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A B S T R A C T 

In this paper, we develop a framework for studying unstratified, magnetized eccentric discs and compute uniformly precessing 

eccentric modes in a cylindrical annulus which pro vide conv enient initial conditions for numerical simulations. The presence 
of a magnetic field in an eccentric disc can be described by an ef fecti ve gas with a modified equation of state. At magnetic 
field strengths rele v ant to the magneto-rotational instability the magnetic field has negligible influence on the evolution of the 
eccentric disc, ho we ver, the eccentric disc can significantly enhance the magnetic field strength o v er that in the a circular disc. 
We verify the suitability of these eccentric disc solutions by carrying out 2D simulations in RAMSES . Our simulated modes 
(in 2D) follow a similar evolution to the purely hydrodynamical modes, matching theoretical e xpectations, pro vided the y are 
adequately resolved. Such solutions will provide equilibrium states for studies of the eccentric magneto-rotational instability 

and magnetized parametric instability in unstratified discs and are useful for exploring the response of disc turbulence on top of 
a fluid flow varying on the orbital time-scale. 

Key words: accretion, accretion discs – magnetic fields – MHD – celestial mechanics. 
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 I N T RO D U C T I O N  

ccentric gaseous discs, where the gas orbits on Keplerian ellipses, 
re found in a variety of astrophysical contexts. To date there have
een many theoretical and numerical studies considering unmagne- 
ized eccentric discs (Ogilvie 2001 ; Ogilvie & Barker 2014 ; Barker &
gilvie 2016 ; Wienkers & Ogilvie 2018 ; Ogilvie & Lynch 2019 ;
ierens, McNally & Nelson 2020 ; Dewberry et al. 2020a ). Recently
everal studies have considered the behaviour of magnetic fields in 
ccentric discs. The effect of magnetic stresses on eccentric discs 
as considered by Ogilvie ( 2001 ) who developed a turbulent stress
odel based on the ideal induction equation in an orbital coordinate 

ystem. Ogilvie & