () .
69 inf i, w) = { ol (4) = arf P00 2 A4 05) [ = 945 (FO).
Here, we have used that lim, o 11, (2) = I’ (p4) = t, since I} (z) is affine on [p,, 4+00). O

We can now use Lemma 6.4 into (6.4), to conclude the proof of Lemma 3.5. Recall the defini-
tion (3.11) of wi, w*. Now, in the case where w} + w* < 1, then thanks to Lemma 6.4 (since
w g/\jE o(w) is increasing for w < w+), we obtain that

(S gralu,v) = F(A) - aAZ (F(N) — aATH(F(N)),
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with the supremum attained on U* x V*, with

{w*} iR\ < A_(t7), {(1—wi}y  ifr(\) < Ayp(t]),
U =q100,25] ifr(\) =A_(t), Vi= -] i) = Ad(ty),
{0} if F(\) > A_(t5), {1} it P(\) > AL (t]).

The last part of Lemma 3.5 tells that the condition w?} +w* < 1is ensured by having A > A.(a).
This is a consequence of the following lemma.

Lemma 6.5. If A > A.(a), then we have wi +w* < 1.

Proof. First of all, this is trivial in the case where tg = t, = 0 since in that case we have
wk = w* = 0 as noticed above. Also, if a = @ < 400, we have that (\,a) < 0 for any A > 0
(see (6.2)), so Ac(a) = 400 and this case has to be excluded.

Let us now focus on the case where a < a and t('f +1t, > 0, so in particular one of I or I_ is
non-degenerate. Let us assume that w} +w* > 1. Then we show that

(6.10) ot {9ra(w) + 93, (1—0)} = ot {9na(@) +g3,(1—w)},

namely the infimum in (3.5) is attained on the diagonal {(u,u),u € [0,1]}. In the end, this shows

that
a
l—u)} <0,

because at least one of I ,I_ is non-degenerate. Since A.(a) = supy>o{¥(\,a) < 0} and A —
¥(A, a) is continuous and non-decreasing, this proves that A < A.(a), which is a contradiction.

It therefore remains to show that if wi +w* > 1, then (6.10) holds. Let (u,v) € D with u < v.
Then necessarily, either u < w* or 1 — v > w7 ; let us assume u # w” , the other case is treated
analogously. If u < w*, then recalling that Ira is decreasing on [0, w? ], we have

(N, a) = — inf {uI_ (E) +(1—u) I+<

u€[0,1] U

IrnaW) + 95,1 =v) > gy (u) + g{ (1 =),

with «' = min{w?,1 — v}. This shows (6.10) and concludes the proof. O

As a corollary from the proof of Lemma 3.5, let us extract the following lemma for future use.
It is a direct consequence from the rewriting (6.4) and the computation of the derivative of gic W
see (6.5).

Lemma 6.6. Assume that X > A.(a) and that F(\) < min{A;(tJ),A_(t;)}, so that w},w*
verifies wk > ﬁ, wr > = and wi +wt < 1. Let (u*,v*) = (w*,1 — w+*) be the unique
mazximizer in (3.5), see Lemma 3.5. Then we have that

PO+ (S) = 2 (S) =0 and F) L () - () =0

U u* u*

6.2. Formula for the free energy and phase transitions. In this section, we derive a for-
mula for ¥ (A, a) and the critical point (Theorem 3.3), and we deduce the properties of the phase
transitions and the critical curve (Propositions 3.13, 3.14 and 3.15).
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6.2.1. Formula for the free energy: proof of Theorem 3.3. The formula (3.7) is a direct corollary

of the proof of Lemma 3.5. For A < A.(a), we have that F(A\,a) = 0. On the other hand, for

A > Ac(a), we have from Lemma 6.5 that w’ 4+ w* < 1 so we can apply Lemma 3.5 to get that
B(ha) = B\ — aAZ1(F(V) — ah T (E(V))

This concludes the proof, since F(A, a) = (A, a) for A > A;(a). The formula (3.8) for a.(\) directly
follows from (3.7), since the critical line is characterized by (A, a) = 0. O

6.2.2. Localization phase transition: proof of Proposition 3.13. Let a > 0 be such that A.(a) < 400,
i.e. a < a; we have F(A.(a),a) = 0. Looking at the expression (3.7), we can compute the derivative
of F(\,a) at a given A > A.(a). Recalling that we defined Ay such that F(Ay) = Ay (t]), we have

B €. Y
EAII(F(A)) _ v Teoy A< A
” 0 i > Ay
Therefore, by taking the limit A | Ac(a) > 0, F(-,a) has a right derivative at A.(a), given by:

— im OO oy (1 o @< Line(@<as)
610) Co:= I —on =7 Ol ”(l (AI_OA_%F(Ac(a)))+A'+oA+1<F<Ac<a>>>>>'

We therefore get, as u | 0,
F(Ae(a) + u,a) = F(Ae(a),a) + Cou+ o(u) ~ Cau.

This concludes the first part of the proof. We deal with the behavior of C, as a | 0 below (we
deduce it from the behavior of a.(A) as A | A¢). O

6.2.3. Saturation phase transition: proof of Proposition 3.14. Assume that A\_ < Ay < +oo and
recall the definition (3.18) of the excess free energies F*, F**. Thanks to the formulas of Theorem 3.3,
we have that

F*(\a) = a(ty — A:l(F()\))) , F*(\a) = a(ty — Ajrl(F()\))) .
The statement simply follows once one observes that, by a Taylor expansion, since t; = A~ (F(A_))

/ /
p F_(l)\_) u= (1+0(1))wu asu 0.
AL(AZ(F(A-))) p-
This gives the behavior of F*(A_ — u,a) as u | 0.
When A_ = Ay, we have F*(\,a) = F**(\,a) = a(ty AN (F(N))) +a(ty — AT (F(N))) so the result

follows in an identical manner. OJ

(6.12)  ty —AZ'(P(A- —u)) = (1+0(1))

6.2.4. Critical curve: proof of Proposition 3.15. There are two parts in the statement.

Behavior as A | A.. We use the formula (3.8), together with the fact that under Assumption 2 we
have Ay (7) ~ 3022% as z | 0, where 0 := E[X?] is the variance of X;; hence AT'(z) ~ \/2z/02.
Using that F(A) | 0 as A | A., we get that

o

~ ——F
2V2

The conclusion follows by applying (2.13), using also the definition of cs.

(6.13) ac(N) (A2,
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Behavior as A T A_, ;. Assume A_ < Ay < oo. Similarly to the proof of Proposition 3.14,
recalling the definition (3.19) of a}(\) we have from the formulas of Theorem 3.3 that

() = F(A) TR
W (All(F(A))+A:1(F(A)))(A;1(F(A))+t5)(t0 —EO)
1

The conclusion follows exactly as above, using (6.12); similarly for a}*()\). The case where A\_ =
At < 400 is treated identically. g

Behavior of the constant C, in (6.11) as a | 0. Let us now conclude the proof of Proposition 3.13,
regarding the behavior of the constant C, as a | 0.

First of all, notice that A.(a) | Ac as a | 0, so F(A:(a)) L 0 as a | 0. In particular, we get
that A.(a) < A4, A_ for a sufficiently small so we will use the formula (6.11) without the indicator
functions. ,

From the asymptotic a.(\) ~ ;W\/a(/\ — Ac) as A | A, we get that A.(a) — Ae ~ U%‘\//%a as
a | 0. Therefore, using (6.13), we get that

F(Ac(a)) ~ = asalO0.

Now, under Cramér’s condition, we have that A’y o A7 (x) ~ Ay (y/22/02) ~ V202z as z | 0, so
that from the behavior of F(A.(a)) that we just obtained, we get

1

lim _1a = -,
al0 Ao Ay (F(Ac(a)) 4
In view of (6.11), this gives that C, ~ ¥/ (Ac(a)) as a | 0.

Now, using that F'(A.(a)) ~ 2c302(\c(a) — \¢) thanks to (2.13) (and convexity) and the fact

that Ac(a) — Ae ~ U%‘ﬁ?a as seen above, we end up with C, ~ 24/2c3a as a | 0, which is what is

claimed in Proposition 3.13.

7. PROOF OF THEOREMS 3.1 AND 3.8

Recall the definition (3.5) of ¥(A,a). Note that when a = 0, we have ¥(),0) = F(\) since
I:(0) = 0 (the supremum in (3.5) is attained for u = 0,v = 1), we therefore focus on the case
a > 0.

7.1. Some preliminary notation. For an event A, we denote

(7.1) Z3a(4) = B NN 1 15,0 1a]
so that P}, \(A) = Zé’lai(f). We also define, using the same notation as in [LT15],
(7.2) Zjp = ZNAHR(S) =0),  Z =2y (H;(S) > 1),

so that Z%, | = Z]‘{, \ Zj‘{, y- (The notation is chosen so that the superscripts ~ and ~ mimic the
shape of random walk trajectories in both cases.) Let us also define

(7.3) Zyy=Z{\(Ln =6, Ry =71),

so in particular Z% \ = 3" cpcren Lo
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Let us stress that from Lemma 6.1, we have that Zj‘{, y Whenever a > a. For this reason, we will
focus on the case a < a.

7.2. Proof of Theorem 3.1. We have that Z% |, = ZJ‘{,/\ + Z]‘i,v)\, so in particular Z%;
max{Zy , Z} < Zix < 2max{Z% . Z%,} .
and therefore
. 1 = . 1 .
F(\, a) = max { A}gnoo N log Z}\ A}gnoo N log Zj‘{w\}.
We now prove the following two lemmas.

Lemma 7.1. For any A > 0 and a > 0, we have
li ! log Z% 0
im —lo =0.
N—oco N & NA

For later purposes, we also give a more precise statement under some further assumption: if one
has im0 %CLN =0, then

fa(0)

an

(7.4) Z&A:P(Og&sﬁﬂaNJ,sN:o)NP(SNZO)N as N — 0o,

where fo is the density of the limiting a-stable law.

Lemma 7.2. For any A > 0 and a < a, we have
1 .
lim —logZ% \ = .
im - log Zy P(A a)
If a = a < +00, we have imsupy_, o, + log Z]‘i,v)\ <A a) <0.

These two lemmas readily conclude the proof. Note in particular that when A < A, or a = a, we
have ¥(A,a) <0, so F(\,a) = 0. O
Proof of Lemma 7.1. First of all, let us prove a general bound:

€o
an

1>Z{,>P(S1>0,...,5v-1>0,5v =0) ~ as N — 00.

The lower bound is obvious and the last asymptotic come from Lemma 2.3. This readily shows
that limy_o % log Zj‘{,)\ =0.

As far as the more precise asymptotic (7.4) is concerned, note that the last part is simply
the local central limit theorem, see e.g. [GK54, Ch. 9 §50]. Let us therefore focus on the first
asymptotic, for which we need to show that

(7.5) P(SNZO’nglgNS" < —laN|)=0(1/an) as N — 0.

Decomposing according to the instant 7, := min{n, S, < —[aN]}, we have that the above prob-
ability is equal to

P(Sy =0T, <N)=P(Sy=0,T, < N/2) + P(Sy =0,N/2 < T, < N).
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We treat only the first term; the second one is treated identically. We have
N/2

P(Sy=0,T,<N/2) =) > PT.=k S =-2)P(Sy_t =2
k=1z>|aN|

Cc C .
SQNZ Z P<Ta:k’Sk:_x):aNP(1<Ig1<HJ%//QSk§_LaNJ)’
k=1lz>|aN| SR>

where we have used the local central limit theorem to get that P(S,_x = z) < C/ay_ < C'/an
uniformly for £ < N/2. Now, since (aj_\,lS 1N )tefo,1] converges in distribution to an a-stable Lévy
process (for the Skorokhod topology), we get that

lim P( min  Sp < —LaNj) =0,

N—oo  \0<k<N/2

[alN]
an
limpy 00 an = 0. -

provided that limpy_ oo

= +o00. This concludes the proof of (7.5), since we assumed that

Proof of Lemma 7.2. As far as Z]‘(, ) is concerned, we have
(7.6) Zia= D Zur,
0<t<r<N

and in particular max0<g§r<N{ng7r} < Zj‘{,’)\ < N? max0<g§r<N{Zg7r}, so we focus on Zg7r.

For n € N and =z € N, we define
(77) Q+(na$):P(Sl>0,...,Sn_1>07sn:([;),
. Q—-(n,z) =P(S1 <0,...,5, < 0,51 =—z),

SO we can write

(7.8) Zoy = Q—(C,[aN]) Zr_4xQ+(N —r,|aN]),

where Z,_y ) = ZQ_E’ ) is the partition function of the original wetting model (from Section 2), of
length r — /.

Upper bound. As far as the upper bound is concerned, we can use (5.2) to obtain
Qi(n,2) <P(S, >a) <e ™) Q (na) <P(S, > a) <e ™).
Together with (2.14), we therefore get that, for any 0 < ¢ <r < N,
. laN | laN ]|
< _ _ _ _
o Zyy < exp ( EL< ; ) +(r—OF(\) — (N r)1+<N - T)

a

Sexp(—Nqu_< )+N(vr—w)F(/\)—N(l—vr)Lr(l_aU )) < N¥ha)

Uy

where we have set uy = % and v, = § and used that It is non-decreasing, with laN| > aN. The
last inequality comes from the fact that ug, v, is a subset of 0 < u < v < 1, together with the
definition (3.5) of (A, a). We have therefore proven that

Z]C{[y}\ S NQeNTJJ(/\,a) )

so limsupy_, o, + log Z]‘{,’)\ < YA a).
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Lower bound. For the lower bound, we only consider the case a < a. Let us fix (u,v) such that
7= <u<wv<1l-z. Wedefine ly := |uN| and ry := [vN]. Since ZN/\ > Zyy s We simply
need to show that

a

lgnlnf 108 Zoyrn = Gra(u,v) = (v —w)F(A) —ul_ <E> —(1-v) L“(liy) ’

to ensure that

lninf Clog 75, > swp gra(u) = w(ha).
N— —7<u<v<1—i
which concludes the lower bound.
Using the same decomposition as in (7.8) and the definition (2.8) of the free energy of the
standard wetting model, we therefore simply have to prove that

1
lim inf  log Q— (€, [aN]) > —ul (9) :

1 a
- B S _(1_ '
lgnlnf N log Q+(N —rn, [aN]) > —(1 v)1+(1 — v)

We therefore rely on the following lemma, whose proof is similar to that of Lemma 5.1 and
postponed to Appendix C.

Lemma 7.3. Suppose that Assumption 1 holds. For any 0 < x < T4, for any sequence of integers
(Tn)n>0 such that lim,,_, o %xn =z, we have

lim 1nf — log Q+(n,zp) > —14(x).

n—o0

A similar statement holds for Q)_.

This lemma readily proves (7.10), since ¢ < Z_ and % < T4. This concludes the proof of
Lemma 7.2. g

7.3. Proof of Theorem 3.8. First of all, let us note that in the supercritical case A > Ac(a), we
have (A, a) > 0. Hence, thanks to Lemmas 7.1-7.2 we have limy_, Zj‘{,’/\/Z]‘i,v)\ = 0. We therefore
obtain that
Z3
lim P{,(H%(S) >0) = lim ———>— =1.
N—oo N—oo ZN)\+ZN>\
Let us now show something slightly more general than needed: for any A > 0 and a < a, for

any fixed € > 0 we have
(7.11) A}im P‘}V/\<dist(]{,(LN,RN),argmaxw> > ‘ Hy(S) > 0> =0,
—00 ’

where we used the shorthand notation argmax vy = {(u,v) € D, gx o(u,v) = ¥(A, a)} for the set of
maximizers of ¥(\, a) in (3.5); note that the supremum is attained, see Lemma 3.5 if w’ +w* <1
or (6.10) if w} + w* > 1 (recall that g, ,, gy, are continuous). Together with Lemma 3.5 (and
Lemma 6.5), this concludes the proof of 7(3.127) in the supercritical case A > A.(a).

The proof of (7.11) is easy, since the probability is the ratio

1
=—2ZNA <dist (%(LN, Ry), argmin w> > 5)

N\

7a Z ZZ’T ’

N,A dlst((ﬁ,%),argmin P)>e
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Using the same upper bound as in (7.9), we get that the sum is bounded by N2eN¥=(M4) with

V(A a) = sup Ira(u,v).
(u,v)eD
dist((u,v),argmin ¢)>e

Together with to Lemma 7.2, we get that

lim sup — N logPN)\<dlst( L (LN,RN),argmindJ) > ¢ ‘ Hy(S) > 0> < (N, a) — PN a) <0,

N—o0

where we have used the continuity of (u,v) + gy 4(u,v) to obtain the strict inequality at the end.
This concludes the proof of (7.11) and of (3.12) in Theorem 3.8.

