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Introduction

In a dynamical system, the mixing property reveals that trajectories are intermingled and asymptotically distributed somewhat homogeneously. A paradigmatic example is provided by Arnold's cat map on the 2-torus T 2 , endowed with the Lebesgue measure,

T = 2 1 1 1 .
From a probabilistic perspective, mixing signifies the asymptotic independence of events; long-term evolution forgets the initial conditions. This property, along with its quantitative counterparts (e.g., decay of correlations), forms the foundation for various probabilistic limit theorems within the context of deterministic dynamics, such as the Central Limit Theorem and Borel-Cantelli lemmas (see [START_REF] Chernov | Dynamical Borel-Cantelli lemmas for Gibbs measures[END_REF]).

However, there are many systems in which certain quantities are conserved during evolution. This occurs in integrable systems of Hamiltonian dynamics, particularly in some geodesic flows and rational billiards (see [START_REF] Thomine | Keplerian shear in ergodic theory[END_REF] and references therein). This phenomenon can also manifest in biological systems, where the preservation of a character results in different evolutionary paths. The presence of these invariants prevents the system from being ergodic and, consequently, from exhibiting mixing. The transvection

T := 1 0 1 1 ,
acting on the torus T 2 , is a paradigmatic example. This map acts on the second coordinate as a rotation on the circle. The evolution in each ergodic component (each individual system) is notably simple and predictable. Nevertheless, Kesten demonstrated that, with some randomness introduced into the rotation angle, trajectories distribute quite homogeneously in the long term. Specifically, the discrepancies, suitably normalized, converge to a Cauchy distribution [START_REF] Kesten | Uniform distribution mod 1[END_REF] (see also [START_REF] Dolgopyat | Deviation of ergodic sums for toral translation II. boxes[END_REF] for multidimensional generalization).

In celestial mechanics, planetary rings (the motion of each dust particle) may be modeled by the flow

g t : [a, b] × T → [a, b] × T (r, θ) → r, θ + tr -3 2 .
While the distance to the center is preserved, and each trajectory is essentially a rotation, the fact that angular velocities vary allows for the aggregation of materials, potentially explaining the formation of larger bodies. Recently Damien Thomine [START_REF] Thomine | Keplerian shear in ergodic theory[END_REF] introduced the notion of Keplerian shear, formalizing the fact that in non ergodic systems, trajectories may distribute homogeneously and independently of their past, provided we ignore the invariants. The aim of our work is to pursue the study of non-ergodic dynamical systems which have the property of Keplerian shear. The probabilistic dynamical system (X, T, µ) has Keplerian shear if for all f ∈ L 2 (µ) we have the weak convergence

f • T n → E µ (f |I ), (1) 
I being the σ-algebra of invariant by the transformation T . The lack of ergodicity is indeed adding a hazard to the dynamics (the choice of the ergodic component), and even if the dynamics on the fiber is not mixing the system can globally appear mixing conditionally to the fibers.

Definition 2.4 (Conditional correlation).

We define the conditional correlation by:

∀(f 1 , f 2 ) ∈ L 2 µ (Ω) 2 , Cov t (f 1 , f 2 |I ) := E µ (f 1 • (f 2 • g t )|I ) -E µ (f 1 |I ) • E µ (f 2 |I ) resp. Cov n (f 1 , f 2 |I ) := E µ (f 1 • (f 2 • T n )|I ) -E µ (f 1 |I ) • E µ (f 2 |I )
Proposition 2.1 ([16]). The keplerian shear property is equivalent to the convergence to 0 of the expectation of the conditional correlation, in other words:

∀(f 1 , f 2 ) ∈ L 2 µ (Ω) 2 , E µ (Cov t (f 1 , f 2 |I )) ----→ t→+∞ 0 resp. E µ (Cov n (f 1 , f 2 |I )) -----→ n→+∞ 0 (2) 
In ergodic systems, keplerian shear is equivalent to mixing. The mixing property is thus equivalent to the ergodicity and keplerian shear.

Rajchman measure

Fourier theory will be instrumental in our study of correlation decay. In particular measures with the Riemann-Lebesgue property will play an important role in this work. Definition 2.5 (Rajchman measure). We are in the space (R, B(R), ν) for the continuous case (resp. (T, B(T), ν) for the discrete case).

ν is Rajchman if

ν(t) ----→ t→±∞ 0 resp. ν(n) -----→ n→±∞ 0
with ν(t) = R e 2iπtx dν(x) resp.ν(n) = T e 2iπnx dν(x)

Note that we will only consider one dimensional Rajchman measures.

Definition 2.6 (Rajchman measure in higher dimension). We are in the space (R d , B(R d ), ν) for the continuous case (resp. (T d , B(T d ), ν) for the discrete case). ν is Rajchman if

ν(w) ------→ w →+∞ 0 resp. ν(n) ------→ n →+∞ 0
with ν(w) = R e 2iπ<w|x> dν(x) resp.ν(n) = T e 2iπ<n|x> dν(x)

Functional equivalences

We recall an equivalent interpretation of the Rajchman property in terms of convergence in distribution or equidistribution.

Proposition 2.2. In the continuous case (resp.discrete), the measure ν is Rajchman if and only if for x distibuted by ν :

∀a > 0, nx a [1] L -----→ n→+∞ U (T)
resp. nx [START_REF] Arnold | Singularities of differential Maps Volume 2: Monodromy and Asymptotics of Integrals[END_REF] L -----→ Let's prove the reciprocal implication. We take ϕ : x → e 2iπx and note that ν(n) = T ϕ(nx)dν(x) -----→ n→+∞ 0.

Continuous case. Let's start with the direct implication.

Let a > 0. Let µ be the push forward of ν by x → x a [START_REF] Arnold | Singularities of differential Maps Volume 2: Monodromy and Asymptotics of Integrals[END_REF]. We have for any n ∈ Z

µ(n) = T e 2iπnx dµ(x) = R e 2iπ n a x dν(x) = ν n a -----→ n→+∞ 0
Therefore, µ is Rajchman on T and we apply the discrete case. Let's prove the reciprocal implication. Let ε > 0. The uniform continuity of the characteristic function gives ∃δ > 0, ∀(x, y) ∈ R 2 , |x -y| < δ =⇒ | ν(x)ν(y)| < ε 2 In addition, by the Rajchman hypothesis

∃n 0 ∈ N, ∀n ∈ N, n ≥ n 0 =⇒ ν n δ 2 < ε 2 . Let t ≥ n 0 δ 2 . Since δ 2 N ∩ [t, t + δ[ = ∅ there exists n ∈ N, |n δ 2 -t| < δ. Thus | ν(t)| ≤ ν(t) -ν n δ 2 + ν n δ 2 < ε.
Lemma 2.1 (Weak- * convergence and Rajchman property). Let µ be a Borel-probabilty measure on R.

The measure µ is Rajchman if and only if x → e 2iπtx ----→ t→+∞ 0 in the weak- * topology on

L 1 µ (R) * = L ∞ µ (R). Proof. Reciprocal implication is obtained immediately with (x ∈ R → 1) ∈ L 1 µ (R). Let's prove the direct implication. Let ϕ ∈ S (R).
Writting ϕ with its reverse Fourier transform and using Fubini theorem we get

R e 2iπtx ϕ(x)dµ(x) = R e 2iπtx R e 2iπxs ϕ(s)dλ(s) dµ(x) = R ϕ(s) µ(t + s)dλ(s) ----→ t→+∞ 0
by Rajchman property and Lebesgue convergence theorem. We conclude by density of S (R) in L 1 µ (R).

Fourier-Rajchman decay

The notion of Rajchman measure is only qualitative. To estimate the speed of convergence to 0 of the expectation of conditional correlations (2), a quantitative version of the Fourier decay will be needed.

Definition 2.7 (Fourier-Rajchman decay). A Rajchman speed of a Rajchman measure on

T d (resp. R d ) is a value r ≥ 0 such that ∃C > 0, ∃n 0 ∈ N * , ∀n ∈ Z d , n ≥ n 0 =⇒ | ν(n)| ≤ C n r resp. ∃C > 0, ∃t 0 > 0, ∀t ∈ R d , t ≥ t 0 =⇒ | ν(t)| ≤ C t r
Definition 2.8 (Rajchman order). Rajchman order of a Rajchman measure is the supremum of its Rajchman speeds. We denote it r(µ).

Remark 2.2.1. Rajchman order is linked to the Fourier dimension dimF (µ) defined in Boris Solomyak documents [START_REF] Solomyak | Fourier decay for self-similar measures[END_REF], we have dimF (µ) = 2r(µ).

Additionnaly, as mentioned in the work [START_REF] Solomyak | Fourier decay for self-similar measures[END_REF], when the Rajchman order r verify r > 1 2 , µ ≪ λ. Consequently a Rajchman measure can be singular continuous only if its Rajchman order r satisfies r ≤ 1 2 . Definition 2.9 (Diophantine exponent). We call the Diophantine exponent of x ∈ R, Dio(x) = inf A = sup B where

A = s > 0 : ∃C > 0, ∀(p, q) ∈ Z × N * , |qx -p| ≥ C q s and B = t > 0 : ∃ infinitely many (p, q) ∈ Z × N * , |qx -p| < 1 q t
The Rajchman order of a measure control the diophantine exponent a.s. (See Proposition 6.1)

Proposition 2.3. If r(µ) ≤ 1 2 , then µ -a.a α ∈ [0, 1[, Dio(α) ≤ 1 r(µ) -1.
In the absolutely continuous case, Dio(α) = 1 a.e.

Radon-Nikodyme-Lebesgue decomposition

We discuss the simple relations that can be seen between the Rajchman property and the Radon-Nikodyme-Lebesgue decomposition We note that Lebesgue-almost all numbers are not Pisot. Now, to highlight the ambiguity of the Rajchman property for the singular measure, we'll expose examples of continuous singular measures respecting this property.

ν = ν ac + ν sc + ν d .
Example 2.2.1 (Self-similar measure). Consider for θ > 2, µ θ the distribution of n∈N * ±θ -n where signs are chosen with i.i.d probabilities 12 . Note that µ θ has as characteristic function

µ θ : k ∈ Z → n∈N cos (2πθ -n k).
µ θ is Rajchman if and only if θ is not a Pisot number [START_REF] Kahane | Sur la distribution de certaines séries aléatoires, Colloque de théorie des nombres[END_REF].

Additionally, for Lebesgue-almost all real θ > 2, theses measures are singular and the Rajchman order r (µ θ ) > 0.

Example 2.2.2 (Rajchman measure with Liouville set as support (Dio = +∞)). Christian Bluhm [START_REF] Bluhm | Liouville Numbers, Rajchman Measures, and Small Cantor Sets[END_REF] has built a Rajchman measure µ ∞ supported on Liouville numbers.

According to the proposition 2.3, its order is r (µ ∞ ) = 0.

Tori bundle

We study dynamical systems defined in the setting introduced in [START_REF] Thomine | Keplerian shear in ergodic theory[END_REF], tori bundles. These systems have local action-angle coordinates.

Definition 2.11 (Tori bundle). Let

(M, A ) a n ∈ N * dimensional C 1 Lindelöf 1 manifold. Let d ∈ N * , (Ω, µ) a Borel space and π a continuous projection of Ω in M . Ω is a (n, d) dimensional tori bundle if
1. locally, we have for charts U de A an homeomorphism :

ψ U : π -1 (U ) → U × T d 2. for all U in A , π 1 • ψ U = π |U
Bundle of the form M × T d constitute already interesting examples. Note that we don't impose the affine property on tori bundle because not necessary for the sequel. Definition 2.12 (Compatible flow). Let (Ω, µ, (g t ) t∈R ) be a measure preserving dynamical system.

The flow (g t ) t∈R is a compatible flow with (Ω, µ) as a tori bundle if for all charts

U ∈ A there exists v U ∈ R d U measurable such that for t ∈ R, ψ U • g t • ψ -1 U (x, y) = (x, y + tv U (x)). We note g U t : ψ U • g t • ψ -1 U Definition 2.13 (Compatibles measure). µ is a compatible measure if for all charts U ∈ A , µ |π -1 (U) ψU = (µ π ) |U ⊗ λ

Main result in discrete dynamical systems

In this case, we use the Rajchman property with the help of the corresponding Fourier series. We will highlight the necessary path to show the presence of keplerian shear in this case. We get the main result in the discrete case here.

Theorem 3.1 (The main result). The discrete dynamical system (Ω, µ, T ) with Ω a tori bundle exhibits keplerian shear if and only if for all ξ = 0 Z d and for all charts U ∈ A , m T ξ,U is Rajchman with

m T ξ,U = (µ π ) |U ξ|vU (•) -⌊ ξ|vU (•) ⌋ |T\{0} .
Proof. Let's start with the direct implication. Let ξ ∈ Z d \ {0 Z d } and U ∈ A . Let take

f 1 : x ∈ π -1 (U ) → 1 ( ξ|vU (•) -⌊ ξ|vU (•) ⌋) -1 (T\{0}) (π(x))e 2iπ ξ|π2•ψU (x) .
Let take

f 2 = f 1 . So ∀n ∈ N, π -1 (U) f 1 • f 2 • T n dµ(x) = R e 2iπnz dm T ξ,U (z)
And with Birkhoff-Kakutani and keplerian shear

R e 2iπnz dm T ξ,U (z) -----→ n→+∞ 0. So U ∈ A , m T ξ,U is Rajchman.
Let threat the reciprocal implication. The weak- * convergence of exponentials of Fourier series in +∞ is equivalent to the Rajchman property of measures m T ξ,U . We show by Fourier decomposition this implication.

Already known results

Definition 3.1 (Anisotropic Sobolev spaces). Let s > 0 and h

: (x, y) ∈ R 2 →    1 + x 2 y 2 1 2 if y = 0 1 else .
We define anisothropic Sobolev space of order s > 0 like this :

H s,0 (T 2 ) :=    f ∈ L 2 (T 2 ) : ξ∈Z d f (ξ) 2 h 2s (ξ) ∈ R    Proposition 3.1. Considering this dynamical system (T 2 , λ ⊗ λ, T ) with T : (x, y) ∈ T 2 → (x, y + x), we have the next result ∀s > 0, ∀(f 1 , f 2 ) ∈ (H s,0 (T 2 )) 2 , ∀n ∈ N * , |E λ⊗λ (Cov n (f 1 , f 2 |I ))| ≤ 4 s n 2s f 1 H s,0 (T 2 ) f 2 H s,0 (T 2 )
3.2 Results with another measure than Lebesgue measure Definition 3.2 (Sobolev space on the torus). We will note for s > 0, d ∈ N * the Sobolev space

H s (T d ) :=    f ∈ C T d : k∈Z d f (k) 2 1 + k 2 2 s ∈ R    .
Definition 3.3. We will note for s > 0,

d ∈ N * and f ∈ H s (T d ), C f := sup f (ξ) 1 + ξ 2 2 s 2 : ξ ∈ Z d
To work easier and also estimate convergence speeds, we will threat the next proposition.

Proposition 3.2. Let the dynamical system (T 2 , µ ⊗ λ, T ) with the transvection function T : (x, y) ∈ T 2 → (x, y + x) yet and µ with r > 0 as the Rajchman order. We get the next proposition :

∀s > 2, ∃γ ∈ min s 2 -1, r , r , ∀(f 1 , f 2 ) ∈ H s (T 2 ) 2 , ∃C > 0, ∀n ∈ N * , |E µ⊗λ (Cov n (f 1 , f 2 |I ))| ≤ C n γ with γ optimal. Proof. Let s > 2. Let (f 1 , f 2 ) ∈ H s (T 2 ) 2 .
Let n ∈ N * . But

T 2 f 1 (f 2 • T n ) d (µ ⊗ λ) = ξ∈Z 2 f 2 (ξ) T e 2iπnξ2x e 2iπξ1x
T f 1 (x, y)e 2iπξ2y dλ(y) dµ(x).

And e 2iπξ1x

T f 1 (x, y)e 2iπξ2y dλ(y)

= k∈Z f 1 (k, ξ 2 )e 2iπ(ξ1-k)x .
Let pose

g (ξ1,ξ2) : x ∈ T → e 2iπξ1x
T f 1 (x, y)e 2iπξ2y dλ(y) .

But

∀(k, ξ 1 , ξ 2 ) ∈ Z 3 , g (ξ1,ξ2) (k) (1 + k 2 ) s 2 = f 1 (ξ 1 -k, ξ 2 ) (1 + k 2 ) s 2 ≤ C f1 (1 + k 2 ) s 2 (1 + ξ 2 2 + (ξ 1 -k) 2 ) s 2
.

And

E µ⊗λ (Cov n (f 1 , f 2 |I )) = ξ∈Z×Z * f 2 (ξ) T e 2iπnξ2x e 2iπξ1x
T f 1 (x, y)e 2iπξ2y dλ(y) dµ(x).

Let δ ∈]0, 1]. We assume that

|ξ 1 -k + nξ 2 | ≤ (n|ξ 2 |) δ 4 et |nξ 2 -k| ≤ (n|ξ 2 |) δ 2 . So |k| ≥ n|ξ 2 | -(n|ξ2|) δ 2 ≥ n|ξ2| 2 .
And

|ξ 1 | ≥ n|ξ 2 | -|k -nξ 2 | ≥ n|ξ 2 | - (n|ξ 2 |) δ 4 ≥ 3 4 n|ξ 2 |. And | µ(ξ 1 -k + nξ 2 )| ≤ 1. So we get (k,ξ1,ξ2)∈Z×Z×Z * et |ξ1 -k + nξ2|≤ (n|ξ 2 |) δ 4 et |nξ2 -k|≤ (n|ξ 2 |) δ 2 f 2 (ξ 1 , ξ 2 ) f 1 (k, ξ 2 ) ≤ 2 6(s+1) ζ(2(s -δ))C f1 C f2 3 s n 2(s-δ) .
Now, we suppose that

|ξ 1 -k + nξ 2 | ≤ (n|ξ 2 |) δ 4 and |nξ 2 -k| > (n|ξ 2 |) δ 2 . So |ξ 1 | ≥ |nξ 2 -k| -(n|ξ2|) δ 4 > (n|ξ2|) δ 4 . And f 1 (k, ξ 2 ) | µ(ξ 1 -k + nξ 2 )| ≤ C f 1 (1+k 2 +ξ 2 2 ) s 2 . So f 2 (ξ 1 , ξ 2 ) ≤ 4 s C f 2 (1+ξ 2 1 +ξ 2 2 ) s 2 ≤ 4 s C f 2 |ξ2| s 2 (1+δ) n s 2 δ . So (k,ξ1,ξ2)∈Z×Z×Z * et |ξ 1 -k + nξ 2 | ≤ (n|ξ2|) δ 4 et |nξ 2 -k| > (n|ξ2|) δ 2 C f1 f 2 (ξ 1 , ξ 2 ) (1 + k 2 + ξ 2 2 ) s 2 ≤ 4 s 1 + ζ s 2 ζ s 2 (1 + δ) -δ C f1 C f2 n ( s 2 -1)δ . But s > 2. So s 2 (1 + δ) -δ > 1 et s 2 -1 > 0.
And then, we assume

|ξ 1 -k + nξ 2 | > (n|ξ 2 |) δ 4 . So | µ(ξ 1 -k + nξ 2 )| ≤ 4 r Cµ (n|ξ2|) rδ . So (k,ξ1,ξ2)∈Z×Z×Z * et |ξ1 -k + nξ2|> (n|ξ 2 |) δ 4 C f1 f 2 (ξ 1 , ξ 2 ) (1 + k 2 + ξ 2 2 ) s 2 ≤ 4 r 1 + ζ s 2 2 C f1 C f2 n rδ .
Let pose

M (r, s) = sup 4 r 1 + ζ s 2 2 , 4 s 1 + ζ s 2 ζ s 2 (1 + δ) -δ , 2 6(s+1) ζ(2(s -δ)) .
With a deep study on extrema, we get

|E µ⊗λ (Cov n (f 1 , f 2 |I ))| ≤ M (r, s) C f1 C f2 n min{ s 2 -1,r}
.

Let note γ > 0 optimal convergence order optimal of correlations. So

γ ≥ min s 2 -1, r . But f : (x, y) ∈ T 2 → e 2iπy ∈ H s (T 2 ) because C ∞ . And T 2 f (x, y)f (T n (x, y))dµ ⊗ λ(x, y) ≤ C µ n r .
And r is the Rajchman order and then optimal. So γ ≤ r.

And then γ ∈ min s 2 -1, r , r .

And so finally

∀s > 2, ∃γ ∈ min s 2 -1, r , r , ∀(f 1 , f 2 ) ∈ H s (T 2 ) 2 , ∃C > 0, ∀n ∈ N * , |E µ⊗λ (Cov n (f 1 , f 2 |I ))| ≤ C n γ .
And γ is optimal.

Remark 3.2.1. The convergence speed is bounded by the order of Rajchman of the measure µ, which makes it unnecessary to take increasingly regular applications to observe convergence speeds greater than r. On the other hand, this is consistent with the result obtained with the Lebesgue measure because its Rajchman order is +∞, which removes the maximum imposed by r for the speed of convergence and allows the observation of ever greater speeds of convergence when the regularity of the functions used increases.

σ-algebra and invariant functions by discrete flow

Just like for the continuous flow case, we can identify the σ-algebra of invariant for the discrete flow using the Fourier series and orthogonality. In the regular case, we always have that the σ-algebra of invariants is negligible up to π -1 (B(M )) under the conditions of the theorem 4.1.

Theorem 3.2. We assume that (Ω, µ, T ) exhibits Keplerian shear.

f ∈ L 2 µ (Ω) is invariant according to T if and only if for all U ∈ A , ∃(a k ) k∈Z d ∈ L 2 (µπ ) |U (U ) Z d , (µ π ) |U ⊗ λ -a.a (x, y) ∈ U × T d , f |π -1 (U) (ψ -1 U (x, y)) = k∈Z d ∩{vU (x)} ⊥ a k (x)e 2iπ<k|y> .
Proof. Let f ∈ L 2 µ (Ω) and U ∈ A . Let's prove the direct assertion. Suppose that f

• T = f µ -p.p. Let (x, y) ∈ U × T d . So f (T (ψ -1 U (x, y))) = f (ψ -1 U (x, y)). Namely f (ψ -1 U (x, y + v U (x))) = f (ψ -1 U (x, y))
. By Fourier series decomposition:

k∈Z d f • ψ U (x, •)(k)e 2iπ<k|y+vU (x)> = k∈Z d f • ψ U (x, •)(k)e 2iπ<k|y> .
By uniqueness of the coefficients of a Fourier series

∀k ∈ Z d , f • ψ U (x, •)(k) e 2iπ<k|vU (x)> -1 = 0. We assume f • ψ U (x, •)(k) = 0. Conclusion reached! Now, we suppose that f • ψ U (x, •)(k) = 0 et (µ π ) |U (v -1 U • < k|• >) -1 (Z * ) = 0 Conclusion reached! And then f • ψ U (x, •)(k) = 0 et (µ π ) |U (v -1 U ((< k|• >) -1 (Z * )) > 0. But Z * is countable. So ∃j ∈ Z * , (µ π ) |U (v -1 U • < k|• >) -1 ({j}) > 0.
And then, we suppose that

x ∈ v -1 U ((< k|• >) -1 ({j})). So e 2iπ<k|vU (x)> = 1. So ∀n ∈ N, v -1 U ((<k|•>) -1 ({j})) e 2iπn<k|vU (x)> d (µ π ) |U (x) = (µ π ) |U (v -1 U ((< k|• >) -1 (Z * )) > 0.
By Keplerian shear, we have that m T ξ,U is Rajchman. So

v -1 U ((<k|•>) -1 ({j})) e 2iπn<k|vU (x)> d (µ π ) |U (x) -----→ n→+∞ 0.
And so 0 > 0.

