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Abstract 

Dual process theories of attitude formation propose that an evolutionary old associative system 

automatically generates subjective judgments by processing mere spatiotemporal contiguity 

between paired objects, subjects, or events. These judgments can potentially contradict our 

well-reasoned evaluations and highjack decisional or behavioral outcomes. Contrary to this 

perspective, other models stress the exclusive work of a single propositional system that 

consciously process co-occurrences between environmental cues and produce propositions, i.e., 

mental statements that capture the specific manner through which stimuli are linked. We 

constructed an experiment on the premise that it would be possible, if the associative system 

does produce attitudes in a parallel non-conscious fashion, to condition two mutually exclusive 

attitudes (one implicit, the other explicit) toward a same stimulus. Through explicit ratings, 

inhibition performance, and neural correlates of performance monitoring, we assessed whether 

there was a discrepancy between stimuli that were conditioned with (1) the two systems 

working in harmony (i.e., producing congruent attitudes), or (2) the two systems working in 

competition (i.e., producing incongruent attitudes). Compared with congruent stimuli, 

incongruent stimuli consistently elicited more neutral liking scores, higher response times and 

error rates, as well as a diminished amplitudes in two well-studied neural correlates of automatic 

error detection (i.e., error-related negativity) and conscious appraisal of error commission (i.e., 

error-related positivity). Our findings are discussed in the light of evolutionary psychology, 

dual-process theories of attitude formation and theoretical frameworks on the functional 

significance of error-related neural markers. 

Keywords: Dual-Process Theory, Attitude Formation, Valence, Error-related Negativity, 

Awareness, Evolutionary Psychology, Anterior Cingulate Cortex 

 

1. INTRODUCTION 

From an evolutionary standpoint, the adaptive benefits of associative learning (AL, defined as 

the behavioral change of an organism as a result of the processing of new relations between 

cues, e.g., Abramson, 1994; Ginsburg & Jablonka, 2010, Shanks, 1995) are so straightforward 

that they can only be described through a rather mundane statement: to survive in a dynamic 

and ever-changing world, organisms must flexibly adapt to ecological variations by forming 

and adjusting evaluations about environmental cues. As expected from such a fundamental 

adaptation, AL is evolutionary old and present in organisms with much less complex brains than 

ours, such as pigeons (e.g., George & Pearce, 1999; MacKintosh & Little, 1969; Skinner, 1948), 

rats (e.g., Garcia et al., 1968), mollusks (e.g., Hawkins et al., 1989), flatworms (e.g., Prados et 

al., 2013), or nematodes (e.g., Ardiel & Rankin, 2010). It has been proposed that AL emerged 

in early bilaterians and has been a leading factor driving the Cambrian explosion (Ginsburg & 

Jablonka, 2007, 2010, 2021). It is therefore likely that AL evolved 520 to 541 million years ago, 

presumably to guide taxis navigation, an even older adaptation defined as the navigational 

strategy to go away from (i.e., avoidance) or toward (i.e., approach) a valenced stimulus (see 

Bennett, 2021, for a discussion).  



Several theories postulate that phylogenetically old adaptations (such as AL) have been 

conserved over evolutionary time and keep playing a significant role in modern human 

cognition. For instance, most evolutionarily-informed theories about neural architecture share 

the following notion: the more ancient an adaptation is, the more likely it is to have been 

recycled over evolutionary time – along with its neural substrates – as the building blocks of 

more recent cognitive computations (Anderson, 2014, 2016; Badcock et al., 2019; Dehaene, 

2005; Dehaene & Cohen, 2007; Elimari & Lafargue, 2020). In a similar vein, the conservation 

of evolutionary old computations that bias rational reasoning, decision-making, and behaviors, 

is the core assumption of dual-process theories of human cognition (Evans, 2008; Evans & 

Stanovich, 2013; Kahneman, 2002, 2003; Gawronski & Creighton, 2013), a meta-theoretical 

approach that offers a figurative view of the mind as an interplay between evolutionary old, 

intuitive, unconscious, effortless, low-level processes (i.e., type I processes) to the most 

evolutionary recent, analytic, conscious, effortful, high-level processes (i.e., type II processes). 

Consistent with these theories, AL is implicated in several psychological phenomena such as 

(without being exhaustive) intergroup relationships and empathy (e.g., Cikara & Van Bavel, 

2014; Melloni et al., 2014), reciprocal altruism (e.g., Rilling et al., 2002), moral cognition (e.g., 

FeldmanHall & Dunsmoor, 2019), sense of agency (e.g., Moore et al., 2011), selective social 

learning (e.g., Heyes, 2017), language acquisition (e.g., Ellis, 2006, 2008; Kachergis, 2012), 

synesthesia (e.g., Yon & Press, 2014), self-perception (e.g., Van Bavel & Cunningham, 2010), 

human and animal superstition (e.g., Beck & Forstmeier, 2007; Daprati et al., 2019; Skinner, 

1948), or affective learning (Gawronski & Bodenhausen, 2006; Jones et al., 2009; Rydell & 

McConnell, 2006). This lends credence to the notion that AL is an evolutionary old, repeatedly 

repurposed adaptation. Our particular interest lies in the theorized role that AL plays in attitude 

formation (Gawronski & Bodenhausen, 2006; Jones et al., 2009; Rydell & McConnell, 2006), 

more specifically in its potential to shape attitudes outside of one’s awareness in an automatic 

manner, through cognitive computations that operate independently of rational reasoning.  