As far as the subcritical case A < A.(a) is concerned, let us distinguish two possibilities. First, if
either one of I1,I_ is not identically equal to 0. Then A — (A, a) is strictly negative on [0, A.(0)]
where F(A) = 0 and then strictly increasing: we therefore get that ¢(A,a) < 0 for any A < Ac(a)
since ¥(Ac(a),a) = 0 by continuity. From Lemmas 7.1-7.2, we get that limy_, N)\/Z N =0,
which readily implies that

lim P% , (H%(S)=0) = lim B
N—o0 N,A N N—o0 ZN)\+Z?\/')\

Second, if we have that I ,I_ are both identically equal to 0. Then we have (A, a) = F(A) for
any A > 0, hence A\.(a) = A\, for any a > 0. We show below that for any A < A. = A.(a), there is a
constant C' > 0 such that

79\ < = i < —
(7.12) Zf\ < CP(Sy =0,  min Sy < —laN]),

so we get that Z% , = o(1/ax) thanks to (7.5). Recalling Lemma 7.1-(7.4), we get that limy 00 Z% ,/Z% \ =
0, which allows us to conclude as above. 7 7

To prove (7.12), we use that for any A < A, there is a constant C) such that Z,, y ~ C\K(n) as
n — 00, see [Gia07, Thm. 2.2], where K (n) = x~1£,;5(0) is defined in (2.4). Therefore, using also
Lemma 2.3 and the local central limit theorem to get that f,(0) < C/a, < P(S, = 0), we get
that Z, y < C'P(S,, = 0) for all n > 0, for some constant C’. All together, we have that Zj‘{,,)\ is
bounded by a constant times

> Q-(4[aN)P(S,—r=0)Qs(n—r,[aN]) < P(Sy =0, min Sy < —|aN]),

1<0<r<N

which is exactly what is claimed in (7.12). O

8. SHARP ASYMPTOTIC BEHAVIOR OF THE PARTITION FUNCTION, FLUCTUATIONS OF LN, Ry

In this section, we prove Theorem 3.10, i.e. we provide, in Cramér’s region, an exact asymptotic
behavior of Zy ) and a local central limit theorem for Ly, Ry.

8.1. Local large deviation with a positivity constraint. Let us start with the proof of a
technical estimate which is key in our proof. It is a precise estimate of Q+(n,x,) inside Cramér’s
region; recall that Q4 (n,x,) is defined in (7.7).
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Proposition 8.1. Let x € (0, p4+) and let (6n)n>0 be a sequence such that limy,_o 0, = 0. Then,
there exists a constant pg € (0,1) such that, uniformly for non-negative sequences (Tn)n>0 with
|12, — x| < 6,, we have

) ~ Pz Il—ll-(x) e—nLr(“:T")

, asmn— 0o.
2mn

Q+ (TL, Tn
A similar statement holds for Q_(n,x,).

This result is a version of a local large deviation estimate with the additional positivity con-
straint. Our proof is quite standard, using a change of measure argument, but we also have to
deal with the positivity constraint, which makes things slightly more technical.

Proof. For t € [0,t]), we define the tilted law of X;:
dPt (x) _ etfﬂ — tCE—A+(CC)
dP EletX1]

With a slight abuse of notation, we will also write P; for the law of i.i.d. copies. Let us denote,
for t < t7,

(8.2) m(t) == Eg[X1] = A (1), o?(t) ;= Vary(X;) = A"(t).

Notice that m = A’ is strictly increasing and continuous from [0,¢7) to [0, p1), so we may define
ty == m~!(x) for any = € [0, py), in such a way that E; (X;) = x. Note that we have A”(t,) =
I (x), see Section 5; we also stress that for any = € [0, p4), the supremum in sup,so{tx — A4 (¢)}
is attained at t = t,, so 14 (z) = ot — Ay (ts). -

(8.1)

For simplicity, let us denote t, = t, /, and o, = 02(t,) so in particular z,t, — nAy (t,) =
I, (%2). Let also
(8.3) AZ::{51>0,...,S;€>0} fork>1.

Then, using the definition (8.1) of Py, we may rewrite

Q+(n, l‘n) — P(A:, Sn _ xn) _ Etn |:en/\+(tn)—tn5n H{A;t,sn:xn}}

= e*”IJF(zTn)Ptn (A;[, Sn = xn) )

We now let (ky,)n>1 be a sequence of integers such that limy, . ky, = 400 and lim,, %kn =0.
We also take k,, such that lim,, knéz = 0, which ensures in particular that lim,, kn(tn—tx)2 =

0 (as will be used below). Then, we need to control
(8.4)

P, (A;Lr, S, = :cn) = ZPtn (Az'n, Sk, = y)Py, (Sn,kn =Tn —Y, 51> =Y, ..., Sk, > —y) .
y>0

We split our proof in an upper and a lower bound.

Upper bound on (8.4). As an upper bound, we remove the condition S; > —y for 1 <i <n — kj,
in the last probability, to obtain the following:

Ptn (A:'L_a Sp = mn) < Z Ptn (A]jnv Skn = y)Ptn (Sn—kn = Tn — y) .
y=>0

At this point, we need a local central limit theorem for a family of probability distributions: we
refer to Theorem 8.7.1A in [Borl3], that we now state for completeness.
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Theorem 8.2 (Thm. 8.7.3A, [Borl3]). Let (Py)icpo4,] be a family of distributions indezed by a
parameter t € [0,to]; denote also Py the law of i.i.d. random variables (X;);>1 with law Py. We
assume that for any t € [0,to], under Py the X;’s are Z-valued and Sy, = ;| X; is aperiodic. Let
m(t) := Ey(X1) and 0%(t) := Vary(X1). Assume that

0< inf o%(t) < sup o*(t) < 4+oo, and sup sup |[E;e?X]

| <1 foranye>0.
t€[0,to] te(0,to] t€[0,to] 0€e, 2]

(The latter corresponds to having some “uniform aperiodicity”.) Then we have a local limit theorem
which is uniform in t:

T
sup sup [v/nP(S, —nm(t) = x) — gy [ —=
te[0,to] x€EZ t( ( ) ) ® <\/ﬁ>

x2
where g, (x) = ——e" 2% is the density of the Gaussian N(0,0?).

oV 2T

n—0o0

— 0,

We may apply this theorem for parameters ¢ € [e, t('f —¢] for some e > 0 fixed, since then we will
have that o?(t) € [0%(e),0%(tg — €)] with o2(e) > 0 and o%(t] — €) < +oo; the second condition
on the uniform aperiodicity follows similarly. Since m(t,) = %:pn and lim,,—yoo ty, = ts € (O,tar ),
we can apply this result to obtain that, uniformly on y € Z,

1 _ (enm(tn)—y)® 1 14 0(1)
Py, (Sn_k, = 1n —y) < e e o) < s
to (Snt, = Tn = ) V2rno(x)

V2m(n — ky)o?

where the o(1) is uniform in |2z, — 2| < §,.
We therefore obtain that

NLD

1+ 0(1)
P, (AT.S, =a,) < -2
tn (4 x)—\/ﬁa(,@)

We now use the following lemma, which concludes the upper bound; we postpone its proof to the
end of the section.

P, (Agn) )

Lemma 8.3. Let (t,)n>0 be a sequence such that lim,_o ty, =t € (0, tg). Then, for any sequence
(kn)n>1 such that limy, o ky, = +00 and limy, e kn(t, — tz)? = 0, we have

(8.5) 1i_>m P, (S1>0,...,5, >0) =P (S; >0 foralli>1)=:p, €(0,1).
n o0
The rate of convergence depends only on kp(t, — tz)?.

Lower bound on (8.4). For a lower bound, we restrict the sum to y € [$m(t,)ky, 3m(t,)kn]. Let
us introduce, for y > 0,

(8.6) B,(y) =Py, (Sn,kn =Tp—Yy,51 > —Y,..., Sk, > —y) ,
so we obtain the lower bound
Py, (A, S, = x,) > P(A,jn, Sk, € [2m(tn)kn, %m(tn)kn]) inf Bu(y).