Impossible! Let's prove the reciprocal. Suppose that f satisfies for all charts U ∈ A

(µ π ) |U ⊗ λ -a.a (x, y) ∈ U × T d , f (ψ -1 U (x, y)) = k∈Z d ∩{vU (x)} ⊥ a k (x)e 2iπ<k|y> . Let z ∈ Ω. So ∃U ∈ A , z ∈ π -1 (U ).
And so

f (T (z)) = f (T (ψ -1 U (ψ U (z)))) = f (ψ -1 U (π(z), π 2 • ψ U (z) + v U (π(z)))). So f (T (z)) = k∈Z d ∩{vU (π(z))} ⊥ a k (π(z))e 2iπ<k|π2•ψU (z)+vU (π(z))> .
By orthogonality of the terms

f (T (z)) = k∈Z d ∩{vU (π(z))} ⊥ a k (π(z))e 2iπ<k|π2•ψU (z)> . So f (T (z)) = f (ψ -1 U (ψ U (z))) = f (z).
Remark 3.3.1. We note that in the discrete case and in the continuous case, the invariant measurable functions have the same form, ie the same Fourier series decomposition in a dynamical system exhibiting Keplerian shear. Thanks to this consequence, we have the same invariant sets in the discrete case and in the continuous case. We then get the following lemma.

Definition 3.4 (Orthogonal stability). For

U ∈ A , A ∈ B(U × T d ) is orthogonally stable if (µ π ) |U -a.a x ∈ U, A x• λ-a.s = A x• + p T d   ξ∈Z d ∩{vu(x)} ⊥ {ξ} ⊥   (3) 
.

Lemma 3.1. For U ∈ A , a measurable A ∈ B(U × T d ), ( 3 
) ⇐⇒   1 A (x, y) = k∈Z d ∩{vu(x)} ⊥ 1 A (x, •)(k)e 2iπ ξ|y (µ π ) |U ⊗ λ -p.s.   Proof. Let's prove the direct implication. Let A ∈ B(U × T d ) invariant. So 1 A (x, y) = k∈Z d ∩{vu(x)} ⊥ 1 A (x, •)(k)e 2iπ ξ|y (µ π ) |U ⊗ λ -p.s. ( 4 
)
Obviously we already have

∀x ∈ U, A x• ⊂ A x• + p T d   ξ∈Z d ∩{vu(x)} ⊥ {ξ} ⊥   .
Consider (x, y) ∈ U × T d which satisfies (4) and

y ∈ A x• + p T d   ξ∈Z d ∩{vu(x)} ⊥ {ξ} ⊥   . Let take k ∈ Z d ∩ {v u (x)} ⊥ So ∃(z, r) ∈ A x• × p T d {k} ⊥ , y = z + r.
We find

1 A (x, y) = k∈Z d ∩{vu(x)} ⊥ 1 A (x, •)(k)e 2iπ ξ|z = 1 A (x, z). So y ∈ A x• We conclude that A x• λ-a.s = A x• + p T d   ξ∈Z d ∩{vu(x)} ⊥ {ξ} ⊥   .
For the reciprocal implication, we easily notice that the measurables A satisfying (3) give the Fourier series decomposition got in [START_REF] Delzant | Groupes de Lie compacts et tores maximaux[END_REF]. 

Proposition 3.3 (Identification of invariant sets by orthogonality with fixed x). Thanks to the lemma 3.1, we deduce that for

U ∈ A , a measurable A ∈ B(U × T d ) is flow-invariant (g t ) t∈R (resp. T ) if and only if for (µ π ) |U -a.a , x ∈ U, A x• = A x• + p T d   k∈Z d ∩{vU (x)} ⊥ {k} ⊥   . That is, for A ∈ B(U × T d ), referring to (7), ( 3 
) ⇐⇒ A ∈ I U ξ v U (U ) ξ|v U (U ) M U v U m ξ,U

Main result in continuous dynamical systems

As mentioned in the introduction, many resuts which guarantee keplerian shear were given, mainly in Damien Thomine work [START_REF] Thomine | Keplerian shear in ergodic theory[END_REF]. Our next result extends his Theorem 3.3 below.

Theorem 4.1 (Result in the regular case). Let (Ω, µ, (g t ) t∈R ) be a compatible flow with a compatible measure on a tori (affine) bundle as in Subsection 2.3. Assume that:

1. µ ≪ λ, 2. All velocity vectors v U are C 1 , 3. ∀U ∈ A , µ ξ∈Z d \{0 Z d } {x ∈ U : d ξ|v U (x) = 0} = 0.
Then the system exhibit keplerian shear. Moreover

I = B ∈ B(Ω) : ∃A ∈ B(M ), µ B∆π -1 (A) = 0
The proof of this theorem uses Fourier transform, and relies on methods of differential geometry; In particular, the normal form of submersions. We can see that the push forward measures m ξ,U := (µ π ) |U ξ|vU (•) (see Figure 1) are absolutely continuous and verify Riemann-Lebesgue lemma. This last property, in other words, Rajchman property will allow lonely to get keplerian shear, it is even an equivalence. We have successfully abstract this property and obtained the keplerian shear under the Rajchman property. Using tools from measure theory (conditional expectation) allow to some extent to get rid of the regularity of the velocity. The next theorem is the main result in continuous case, and refers to the real Rajchman property.

Theorem 4.2 (The main result). Let (Ω, µ, (g t ) t∈R ) be a compatible flow with a compatible measure on a tori bundle as in Subsection 2.3.

The dynamical system exhibit keplerian shear if and only if for all charts U ∈ A , for all non zero ξ ∈ Z d , the push forward measures (m ξ,U ) |R * are Rajchman.

Proof. Let's prove the direct implication. Let U ∈ A and non zero ξ ∈ Z d . Take

f 1 : z ∈ π -1 (U ) → 1 ξ|vU =0 (π(z))e 2iπ ξ|π2•ψU (z) .
We have thanks to the compatibility of µ

Ω f 1 (z) • (f 1 • g t (z)) dµ(z) = R 1 R * (s)e 2iπts dm ξ,U (s) = R e 2iπts d (m ξ,U ) |R * (s)
by push forward theorem. Moreover, with keplerian shear,

Ω f 1 (z) • (f 1 • g t (z)) dµ(z) ----→ t→+∞ Ω E µ (f 1 |I )E µ (f 1 |I )dµ = 0
because by ergodic Birkhoff theorem

E µ (f 1 |I ) ψ -1 U (x, y) (µπ ) |U ⊗λ-a.s = e 2iπ ξ|y 1 ξ|vU =0 (x) lim T →+∞ 1 T T 0 e 2iπt ξ|vU (x) dt = 0. (5) So (m ξ,U ) |R * is Rajchman. Let's prove the reciprocal implication. Let (U i ) i∈I ∈ A I be a countable partition of M modulo µ π . Let Y := (j,ξ)∈I×Z d \ {0} (a • π) • e 2iπ ξ|π2•ψU j ∈ L 2 µ π -1 (U j ) : a ∈ L ∞ µ (U j ) . Let (i, j) ∈ I 2 ,(a 1 , a 2 ) ∈ L ∞ µ (U i ) × L ∞ µ (U j ) and (ξ 1 , ξ 2 ) ∈ Z d 2 .
Take

f l = (a l • π) • e 2iπ ξ|π2•ψU j
for l ∈ {1, 2}. When i = j, the supports are disjoint, and in this case

E µ (Cov t (f 1 , f 2 |I )) = 0.
The same happens when ξ 1 = ξ 2 by periodicity of complex exponentials. Finally, when

ξ 1 = ξ 2 = 0, E µ (Cov t (f 1 , f 2 |I )) is constant.
Suppose without loss of generality that i = j and

ξ 1 = ξ 2 = ξ = 0. Set W ξ i = U i \( ξ|v Ui = 0). We have Ω f 1 • (f 2 • g t ) • 1 ξ|vU i =0 • πdµ = R f (s)e 2iπts d(m ξ,Ui ) |R * (s) ----→ t→±∞ 0 because (m ξ,Ui ) |R * is Rajchman thus converges weakly- * according to Lemma 2.1. Moreover Ω f 1 • (f 2 • g t ) • 1 ξ|vU i =0 • πdµ = Ω f 1 • f 2 • 1 ξ|vU i =0 • πdµ.
By proposition 2.4 in [START_REF] Thomine | Keplerian shear in ergodic theory[END_REF], we have that

f 2 • 1 ξ|vU i =0 • π = E µ (f 2 |I ) .
We obtains by totality of Y that

∀ (f 1 , f 2 ) ∈ L 2 µ (Ω) 2 , E (Cov t (f 1 , f 2 |I )) ----→ t→±∞ 0.
Remark 4.0.1. We can also note that the result generalises to infinite dimensional tori bundles T N with product topology. 

σ-algebra and invariant function by continuous flow

Under the conditions of Theorem 4.1, in the regular case, the invariant σ-algebra is just π -1 (B(M )) modulo zero measure set. On the functional aspect, it amounts to say that a measurable function f is invariant by the flow if and only if it is µ-a.s independent on the second variable on every chart U . However, we will first highlight the invariant functions and then the σ-algebra of invariant sets in order to compare with the regular case mentioned above.

In the following theorem, we will use Fourier series to identify a characterization of invariance by an orthogonality property.

Proposition 4.1 (Orthogonality and Fourier characterization of invariant functions). Under the conditions of Theorem 4.2, a function

f ∈ L 2 µ (Ω) is invariant according to (g t ) t∈R if and only if for all U ∈ A , ∃(a k ) k∈Z d ∈ L 2 (µπ) |U (U ) Z d , (µ π ) |U ⊗ λ -a.a (x, y) ∈ U × T d , f |π -1 (U) (ψ -1 U (x, y)) = k∈Z d ∩{vU (x)} ⊥ a k (x)e 2iπ<k|y> .
In other words, for a chart U ∈ A and for x ∈ U fixed, non zero Fourier coefficients have indices orthogonal with the vector v U (x).

Proof. Let f ∈ L 2 µ (Ω). Let's start with the direct implication. Suppose that

∀t ∈ R, f • g t = f µ -a.e. Let U ∈ A , t ∈ R and (x, y) ∈ U × T d . Since f (g t (ψ -1 U (x, y))) = f (ψ -1 U (x, y))
we have

f (ψ -1 U (x, y + tv U (x))) = f (ψ -1 U (x, y))
. By Fourier serie decomposition, this gives

k∈Z d f • ψ U (x, •)(k)e 2iπ<k|y+tvU (x)> = k∈Z d f • ψ U (x, •)(k)e 2iπ<k|y> .
Hence, by uniqueness of Fourier serie coefficients,

∀k ∈ Z d , f • ψ U (x, •)(k) e 2iπt<k|vU (x)> -1 = 0. When k is such that f • ψ U (x, •)(k) = 0 we get ∀t ∈ R, t < k|v U (x) >∈ Z. So < k|v U (x) >= 0, and then k ∈ {v U (x)} ⊥ . And so (µ π ) |U ⊗ λ -a.a (x, y) ∈ U × T d , f (ψ -1 U (x, y)) = k∈Z d ∩{vU (x)} ⊥ f • ψ U (x, •)(k)e 2iπ<k|y> .
Let see the reciprocal implication. Let t ∈ R. Suppose that f satisfies for all charts U ∈ A

(µ π ) |U ⊗ λ -a.a (x, y) ∈ U × T d , f (ψ -1 U (x, y)) = k∈Z d ∩{vU (x)} ⊥ a k (x)e 2iπ<k|y> .
Let z ∈ Ω and take U ∈ A such that z ∈ π -1 (U ). We have

f (g t (z)) = f (g t (ψ -1 U (ψ U (z)))) = f (ψ -1 U (π(z), π 2 • ψ U (z) + tv U (π(z)))).
So

f (g t (z)) = k∈Z d ∩{vU (π(z))} ⊥ a k (π(z))e 2iπ<k|π2•ψU (z)+tvU (π(z))> = k∈Z d ∩{vU (π(z))} ⊥ a k (π(z))e 2iπ<k|π2•ψU (z)> . by orthogonality. So f (g t (z)) = f (ψ -1 U (ψ U (z))) = f (z).
Remark 4.1.1. We can note that in this proof, we did not use Rajchman property to identify invariant σ-algebra. This version of the proposition does not depend on keplerian shear, by opposition to the discrete case.