1.1. Propositional and dual-process theories of attitude formation 

Research on attitude formation customarily involves evaluative conditioning paradigms, which 

capture the change in evaluation of a conditioned stimulus (CS) as a result of its repeated co-

occurrence with an unconditioned stimulus (US) (Martin & Levey, 1978). The “How” question 

of evaluative conditioning however remains controversial (Houwer et al., 2005; Jones et al., 

2010; Hofmann et al., 2010). While some authors argue that evaluative conditioning results 

from the non-automatic formation of explicit propositions (i.e., a mental statement that captures 

the specific manner in which two elements are linked, but also the degree of accuracy of that 

statement) about CS-US relations by a single, domain-general, awareness-dependent, 

propositional system (De Houwer, 2007, 2009; Mitchell et al., 2009), others have proposed that 

both propositional and AL processes are involved in attitude formation (Gawronski & 

Bodenhausen, 2006; Rydell & McConnell, 2006). For instance, the Associative Propositional 

Evaluation (APE) model (Gawronski & Bodenhausen, 2006) posits the existence of two 

separate systems that underpin attitude formation. The first is the AL system: a cluster of 

automatic, evolutionary old, low-level processes sensitive to mere spatiotemporal contiguity 

that transfer the affective charge of any US to a co-occurring CS, regardless of relational 



information. The second is a propositional system characterized by controlled, evolutionary 

recent, high-level processes that produces explicit attitudes in the form of propositions 

crystallizing the relational information between stimuli.  

Since AL processes do not code for complex relations (e.g., “A starts/stops B”, “A 

triggers/prevents B”, “A is the same/opposite of B”), the APE model predicts that AL produces 

implicit attitudes entirely mediated by automatic activation patterns that cannot be completely 

overcome by conscious, rational thinking. For instance, “policemen” leads to the automatic 

activation of “crime” though policemen fight crime, “garbage collectors” leads to the automatic 

activation of “waste” though garbage collectors dispose of waste, or “doctors” leads to the 

automatic activation of “disease”, though doctors cure diseases. Consequently, the APE model 

predicts the possibility for the AL and propositional systems to give rise to two distinct sets of 

implicit and explicit attitudes, respectively. Given the blindness of the AL system to relational 

information and its strict focus on spatiotemporal contiguity, the APE model predicts that 

repeated co-occurrence of two stimuli linked by an antagonistic relation (e.g., “A prevents B”, 

“A stops B”) should prompt the two systems to produce two separate, incongruent, and mutually 

exclusive attitudes. Using this kind of incongruent evaluative conditioning, a series of 

experiments (e.g., Moran & Bar-Anan, 2013, 2020; Moran et al., 2015, 2016; Peters & 

Gawronski, 2011) have recently tested this prediction and confirmed that AL do automatically 

generate attitudes that can mismatch propositional attitudes. Moran and Bar-Anan (2013) have 

for instance compared congruently and incongruently conditioned attitudes toward target CSs 

(e.g., alien creatures that differed in color and head shape) that were presented with either 

positive (i.e., relaxing musical melody) or negative (i.e., horrifying human screams) USs. 

Participants were instructed to learn the specific relations between CSs and USs: in the 

congruent condition, CSs started the appearance of USs, whereas CSs stopped the occurrence 

of USs in the incongruent condition. The authors showed that explicit and implicit measures 

captured two seemingly independent attitudinal end-products: while explicit attitudes were 

consistent with relational information (e.g., preferred CSs that ended horrifying screams than 

CSs that ended beautiful music), implicit measures revealed a pervasive effect of mere co-

occurrence (i.e., participants displayed an implicit preference for CSs paired with positive USs 

over CSs paired with negative USs, regardless of their relation).  

Currently available evidence supporting the hypothesis of a parallel AL system unconsciously 

influencing attitude formation however remains conflicting (for a meta-analysis, see Hofmann 

et al., 2010). For instance, while Moran & Bar-Anan (2013) observed no effect of propositional 

processing on implicit evaluation, other studies have found that relational information could 

reverse (e.g., Gawronski et al., 2005) or attenuate (Zanon et al., 2012) implicit evaluations. 

Since behavioral research relying on explicit and/or implicit measures tend to provide mixed 

evidence, we propose a third path with the investigation of neural correlates of attitudes. To the 

best of our knowledge, there has been no attempt to advance the debate using neuroscientific 

methods. 

1.2. A neural model of cognitive control 



The two systems of the APE model are separate yet not independent: a collection of top-down 

and bottom-up processes ensure the mutual regulation and communication between the two 

systems (Gawronski & Bodenhausen, 2006). Several other theories posit the existence of a 

cognitive control system: a suite of supervisory or executive mechanisms subserving the 

continuous evaluation of competing representations or outcomes, the on-line maintenance of 

relevant information, and the top-down regulation of prepotent responses (Kahneman, 2003; 

Lieberman et al., 2002; Miller & Cohen, 2001; Norman & Shallice, 1986; Shiffrin & Schneider, 

1977; Umilta, 1988). Starting from the early 90′ s (e.g., Dehaene et al., 1994; Falkenstein et al., 

1991; Gehring et al., 1993), numerous studies have relied on EEG to investigate the neural 

correlates of key functions of cognitive control such as performance monitoring, conflict 

management, and error detection. The main finding was the existence of an event-related 

potential dubbed error-related negativity (ERN, Gehring et al., 1993), a negative deflection that 

follows error commission in a vast array of psychological tasks.  