YE[Fm(tn)kn, 3m(tn)kn]
For the first probability, we write

P(A;n, S € [Sm(tn)kn, m(tn)k:n]) > P(A]) - P(Skn ¢ [Am(tn)kn, gm(tn)kn]) :

[\G][VV]
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The first term converges to p, thanks to Lemma 8.3, and it remains to see that the second one
goes to 0. But since E;, [X;] = %xn = m(t,), we get by Chebyshev’s inequality that

kno?
1 3 nYn n—oo
P Sk, ¢ [Sm(tn)kn, Sm(tn)kal ) < T 0

since lim,, o0 ky, = 400, using also that lim, o, 02 = 0?(x) and lim, oo m(t,) = 2 > 0.
It therefore remains to show that

1 1
®.7) ye[ém(tn)iklif,%m(tn)kn] Bnly) 2 \/2%((3?)
Recalling the definition (8.6), we write By, (y) > B,(ll)(y) ( ), with
B7(L1)(y) =Py, (Sn—kn =z, — y) , B7(L2) (y) := Py, (Sn—kn =z, — v, 1<z‘127i£kn S; < —%m(tn)kn) )
The first term is again controlled thanks to Theorem 8.2: we have that
BW(y) > 1 e_% — o(i) > LOO)?
27(n — ky)o2 Vn 2mno?(x)

where all inequalities are uniform in y € [§m(ty)kn, 3m(tn)ks]. It only remains to show that

B (y) = o(1/y/n) uniformly iny € [3m(t,)kn, Em(t,)kn]. Let Ty, := min{i > 1,8; < —Lm(tn)kn},
so we can write that

B®(y Z S P (T, =585 = 2)P, (Suyy = Tn —y — 2) -

2<—3m(tn)kn

We show just below that there is a constant C' > 0 such that

(8.8) sup sup Py, (Snkp—j =an —w) < —.
1< <n—kn w<m(tn )kn n

From the above display, we therefore deduce that

sup B?(y) < %Ptn (Th, <n—ky) = gPtn( min  S; < —3m(tn)kn),

Y€ LS m(tn)on, 3 ()] v

with the last probability going to 0 as n — oo, since Ey, [X;] = m(t,) > 32 > 0 (at least for n
sufficiently large).

We are left with showing (8.8). First of all, if j <n/2—k, (so n—k, —j > n/2), the local limit
theorem from Theorem 8.2 gives that

C
Ptn (Sn—kn—j = ’U)/) < % ’

uniformly in w’ € Z. If on the other hand j < n/2 — k,, we bound

ko?
sup sup Py, (Sp = axn—w) < sup Py, (Sp > xp—m(tn)k,) < sup n
k<n /2 w<m(tn ) kn ( nv) k>n/2 ( " n)kn) k<ny2 (Tn — m(tn)(kn +k))?

where we have used Chebyshev’s inequality for the last bound. Since we have m(t,)k < x,/2,
limy, 00 m(tn)kn = 0, limy, o0 %xn = > 0 and also lim,, o, 02 = 02(x) < +00, we get that this
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is bounded by 2@ for large enough. This concludes the proof of (8.8), hence of the upper

nT

bound. O

Proof of Lemma 8.3. Recall that we denoted A,jn = {5 >0,...,S5,, > 0}. Recalling also the
definition (8.1) of Py, , we have

Letting € > 0 be fixed, we can apply Hoélder inequality, to get
Py, (Af) < Py, (A7) 7By, [e (tnmtShn | M)A Gk

<Pi, (A7) “exp (k:n (E(A(tx ety — ta)) — Alt) — (A(tn) — A(tx)))) .
Now, by a Taylor expansion in ¢, — t,, we have that
S(A(ta+ & (bn — 1)) — Alt)) + Alt2) — Altn) = (14 0(1)) 5™ ~ DA (1)t — 1)

Hence, since limy, ;o0 kn(t, — t2)2 = 0, we get that

lim sup Py, (Aﬁn) < limsup Py, (A;:n) = (p2)'
n—oo

n—o0

with py := Py, (S; > 0 for all i > 1) € (0,1) (note that p, > 0 since E, [X1] = x > 0). We stress
that the rate of convergence depends on ki, (t, — t;)?.

On the other hand, we also have a lower bound on Py (A;) using Holder’s inequality the other
way around:

+) = (tfmskn} (A(tn)=A(ta))kn
th (Akn) Etn [ILA:ne (&
<P, (A )1—5Et [65—1(16_1—1&”)5%]Ee(A(tn)—A(tI))kn.
Similarly as above, we get that
T + .. 4+ \1-¢
pe = lim Py, (A7) <liminfPy, (A ).
Since € > 0 is arbitrary, this concludes the proof. ]

8.2. Asymptotic behavior of Z@}r. From Proposition 8.1, we are able to obtain the following
result on the partition function Z;, := Z% ,(Ly = ¢, Ry =1).

Proposition 8.4. Let A > A, let i <u<wv<l-— ﬁ and let (ON)N>0 be a vanishing sequence.

Then uniformly for (¢,r) with and |30 —u| < oy and |41 —v| < 6, we have

> p:rupm—v\/lli(xu)lljr(mlfv) ex r _ L _ ¢ [aN]Y _ (1 _
D N /el — o) p (¥(G = e — () -

with x5 = a/s and my from (2.17).

(D).

==

Proof. We simply need to use (7.8), that is:
Zpr =Q—_(£,|aN])Z,_12Q+(N — 1, [aN]).



36 Q. BERGER AND B. MASSOULIE

Then, using Proposition 8.1 we get that

Py V17 (T0) a
S o ()

Py VI (T1-0) a
QN = aV)) ~ P e (- (V- L ()

Q-(¢; [aN]) ~

Combined with the asymptotic (2.17) for Z,_, x, this concludes the proof O

8.3. Proof Theorem 3.10, part (i). We prove part (i) of Theorem 3.10, namely the sharp
asymptotic (3.15) for Z% . Let A > Ac(a) > Ac. Recall that we assume that Cramér’s condition
holds, so in particular X7 have a ﬁnite variance: we can choose the normalizing sequence ay =
0\/> and we get that Z]‘{,)\ \/t from Lemma 7.1.

We can therefore focus on Zj‘{,’ - Moreover, from (7.11), we get that there is a sequence (5, )n>0
with lim,,_,~ €, = 0, such that we have

lim — ZN)‘(’N Ly, Ry) — (u*,0")

n—00 ZJGV)\

<sn>:1,

where we recall that (u*,v*) is (in Cramér’s region) the unique maximizer of ¥(\,a) in (3.5),
see (3.14). In other words, we have that

-0 .
ZN,)\ ~ E E Zir -
| % Lo— u*\<sn| r—u*|<en

a

Therefore, from Proposition 8.4 and since % <u* <v* <1— % (see (3.14)), we get that there
is some explicit constant C) 4, such that

(39) Tt Y % ew(Vou(vx).

|IZ u*|<sn| r—uv*|<en

where we used the definition (6.3) of gy , to simplify notation. Let us stress that the constant C) ,
is explicit, C) 4 := mApm D a?l‘ag , with 01, 09 defined below in (8.11) (and v* := 1 — v*).
Then, we will use Taylor expansions inside g, lan) . Let us denote, for ¢, r in the range of the
>’ N

sum in (8.9),

. laN| {aN} 1 R B _ N-—r B
€q:=1— N = aN =O0O(N"), gp:= *N—l—O(sN), &= —1=0(en),
with v* =1 —v*. Then, thanks to a Taylor expansion of I around %, we get
14 |aN | al—eg,
() e (2152
N\ O T

a a a’ (e +é 2 a
et () ot e (1) g () s earory,

with the O(1) uniform in |4¢ — u*| < en. Hence we can write £1_( Laé\”) as

* a " a a a a® a a 1
W () e (1 () = 1 () + et (57) —asel-(57) + 0D + o).
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*\3
Using Lemma 6.6 and denoting o? := %, this can be rewritten as

%I_ ( Laé\” ) =u*l_ (%) — ' F(N) + (U;ig)z —agql (%) + 0(ed) + 0(%) )

=%\3
Similarly, denoting o3 := % (and also v* = 1 — v* to simplify notation), we have
+

w1 () =7 () —eee ) + U et () 0t + o).

All together, recalling the definition (3.5) of g 4, we obtain

gyt (100 %) =P (5 = 5 + et +o0) —u T (L)~ ()
_ (u*ep)?  (v*ep)?

2 2
207 205

N

1
+ coagq + O(ed + €2) + O(N) ,

with ¢g := I_ ( ) + I+( ) Recalling the definition of &y, ¢,, we have that L — gou* = u* and
++e,0%; also, ag, = 1 {aN}. Hence, since we have (X, a) = (v* —u*)F(A) — *I () —v* 1 (&),
we end up with

(8.10) g, 1ox) (N N) v(ha) = S5y = +ag{aN) + (e +e)o() +O<N>’
where the constants are
*\3 77%)3
8.11 2.= 7@ ) 2.= 7(0 ) = I_<i> I <i> .
( ) a1 a?1” (a/u*)’ 72 a?1 (a/v*)’ 0 u* Tl *

Note that, in (8.10), the O(1) and o(ﬁ) are uniform (depending only on ey). Going back to (8.9),
we obtain that

7 C a a)+cof{a
2%, = (1+o(1))27:N NvA@teofaN}  §7

u®e 2 o*ey 2
| —u*|<en Lr—v*|<eny
Recalling that u*ey = & — 1, we get that

_ (u*ep)? N _ 32 _ %
Z 1]V€ (1+0(1)) 202 _ Z 1N€ (1+0(1))20fN N—00 /6 QU%dS:\/%O-l?

R

|+ 0—u*|<en |7|SNen

by a Riemann sum approximation. A similar convergence holds for the other sum. We therefore
end up with

28\ ~ 010203 ge N PODFe0{aN}

Since we have seen above that Zj‘{,,)\ = O(1/V/N), we get that whenever (X, a) > 0, i.e. when
A > Ac(a), which in particular entails that F(\, a) = ¥()\, a), we get
(8.12) Z% = Z% tampda + L3 n = L+ 0(1)) Z3; 5 ~ 710120} geN P teotalN}

This concludes the proof of (3.15). Note also that in view of the definition of C) , above, we have

€1 1= 02U TPy e Pagor i (3.15), O



38 Q. BERGER AND B. MASSOULIE

8.4. Proof Theorem 3.10, part (ii). Let us now turn to the proof of the local central limit
theorem, that is (3.16). Notice that we have

P4, (Ly =L Ry =7) = Zoy .

ZN A
From the first part of Theorem 3.10 (see in particular (8.12)) and thanks to Proposition 8.4, we
obtain, similarly to (8.9),

£ r

P4, (Ly =0, Ry =7) = (1 +0o(1)) exp (Ng)\’% <N’ N) ~ N\ a) — CO{GN}) ,

27TNO'10'2

with the o(1) uniform over | 3¢ — u*| < e, |47 — u*| < en. Then, applying the Taylor expansion

of (8.10) and recalling that ¢, = ﬁ —lande, = ]]\\7,57" — 1, we get
¢ r (0 —u*N)? (r —v*N)?
Ng, |a (—,—)—N ,a) — N} = ——5——(1 1)) - ———"(1+¢0(1)),
a1 (37 ) ~ N0 — cofa) = = E 5 EE (1 4 20) - F 51+ £0()

with the O(1) uniform. This concludes the proof of (3.16).
To obtain the convergence in distribution, we simply notice that for any z; < 22 and 2] < 25,
we can write

P4, (51VN < Ly — w'N < VN, 2)VN < Ry —v* < V)
B Z Z Py, (Ln ={(,Ry =7).
21V N<l—u*N<zoV/N 2/ v/ N<r—v*N<zhvVN

Then, using the local central limit theorem from (3.16) and a Riemann sum approximation, we
get that the above probability converges to

2 , 2
E2) 1 _5 Zg 1 _ 522
e Tds; / e %1dss
/z1 \V2moq 2 V27109 ’
which concludes the proof. ([l

8.5. Proof of Corollary 3.11. Let us prove a more general result, i.e. a joint local central
limit theorem for Ly, Ry, Hpy. First, let us observe that P?V’/\(HN = k:‘LN =/{ RNy =71) =
P, s \(H,—¢ = k), where P,, ) is the (standard) wetting measure (2.2). Then, and using the local
limit theorem of Proposition 2.6, we get that, as r — ¢ — oo

(r—€—m k)2
Py (Hy = k| Ly = €, Ry = 1) = —TA ¢ 200 +of ! ).
’ V2moy Vr—4{

Let us now set

Ap:= 0 —u*N|, A, :=|r—v*N|, Ag:=|k—m ' (u* —v*)N]|.
Then, using the local central limit theorem of Theorem 3.10-(ii), see (3.16), we obtain that for any
A > 0, uniformly for Ay, A, Ay < AV/N (in particular |(r — ¢) — (v* — u*)N| < 24v/N), we have

A2 a2 (Ar—Ap—myAp)2
(1 + 0(1))m>\ 6_ 20 3 67 20%\(1}*71;’:)1\};

2N, 209N
(27 N)3/2\/v* — u*o1090)

1e

Py \(Ly =0, Ry =71, Hy =k) =
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In other words, letting o3 := ¥ ”;:“ o), we have
(14 0(1)) ~1Q(5%, 20, 2k)

8.13 P Ly={Ry=rH k e 2Y\VN'VN'VN/ |
( ) NA( N N N= ) (27 N)3/2010903

=Y zo—2y )2
where Q(z1, 22, 23) = j—z + j—% + G mAU(QZQ 2)° a5 defined below (8.13); note that the o(1) is

1 2 3

uniform in Ay, A,, Ap < AVN. The convergence in distribution stated in (3.17) then follows
directly from (8.13) by a Riemann sum approximation. O

APPENDIX A. A FEW EXAMPLES OF INTEGRABLE WETTING MODELS

To complement the study of the standard wetting model, we collect a few examples for which
the free energy F(A) (or the critical point) of the admits an explicit formula. We start with discrete
examples, that have been more studied in the literature, before turning to some continuous cases.

We then compute explicitly the free energy F(A,a) and the critical curve a.(\) of the wetting
model with elevated boundary condition. In all examples, the underlying random walk is symmet-
ric, so we denote A(t) := A4 (t) = A_(t). Recall that, by Theorem 3.3 we have that the free energy
and the critical curve are given by

A, :</\—2A_1)\>, )= A
FOa) = (FO) 2007 F00)) L ) = 5

A.1. Symmetric lazy random walk. Let vy € (0, 3) and consider (X;);>1 i.i.d. random variables,
with symmetric distribution given by P(X; =1) =P(X; = —-1) =~ and P(X; =0) =1 —2v > 0;
the case v 1 % corresponds to the simple symmetric random walk.

This model has been studied in details, see e.g. [Fis84, IY01]. For the critical point, using
Lemma 2.2 we have \. = k' = P(H; = 0)~!. Since the steps are only +1 or 0, the (weak) ladder
height is always zero except if X; = —1: we therefore get A, m . It turns out that
the free energy can also be computed explicitly, see e.g. [IY01, Eq. (1.7)]:

F(A)=Inz), forA> A= 1i7,
where z is the positive solution of (A — 1)a? — A(A — 1)(1 — 2v)z — A24% = 0; one can easily check
that ) > 1if A > A\.. As far as the critical behavior is concerned, we leave as an exercise to check
that F(A\e +u) ~ (3 — 4v)u? as u } 0.
Note that in the limit ~ 1 %, we find the free energy of the wetting model for the simple random
walk found in [LT15, Eq. (1.6)] (see also [Hol07, Ch. 7]): F(A) = In (2\/%) Ig)>2y- Another

remarkable value is in the case v = 1, we find: F(A) =1In (4\/%(\/)\ -1+ \FA))H{A>%}.

With elevated boundary conditions. We use that A(t) = In (1 4 2y(cosh(t) — 1)) for any ¢ € Ry

so A™Y(z) = cosh™! (1 + %(e”” —1)). Together with the formula F(A) = Inz,, we get that

A7HF(N)) = cosh™! (1 + %(.r)\ — 1)), so we end up with

_ Inx)
F(\ a :<lna: —2acosh™ (14 (zy —1 ) , ac(A
(A.a) A ( 27( A )) + () = 2 cosh™ ( 1( )\—1))
where x>\ is the positive solution of ( ) 2 ( )(1 —2y)z — A%y? = 0. Note that in the
case v 1 5, we obtain a free energy F(A,a) = ( — 2acosh™ (2\/;%1))+
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A.2. Symmetric geometric random walk, one-dimensional (discrete) SOS. Let 'y €(0,1)
and consider (X;);>; i.i.d. random variables, with symmetric distribution given by P(X; = k) =
077|k|, with ¢, = % This geometric random walk arises naturally in the context of the (dis-
crete) Solid-On-Solid (SOS) model, which is a gradient interface model with potential V(x) =
—log f(z) = |x|, used is an effective model for interfaces in the Ising model, see [Vel06, IV18]
for reviews. It also appears in the context of Interacting Partially Directed Self-avoiding Walk,
see [CNPT18] for a review.

As far as the critical point is concerned, we also use Lemma 2.2 to get that A\, = P(H; = 0)~1.
Here, thanks to the memoryless property of the geometric distribution, one easily gets that the
ladder helght H1 has distribution P(H; = k) = (1 — y)7* for K > 0. We therefore get that
Ae =5 BHE=0) H1 5 = . The computation of the Laplace transform (2.7) of K(-) (hence of the free
energy) has been made in [LP22, Prop. A.1]: we have

AA=1)(1 —7)? 1
FQy_m<&O_§%_?) for A2\ = =

As far as the critical behavior is concerned, we find that F(A. + u) ~ %uz as u 0.

With elevated boundary conditions. We use that A(t) = —1In (1 — uz#y(cosh(t) — 1)) for any

It] < ln%, so A71(z) = cosh™ (1 + (€t D 7) (1 —e™*)). Then, using the formula above for F()), we
get that A=1(r(\)) = cosh™! (M), so we end up with

29A(A—1)
- —v)? 12 1 A2)2
= (G -t (C5RE))

and the value of a.(\) can be read from the above.

A.3. Symmetric Laplace random walk, one-dimensional (continuous) SOS. Let v > 0
and consider (X;);>1 i.i.d. random variables with symmetric Laplace distribution of parameter -,
that is with density f(z) = 3ye™1l; this is a symmetrized Exp(v) distribution. The measure (2.1)
then corresponds to the (0-pinning) wetting of the continuous Solid-On-Solid (SOS) model in
dimension d = 1, see [CV00]. As for the geometric random walk, the memoryless property of
the exponential gives that H; has an Exp(vy) distribution: we get that H; has density [z, (z) =

ve 7 1y>0y. Using again Lemma 2.2, we obtain A\, = ﬁ = As far as the free energy is

1
>
concerned, we can also compute the Laplace transform &(19) explicitly (this is done in Appendix B.3
and matches the formula [dCDH11, Eq. (3.6)]): we obtain
2\2 1
mmzm(7 ) for A> Ao = - .
294 —1 y

As far as the critical behavior is concerned, we find that F(A. + u) ~ v?u? as u | 0.

With elevated boundary conditions. We use that A(t) = —In(1 — t2/~42) for any |t| < 7, so we
obtain A~!(x) = v4/1 — e~*. Using the formula above for F()\), we get that A=1(F(\)) = %, S0
we end up with

242 a . 242
mmay:<m(§xii>_2(vi D>+, ‘%Q):zwf_lfn(%gil>’
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A.4. Strictly a-stable random walk, one-dimensional Gaussian free field. Consider (X;);>1
i.i.d. random variables with strictly a-stable distribution, a € (0, 2], i.e. such that n~/*S, has the
same law as X7. In other words, we have X; ~ Z and a,, = nt/® in Assumption 1; examples include
standard Cauchy and Normal distributions. In the Gaussian case, the measure (2.1) corresponds
to the (0-pinning) wetting of the massless Gaussian free field in dimension d = 1, see [CV00].

This class of wetting models is not completely integrable, in the sense that there is no closed
formula for the free energy, but still, the critical point is explicit. Indeed, relying on the rela-
tion (B.1) and the strict stability, we obtain that f;7(0) = fa(O)n_(H‘é) for all n > 1, where f, is
the density of X; ~ Z; note that an explicit expression for f,(0) can be found in [Nol20, Cor. 3.1].
Thanks to Theorem 2.4, we therefore get

N D 1
e Xl a0 E)

For instance: we get A\, = v27/((3/2) if X; ~ N(0,1); we get \. = 7/((2) = 6/7 if X; ~ C(0,1).
In view of the formula for f;7(0), we obtain that K(n) = n=%¢(s)™!, so the renewal 7 has a
zeta(s) inter-arrival distribution, with s := 1+ 1. Hence, the Laplace transform (2.7) is K(9) =
¢(s) 'Lis(e™?) where Lis(z) := > n>1 20~ is the so-called polylogarithmic function. The free
energy is then given by the relation (2.8), i.e. Lig(F()\)) = ((5)(kA) ™! = (fo(0)A) ™!, which cannot
be explicitly inverted. On the other hand, after some calculation, one gets that F(A. + u) ~ cqou®

as u | 0, with ¢, := (fo(0)/al'(1/a))%; see also Proposition 2.5.

Remark A.1. In the continuous case, the relation (B.1) gives that f,(0) = L f,(0), where f, is

the density of S,. Therefore, if the density of S, at 0 is explicit, one obtains an explicit formula
for f;7(0) and the model could also be (at least partially) integrable.

With elevated boundary conditions. Let us focus on the (standard) Gaussian random walk. We
have that A(t) = 3t2, so A~ (z) = v2z. We therefore get that

F(), a) = <F()\) - 2a\/2F()\)> L acN) = ——/FO),
+
but with no explicit expression for the free energy r(\).

A.5. Generalized Laplace distribution. In view of Remark A.1, we include in the list of exam-
ples the case of (symmetric) generalized Laplace distributions, also known as variance-gamma or
Bessel function distributions; we refer to [KKPO01, Sec. 4.1] for an overview. The density of a sym-
metric generalized Laplace distribution of parameter (v, o) (we write X ~ g-Laplace(v, o) for short)

v—1/2
has an explicit distribution, see [KKPO01, §4.1.4.2], given by f, »(z) = Fg/\)/\iﬁr (Ji\/‘i) K,,_l/g(\/?|x|/a),
where K, _1/, is the modified Bessel function of the third kind. Additionally, the behavior of the

. A . . o 1 1 rv—1) . 1
density at z = 0 is known: it goes to infinity if v < 5 and f, ,(0) = o F(yf ifv> 3.

A random variable X ~ g-Laplace(v, o) can be represented as a mixture of centered normal dis-
tribution with random variance o2W, with W ~ Gamma(v, 1); alternatively, it can be represented
as the difference of two independent Gamma(v,y) random variables with v = v/2/o. Additionally,
such distributions are stable under convolution: the sum of two independent g-Laplace random
variables with respective parameters (v, o), (v, o) has itself a g-Laplace distribution, with param-
eters (v + 1/, 0).
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Therefore, if (X;);>1 are i.i.d. with g-Laplace(v, o) distribution (with o = v/2/7 if one wants to
match the parametrization of Section A.3), then S,, ~ g-Laplace(nv, o). Therefore, taking v > %
so that f,(0) < 400 for all n and using the relation (B.1) together with the value for f,,1(0)
above, we get that

1 1 T'(nw—13)
T(0) = = f,(0) = 2C
FHO) = 110 = =
Hence, the critical point is “explicit”, since A, = k=1 with x = Y0 | £7(0). It turns out that the
Laplace transform (or generating function) of f,;7(0) has a simple form if v = 1 (this is the example
of Section A.3), but also if ¥ = 2 (it also has a closed form if v = 3): for all z € [-1,1],

i "fa(0) = L(1—VI-2) ify=1,
ST TR0 HVIeVioe) v,

Inverting the formula of the Laplace transform gives the expression of the free energy (and of the
critical point), thanks to (2.8). When v = 2, setting v = v/2/0, we get

AN = 1’232 — 1) 1V2
N ) for}\z)\c_’y\/i—l'

To conclude, let us mention that when v is an integer, the generating function of f,7(0) is equal

to the generalized hypergeometric function ,41F, (52, - v=3.1 v=L1.2), up to centering

0020777 2 Yttty

MM:-m(

(by 1) and normalizing (by o\}ﬂ)

With elevated boundary conditions. We use that A(t) = —vIn(l — 30%t?), so that A=l (z) =

?\/ 1 — e~®/v; for instance using the representation as a difference of independent I'(v,~) ran-
dom variables with v = v/2/0. Similarly to the Gaussian case, we obtain that the critical line is
ac(\) = QLﬁF(A)(l — e "W/¥)=1/2 with in general no explicit expression for F(\).

APPENDIX B. A FEW RESULTS RELATED TO THE (STANDARD) WETTING MODEL

B.1. Proof of Lemmas 2.2 and 2.3. We start with the proof of Lemma 2.2, which uses a simple
rewritting of f;F(x) in terms of (weak) ladder epochs and heights.

Proof of Lemma 2.2. Let us introduce the first (weak) ladder epoch and height
Ty :==min{n >1,5, <0} and H;= —S7,

and the following density with respect to u:

1 _ _
()= —P(Ty =n,H €d f >0.
fo(z) () (Th =n,H; € dx) or x >

Hence, summing over n we get that x = £(0) where x(x) = >>7, f,;7 (x) = fg, (), with fz, the

density of Hy with respect to p. In particular, x = P(H; = 0) in the discrete case and x = fz, (0)
in the continuous case. This concludes the proof of Lemma 2.2. ]

We now turn to the proof of Lemma 2.3: the result is given in [CC13] (Proposition 4.1-(4.5) for
the discrete case and Theorem 5.1-(5.2) for the continuous case); we give here a simpler proof for
the sake of completeness since we do not aim for the level of generality in [CC13].
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Proof of Lemma 2.3, continuous case. In the continuous case, by using [CGZ06, App. A.2], we
obtain that

(B.1) [ (0) = fn( )

where f,, is the density of S,, w.r.t. the Lebesgue measure; see also [AD99, Eq. (3)] for a more
general statement?.

Then the local limit theorem for densities [IL71, Thm. 4.3.1] gives that if f,, is bounded for
some n > 1 (which is given by Assumption 1), then f,(0) ~ é fa(0). where f, is the density of
the limiting a-stable distribution. This shows Lemma 2.3 in the continuous case, recalling that
P(H; >0)=1. O

Proof of Lemma 2.3, discrete case. In the discrete case, we start from the relation [AD99, Eq. (3)],
which reads

(B.2) fH0)=P(Ih =n,H, =0) = 1P(Sn =0,H; >0).