Remark 4.1.2. As a byproduct, the proposition gives an explicit form to the conditional expectation, with respect to the invariant σ-algebra, of a function f ∈ L 2 µ (Ω) locally by the next formula for U ∈ A

(µ π ) |U ⊗λ-a.a (x, y) ∈ U ×T d , E µ (f |I ) • ψ -1 U (x, y) = k∈{vU (x)} ⊥ ∩Z d (f • ψ -1 U )(x, •)(k)e 2iπ<k|y> .

Lemma 4.1 (Charts invariance). For any

U ∈ A , π -1 (U ) is (g t ) t∈R -invariant. Proof. Let U ∈ A and t ∈ R. We have µ -a.a z ∈ π -1 (U ), π(z) = π 1 • ψ U (z). And µ -a.a z ∈ π -1 (U ), (ψ U • g t )(z) = (ψ U • g t • ψ -1 U )(π 1 • ψ U (z), π 2 • ψ U (z)). So µ -a.a z ∈ π -1 (U ), π 1 ((ψ U • g t )(z)) = π(z)
because tori bundle property of Ω. Namely

µ -a.a z ∈ π -1 (U ), π(g t (z)) = π(z).
Proposition 4.2. The invariant σ-algebra is

I = U∈A B U ∈ B(Ω) : (B U ) U∈A ∈ U∈A ψ -1 U (I U ) ,
where for U ∈ A , the local invariant σ-algebra on U is

I U := C ∈ B(U × T d ) : µ π |U -a.a x ∈ U, 1 C (x, •) -1 (C * ) ⊂ {v U (x)} ⊥ . ( 6 
)
Proof. We prove the direct inclusion. Let

A ∈ I . Let U ∈ A and set C = ψ U (A ∩ π -1 (U ))
. By proposition 4.1

1 C (x, y) = k∈{vU (x)} ⊥ ∩Z d a k (x)e 2iπ<k|y> (µ π ) |U ⊗ λ -a.s which shows that C ∈ I U . Hence A ∩ π -1 (U ) ∈ ψ -1 U (I U )

, and finally

A = U∈A A ∩ π -1 (U ).

Now, we prove the reciprocal inclusion.

Let

A ∈ B(Ω) s.t ∃(B U ) U∈A ∈ U∈A ψ -1 U (I U ), A = U∈A B U . Then ∀t ∈ R, g -1 t (A) = U∈A g -1 t (B U ). Let U ∈ A . By bijectivity of ψ U , ψ U (B U ) ∈ I U . Hence (µ π ) |U ⊗ λ -a.a (x, y) ∈ U × T d , 1 ψU (BU ) (x, y) = k∈{vU (x)} ⊥ ∩Z d 1 ψU (BU ) (x, •)(k)e 2iπ<k|y> ,
which proves that A ∈ I by Proposition 4.1.

Remark 4.1.3. We can see that local invariants

A ∈ I U satisfies 1 A (x, y) = k∈Z d ∩{vu(x)} ⊥ 1 A (x, •)(k)e 2iπ ξ|y (µ π ) |U ⊗ λ -a.s (7) 
To show the consistency of this result with earlier works, we have the next corollary.

Corollary 4.1. π -1 (B(M )) ⊂ I Proof. Let A = π -1 (B) for some B ∈ B(M ). Let U ∈ A . We have A ∩ π -1 (U ) = π -1 (B ∩ U ), hence ψ U (A ∩ π -1 (U )) = (B ∩ U ) × T d ∈ I U .
Therefore A ∈ I by Proposition 4.1.

Note that this inclusion is generally strict as shown in the following example. 

Convergence speed with the real Rajchman property

We are now interested by the speed of convergence of the conditional correlations. Next result shows that even in C ∞ regularity, the order of convergence is limitated by the Rajchman order. 

(f 1 , f 2 ) ∈ (C ∞ (π -1 (U )) ∩ L 2 µ (Ω))
2 such that the decay of conditional correlations is not faster than t -γ , that is,

∀C > 0, ∀T > 0, ∃t > T, |E µ (Cov t (f 1 • 1 U • π, f 2 |I ))| > C t γ . Proof. Let U ∈ A , ξ ∈ Z d \ {0 Z d }. Let γ > r (m ξ,U ) |R * . Consider f : z ∈ Ω → e 2iπ<ξ|(π2•ψ -1 U )(z)> 1 π -1 (U) (z) ∈ C ∞ (π -1 (U )) ∩ L 2 µ (Ω). So Ω f (f • g t )dµ = U e 2iπt<ξ|vU (x)> d (µ π ) (x) = R e 2iπtz dm ξ,U (z). By optimality of r (m ξ,U ) |R * , ∀C > 0, ∀T > 0, ∃t > T, R e 2iπtz d (m ξ,U ) |R * > C t γ .
The result follows by definition of conditional correlations. 

Speed of decay of conditional correlations for absolutely continuous measures

We assume that Ω = M × T d is the trivial bundle, endowed with an absolutely continuous measures. The speed of decay will depends on the regularity properties of the velocity vector v. We will use stationnary phase method [START_REF] Zworski | Semiclassical Analysis[END_REF] that allow us to evaluate in an optimal way oscillating integrals. The regularity of the velocity vector and the presence of critical points influences the convergence order. Before this study, we recall that under mild assumption the set of critical points of the velocity vector is discrete.

Lemma 4.2 (Isolation of non-degenerated critical points

). Let M be a finite dimensional C 2 manifold. Let v ∈ C 2 (M, R). Then every non-degenerated critical point of v is isolated. Proof. Let x ∈ M a critical point of v. Let U ∈ A s.t x ∈ U . Suppose that x is not an isolated point. So there exists a sequence (x n ) n∈N of critical points of v convergent to x. Let n ∈ N. We have ∇(v • ψ -1 U ) ψU (xn) = 0. A first order expansion gives ∇(v•ψ -1 U ) ψU (xn) = ∇(v•ψ -1 U ) ψU (x) +Hess(v•ψ -1 U )(ψ U (x))(ψ U (x n ), •)+ ψ U (x n ) -ψ U (x) h(ψ U (x n )),
where h(y) → 0 as y → ψ U (x). Thus

0 = Hess(v • ψ -1 U )(ψ U (x))(ψ U (x n ) -ψ U (x), •) + ψ U (x n ) -ψ U (x) h(ψ U (x n )). So ∀n ∈ N, 0 = Hess(v • ψ -1 U )(ψ U (x)) ψU (xn)-ψU (x) ψU (xn) -ψU (x) , • + h(ψ U (x n ))
. By compactness of the sphere in finite dimension, we can extract a converging subsequence

1 ψ U (x σ(n) ) -ψ U (x) (ψ U (x σ(n) ) -ψ U (x)) n∈N ,
we get there exists for this one a limit y in the unit sphere centered in ψ U (x). By letting n tend towards +∞, we have

Hess(v • ψ -1 U )(ψ U (x))(y, •) = 0. Since y = 0 we get det(Hess(v • ψ -1 U )(ψ U (x))) = 0.
Theorem 4.3 (Stationary phase, e.g. [START_REF] Zworski | Semiclassical Analysis[END_REF]). Let ϕ ∈ C 2 (R n , R) with a unique critical point x c . We suppose that x c is non degenerated, in other words det(Hess(x c )) = 0.

Then, for any a

∈ C 1 0 (R n , R) ∀t > 0, R n e 2iπtϕ(x) a(x)dλ(x) = a(x c )e i π 4 λ∈σ(Hess(xc )) sgn(λ) t n 2 |det(Hess(x c ))| + O +∞ 1 t n
In the following we say that a is a critical point of order q of a function f if for 1 ≤ m ≤ q, f (m) (a) = 0 and f (q+1) (a) = 0. We suppose that v is of class C ℓ , that there exists a unique critical point of order ℓ -1 for < ξ|v(•) >, and that all the other eventual critical points are of order strictly smaller.

Then

r λ <ξ|v(•)> = 1 ℓ .
Proof. M is compact Hausdorff, so the number of critical points for functions < ξ|v > is finite. Let (a k ) k∈ 1, m the family of critical point of < ξ|v(•) > with respectives orders

l k -1 ≥ 1, 1 ≤ m < l k , < ξ|v (m) (a k ) >= 0 and < ξ|v (l k ) (a k ) > = 0. Let (U k ) k∈ 1, m charts such that, ∀k ∈ 1, m , a k ∈ U k
We have

< ξ|v(ϕ -1 U k (x)) >=< ξ|v(a k ) > + (x -ϕ U k (a k )) l k l k ! < ξ|v (l k ) (a k ) > +(x-ϕ U k (a k )) l k h(x-ϕ U k (a k )). 20 Let pose for k ∈ 1, m , w k : x ∈ R → (x -ϕ U k (a k )) <ξ|v (l k ) (a k )> l k ! + h(x -ϕ U k (a k )) 1 l k . So w ′ k : x ∈ R → <ξ|v (l k ) (a k )> l k ! + h(x -ϕ U k (a k )) 1 l k + (x -ϕ U k (a k )) h ′ (x-ϕU k (a k )) (<ξ|v (l) (a k )>+h(x-ϕU k (a k ))) 1-l k l k . So, we get w ′ k (ϕ U k (a k )) = <ξ|v (l k ) (a)> l k ! 1 l k = 0.
We get a local reverse of w k on a neighbourhood

W k of 0. Let (V k ) k∈ 1, m + m ′ a family of charts on M such that, ∀k ∈ 1, m , (V k = w -1 k (W k ) ⊂ U k and ∀j ∈ m + 1, m ′ , a k ∈ V k ). Let (ψ k ) k∈ 1, m + m ′ a partition of unity subordinated to (V k ) k∈ 1, m + m ′ . We get immediately that for k ∈ 1, m , ψ k (a k ) = 1. By local reverse, for k ∈ 1, m , we get that on W k , ∀x ∈ W k , < ξ|v(ϕ -1 U k (w -1 k (x))) >=< ξ|v (l k ) (a k ) > +x l k . So, for k ∈ 1, m , ϕ -1 U k (w -1 (W k )) e 2iπt<ξ|v(x)> ψ k (x)d λ(x) = e 2iπt<ξ|v(ϕ -1 W k (w -1 (a k )))> W k e 2iπtx l k ψk (x)dλ(x) with ψk : x ∈ W → ψ ϕ -1 U k (w -1 k (x)) J(ϕ -1 U k )(w -1 k (x))J(w -1 k (x)). So ϕ -1 U k (w -1 k (W k )) e 2iπt<ξ|v(x)> ψ(x)d λ(x) = e 2iπt<ξ|v(ϕ -1 U k (w -1 k (a k )))> 1 t 1 l k R e 2iπx l k ψk x t 1 l k dλ(x).
And R e 2iπx l k ψk x t

1 l k dλ(x) = R (l k -1)(e 2iπx l -1) x l k ψk x t 1 l dλ(x) - 1 t 1 l k R (e 2iπx l k -1) x l k -1 ψk ′ x t 1 l k dλ(x) . But ∀α > 0, ∃C > 0, ∀x ∈ R, ψk ′ (x) |1 + x α | ≤ C.
And

∃C 2 > 0, ∀x ∈ R, (e 2iπx l k -1) x l k -1 1 + x l k -1 ≤ C 2 .
And

∃C 3 > 0, ∀x ∈ R, ∀t ∈ R * , (l k -1)(e 2iπx l k -1) x l ψk x t 1 l k 1 + x l k -1 ≤ C 3 ψ ∞ . By Lebesgue convergence theorem R e 2iπx l ψk x t 1 l k dλ(x) ----→ t→±∞ ψk (0) R (l k -1)(e 2iπx l k -1) x l k dλ(x).
For k ∈ m + 1, m + m ′ , by Greene formula, we get

ϕ -1 U k (V k ) e 2iπt<ξ|v(x)> ψ k (x)d λ(x) ∈ O ±∞ 1 t . Thus, M e 2iπ<ξ|v(x)> d λ(x) = m k=1 1 t 1 l k J ϕ -1 U k (ϕ U k (a k )) l k ! < ξ|v (l k ) (a k ) > 1 l k I l k + o ±∞ (1) +O ±∞ 1 t with I l := R e 2iπx l -1 x l
dλ(x). A simple analysis shows that I l does not vanish2 . By hypothesis, there exists just one critical a point with maximal order ℓ, hence

M e 2iπ<ξ|v(x)> d λ(x) = 1 t 1 ℓ J ϕ -1 U j ϕ Uj (a) ℓ! < ξ|v (ℓ) (a) > 1 ℓ I j + o ±∞ (1) . Then, r λ <ξ|v(•)> = 1 ℓ .
We get then the next proposition.