Descriptively, the ERN occurs at about the same time as motor response (or slightly earlier) 

during incorrect trials, peaks between 0 ms and 100 ms after motor response, and is quickly 

followed by a large positive wave labeled error positivity (Pe), which peaks between 200 ms 

and 400 ms. The ERN has a frontocentral distribution and is detected along the midline at 

electrode sites Fz, FCz, or Cz, while the Pe has a slightly more posterior topography (electrode 

sites CPz or Pz). Given its latency (i.e., starting around 0 ms), the ERN is described as an index 

of automatic error processing, while the Pe reflects the conscious appraisal of error processing 

(Endrass et al., 2005; Nieuwenhuis et al., 2001). Interestingly, correct trials also elicit a similar 

yet much smaller response-locked frontocentral negative wave dubbed the correct-response 

negativity (CRN). Consequently, several authors have relied on the so-called ΔERN (i.e., the 

difference between the ERN and the CRN) as a way to isolate error-specific correlates from 

generic responses neural activity. The amplitude of the ERN varies along with experimental 

conditions pertaining to error processing. For instance, ERN amplitudes are greater when errors 

are more costly (Hajcak et al., 2005; Holroyd et al., 2004), when focus is made on accuracy 

rather than speed (Gehring et al., 1993), when the perceived certainty that an error has been 

committed is higher, regardless of actual accuracy (Scheffers & Coles, 2000), when individuals 

know their performance is being subject to scrutiny (Hajcak et al, 2005; Meyer et al., 2019), 

after participants had restored their depleted cognitive resources by spending time in nature 

(LoTemplio et al., 2020), or when conflict between target stimuli and distractors is lower 

(Danielmeier et al., 2009). 

1.3. The functional significance of error-related activity 

Several theories proposed an explanation for the brain’s ability to perform such an automatic 

and early error detection, most of which rest on the fundamental premise that the brain hosts a 

comparator system endowed with a weighting function that indexes degrees of divergence 

between expected and actual outcomes. For instance, the mismatch theory (Coles et al., 2001; 

Gehring et al., 1993) suggests that the ERN reflects the detection of discrepancies between 

intended and effective responses by the anterior cingulate cortex. In time-sensitive 

circumstances (as it is for instance the case in reaction time tasks), actions are sometimes 

initiated before all the information necessary to pinpoint the correct answer are gathered, thus 



leading to a premature erroneous response. During such error commission, an “efference copy” 

is created and subsequently communicated to the comparator system that checks whether the 

efference copy matches the representation of a correct response derived from the further, 

continued, processing of the presented stimulus (Coles et al., 2001). In summary, the mismatch 

theory regards the ERN as an index of discrepancy between an overhasty erroneous action and 

the overdue representation of a correct response. In a similar vein, the reinforcement learning 

theory (Holroyd & Coles, 2002) conceives the ERN as a neural marker of expectancy violation: 

when the outcomes of an action are worse than expected, the midbrain dopamine system carries 

a signal to the anterior cingulate cortex to facilitate more adaptive motor programs. More 

recently, Alexander and Brown (2010) expanded on this expectancy violation framework with 

a prediction of response outcome theory (Alexander & Brown, 2010). This theory proposes that 

a neural system is implicated in the prediction of outcomes associated with planned actions, 

and the subsequent monitoring of discrepancies between predicted and actual outcomes. It is 

worth noting that, while consciousness of what constitutes the appropriate action and its 

consequences is necessary for the ERN to emerge, consciousness of the actual motor response 

is dispensable (Dehaene, 2018). Nieuwenhuis and colleagues (2001) have for instance shown 

using an antisaccade task (during which participants tend to produce several erroneous reflexive 

saccades that remain subjectively unnoticed) that incorrect saccades were systematically 

followed by an ERN regardless of error awareness, while the Pe amplitude positively correlated 

with the error awareness reported by the participants. Endrass and colleagues (2005) have 

observed the same impact of error awareness on Pe but not ERN amplitude with a saccade 

countermanding task. In other words, unlike post-error negativity, post-error positivity depends 

not on the valid representations of correct responses or expected outcomes, but on the level of 

awareness that an error has been committed. 

1.4. The present research 

The current study expands on the debate between single and dual-process theories of attitude 

formation by exploring the neural correlates associated with top-down control of CSs. More 

specifically, we investigate how distinct conditioning procedures (i.e., AL and propositional 

computations construing harmonious vs antagonistic attitudes) lead to differentials in error-

related neural activity. Given the old age of valence, taxis navigation, and AL, as well as the 

overrepresentation of AL processes in several cognitive domains, we err on the side of dual-

process theories.  

We designed a rather straightforward demonstration: if evolutionary old, AL computations do 

produce outside of one’s awareness implicit attitudes that are paralleled with those generated 

by the conscious propositional system, then there is likely to be a significant difference in the 

error-monitoring processes following responses toward congruent and incongruent stimuli 

(beyond the well-replicated effects of incongruence on subjective valence and behavioral 

performance during time-reaction tasks, e.g., Moran & Bar- Anan, 2013, 2020; Moran et al., 

2015, 2016; Peters & Gawronski, 2011). More specifically, we hypothesize that ERN 

amplitudes will vary as a function of stimulus congruency, with diminished amplitudes for 

incongruent stimuli. Indeed, attitudes are fundamentally guides to action: they help navigating 

the world by facilitating adapted motor programs towards valenced stimuli (Allport, 1935; 



Carruthers, 2017; Chaiklin, 2011; Jain, 2014; Olson & Fazio, 2008; Petty et al., 2007; Van 

Overwalle & Schibler, 2005; Shrigley, 1990). Therefore, when one produces motor responses 

involving CSs, any conflict in attitudes would result in impaired information-processing 

downstream of attitudinal cognition. Following the mismatch, reinforcement-learning, and 

prediction of response outcomes theories, we predict that a conflict of attitudes should decrease 

the ability of the comparator system to construe (1) a representation of the correct response and 

(2) a coherent set of predictions about post-response outcomes. This would result in the 

subsequent impaired ability of the comparator system to properly weigh expected outcomes 

against actual outcomes.  