(The strict inequality > in place of > is due to the fact that we are considering weak rather than
strong ladder heights.) The reasoning in [AD99, Prop. 6] cannot be reproduced identically to
obtain that f;7(0) ~ %P(Sn = 0)P(H; > 0) but we can easily adapt the proof; we simply need to
update the use of Iglehart’s lemma.

Our goal is to show that lim, o P(H; > 0] S, = 0) = P(H; > 0) or equivalently

(B.3) lim P(H=0]|S,=0)=P(H, =0).
Since P(S, = 0) ~ lnfa(O) as n — oo by the local limit theorem, see e.g. [IL71, Thm. 4.2.1],

combined with (B.2), this would end the proof of Lemma 2.3.
To obtain (B.3), let us start by writing

P(S,_j, = 0)

P =080 =0) = Y P(Ti = k.5, = 0] Sy = 0) = Y P(Ti = b, 5 = 0) P(S, = 0)
k=1 "

k=1
To use similar notation as in [AD99], denote dj, := P(T} = k, Sy = 0) = P(Ty = k, H; = 0) and
¢j == P(S; = 0) so we need to show that lim, ;o Y p_; d,=2% Cuos = Y p, di since it is clear that
Y1 =P(H1=0).
Note that ¢, ~ fo(0)/a, by the local limit theorem, with a,, regularly varying with exponent
1/a. Therefore, we have ¢,,_/c, — 1 for any fixed k and ¢,_j/c, < C uniformly for k& > n/2:
applying the dominated convergence theorem we get that

_de_ (H; =0).

For the remaining term, using that dk = f7(0)= % (Sk =0, Hy > 0) by (B.2), we have dj, < £c

for all £ > 1, so

n/2

n—>oo

' n/2

Z 1kaCn ES — cha

k=n/2 k= n/2

?iNote that [AD99, Eq. (3)] considers strong rather than weak ladder epochs and heights: in our context, it reads
P(Ty =n,H, € dx) = %P(Sn € dx,H; > x) for any n > 1 and = > 0.
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where we have used that %E—’“ < % uniformly for & > n/2, again thanks to the regular variation

of ¢,. Now, we can simply use that ¢c; — 0 as j — oo to get that the Cesaro mean - Zj 0 cj goes
to 0. This ends the proof of (B.3) and hence of Lemma 2.3. O

B.2. About the critical behavior of the free energy of the wetting model. Our goal here
is to prove the asymptotic for the free energy that have been collected in Proposition 2.5. First
of all, let us observe that Assumption 1 is equivalent to having the following properties on the
distribution of (X;);>1; we refer to [Fel71, IX.8].

* When a € (0,2), there is some slowly varying function ¢(-) and constants p,q > 0 (take
p + q = 1 for normalization purposes) such that, as x — oo,
(B.4) P(X; > z) ~ pp(x)x™® and P(X; < —z) ~ qgp(x)x™®.

This is equivalent to the fact that there exist sequences (ay)n>0, (bn)n>0 such that (S — by)
converges in distribution to some a-stable random variable. In order to have b, = O one must
have E[X;] = 0 in the case a € (1,2) and p = ¢ = % in the case a € (0, 1]; in the case a = 1, one
also needs to have that L(z) "E[X11{ x,|<,}] converges as 2 — co.

x For a = 2, then setting

2
(B.5) (@) == B[(X:) Lix,j<a]
we have that Assumption 1 holds if and only if E[X;] = 0 and o2 is slowly varying at +oo.
We may define (a,)n>0 up to asymptotic equivalence by the following relations

1 1

(B.6) P(|X1| > an) ~ ¢(an)a,* ~— ifae(0,2), oX(an)ay® ~ = ifa=2.
n n

Then, we have that - S converges in distribution to an a-stable random variable Z

Asymptotic of KK(¥). We now use Lemma 2.3 (or (2.6)) to obtain the asymptotic behavior of k(1))
as ¥ | 0. The proof is standard and follows the lines of [Gia07, Thm. 2.1], but we provide it for
the sake of completeness.
Lemma B.1. Recall that K(9) = Y00 e7""K(n), with K(n) = 1f,7(0) = L(n)'rf(Hé). Then
we have, as ¥ | 0

al (22)9K(1/9) if v € (1,2],

x
where my = Y. nK(n) converges if a < 1 and is slowly varying if o = 1.
n=1

Proof. Since )+, K(n) = 1, we simply write

LK) = 300 e ) = (1 - e L 04,
n=1 n=1

If > 1nK( ) < +oo, which contains the case o < 1 in view of the fact that K(n) =
L(n)n —(+3 ), we get by dominated convergence that

lim 3 i ZnK 1z:nfn —hmml/ﬁ
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T
If Y>> nf(0) = 400 and o = 1, then my := 21 L(n)n~! is slowly varying at +oco and verifies
n—=

my/L(x) — oo, see [BGT87, Prop. 1.5.9a]. Then, we get that
1/9 1/9 1/9

) > Z e™"MK(n) 29> Lin)nt —c0® Y L(n) = (1+ o(1))Imy s,
n=1 n=1

where we have used that Zl/ﬁ L(n) ~97'L(1/9), with L(1/9) = o(my ). On the other hand,

1/9 1/9
9) <Y (1—e™K(m)+ > Kn) <9 L'+ > Lin)n 2= (1+o(1)dmyq,
n=1 n>1/9 n=1 n>1/9

where we have used that },_; L(n)n=? ~ L(1/9)0 with L(1/9) = o(my ).
It remains to treat the case o € (1,2]. This time, we use a Riemann sum approximation (see
also [BGT87, Thm. 1.7.1 and Cor. 8.1.7]) to get that

_61971 L 00 ] e U
1— K@) = L(1/9)d= Zﬂl T L€1(/1)9) L(l/ﬁ)z?a/o ! du,

(In Wt

with foo 1= i “du = al'(1 - ) by some integration by parts. g
’lL

Asymptotic of the free energy: proof of Proposition 2.5. Now we are ready to prove Proposition 2.5.
From (2.8), we get that for A > A\ := 1/k,

A=A
T

Since we know that F(A\) | 0 as A | ¢, we may use Lemma B.1 to obtain the following. To simplify
notation, we write F, := F(A. + u), which goes to 0 as u ] 0.

« If Y°°  nK(n) < +oo, or equivalently (by Lemma 2.3) if )7
is transient, then, as u | 0,
oo
=1

Since K(n) = k71 £,;7(0) and A, = k71, we get (2.10).
« If v € (1,2], then as u | 0,

1—KEQN) =1— (k\) L =

< 400 that is if (Sy,)n>0

nla

al (21 r, K(1/F,) ~ k™ 'egal' (21) ~ KU,

ai/r,
where we also have used Lemma 2.3 to get that nK(n) ~ x 'cy/a, as n — oo. Using the
relation (B.6) that defines (a,)n>0, we get that:
R~ P(X] > 2) ifae(1,2),
F, ~o2(2)(2)7? ifa=2,
with ¢y == coal'(%2)/k% This gives (2.12)-(2.13), using that co =
o = 2, so that co = V2P (H; > 0)/k2.
«If « =1 and Y 02 nK(n) = Y .»7, L(n)n~! = 400, we obtain that Fymyp, ~ ku, and we
have to invert this relation. Let us introduce v; such that L(v)v, Lot and wy = tmy,: then

\/%P(I:h > 0) in the case



46 Q. BERGER AND B. MASSOULIE

by [Ber19, Lem. 4.3] we get that my, ~ my, as t — 0o, so that we have my,v; ' ~ ¢~ as t — oo.
Using this relation, we get that

RU
l/Fu ~ Wi /ku S0 Fo ~ )
77lv1/u

using also that m is slowly varying and that v is regularly varying. Now, we can use Lemma 2.3
to get that

V1/u

vl/u 1 1 avl/u 1
My, ,, ~ K C —N/@ —dt ~ Kk "¢ —ds
e X e [ Lt [,

where we have used a change of variable s = a; (so t ~ s/¢(s), see (B.6)), in the spirit of [Ber19,

p. 36]. Now, notice that by Lemma 2.3 we have an ~ kcg/nK(n) ~ kegn/L(n), so by definition of
1/u
S

. 1/u 1 1 . 1/u ds
Moy ™ C”/l sp(s) 7" C“/l S2P([X1| > 5)

This concludes the proof of (2.11). O

vy we get that a,, u ™ KCO Ju. Since u f ds is slowly varying, we get that

B.3. About the SOS (or Laplace) wetting model. In this section, we derive the free energy
for the wetting model of Section A.3. We only deal with the exponential random walk (or SOS
model) since the proof does not appear clearly in the literature, but it could also be adapted to
the lazy and geometric random walks of Sections A.1-A.2; only with more tedious calculations.