Proposition 4.4. Under the hypothesis of lemma 4.3, we get that the order of decay of correlation

γ with f 1 , f 2 ∈ C ∞ (Ω) satisfies γ ≤ 1 ℓ .
Proof. In proof of lemma 4.3, you can take f 1 = e 2iπ<ξ|v(•)> and f 2 = ψ j with j the index of the chart containing the critical point a with a maximal order ℓ.

We can now threat the general case.

The following lemma is obtained with the theorem 7.5 p.226 in [START_REF] Arnold | Singularities of differential Maps Volume 2: Monodromy and Asymptotics of Integrals[END_REF].

Lemma 4.4 (Convergence order around a singular points with analytical functions). We will use notations and results of [START_REF] Arnold | Singularities of differential Maps Volume 2: Monodromy and Asymptotics of Integrals[END_REF]. We place ourselves in R n . Let ξ = 0 Z d .

Let v be such that < ξ|v > is analytic with 0 a critical point of multiplicity m ∈ N * Then there exists α ∈ Q * + and j ∈ N in a compact neighbourhood V of 0 such that

∀ϕ ∈ D V (Ω), ∃C ∈ R * , R n e 2iπt<ξ|v(x)> ϕ(x)dλ(x) C(ln(t)) j t α ----→ t→+∞ 1.

Definition 4.1 (Logarithmic convergence order). Consider a probability measure ν on (R, B(R)

We call logarithmic convergence order of ν the value

rl(ν) := inf β > 0 : ∃C > 0, ∀t > 0, µ(t) ≤ C|ln(t)| β t r(ν) .
Next result may be obtained by a partition of unity and the previous lemma.

Proposition 4.5 (Convergence order with singular points in dimension (n, d) with d ≥ 2).

Suppose that M is analytic. Let ξ = 0 Z d . Suppose that v such that < ξ|v > is analytic. We have 

∃(j, α) ∈ N × Q * + , r λ <ξ|v(•)> , rl λ <ξ|v(•)> = (α, j).
M e 2iπt<ξ|v(x)> ψ(x)d λ(x) = R n e 2iπt<ξ|v(ϕ -1 U (x))> ψ ϕ -1 U (x) J(ϕ -1 U )(x)dλ(x) = ψ ϕ -1 U (a) e i π 4 λ∈σ(Hess(a)) sgn(λ) t n 2 |det(Hess(a))| + O +∞ 1 t n .
By partition of unity we obtain

∃C ∈ R, M e 2iπ<ξ|v(x)> d λ(x) = C t n 2 + O +∞ 1 t n .
Remark 4.3.1. Note that the result is consistent with the case n = 1.

We recall the definition of Damien Thomine [START_REF] Thomine | Keplerian shear in ergodic theory[END_REF] Definition 4.2 (Anisotropic Sobolev space on R × T). Let s ≥ 0.

Let h : x ∈ R → √ 1 + x 2 . Let H s,0 (R × T) := f ∈ L 2 (R × T) : k∈Z R f (x, k) 2 h 2s (x)dλ(x) .
Proposition 4.6. Consider (T 2 , µ ⊗ λ, (g t ) t∈R ) such that r = r(µ) > 0 and for (x, y) ∈ T 2 , g t (x, y) = (x, y + tx). Let s > 1 2 . Let for ε ∈ 0, 1 2s , q ε := min {s(1ε), r(µ)}. Then, we get for all ε ∈ 0, 1 2s , there exists C ε > 0 such that ∀t > 0,

|E µ⊗λ (Cov t (f 1 , f 2 |I ))| ≤ C ε f 1 H s,0 (R×T) f 2 H s,0 (R×T) t qε
and if γ > 0 denotes the convergence order on H s,0 (R × T), we get min s -1 2 , r(µ) ≤ γ.

Moreover if supp(µ) is compact then γ ≤ r(µ). Proof. Let s > 1 2 and (f 1 , f 2 ) ∈ (H s,0 (R×T)) 2 .
Then by Cauchy-Schwarz inequality and Parseval

|E µ⊗λ (Cov t (f 1 , f 2 |I ))| = k∈Z * R 2 f 1 (x, k) f 2 (y, k) µ(kt -(x + y))dλ(x, y) ≤ S(t) f 1 H s,0 (R×T) f 2 H s,0 (R×T) with S(t) := sup k∈Z * C µ R 2 1 (1 + |kt -(x -y)|) 2r(µ) h 2s (x)h 2s (y) dλ(x, y) 1 2
.

We can consider k = 1 considering kt instead of t.

Let D 1 (t) := (x, y) ∈ R 2 : |t -(x -y)| ≤ t 2 and |y| ≤ t 4 , D 2 (t) := (x, y)R 2 : |t -(x -y)| ≤ t 2 and |y| > t 4 and D 3 (t) := (x, y)R 2 : |t -(x -y)| > t 2 .
Then for all ε ∈ 0,

1 2s R 2 1 (1+|t -(x -y)|) 2r(µ) h 2s (x)h 2s (y) dλ(x, y) = D1(t) 1 (1+|t -(x -y)|) 2r(µ) h 2s (x)h 2s (y) dλ(x, y) + D2(t) 1 (1+|t -(x -y)|) 2r(µ) h 2s (x)h 2s (y) dλ(x, y) + D3(t) 1 (1+|t -(x -y)|) 2r(µ) h 2s (x)h 2s (y) dλ(x, y) ≤ 8 t 2s(1-ε) R 2 h -2s (x)h -2sε (y)dλ(x, y) + 2 t 2r(µ) R 2 h -2s (x)h -2s (y)dλ(x, y) Then, ∀ε ∈ 0, 1 2s , S(t) ≤ 8C µ t qε R h -2s (x)dλ(x) R h -2sε (x)dλ(x) 1 2
with q ε = min {s(1ε), r(µ)}. Finally,

∀ε ∈ 0, 1 2s , ∃C ε > 0, ∀t > 0, |E µ⊗λ (Cov t (f 1 , f 2 |I ))| ≤ C ε t qε .
And for γ > 0 the convergence order on H s,0 (R × T), we get min s -1 2 , r(µ) ≤ γ and when supp(µ) is compact, γ ≤ r(µ).

Remark 4.3.2. When (f 1 , f 2 ) ∈ (H s,0 (R×T)) 2 with s ≥ r(µ)+1

2

, we get that γ = r(µ) as optimal order of convergence when supp(µ) is compact.

Remark 4.3.3. For s > 1 2 , for all integer k > s + 3 2 , C k c (R × T) ⊂ H s,0 (R × T), and then, for k > s + 3 2 the convergence order γ > 0 for C k c (R × T) is such that γ ∈ min s -1 2 , r(µ) , r(µ) when supp(µ) is compact. Remark 4.3.4. When µ = λ v with v ∈ C ∞ with a unique critical point of order l -1 with l ≥ 3, then γ = r(µ) = 1 l .

Flow on compact Lie group bundle

In this part, we extend the notion of Keplerian shear in a more general framework allowing us to cover other cases in which we are not in torus bundles as in the previous sections. The main case we want to cover is the case of Lie group bundles with the non-abelian fibration Lie group. It is precisely this point of non-commutativity which announces the most severe breaking point between the work carried out previously in the article and those which will follow. In this section, however, the aim will be to come back to a case analogous to the classic case seen previously in the article in order to show the fact that the notion exposed in this part is a generalization of that exposed previously. We maintain the properties of compactness, of Lie and of connectedness to maintain properties on the fibration group allowing us to make the analogy with the previous cases which used the torus and also to define a continuous flow/a R-action easily. 

Tools used in connected-compact Hausdorff Lie group bundle

: π -1 (U ) → U × G G V exp(x 1 X 1 )exp(x 2 X 2 ) x 1 X 1 x 2 X 2 X 2 X 1 v = x 1 X 1 + x 2 X 2

for all

U in A , π 1 • ψ U = π |U
To define the continuous flow, we are going to use the exponential defined on the corresponding Lie algebra of the group. Here the connectedness and the compactness of the group provide good properties to the exponential, allowing us to work in setting similar to the previous one. We will use a local coordinate system, namely coordinates of the second kind, that will make it possible to fiberize the group G as a torus.

Let us consider a basis (X j ) j∈ 1, d of Lie(G) with d ∈ N * the dimension of Lie(G). We can get a coordinate system in a neighbourhood of the unit 1 G . Proposition 5.1 (Coordinate systems of the second kind, e.g. [START_REF] Bourbaki | Groupe et algèbre de Lie[END_REF]). There exists a neighborhood V of the neutral element 1 G such that all the elements a ∈ G are written in a unique way as follows

a = d j=1 exp (x j X j ) with (x j ) j∈ 1, d ∈ R 1, d (See Figure 2)
Now, we explain why we assume that the group is compact Hausdorff and connected. Compacity ensures the surjectivity of the exponential over a certain domain. More precisely, we use the following result.

Theorem 5.1. The compactness of G implies the surjectivity of the exponential on the connected component of the neutral element of G.

By considering the neighborhood of the neutral element on which the points are written in a unique way with the coordinate system of the second kind, we can with all the right translations of this neighborhood cover the whole group G. By compacity, we can extract a finite subcover from it, which allows us to approach more easily the properties already encountered in the case of tori bundles.

The fact that G is connected complement the previous property. The only connected component which will necessarily be that of the neutral element, so that the exponential become surjective over the whole group G.

Main properties of the flow on the Lie group

This step enables us to identify the possible flows on the Lie group. This will give us a more simplified approach to the dynamic system under study. Theorem 5.2. All flows (g t ) t∈R on G satisfying for all y, z ∈ G, g t (yz) = g t (y)z are of the form (g t (x, y) → exp(tv)x) with g t (x, y) → exp(tv)x).

We can then continue by defining the notion of compatible flow.

Definition 5.2 (Compatible flow)

. Let (g t ) t∈R a flow on (Ω, µ) (g t ) t∈R is a compatible flow iff :

1. There exists for all U ∈ A a measurable function 

v U : U → G 2. ∀U ∈ A , ∀(x, y) ∈ U × G, ψ U • g t • ψ -1 U (x, y) = (x,
′ := µ π . µ on Ω is compatible iff µ U |π -1 (U) = µ ′ |U ⊗ H with H the Haar measure on G
The next theorem written in paragraph 2 of the article by Antoine Delzant [START_REF] Delzant | Groupes de Lie compacts et tores maximaux[END_REF] allow us to come back to an analogous case with torus.

Theorem 5.3 (Isomorphism with torus). Any compact, connected and abelian Lie group is isomorphic to a torus.

Then, we use the following theorem ensuring that we have the properties of Lie on the subgroups of G to get tori.

Theorem 5.4 (Lie subgroup). Any closed subgroup of G admits a group structure of Lie and Lie(H) is a sev of Lie(G)

Definition 5.4 (Flow orbit on the Lie group). We call for the flow previously defined the orbital group of a direction v ∈ Lie(G) the set

H v := {exp(tv) ∈ G : t ∈ R}
H v is an abelian Lie group, compact and connected and so isomorphic to a torus. Let d v be the dimension of this torus. Note χ v : H v → T dv the isomorphism With the flow orbit, we can make a semi-fibration on Lie group to use torus property as in the previous theorem in the tori bundle case.