Though our hypotheses mainly concern ERN, we will also investigate the effect of congruence 

on Pe amplitudes in an exploratory fashion. Since error-positivity is viewed as an index of error 

awareness, we propose the rather intuitive hypothesis that attitudinal conflict will prevent 

performance monitoring processes to fully gain conscious access to error commission. We 

expect so for the same reason we evoked before: if dual-process theories are accurate in their 

claim that the brain hosts two attitudinal minds, and if only one of them believes to be wrong, 

only a fraction of the “alarm” error-signal should be triggered. Conscious access in the brain 

can be understood in the form of accumulation of information-related signal above 

consciousness threshold (Del cul et al., 2007; 2009). If such is the case, attitudinal conflict 

should disrupt accumulation of error-related information signal and jeopardize conscious access 

to error. Thus, we expect Pe amplitudes to correlate negatively with incongruence. 

2. METHODS 

2.1. Participants 

Sample size calculation was computed using G*Power 3.1.9.7 (Faul et al., 2009) for an effect 

size of 0.54 (smallest effect size reported for incongruence-based differences in ERN 

amplitudes, Danielmeier et al., 2009), statistical power of 0.80, and a one-tailed hypothesis 

(congruent > incongruent). Minimal sample size was determined at 23 participants. To 

anticipate loss of data due to technical difficulties and insufficient amounts of error trials, we 

chose to raise this number to 40. Forty French-speaking participants (24 females, 16 males) 

between the age of 18 and 32 (M = 23.65, SD = 3.91) volunteered to the experiment. 

Participants were recruited from the general population with the use of flyers distributed on 

university campus. Participants had normal or corrected-to-normal vision. The study was 

designed in accordance with the Declaration of Helsinki and all participants gave their written 

informed consent after receiving a full description of the study. All participants were informed 

they could withdraw from the experiment at any time. 

2.2. Procedure 

Participants were comfortably seated in an armchair placed in a dim lit and sound attenuated 

room in front of a 17′′ screen computer. The experiment was implemented using E-Prime 2 

Professional (Psychology Software Tools, Pittsburgh, PA, USA) and consisted of two phases: 

(1) a conditioning phase where attitude formation was induced, and (2) a data-recording phase 

where CSs were maneuvered and evaluated in various ways by the participants. Three types of 



data were extracted from the second phase: subjective data, behavioral data, and 

electrophysiological data. Schematic of the experimental design is provided in Figure 1. 

Figure 1. Graphical representation of the experimental design. The conditioning phase consisted of 12 

presentations of 4 nonwords that participants were instructed to learn. The second phase consisted of 

subjective evaluation reports (Likert scales) and a Speeded Go/No Go. EEG data were collected during 

the Speeded Go/No Go only. 

The conditioning phase was submitted in the form of a learning task inspired from Zanon and 

colleagues (2014), in which participants had to memorize the definition of four seven-letters 

nonwords (i.e., LOKANTA, FEVKANI, POIMATA, and NITAIKI) presented as words from 

the Samoan language. Nonwords were either learned with their direct translation or with the 

translation of their antonym, in which case the participant had to infer the actual meaning (e.g., 

FEVKANI = WAR → PEACE). This was illustrated with the following example: “if the 

Samoan word ROGAIDI is presented with the French word “left” in the antonym condition, the 

real meaning is “right”. The same would apply for “up” → “down” or “slow” → “fast” for 

example”. The four CSs (i.e., nonwords) and four USs (i.e., French words, HEUREUX or 

HAPPY, ATROCIT´E or ATROCITY, BONHEUR or BLISS, & GUERRE or WAR) were assigned 

to each other in a pseudo-random fashion. The CS/US pairs were presented 12 times each for 

5000 ms in a random order. The CSs were considered congruent when their valence was the 

same as the US valence (i.e., direct translation), and incongruent when the CSs valence were 

the opposite of USs valence (e.g., “fevkani - war” in the antonym condition, where participants 

learned that “fevkani” translated into “peace” but were presented with repeated “fevkani - war” 

pairings). Participants then completed a short multiple-choice questionnaire to assess whether 

they managed to memorize each nonword. No errors were committed by any of the participants. 

Moreover, no participant reported any difficulty memorizing the four nonwords, nor any 

significant additional cognitive load associated with deducing the actual meaning of nonwords. 

2.3. Data collection 



2.3.1. Subjective data 

Subjective data was recorded using a series of Likert scales. Participants rated each nonword 

by answering the following question “On a scale from 1 (very negative) to 9 (very positive), 

how do you feel about the word [CS]?”. Since the Go/No-Go is intrinsically a categorization 

task that can potentially induce a counterconditioning of the CSs, explicit valence ratings were 

systematically presented before the inhibition task (Figure 1). 

2.3.2. Behavioral data 

Behavioral data was recorded using a modified Speeded Go/No-Go. The task started with a first 

instruction screen reading “You are about to start a categorization task during which you will 

have to either press the [SPACE] key or refrain from pressing it, depending on the positive or 

negative valence of a word: if the word displayed on the screen is positive (or negative), then 

press the [SPACE] key, but if the word is negative (or positive), do not press any key. Both the 

Samoan words you just learned and French words will be presented. A training session will 

help you get accustomed with the task. Please press any key to start the training session”. 

Participants then went through a training session consisting of 40 trials presented in a random 

order. A fixation cross appeared for 800 ms, followed by a semantic stimulus (maximal time = 

3000 ms). Correct responses were followed by a feedback screen displayed for 1500 ms reading 

“CORRECT!” in a green font, while errors were followed with a feedback screen reading 

“INCORRECT!” in a red font. During the training session, the average response time of each 

participant was recorded and established as an individualized performance baseline that had to 

be surpassed during the experimental session.  