First of all, let us notice that, by the memoryless property of the exponential random variable, we
have that T} and H; are independent; and H; follows an exponential distribution with f Hl( ) =1.
Therefore, we have that

fa(0)=1P(Ti=n),  K(n)=P(T1=n).

Let us compute the Laplace transform K(9) = 322, e """ K (n). For 9 > 0 fixed, we introduce the
martingale (Mp,)n>0 defined by
M, = —0S,—9n
ni=e ;

where § = vv/1 — e=? < ~ is chosen so that* E[e~X1] = % =e 7.

Applying the stopping time theorem, together with dominated convergence (since S, 7, > S7,
with —Sp = Hj an exponential distribution), we obtain that

n

1= nh_{gOE[M /\T1] _ E[@—OSﬁ—ﬁﬂ] _ E[€9H1]E[€—19T1] ’

where we have used again that H; = —Sp, is independent of Ty in the last identity. We therefore

end up with

K@) =E[’]) ™ = 1—?: 1—V1—e?

The relation K(F(\)) = (kA)~! from Theorem 2.4 (with k = ) therefore gives

A 2
F(\) = In (&) .
292 —1
47, compute E[e‘exl], we can use the representation X; = Y — Y’ with Y, Y’ independent Exp(y) random

variables, so E[e""] = 1— u/w for any |u| < 7.
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APPENDIX C. LOCAL LARGE DEVIATIONS: PROOF OF LEMMAS 5.1 AND 7.3

Proof of Lemma 5.1. Let us focus on the upper local large deviation; the lower counterpart is
proven in an identical manner. We need to show that

lim 1nf — log P(S, =z,) > -1 (z),

n—oo

the other inequality being given by (5.2) and the fact that I, is continuous at x.

First of all, if t& = 0, i.e. if AL (t) = +oo for all t > 0, then I (x) = 0 for all z > 0. In that
case, we get that limsup;,_,, 1 log P(X1 = k) = 0 (one can easily check that otherwise tJ > 0), so
we can choose some kg such that P(X; = ko) > e~°% and kg > 3x. Then, setting ng = |z, /ko],
we have that

(C.1) P(Sn = :pn) > P( =kpforalll <i< no)P(Sn,nO =z, — k‘ono) .
Notice that ng < n/2 (provided that n is large enough) and that =, — kong € {0, ..., ko}. Using

the local central limit theorem, see e.g. [GK54, Ch. 9, §50], we therefore get that

P(S, =) > (e_d‘“’)noi > ie‘m",

an — Qn
so liminf,,_ o % log P(S,, = x,,) > —ex, recalling that lim, %xn = x. Since ¢ is arbitrary, this
concludes the proof in the case to = 0.

Let us now turn to the case where to > 0. Then, fixing ¢ small enough so that ;%= < 7, we
have that

P(S(l—a)n S [(1 — 52)xn,xn]) = P(S(l_g)n > (1 — EQ)ZCn) - P(S(l—a)n > $n)
— e~ (o ((+e)z)(1—e)n _ ~(1+o(1)I4(:2)(1—e)n

)

where we have used that lim, o 1, = z and that I, is continuous at (1+&)z and z/(1—¢). Then
the second term is negligible compared to the first one since I (%) > I ((1+¢)x), because 1 is
increasing on [0, Z4). We therefore get that

lim inf — logP(S(l —em €[(1 = e2) iy, zn]) = —(1— )l (1 +e)z).

n—oo

We now write
Tn

y:(1_52)$n
>P(Sa_eym € [(1- 62)5L’n,$n)) x inf  P(S., =2).

2€[0,e2z5]
It remains to get a lower bound on the last term. Let k{ := inf{k > 1,P(X; = k) > 0}. Then,
similarly as in (C.1), setting ng = no(z) = |z/k{], we get that
P(S.n =2) > P(X; = ki for all 1 < i < ng)P(Sep—n, = 2 — kjno) -

Again, ng < z < €22, S0 en —ng > en (1 — 67”). For n big enough, we have == < 2z, then if
e < £ we have en — ng > 2. Since z — kjng € {0,...,k)} we can use the local central limit
theorem to bound the last term by a constant times aanl, uniformly in 2z € [0,%z,]. We therefore
end up with



48 Q. BERGER AND B. MASSOULIE

All together, we get that
|
hnH_1>£f - logP (S, =2p) > —(1— )l (1 +e)z) + e2log P(X; = k).
Since ¢ is arbitrary and I is continuous on [0, Z], this concludes the proof. ]

Proof of Lemma 7.3. The proof follows the same lines as that of Lemma 5.1.
First of all, let us treat the case tar = 0. Then, as in (C.1), with the same definition for ky and
with ng = [72], we have that

Qi (n,xy) > P(Xi = ko)nOP(Sn_no =x, —kong,S; >0foralll <i<n-—mng— 1) .
Now, let k1 > 0 be such that P(S; > 0,...,Sk,-1 > 0,5, =y) >0 for all y € {0,...,ko}, which

exists by aperiodicity and let ¢ = info<y<p, P(S1 > 0,..., Sk, -1 > 0,5, =) > 0, which depends
only on kg. Recalling that x,, — kong € {0,...,ko}, we therefore get that

P(Sn,no =x, —kong,S; >0foralll1 <i<n-—mng— 1) > cf:{_no_kl(O),

with f,;F(0) =P(S; > 0,...,5,-1 > 0,5, = 0) defined in (2.3). Now, thanks to Lemma 2.3, and
since n — ng — k1 > n/4 for n large enough, we get that

/ /

C C
Q—i—(naxn) > 7675k0n0 > e Tn
na, na,

We therefore end up with liminf, e = log @4 (n, |an]) > —ez, which gives the result since € is
arbitrary, recalling that I (z) = 0.

Let us now turn to the case where tsr > 0. We focus first on the case lim,, s %xn =z € (0,z4).
Denoting again k{ = min{k > 1, P(X; = k) > 0}, we have that

Q+(n,xn) > P(X1 = ky)*"P(Sa_cyn = Tn — enkg, S; > —enkg for all i < (1 —¢)n) .
Then, we write
P (S(1—c)yn = &n — enky, S; > —enky for all i < (1 —en))

= P(S(l,e)n =z, — 5nk6) — P(S(I,E)n =z, — enky, 1<i£r%i11i€)n S; < —anké) .

(C.2)

For the first term, we can use Lemma 5.1 to get that it is exp(—(1+0(1))(1— 5)nI+($1__€];6)n). For
the other term, decomposing over the first time where S; < —enky,, we easily get by the strong
Markov property that
P(S(l,s)n =1z, —enkj, min S; < —Enké) < sup P(Sj =x, + y) .
1<i<(1—e)n 1<j<(1—€)n,y>0

Then, using (5.2) and the fact that I is non-decreasing, we get that this is bounded by

1‘782 )

() < o~ (=l (F2h) U e

sup e
1<j<(1—e)n

I

where the first identity holds by convexity of I, and the second one provided that n is large

enough so that %xn > — g2,

Since (1 — €)I+(I1:552) > (1-— 5)I+(I1_f]§6) because I is increasing, we get that the second term

in (C.2) is negligible, so that

.1 ) x — ek
nh—%o - log P (S(1—eyn = T — enky, 1§irgrt111:e)n S; < —enkp) = (1 - 5)I+< — 50> )
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All together, this gives that
el p x — ek,
liminf —log Q4 (n, zy,) > elogP(X1 = ki) — (1 — )L+ <7> ,
n—oo n 1—¢
which concludes the proof since ¢ is arbitrary and I is continuous at x < Z4.

For the case lim,, o %xn =0, we fix € > 0 and we use the following lower bound (omitting the
integer parts for simplicity):

Q+(n,n) 2 P(Sy /2 = en, Sy =5, 51 > 0,...,5,-1>0) > Q1(n/2,en)Q—_(n/2,en — x,),
where we have used Markov’s property and the duality property
P(Sn/2 > Tn, ..., Sn—1> Tn, Sp = x| Spjp = €n)
=P(51 <0,...,8,/2<0,S,2 =en —x,) = Q_(n/2,en — x).

Therefore, from the case z > 0 above we get that lim inf,,_, 2 log Q1 (n, z,) > —14(2/2)—1_(g/2).
This concludes the proof, by taking ¢ | 0, since I, I_ are continuous at 0. ]
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