We consider v ∈ Lie(G). Consider then the orbital group in the direction v. H v has a group structure of Lie by observing the previous theorem. We consider a basis (X v j ) j∈ 1, dv of Lie(H v ) that we complete to make it a basis (X v j ) j∈ 1, d of Lie(G). Consider the neighborhood V of the local coordinate system of the second kind associated with (X v j ) j∈ 1, d . We cover G with a finite family of elements (g

k ) k∈ 1, l ∈ G 1, l s.t G = l k=1 V g k (8) Let (W k ) k∈ 1, l s.t W 1 = V g 1 and ∀k ∈ 2, l , W k = V g k \   j∈ 1, k -1 V g j   . ( 9 
)
Let ϕ : G 2 → G defined by ϕ(x, y) = xy. By uniqueness of the coordinate system in V of the second kind we can define

ψ v k : V g k → Lie(H v ) × G x → k∈ 1, dv x (v,k) j X v j , k∈ dv + 1, d exp(x (v,k) j X v j )g k .
Since the orbits are abelian subgroups we have

∀k ∈ 1, l , ∀x ∈ V g k , ∀v ∈ Lie(G), k∈ 1, dv exp(x (v,k) j X v j ) = exp   k∈ 1, dv x (v,k) j X v j   Let φ v t : Lie(G) × G → Lie(G) × G defined by φ v t (θ, y) = (θ + tv, y) and η : Lie(G) × G → G 2 defined by η(θ, y) = (exp(θ), y). We immediately get ∀k ∈ 1, l , ∀x ∈ V g k , (ϕ • η • φ v t • ψ v k ) (x) = exp(tv)x.
We finally set φ := ϕ • η.

Keplerian shear on compact Lie group bundle

We can now study the Keplerian shear problem.

Let pose for

U ∈ A and y ∈ G, w U = χ (vU (•),y) • v U (•) Let pose for nonzero ξ ∈ Z d and U ∈ A , ν (ξ,U) := µ ′ |U ξ|wU (•)
Theorem 5.5. The dynamical system (Ω, µ, (g t ) t∈R ) exhibits keplerian shear iff for all nonzero ξ ∈ Z d , and for all U ∈ A , ν

(ξ,U) |R * is Rajchman
The plan of the demonstration will initially be to come back to a situation very similar to that of the torus bundle by relying on the maximal torus. To do this, we are going to use the orbit in the vector v U (x) in the Lie algebra in order to identify an abelian subgroup which is isomorphic to a torus. The second step will be for a map U ∈ A and x ∈ U fixed to work on the sections of the Lie group G by the translations of the orbit of v U (x). Once immersed in this configuration provided by Lemma 5.1, we will be able to carry out the same reasoning as in the torus in order to arrive at the property of Rajchman of ν (ξ,U) |R * . In order to clarify and highlight the configuration by the orbits, we will show an equality allowing us to realize this link.

Lemma 5.1. Let U ∈ A and (f 1 , f 2 ) ∈ L 2 µ ′ |U ⊗H (U × G) 2 . We define for t ∈ R b t (f 1 , f 2 ) := U×G f 1 (x, exp (tv U (x)) y)f 2 (x, y)dµ ′ |U ⊗ H (x, y) Then b t (f 1 , f 2 ) = k∈ 1, l U T d v U (x) ×W k f1 (x, z + tw U (x), r)) f2 (x, z, r))dm ′ (x,k) (z, r) dµ ′ |U (x) (10) with f1 : (x, z, r) → f 1 (x, ϕ(χ -1 vU (x) (z) , r)) and f2 : (x, z, r) → f 2 (x, ϕ(χ -1 vU (x) (z) , r)). and m ′ (x,k) = χ vU (x) • exp * m (x,k)
is the push forward measure obtained by transfer theorem, where

m (x,k) = ψ vU (x) k *
H is the push forward measure associated.

Proof. Let non-zero ξ ∈ Z d . Let U ∈ A and (f 1 , f 2 ) ∈ L 2 µ ′ |U ⊗H (U × G) 2 .
We have the following expansion

b t (f 1 , f 2 ) := U×G f 1 (x, exp (tv U (x)) y)f 2 (x, y)dµ ′ |U ⊗ H (x, y) = U G f 1 (x, exp (tv U (x)) y)f 2 (x, y)dH (y)dµ ′ |U (x) = l k=1 U W k f 1 (x, φ • φ vU (x) t • ψ vU (x) k (y))f 2 (x, φ • ψ vU (x) k (y))dH (y) dµ ′ |U (x) = l k=1 U Lie(H v U (x) )×W k f 1 (x, φ • φ vU (x) t (θ, r))f 2 (x, φ(θ, r))dm (x,k) (θ, r) dµ ′ |U (x),
In this part, we have established the first step by placing ourselves in the Lie algebra of the orbit of v U (x) which is the denoted group H vU (x) and which is abelian, so

φ • φ vU (x) t (θ, r) = φ(θ + tv U (x), r) = ϕ(exp(θ + tv U (x)), r) = ϕ(exp(tv U (x)) exp(θ), r).
We are now at the second step placing ourselves in the sections of the Lie group G by

H vU (x) . So b t (f 1 , f 2 ) = l k=1 U Lie(H v U (x) )×W k f 1 (x, ϕ(exp(tv U (x))χ -1 vU (x) χ vU (x) e θ ) , r))f 2 (x, ϕ(e θ ), r))dm (x,k) (θ, r) dµ ′ |U (x) = l k=1 U T d v U (x) ×W k f 1 (x, ϕ(exp(tv U (x))χ -1 vU (x) (z) , r))f 2 (x, ϕ(χ -1 vU (x) (z) , r))dm ′ (x,k) (z, r) dµ ′ |U (x)
We pass here in the torus isomorphic to H vU (x) . Since

z + χ vU (x) (exp(tv U (x))) = z + tχ vU (x) (exp(v U (x))) = z + tw U (x) we get b t (f 1 , f 2 ) = l k=1 U T d v U (x) ×W k f 1 (x, ϕ(χ -1 vU (x) (z + tw U (x)) , r))f 2 (x, ϕ(χ -1 vU (x) (z) , r))dm ′ (x,k) (θ, r) dµ ′ |U (x)
This proves [START_REF] Kahane | Sur la distribution de certaines séries aléatoires, Colloque de théorie des nombres[END_REF].

We are then in the case of a torus foliation by the variable x which will then allow us to apply the same reasoning as in the case of the torus.

Proof of Theorem 5.5. Let begin with the direct implication. Suppose that the dynamical system (Ω, µ, (g t ) t∈R ) exhibits keplerian shear. Let U ∈ A and let

ξ ∈ Z d \ {0 Z d }. Let (f 1 , f 2 ) ∈ L 2 µ ′ |U ⊗H (U × G) 2 such that : f1 : (x, z, r) → e 2iπ ξ|z and f2 : (x, z, r) → 1 ξ|U (•) =0 (x)e 2iπ ξ|z taking notations of Lemma 5.1. Then R e -2iπtz dν ξ,U (z) = U e -2iπt ξ|wU (x) g(x)dµ ′ (x) with g : x ∈ U → 1 ξ|wU (•) =0 (x).
Thus, by Lemma 5.1

U e -2iπt ξ|wU (x) g(x)dµ ′ |U (x) = U×G f 1 (x, exp (tv U (x)) y)f 2 (x, y)dµ ′ |U ⊗ H (x, y).
By the Keplerian shear property the right hand term converges and as in ( 5), the limit is zero.

So R e -2iπtz dν ξ,U (z) ----→ t→±∞ 0.
Let us continue with the reciprocal implication. Let d be the dimension of the maximal torus of G. Consider the level set of torus dimensions (see Definition 5.4)

Y m := x ∈ U : d vU (x) = m , m ∈ 1, d . Consider (m, k) ∈ 1, d × 1, l and define the measure ω k m on U × T m × W k by ∀A ∈ B(U × T m × W k ), ω k m (A) = Let U ∈ A and (ξ 1 , ξ 2 ) ∈ Z m × Z m ′ . Let (f 1 , f 2 ) ∈ L 2 µ ′ |U ⊗H (U × G) 2
such that, f1 : (x, z, r) → a 1 (x, r)e 2iπ ξ1|z 1 Ym (x) and f2 : (x, z, r) → a 2 (x, r)e 2iπ ξ2|z 1 Y m ′ (x)

with a 1 and a 2 square summable functions in the appropriate Lebesgue space. If m = m ′ , the scalar product between f 1 , f 2 is zero. Therefore we assume that m = m ′ . So, by Lemma 5.1

U×G f 1 (x, exp (tv U (x)) y)f 2 (x, y)dµ ′ |U ⊗ H (x, y) = U e -2iπt ξ1|wU (x) g(x)dµ ′ |U (x) (11) 
with

g : x ∈ U → 1 Ym (x) l k=1 W k a 1 (x, r)a 2 (x, r)e 2iπ ξ2-ξ1|z dm ′ (x,k) (z, r) .
By hypothesis, when

ξ 1 = 0, R e -2iπtz dν ξ1,U (z) ----→ t→±∞ 0.
And then, by Lemma 2.1, we have that exp(2iπt•) converge weakly- * in

L ∞ ν ξ 1 ,U (R) to 0. Thus, U e -2iπt ξ1|wU (x) g(x)dµ ′ |U (x) ----→ t→±∞ {<ξ1|wU (•)>=0}×G f 1 (x, y)f 2 (x, y)dµ ′ |U ⊗ H (x, y)
Then, remembering [START_REF] Kaufman | On the theorem of Jarn and Besicovitch[END_REF], we get

U×G f 1 (x, exp (tv U (x)) y)f 2 (x, y)dµ ′ |U ⊗ H (x, y) ----→ t→±∞ {<ξ1|wU (•)>=0}×G f 1 (x, y)f 2 (x, y)dµ ′ |U ⊗ H (x, y).
By totality obtained by the Fourier series expansion, this gives that for all functions

f 1 , f 2 ∈ L 2 µ ′ |U ⊗H (Y m × G) Ym×G f 1 (x, exp (tv U (x)) y)f 2 (x, y)dµ ′ |U ⊗ H (x, y) ----→ t→±∞ Ym×G E µ ′ |U ⊗H (f 1 |I U )E µ ′ |U ⊗H (f 2 |I U )dµ ′ |U ⊗ H . (12) Let (f 1 , f 2 ) ∈ L 2 µ ′ |U ⊗H (U × G) 2
. Finally we apply [START_REF] Kesten | Uniform distribution mod 1[END_REF] on each term of the following sum

U×G f 1 (x, exp (tv U (x)) y)f 2 (x, y)dµ ′ |U ⊗ H (x, y) = d m=1 Ym×G f 1 (x, exp (tv U (x)) y)f 2 (x, y)dµ ′ |U ⊗ H (x, y).
Now, the aim here is to give an analogue of the fundamental theorem 3.3 in [START_REF] Thomine | Keplerian shear in ergodic theory[END_REF], which guarantees Keplerian shear for flows with regular velocities and the negligible critical points.

Theorem 5.6. If for all

U ∈ A , w U is of class C 1 , µ ′ |U ≪ λ and µ    ξ∈Z d \ 0 Z d {x ∈ U : d ξ|w U (x) = 0}    = 0,
then the dynamical system (Ω, µ, (g t ) t∈R ) has Keplerian shear.

Proof. Let U ∈ A . Let us show that the measures ν (ξ,U) have the Rajchman property. We assume

v U of class C 1 . So w U : x ∈ U → χ vU (x) (v U (x)) is C 1 . Let ξ ∈ Z d \ {0 Z d }. By Radon-Nikodyme U e -2iπt ξ|wU (x) dµ ′ |U (x) = U e -2iπt ξ|wU (x) dµ ′ |U dλ (x)dλ(x). But µ    ξ∈Z d \ d 0 Z d {x ∈ U : d ξ|w U (x) = 0}    = 0. So ∀a ∈ R, µ    ξ∈Z d \ 0 Z d {x ∈ U : ξ|w U (x) = a}    = 0.
And so

U e -2iπt ξ|wU (x) dµ ′ |U dλ (x)dλ(x) = R d e -2iπt<ξ|z> j∈L 1 wU (U)∩Vj (z) (w U ) |w -1 U (V k ) -1 (z) det J wU (w U ) |w -1 U (V k ) -1 (z) dλ(x).
And so by Riemann-Lebesgue, We can note that we could use same arguments as Damien Thomine [START_REF] Thomine | Keplerian shear in ergodic theory[END_REF] in the proof of his theorem analogous to this one, i.e., we could use the normal forms of submergences by relying on the regularity properties of w U . Thanks to the property of Rajchman, we were able to more expeditiously prove the above theorem.