The experimental session was similar to the training session, except that fixation cross and 

feedback duration dropped to 500 ms, and maximal presentation time was reduced to 2000 ms. 

On top on instructing participants to respond as quickly as possible, we implemented a rule-

based feedback that suppressed normal feedback screen (i.e., “CORRECT/INCORRECT!” 

message, response time, accuracy) and replaced it with another screen reading “TROP LENT!” 

(or “too slow!”) if response time was higher than 90% of the average latency recorded during 

the training phase. Therefore, the pace of the task was individually fixed so that participants 

had to respond 10% faster than their normal speed, thus maximizing the number of errors 

without overwhelmingly exceeding participants’ capacities. EEG data were not recorded for 

slow trials so as to avoid conflating generic correct responses and correct responses followed 

by an intrinsically negative feedback).  

Normal French words were presented along with the conditioned CSs to determine the baseline 

neural activity associated with processing standard positive and negative words. To keep the 

same number and probability of occurrence of words and nonwords, four standard words (i.e., 

two positive: “JOYEUSE” or “happy”, and “DOUCEUR” or “gentleness”, and two negative: 

“MUTILER” or “mutilate” and “INFECT´E” or “infected”) were selected according to their 

valence. The experimental session comprised 4 blocks (2 blocks requiring categorization of 

positive stimuli, 2 others of negative stimuli) of randomly ordered 96 trials, for a total of 384 

trials. We purposedly avoided increasing the total number of trials over 384 to prevent any 

potential implicit counterconditioning arising from the repeated categorization of nonwords as 



either positive or negative. Trials requiring motor responses were presented 66% of the time. 

Blocks were separated by pause screens without pre-programmed duration and participants 

were instructed to rest as long as they wished. Rather than giving instructions to avoid blinking, 

participants were advised to rest their eyes during pauses to minimize the average number of 

blinks per minute. Average response time for correct hits and errors, as well as average number 

of errors were computed for each condition (i.e., Congruent, Incongruent, Standard words). 

2.3.3. Electrophysiological data 

Electrophysiological data were collected at 1000 Hz using Brainvision PyCorder (Brain 

Products GmbH, Gilching, Germany) and a 32-channel system (Brainvision actiCHamp, Brain 

Products GmbH. Gilching, Germany) with Ag/AgCl active electrodes positioned on a cap 

(actiCAP, EASYCAP, GmbH) at positions Fz, F3, F7, FT9, FC5, FC1, C3, T7, TP9, CP5, CP1, 

Pz, P3, P7, O1, Oz, O2, P4, P8, TP10, CP6, CP2, Cz, C4, T8, FT10, FC6, FC2, F4, and F8. 

Electrodes Fp1 and Fp2 were derived to record vertical and horizontal electrooculography, 

respectively. Signal was referenced to a ground electrode placed at position Fpz. A 

preprocessing procedure was performed offline using EEGLAB (Delorme & Makeig, 2004) 

and Brainstorm (Tadel et al., 2011) and comprised (1) downsampling to 250 Hz, (2) basic FIR 

filter between 0.1 Hz and 35 Hz, (3) visual inspection and subsequent removal of noisy 

segments/bad channels, (4) independent component analysis followed with semi-automatic 

detection and correction of artefacts using the ADJUST algorithm (Mognon, Jovicich, 

Bruzzone, & Buiatti, 2011), (5) re-referencing to average, and (6) creation of EEG segments 

from 150 ms to 750 ms after motor response onset (including baseline correction of the mean 

activity 150 ms to 50 ms before response onset). Correct and error trials were averaged 

separately using mean amplitude between 50 ms and 100 ms. To quantify error-specific neural 

activity, ΔERN and ΔPe scores were calculated as the difference between average correct-

response (CRN) and error-related (ERN) activities. The ΔERN was quantified as the mean 

amplitude between 50 ms and 100 ms at Cz, where error-related activity was maximal, while 

ΔPe was quantified as the average activity between 200 ms and 500 ms at Pz. 

2.4. Data analyses 

2.4.1. Subjective data 

Repeated-measures analyses of variance (ANOVA) were used to analyze differences between 

explicit subjective ratings with Valence (positive, negative) and Congruence (congruent, 

incongruent) as within-subject factors. We hypothesize a main effect of Valence, attesting to the 

efficacy of the conditioning procedure, and a Valence × Congruence interaction effect reflecting 

a variation of the effect of valence as a function of congruence, with incongruent words being 

evaluated as more neutral than their congruent counterparts. 

2.4.2. Behavioral data 

One-way analyses of variance (ANOVA) were used to investigate differences between 

congruent CSs, incongruent CSs and standard words with regards to average response times 

during correct and error trials, as well as average number of errors. Paired t-tests were used as 

planned contrasts (Hager, 2002) to further explore a priori predictions about the effect of 



condition on behavioral data. We hypothesize that incongruent CSs will be associated with 

significantly longer RTs (for correct and error trials) and error rates than both congruent CSs 

and standard words. Similarly, since congruent CSs were only recently learned, they were 

presumably harder to mentally manipulate than long-known words. For this reason, we also 

hypothesize that congruent CSs will be associated with longer RTs and error rates than standard 

words. As our hypotheses are directed, we chose to set a significance level at α = 0.1. 

2.4.3. Electrophysiological data 

Of the initial 40 participants, 3 were excluded from the sample for corrupted data and 32 made 

enough errors in both the congruent and incongruent conditions to allow for statistical analyses. 

Of these 32 participants, 26 (15 females, 11 males, age = 23.92, SD = 3.78) also made enough 

errors during standard words categorization. A one-way ANOVA was therefore computed on 

these 26 participants to explore the variations of amplitudes of ERP components (i.e., ΔERN, 

ΔPe) as a function of Condition (congruent, incongruent, standard words). Following Thigpen 

and colleagues (2017), internal consistencies of both components were assessed by calculating 

Cronbach’s alphas with condition-averaged ERPs (k = 3 conditions). Both ΔERN (α = 0.739) 

and ΔPe (α = 0.839) presented with acceptable reliability. We specifically relied on paired t-

tests as planned contrasts (Hager, 2002) as a way to analyze a priori predictions about the effect 

of each condition on ERP amplitudes, all the while adjusting for the variability in the minimal 

number of usable erroneous trials. We hypothesize that incongruent CSs will be associated with 

diminished error-related amplitudes compared to both congruent CSs and standard words. Once 

again, since congruent CSs were recently learned, it is logical to assume for a lesser ability of 

the comparator system to construe the mental representations of both the correct response and 

expected outcomes. We thus hypothesize a significant decrease in ΔERN and ΔPe for congruent 

CSs when compared to standard words. Given our directed hypotheses, we set a significance 

level at α = 0.1. 

3. RESULTS 

3.1. Effect of valence and congruence on subjective data 

Mean explicit evaluation scores are illustrated in Figure 2. A first 2 × 2 Analysis of Variance 

(ANOVA) was performed with Congruence (congruent, incongruent) and Valence (positive, 

negative) as within-subject factors to determine the effect of the conditioning procedure on 

explicit evaluation. The ANOVA found no significant main effect of Congruence [F(1, 39) = 

0.23, p =.77, η2 = 0.0002], and a significant main effect of Valence [F(1, 39) = 62.4, p <.001, 

η2 = 0.62], reflecting a more positive attitude toward CSs that had a positive rather than a 

negative meaning, thus confirming the efficacy of the conditioning procedure, see Figure 2.  



 

Figure 2. Mean explicit ratings for CSs as a function of valence and congruence on a Likert 

scale of affective rating from 1 (very negative) to 9 (very positive). Data show that positive 

congruent CSs were perceived as more positive than their incongruent counterpart. On the 

other hand, congruence resulted for negative stimuli in a more negative subjective evaluation 

of congruent CSs.  

A significant Congruence × Valence interaction effect was found [F(1, 39) = 29.55, p <.001, η2 

= 0.43], reflecting a reversal effect of congruence on the outcome of the conditioning procedure 

as a function of valence: positive congruent CSs were rated more positively than positive 

incongruent CSs while negative congruent CSs were rated more negatively than negative 

incongruent CSs. Paired t-tests confirmed that pattern of results, as congruent CSs (mean 

valence = 8.3) were perceived as significantly more positive than incongruent CSs (valence = 

6.1) for positive stimuli [t(39) = 4.56, p <.001, d = 0.99], while congruent CSs (valence = 2.35) 

were evaluated more negatively than incongruent CSs (valence = 4.4) for negative stimuli [t(39) 

= 4.51, p <.001, d = 0.81]. 

3.2. Effect of congruence on behavioral data 

Differences in RT (for both correct and error trials) and error rates were assessed with three 

separate One-way ANOVAs with Condition (Congruent, Incongruent, Standard words) as 

independent variable. Average RTs during correct and error trials for all conditions are reported 

in Figure 3. The first ANOVA revealed a significant difference between conditions in terms of 

RT [F(2, 117) = 21.56, p <.001, η2 = 0.27]. Paired t-tests corroborated this finding, with 

incongruent CSs (518.05 ms) being categorized slower than both congruent CSs (489.01 ms) 

[t(39) = 4.6, p <.001, d = 1.39] and standard words (470.43 ms) [t(39) = 8.76, p <.001, d = 

0.73]; and congruent CSs being categorized slower than standard words [t(39) = 3.68, p <.001, 

d = 0.58], see Figure 3.  



Figure 3. Means (standard deviation) and differences between conditions in average response times. 

Incongruent CSs (I) took significantly more time to be processed than congruent CSs (C) and standard 

words (SW). Congruent CSs were themselves associated with increased RTs when compared with 

standard words. 

A similar pattern of results was observed for RTs during error commission. A second One-way 

ANOVA revealed that response time during error trials also varied as a function of Condition 

[F(2, 115) = 15.22, p <.001, η2 = 0.21]. Paired t-tests confirmed that stimuli all differed from 

each other: error RTs were longer for incongruent CSs (496.66 ms) than for congruent CSs 

(477.56 ms) [t(38) = 1.95, p =.059, d = 0.31] and standard words (417.38 ms) [t(38) = 7.75, p 

<.001, d = 1.24], while error RTs were longer for congruent CSs than standard words [t(37) = 

7.22, p <.001, d = 1.17].  

Figure 4. Means (standard deviation) and differences between conditions in number of errors. 

Incongruent CSs (I) elicited significantly more errors than congruent CSs (C). Congruent CSs elicited 

more errors than standard words (SW). It is worth noting that, in order to present the same number of 

nonwords and standard words, four of the latter category were presented during the task: The average 



number of errors reported above were divided by two to account for that fact, however, twice as many 

error trials were available when processing EEG data. 