Main examples

Example 5.4.1 (Torus). The tori also form an abelian example, it is still a connected compact Lie group. The most notorious torus is the torus of dimension 2 denoted T 2 which we can easily represent in R 3 . The first example in the abelian framework would be the one used in the article by Damien Thomine [START_REF] Thomine | Keplerian shear in ergodic theory[END_REF] with T 2 , a measurable velocity vector v(x), and for a single fiber to torus, the flow:

g t : (x, y) ∈ T 2 → (x, y + tv(x))
To know if this dynamical system exhibits Keplerian shear, it is necessary and it suffices that µ v Let of Rajchman. We can then study the speeds of convergence. 

Keplerian shear, Rajchman property and Diophantine approximation

In this section we present an application of Keplerian shear (with speed estimates) to dynamical Borel Cantelli lemmas. The latter is linked to Diophantine approximation and we discuss the relations between the Rajchman property and diophantine properties. Let the probabilistic space (Ω, µ). The main application consists in readjusting the dynamic Borel-Cantelli theorem in the non-ergodic case. We find an adaptation of Sprindzuk's theorem inspired by the thesis of Victoria Xing [START_REF] Xing | Dynamical Borel-Cantelli Lemmas and Applications[END_REF]. The keplerian shear will ensure that for almost any x, there exists an infinity of integers n satisfying T n (x) ∈ A n . Theorem 6.1 (Variable Sprindzuk). Let (f k ) k∈N * and (g k ) k∈N * measurable and positive application sequencies. Let (ϕ k ) k∈N * a real sequence such that :

∀k ∈ N * , 0 ≤ g k ≤ ϕ k ≤ 1 µ -p.s Let δ > 1 and C > 0. Suppose that for all (m, n) ∈ (N * ) 2 satisfying n ≥ m, Ω n k=m f k (x) -g k (x) 2 dµ(x) ≤ C n k=m ϕ k δ . Then ∀n ∈ N, ∀ε > 0, n k=1 f k = n k=1 g k + O φ(n) δ 2 (log (φ(n))) 1+ε µ -a.e.
with φ(n) = n k=1 ϕ k . For the proof, we will draw on the proof of the original theorem in the book by Sprindzuk [START_REF] Sprindzhuk | Metric theory of diophantine approximations[END_REF] on page 45 formula (68) Proof. Let δ > 1 and let us denote for I ⊂ N * , φ(I) = k∈I ϕ k . By the fact that ∀k ∈ N * , 0 ≤ ϕ k ≤ 1, we have that

∃(n v ) v∈N * ∈ N * N * , ∀v ∈ N * , φ(n v ) < v ≤ φ(n v + 1).
We have also ∀v

∈ N * , n v+1 ≥ n v + 1. And ∀v ∈ N * , φ(n v ) + 1 < v + 1 ≤ φ(n v+1 + 1). So ∀(u, v) ∈ (N * ) 2 , (u < v =⇒ n u + 1, n v = ∅) . Let σ : P(N * ) → P(N * ) I → {n w ∈ N : w ∈ I} . Let for r ∈ N * , s ∈ 0, r sets of parts J r,s := i2 s + 1, (i + 1)2 s ∈ P(N * ) : i ∈ 0, 2 r-s -1 .
Let r ∈ N * and s ∈ 0, r . We notice that I∈Jr,s

σ(I) = 1, n 2 r . Let i ∈ 0, 2 r-s -1 . But φ (n i2 s ) < i2 s ≤ φ (n i2 s + 1) ≤ φ (n i2 s ) + 1.

And then i2

s -1 ≤ φ (n i2 s ) < i2 s And φ n (i+1)2 s < (i + 1)2 s ≤ φ n (i+1)2 s + 1 ≤ φ n (i+1)2 s + 1. And (i + 1)2 s -1 ≤ φ n (i+1)2 s < (i + 1)2 s .
And then,

φ σ n i2 s + 1, n (i+1)2 s = φ n (i+1)2 s -φ (n i2 s ) ≤ 2 s + 1 ≤ 2 s+1 . So I∈Jr,s (φ(σ(I))) δ ≤ 2 δ 2 r+s(δ-1) . Denote J r := s∈ 0, r J r,s . So I∈Jr (φ(σ(I))) δ = r s=0 I∈Jr,s (φ(σ(I))) δ ≤ 2 δ 2 rδ 2 δ-1 -1 . Let h : N * × Ω → R (l, x) → I∈J l k∈I f k (x) -g k (x) 2 . So Ω h(r, x)dµ(x) ≤ C I∈Jr φ(σ(I)) ≤ 2 δ C2 rδ 2 δ-1 -1 . Let ε > 0. By the Markov inequality, µ h(r, X) ≥ 2 δ Cr 1+ε 2 rδ 2 δ-1 -1 ≤ r -(1+ε) . By Borel-Cantelli, µ -a.a x ∈ Ω, ∃r x ∈ N * , ∀r ≥ r x , h(r, x) ≤ 2 δ Cr 1+ε 2 rδ 2 δ-1 -1 .
For v ∈ N * , we have that 1, v can be split into a finite number r v of interval J r such that

r v ≤ ⌊log 2 (v)⌋ + 1.
Let J(v) denote the set of these intervals. We then get

nv k=1 f k -g k = I∈J(v) k∈I f k -g k .
By the Cauchy-Schwarz inequality,

µ -a.a x ∈ Ω, nv k=1 f k -g k 2 ≤ r v I∈J(v) k∈I f k -g k 2 = r v h (r v , x) . So µ -a.a x ∈ Ω, ∃r x ∈ N * , ∀r ≥ r x , nv k=1 f k (x) -g k (x) 2 ≤ 2 δ Cr 2+ε 2 rδ 2 δ-1 -1 ≤ 2 δ C log 2+ε 2 (v)v δ 2 δ-1 -1 .
And so

µ -a.a x ∈ Ω, ∃r x ∈ N * , ∀r ≥ r x , nv k=1 f k (x) -g k (x) ≤ 2 δ 2 C 1 2 log 1+ ε 2 2 (v)v δ 2 (2 δ-1 -1) 1 2 
.

Let n ∈ N * . So ∃v ∈ N * , n v ≤ n ≤ n v+1 . So µ -a.a x ∈ Ω, nv k=1 f k (x) ≤ n k=1 f k (x) ≤ nv+1 k=1 f k (x).
We also have

µ -a.a x ∈ Ω, 0 ≤ nv+1 k=nv g k (x) ≤ φ (n v+1 ) -φ (n v ) . In addition, v -1 ≤ φ (n v ) < v ≤ φ (n v + 1) ≤ φ (n v+1 ) < v + 1. And so 0 < φ (n v+1 ) -φ (n v ) < 2.
And then,

µ -a.a x ∈ Ω, 0 ≤ nv+1 k=nv +1 g k (x) < 2. So µ-a.a x ∈ Ω, nv k=1 g k (x)+O log 1+ ε 2 2 (φ(n v )) (φ(n v )) δ 2 ≤ n k=1 f k (x) ≤ nv+1 k=1 g k (x)+O log 1+ ε 2 2 (φ(n v+1 )) (φ(n v+1 )) δ 2
.

We then find µ-a.a x ∈ Ω, -2+O log

1+ ε 2 2 (φ(n v )) (φ(n v )) δ 2 ≤ n k=1 (f k (x)-g k (x)) ≤ 2+O log 1+ ε 2 2 (φ(n v+1 )) (φ(n v+1 )) δ 2
.

We easily find

-2 + O log 1+ ε 2 2 (φ(n v )) (φ(n v )) δ 2 = O log 1+ ε 2 2 (φ(n)) (φ(n)) δ 2
.

And on the other hand

2 + O log 1+ ε 2 2 (φ(n v+1 )) (φ(n v+1 )) δ 2 = O log 1+ ε 2 2 (φ(n)) (φ(n)) δ 2 . Finally µ -a.a x ∈ Ω, n k=1 f k (x) = n k=1 g k (x) + O log 1+ ε 2 2 (φ(n)) (φ(n)) δ 2
. Theorem 6.2 (Dynamical Borel-Cantelli by keplerian shear). Suppose that (Ω, T, µ) is a discrete measure preserving dynamical system with keplerian shear. Let (A n ) be a sequence of measurable sets and note S M,N = N k=M 1 A k • T k . We suppose that 1a or 1b holds and 2

(a) There exists

γ > 0, C > 0 such that for all (j, k) ∈ N 2 satisfying k = j, E Cov k-j 1 Aj , 1 A k |I ≤ C |k -j| γ (b) There exists γ > 0, D > 0 and B ⊂ L 2 µ (Ω), a Banach space such that : ∃C > 0, ∀(f, g) ∈ B 2 , ∀n ∈ N, |E(Cov n (f, g|I ))| ≤ C f B g B n γ and ∀j ∈ N, 1 Aj B ≤ D 2. There exists β > max( 1 2 , 1 -γ 2 ) such that lim inf N →∞ E(SN |I ) N β > 0 µ -a.s.
We have

S N E(S N |I ) µ-a.s -----→ N →+∞ 1.
Proof. Without loss of generality we assume that γ ∈ (0, 1). Note that 1b implies 1a so 1a holds in both cases.

By expansion of the square as a double sum and the series-integral comparison criterion, we get

∀(M, N ) ∈ N 2 s.t. M < N , S M,N -E (S M,N |I ) 2 2 ≤ E(S M,N ) + 2C N -M+1 l=1 (N -M + 1) l γ ≤ E(S M,N ) + 2C(N -M + 1) 2-γ .
By setting δ = 2γ, and noticing that E(S M,N ) ≤ N -M we get that there exists

D > 0 satisfying ∀N N, S M,N -E (S M,N |I ) 2 2 ≤ D(N -M + 1) δ .
By variable Sprindzuk theorem 6.1 with ϕ k = 1 for all k, we get

S N -E(S N |I ) a.s = O(N δ 2 log 1+ε (N )). Then S N E(S N |I ) = 1 + O N δ 2 log 1+ε (N ) N β a.s -----→ N →+∞ 1.
Example 6.0.1. Let us place ourselves in the case of (T 2 , λ ⊗ λ, T ) with M at(T ) = 1 0 1 1 .

Consider a sequence (b n ) ∈ T N and let

A n = T × b n - 1 n p , b n + 1 n p with 0 < p < 1 2 . We get that ∀N ∈ N * , E(S N |I ) = E(S N ) = 2 N k=1 1 k p ∼ 2 1 -p N 1-p .
Let s := 1 2 and n ∈ N * . By direct computation of the Fourier coefficients of 1 An , we see that

1 An ∈ H s,0 (T 2 ) since 1 An 2 H s,0 (T 2 ) ≤ 1 π 2 ζ(2) + 2 n p ≤ 3.
By the decorrelation estimates in [START_REF] Thomine | Keplerian shear in ergodic theory[END_REF], ∀(k, j) ∈ N 2 ,

E Cov k-j 1 A k , 1 Aj |I ≤ 4 s 3 2 |k -j| 2s .
The hypotheses are then brought together, applying theorem 6.2 with γ = 1 and β ∈ ( 1 2 , 1p), we get S N ∼ 2 1p N 1-p µa.s. Definition 6.1 (s-Diophantine number). Let s > 0.

A number x ∈ R is s-diophantine if

∃C > 0, ∀(p, q) ∈ Z × N * , |qx -p| ≥ C q s . ( 13 
)
Let D i (s) be the set of diophantine numbers.

Definition 6.2 ( Liouville Number).

A number x ∈ R is Liouville if and only if for all s > 0, x is not diophantine, that is, it does not satisfy for any s > 0 the assertion [START_REF] Kurzweil | On the metric theory of inhomogeneous diophantine approximations[END_REF]. In other words

x ∈ L := R \ s>0 D i (s) .
Or even, Dio(x) = +∞.

In the case of any measure of Rajchman, we have as an application a proposition based on theorem 4.2 page 551 of Athreya [START_REF] Athreya | Logarithm laws and shrinking target properties[END_REF] and also the theorem of Kurzweil ([13] and [START_REF] Tseng | On circle rotations and the shrinking target properties[END_REF], theorem 1.3 page 3) concerning diophantine numbers. To introduce this theorem, we will also have to recall the Shrinking Target Property (STP) and its monotone version (MSTP) of a dynamical system. The MSTP property is defined in the same way, assuming in addition that the sequence r n is monotone.

Let us now recall Kurzweil's theorem in dimension 1. Theorem 6.3 (Kurzweil-Tseng). Consider the dynamical system (T, λ, T α ) with α ∈ T and T α : x → x + α. Then the dynamical system is s-MSTP if and only if α is s-diophantine (i.e., α ∈ D i (s)).

We also deduce with the documents of Chaika [START_REF] Chaika | Quantitative shrinking target properties for rotations and interval exchanges[END_REF] the following theorem. Theorem 6.4 (Kurzweil). For λa.a α ∈ [0, 1[, (T, λ, T α ) is M ST P .

In the case of singular continuous Rajchman measures, we will have a weakening of the theorem 6.4 of Kurzweil. First, we present a dynamical Borel Cantelli for Rajchman measures. As in Theorem 6.2, it is based on covariance estimates. Here they do not rely on the keplerian shear but are obtained directly from the Rajchman property. 

S (m,n) = n k=m 1 A k • T k .
We get

T 2 S (m,n) -E S (m,n) 2 dµ ⊗ λ = n k=m n j=m Ω 1 A k • T k-j 1 Aj -E µ (1 A k |I ) E µ 1 Aj |I dµ ≤ E µ (S (m,n) ) + 2 n j=m n-m l=1 Ω 1 A j+l • T l 1 Aj -E µ 1 A j+l |I E µ 1 Aj |I dµ.
And then, we have Remark 6.0.1. We observe that this "loss of power" in the Borel-Cantelli lemma above increases as the Rajchman order decreases.

Ω 1 A j+l • T l 1 Aj -E µ 1 A j+l |I E µ 1 Aj |I dµ =
Next result relates the order of a Rajchman measure to diophantine properties of its support and thus the SMTP property. This result will therefore also show the proposition 2.3. .

By strict inequality, we get that there exists ε ∈]0, r(µ)[ such that r(µ) > 1 s + 1 and r(µ) > 1sε.

We also have the assumption that r ≤ Recall that when we have r(µ) > 1 2 , the measure µ is absolutely continuous and therefore by Kurzweil theorem cited above µa.a α ∈ [0, 1[, the system (T, λ, T α ) is 1 -M ST P . Remark 6.0.2. We can note that the result obtained in proposition 6.1 remains consistent with that obtained with the Keplerian shear in the theorem 6.5 because 

  Discrete case. Let ϕ ∈ D(T). Its Fourier series decomposition gives ∀x ∈ T, ∀n ∈ Z, ϕ(nx) = k∈Z ϕ(k)e 2iπknx . By Lebesgue convergence theorem we get T ϕ(nx)dν(x) = k∈Z ϕ(k) T e 2iπknx dν(x) = ϕ(0) + k∈Z * ϕ(k) ν(kn) -----→ n→+∞ T ϕ(x)dλ(x).

Figure 1 :

 1 Figure 1: Push forward measure

Example 4 . 1 . 1 .

 411 Consider g t = Id T 2 , Ω = T 2 , M = T. Clearly I = B(T 2 ), while π -1 (B(T)) = {A × T ∈ B(T 2 ) : A ∈ B(T)} I .

Proposition 4 . 3 (

 43 Speed roof). Let ξ = 0 Z d and U ∈ A . For all γ > r (m ξ,U ) |R * , there exists

Remark 4 . 2 . 1 .

 421 When Ω ≃ M × T d , we can take f 1 , f 2 globally defined of class C ∞ in the proposition 4.3.

Lemma 4 . 3 (

 43 Convergence order with singular points in dimension (1, d) with d ≥ 2). Suppose that dim(M ) = 1 ≤ d and M is a compact manifold of class C ∞ . Let ξ = 0 Z d and ℓ ≥ 2.

Corollary 4 . 2 .

 42 Let v be a C 2 function. If there exists only one critical points a ∈ M and it satisfies ∃ξ = 0 Z d , (∇(< ξ|v(•) >)(a) = 0 and det(Hess < ξ|v(•) > (a)) = 0) then r( λ <ξ|v(•)> ) = n 2 . Proof. Let ξ = 0 Z d . Applying the stationary phase theorem on respectives charts (U, ϕ U ) of A containing at most just one critical point a ∈ U and test functions ψ on U , we get

Figure 2 :

 2 Figure 2: Coordinate system of the Second kind in Lie algebra

Ue

  -2iπt ξ|wU (x) dµ ′ |U dλ (x)dλ(x) ----→

Definition 6 . 3 (

 63 Shrinking Target Properties). A discrete dynamical system (Ω, µ, T ) is called STP if for all sequence of balls (B n ) n∈N of radius r n > 0 tending to 0 and satisfying n∈N µ(B n ) = +∞ we have µ lim n→+∞ T -n (B n ) = 1.

Theorem 6 . 5 ( 1 A

 651 Dynamical Borel-Cantelli for Rajchman measures). Consider a Rajchman measure µ on T of order 0 ≤ r(µ) ≤1 2 . Let T be the transvection on T 2 defined by T (x, y) = (x, x+y). Let C > 0 and s > 1 r(µ) -1. We haveS N E(S N ) k • T k , and A n = T × z n -Let p = 1 s . Let for (m, n) ∈ (N * ) 2 such that m > n the sum

≤≃ 2 2+r 1 y 1 (

 211 4C µ C k∈N * 1 l r(µ) sin 2πkC j p k 1+r (j+l) p π CµC 1+r π 1-r j pr(µ) (j+l) p l r(µ) R * + |sin(x)| x 1+r dλ(x)And we getT 2 S (m,n) -E S (m,n) 2 dµ ⊗ λ ≪ E µ S (m,n) + [0,n-m] [0,n-mpr(µ) dλ(y)dλ(x) ≪ [0, π 2 ] cos(θ)) r(µ) (cos(θ)+sin(θ)) p (sin(θ)) pr(µ) dλ(θ)(nm) 2-r(µ)-p(1+r(µ)) .Let's consider δ = 2r(µ)p(1 + r(µ)). But p < r(µ) 1-r(µ) . So δ 2 < 1p. By Sprindzuk's theorem,

Proposition 6 . 1 (

 61 General Kurzweil for Rajchman measures). Consider a Rajchman measure µ on T of order0 ≤ r(µ) ≤ 1 2 . Let s > 1 r(µ) -1. We have µ(D i (s)) = 1, or equivalently µa.a α ∈ [0, 1[, (T, λ, T α ) s -M ST P. Proof. Let C > 0, j ∈ N * and p ∈ 0, j -1 . Consider µ C ε πj r(µ)+sε ζ(1 + r(µ)ε) with ε ∈]0, r(µ)[. And µ C µ C ε πj r(µ)+sε ζ(1 + r(µ)ε)And we have by hypothesis that r(µ) > 1 s + 1

  µa.a α ∈ [0, 1[, ∃n ∈ N * , ∀k ≥ n, d(kα, Z) ≥ C k s . Let then take α ∈ [0, 1[ such that ∃n ∈ N * , ∀k ≥ n, d(kα, Z) ≥ C k s .This proves that α ∈ D i (s), hence µ(D i (s)) = 1. By Kurzweil-Tseng theorem 6.3, (T, λ, T α ) s -M ST P .

1 .

 1 Absolutely continue part. Absolutely continuous measure are Rajchman. This is garanteed by Riemann-Lebesgue. When we know the regularity of the density, we can estimate the Rajchman order. The work of Damien Thomine already covers the absolutely continuous case.2. Singular continuous part. Many singular continuous measures are Rajchman and other not.We extend Damien Thomine results for very singular systems.

	3. Discrete part. Discrete measure are never Rajchman because the non-convergence of com-
	plexe exponential to 0.

Consequently, ν is Rajchman if and only if ν sc is Rajchman and ν d = 0.

2.2.4 Example of singular Rajchman measures Definition 2.10 (Pisot number). A real θ is a Pisot number if and only if θ > 1 is algebraic

and every other roots θ r of its minimal polynomial satisfy |θ r | < 1.

  When keplerian shear property holds, the decomposition of Radon-Nikodyme-Lebesgue of the image measures m ξ,U in theorem 4.2 reads as (m ξ,U ) ac + (m ξ,U ) sc + (m ξ,U ) d with (m ξ,U ) d = αδ 0 , and α ≥ 0. Recall that the absolutely continuous part satisfies the Rajchman property. The discrete part is concentrated on 0 because otherwise, a non-trivial periodicity would break the keplerian shear. The behavior of the singular part ν is not obvious, since it may be Rajchman or not, see subsection 2.2.4. When all the m ξ,U 's are of the form (m ξ,U ) ac + αδ 0 , Theorem 4.2 immediately gives Keplerian shear.

	Remark 4.0.3.

Remark 4.0.2.

  Example 5.4.2 (Spinorial groups). The spin group for n ≥ 2, Spin(n) is a compact and connected Lie group, which allows us to use it as an example. (Orthogonal groups). The orthogonal groups for n ≥ 2 SO n (R) are connected compact Lie groups. The most usual example is that of the orthogonal group SO 3 (R) which is compact, connected with a structure of Lie but not abelian. We consider as flow g t : M ∈ SO 3 (R) → exp(tA)M with A an antisymmetric matrix, fundamental property for the stability of the exponential in the orthogonal group SO 3 (R). As before, we can leaf it in torus as with the general cases previously treated in bundles in compact and connected Lie groups. The other classic examples are in the abelian framework which, according to the work of Antoine Delzant[START_REF] Delzant | Groupes de Lie compacts et tores maximaux[END_REF], amounts to torus bundles as before. As before, we consider as flow g t : M ∈ Spin(3) → exp(tA)M with A an antisymmetric matrix. (Special unitary group). A special unitary group for n ≥ 2, SU n (R) is also a connected compact Lie group and so we can use the previous theorems. Moreover, these Lie groups are even simply connected. They are always non-abelian groups, which means that they are not a torus. The most common example is SU 2 (R) which is isomorphic to the hypersphere S 3 of R 4 . The flow for AinM 2 (R) such that t A = -A

	Example 5.4.3 Example 5.4.4

* on it will be defined by

g t : M ∈ SU 2 (R) → exp(tA)M.

Any open cover has a countable subcover.

For l even I l ∈ (-∞, 0) trivially, while for l odd we have I l ∈ i(0, ∞), using a decomposition of the integral on intervals [2n, 2n + 2].

A (x, y, z)dm ′ (x,k) (y, z)dµ ′ |Ym (x).

Remark 6.0.3. For a Rajchman measure with positive order r(µ) > 0, µa.a α ∈ [0, 1[ is Diophantine, that is, Dio(α) < +∞ µ-almost surely.

The following result shows that Proposition 6.1 is optimal. Proposition 6.2 (Optimality of Rajchman order [START_REF] Kaufman | On the theorem of Jarn and Besicovitch[END_REF]). Let 0 < r < 1 2 . Then for all 1 < s < 1 r -1, there exists µ a Rajchman measure such that r(µ) = r and µ(D i (s)) = 0.

We can consider µ α with α = s -1 + ε constructed in the document of Kaufman [START_REF] Kaufman | On the theorem of Jarn and Besicovitch[END_REF] with its support in E(α) ⊂ [0, 1[\D i (s). Example 6.0.2 (Diophantine property with self-similar measures). The self-similar measure µ θ with θ > 1 not being Pisot, according to the work of Pablo Shmerkin and Jean-Pierre Kahane [START_REF] Kahane | Sur la distribution de certaines séries aléatoires, Colloque de théorie des nombres[END_REF], has an order of Rajchman r (µ θ ) > 0. In particular µ θa.a α ∈ [0, 1[ is diophantine. Example 6.0.3 (Liouville property with Rajchman measures on S ∞ ). The measure of Rajchman µ ∞ mentioned in 2.2.2 is Rajchman but since its support S ∞ almost surely contains Liouville numbers, then we deduce by contrapositive of the proposition 6.1 that µ ∞ does not have a strictly positive Rajchman order, i.e. that r (µ ∞ ) = 0.