The average number of errors made per condition is reported in Figure 4. On average, 

incongruent CSs elicited 14.7 errors, congruent CSs elicited 9.4 errors, and standard words 

elicited 5.4 errors (please note that the reported number of errors is here divided by two to 

account for probability of occurrence of standard words during the task, and that twice as many 

trials were available during EEG data processing). The second ANOVA showed that conditions 

also affected the number of errors made [F(2, 117) = 8.69, p <.001, η2 = 0.13]. Alpha-corrected 

paired t-tests confirmed that participants categorized incongruent CSs less accurately than both 

congruent CSs [t(39) = 7.38, p <.001, d = 0.1.17] and standard words [t(39) = 11.39, p <.001, 

d = 1.8]. Once again, behavioral performance was better for standard words than congruent 

CSs, with higher accuracy during standard words categorization [t(39) = 5.36, p <.001, d = 

0.85]. 

3.3. Effect of congruence on electrophysiological data 

Grand average waveforms of ΔERN (electrode Cz) and ΔPe (electrode Pz) are presented in 

Figures 5 and 6, respectively. A one-way ANOVA was computed to explore differences in 

automatic error-detection between conditions. The ΔERN amplitudes showed a significant 

effect of Condition [F(2, 87) = 5.27, p =.007], with a mean amplitude of 4.56 μV (SD = 3.45) 

for incongruent CSs, 7.41 μV (SD = 6.67) for congruent CSs, and 10.15 μV (SD = 8.88) for 

standard words. Confirming our main predictions, incongruent CSs were associated with 

decreased ΔERN amplitudes compared to both congruent CSs [t(31) = 3.03, p =.005, d = 0.54] 

and standard words [t (25) = 4.19, p <.001, d = 0.82]. When compared with standard words, 

congruent CSs were themselves associated with significantly smaller ΔERN amplitudes [t(25) 

= 2.78, p =.01, d = 0.55].  

Figure 5. (a) Grand average waveforms at electrode Cz. Continuous green lines picture congruent CSs, 

dashed red lines picture incongruent CSs, and dotted blue lines picture standard words. The red frame 

marks the time-window of interest. (b) Differences in ΔERN amplitudes between conditions. Incongruent 

CSs (I) were associated with significantly smaller ΔERN when compared with both congruent CSs (C) 

and standard words (SW). Congruent CSs were also associated with diminished ΔERN amplitudes 

compared to standard words. Note: *p < .05, **p < .01, ***p < .001. 



To assess differences in conscious awareness of error commission (i.e., ΔPe) between 

conditions, a final one-way ANOVA was computed. Consistent with our main predictions, 

Condition significantly affected ΔPe amplitudes [F(2, 87) = 4.6, p =.013, η2 = 0.1], with 

decreased amplitudes for incongruent CSs (5.01 μV) compared to congruent CSs (8.12 μV) 

[t(31) = 4.51, p <.001, d = 0.8] and standard words (11.83 μV) [t(25) = 4.4, p <.001, d = 0.87]. 

Similarly, congruent CSs elicited significantly more error-positivity than standard words [t(25) 

= 2.43, p =.023, d = 0.48] (see Figure 6). 

Figure 6. (a) Grand average waveforms at electrode Pz. Continuous green lines picture congruent CSs, 

dashed red lines picture incongruent CSs, and dotted blue lines picture standard words. The red frame 

marks the time-window of interest. (b) Differences in ΔPe amplitudes between conditions. As it was 

observed for ΔERN amplitudes, incongruent CSs (I) were associated with significantly smaller ΔPe 

when compared to both standard words (SW) and congruent CSs (C); while congruent CSs were 

themselves associated with diminished ΔPe amplitudes compared to standard words. Note: *p < .05, 

**p < .01, ***p < .001. 

4. DISCUSSION 

The present study sought to provide evidence for the activity of a vestigial associative-learning 

(AL) system during attitude formation in modern human cognition. Our experiment was 

constructed on the premise that it was possible, knowing the computational nature of both the 

AL and propositional systems, to condition mutually exclusive attitudes toward a same 

stimulus. We thus conditioned stimuli in such a way that evolutionary old AL computations and 

evolutionary recent propositional computations worked either in harmony (i.e., generating 

congruent attitudes) or in disharmony (i.e., generating incongruent attitudes), and investigated 

how explicit evaluation, inhibition performance, and neural correlates of error monitoring 

varied as a function of said harmony. Confirming previous work (e.g., Moran et al., 2016, 2017), 

subjective evaluations of CSs were affected by incongruence, as incongruent CSs were 

evaluated as more neutral than their congruent counterparts. This suggests that AL computations 

processing mere spatiotemporal contiguity between CSs and USs had an effect on explicit 

ratings above and beyond the actual meaning of the nonwords derived from relational 

information. In other words, implicit antagonistic attitudes generated by AL computations 

downregulated explicit evaluations and thus, perceived valence. In this study, we used a 

Speeded Go/No Go task as a way to assess inhibition performance of CSs, with a focus on 

response times (of both correct and error trials) and number of errors as proxy markers of 



conflict between implicit and explicit attitudes (based on the same principle used for instance 

in the IAT, Greenwald et al., 2001). Standard words were categorized along with CSs to have a 

sense of information processing of classic everyday semantic stimuli. On average, incongruent 

CSs were associated with significantly longer response times and more errors than both 

congruent CSs and standard words, suggesting once again that AL computations processed 

information in an automatic and parallel fashion, and construed implicit attitudes (independent 

of intention and awareness) that affected explicit attitudes based on the propositional processing 

of complex relational information. The same conclusion can be drawn from 

electrophysiological data: incongruence was associated with decreased neural correlates of 

error-processing. Overall, the incongruent evaluative conditioning procedure did influence 

explicit ratings, inhibition performance, and neural correlates of both error monitoring and 

conscious awareness of error commission. Our results support the claim put forward by dual-

process theories of attitude formation that a vestigial AL system sensitive to mere 

spatiotemporal contiguity is still actively implicated in the dynamic adaptation of attitudes 

toward environmental cues (Chaiken & Trope, 1999; Gawronski & Bodenhausen, 2006; 

Morewedge & Kahneman, 2009; Petty & Caccioppo, 1986; Rydell & McConnell, 2006). This 

system produces attitudes outside of one’s awareness by automatically detecting and processing 

recurring patterns of association in the environment, irrespective of rule-based, conscious, 

rational thinking. To our knowledge, the results presented here constitute the first evidence 

based on electrophysiological data in favor of dual-process theories of attitude formation. 

4.1. On the functional role of error-related negativity 

Our results also reinforce the validity of “comparator” theories of the ERN (e.g., Mismatch 

theory, Coles et al., 2001; Reinforcement learning theory, Holroyd & Coles, 2002; Prediction 

of response outcome theory, Alexander & Brown, 2010). These theories rest of the fundamental 

assumption that the ERN results from the automatic detection of discrepancies between 

expected and actual outcomes. However, such discrepancy detection mechanically necessitates 

for the comparator system to access (1) a coherent representation of the expected correct 

response and (2) a balanced and uniform set of predictions about action outcomes. We 

hypothesized that the conflict of attitudes that resulted from our paradigm would undermine 

both mental constructs (i.e., correct response, outcome prediction), and our results indicated 

that attitudinal conflict indeed impaired the comparator system’s ability to detect discrepancies, 

as reflected in the diminished ERN and Pe amplitudes observed in our study. It is also worth 

noting that our results are consistent with “affective” theories of the ERN (Luu et al., 2003; 

Tucker et al., 1999), which consider this neural marker as a index of aversiveness to errors. In 

a way, the fact that the motor program associated with errors (understood from the point of view 

of explicit attitudes of the propositional system) is actually compatible with implicit attitudes 

might have reduced the affective load carried by errors: part of the brain considered that the 

error was a correct response and that the motor program was thus appropriate, which reduced 

the overall aversiveness of errors in the incongruent condition. Our results are also compatible 

with conflict-monitoring theories of the ERN (Botvinick et al., 2001; Carter et al., 1998; Yeung 

et al., 2004), which propose that the ERN arises from the increased activity within a response 

system attempting to manage a conflict between simultaneous yet mutually incompatible 



response options. Following this framework, previous work has observed similar pattern of 

results as those presented in this study. For instance, Danielmeier and colleagues (2009) 

predicted and confirmed that high-conflict conditions were associated with lower ERN 

amplitudes in high-conflict conditions. Finally, our data provide useful insight into the 

mechanics of error-positivity. Indeed, one could have argued that Pe, a well-known index of 

error-awareness (Endrass et al., 2005; Nieuwenhuis et al., 2001), would have correlated with 

propositional, explicit, conscious evaluations only. In other words, that Pe amplitudes would 

remain unaffected by associative, implicit, unconscious attitudes. However, attitudinal conflict 

disrupted conscious access to error commission, as reflected in the significantly decreased Pe 

amplitudes. We grounded our hypotheses in models proposing that conscious access to 

information is dependent on the accumulation of signal above a consciousness threshold (e.g., 

Del cul et al., 2007; 2009). We expected attitudinal conflict to diminish the overall, whole-brain 

accumulation of error signal above consciousness threshold because part of the brain still 

believed the error to be the correct answer (as motor response mismatched explicit attitude but 

matched its implicit counterpart). Future work should however explore our claim more 

thoroughly, with more accurate indexes of error-signal accumulation as a function of attitudinal 

conflict. 

4.2. Limitations and future directions 

This study needs to be replicated to confirm the pattern of results we observed, especially since 

our study is not without limits. First, we have been dealing with a relatively low number of 

errors. This limit is directly linked to the originality of our paradigm: manually conditioning 

specific attitudes – rather than relying on stimuli that carry their own valence such as angry 

faces or cockroaches – intrinsically implies the risk to induce counterconditioning in the testing 

phase (by repeatedly categorizing an initially negative stimulus as positive hundreds of times 

for instance). For this reason, we deliberately kept the number of trials as low as possible in the 

Go/No-Go task. This however resulted in an average number of error trials going from 9.4 to 

14.7 per condition. Though grand averages confirmed statistical analyses, replication studies 

could gain from multiplying sessions of conditioning procedures, so as to reinforce conditioned 

attitudes enough to allow for an extended period of testing. Another limit is the use of semantic 

stimuli, which might not be conducive of everyday, organic attitude formation. Future studies 

should test the same procedure on different types of stimuli such as humans or commercial 

products. The AL system might present with domain-specific variations in its degree of 

influence depending on stimulus nature. It is for instance worth wondering whether the same 

procedure would affect social cues in the same manner. Indeed, social cognition has long been 

described as one of the most complex and recently evolved sets of cognitive mechanisms, as 

well as the potential reason for the evolution of unique human intelligence (e.g., Bailey & 

Geary, 2009; Dunbar, 1998; Gavrilets & Vose, 2006; Holloway, 1967; Humphrey, 1976). One 

might therefore expect social cognition to function on the basis of more phylogenetically recent, 

flexible, conscious computations (Elimari & Lafargue, 2020), which would entail a higher 

dominance of the propositional system during social judgments. Overall, this study provides a 

new way to look at dual-process theories, as well as new avenues for testing hypotheses derived 

from both dual-process and evolutionary frameworks. Neural correlates such as the ERN and 



Pe have a well-established literature that has extensively studied their specifics and features: 

they are ideal candidates for quantifying relations between brain reactions and subjectively 

perceived values. The search for more objective measures of cognitive phenomena is a goal 

shared by most researchers in Psychology. The present study opens the door for the 

development of new ways to exploit neural correlates as proxy measures for the quantification 

of subjective evaluation. 
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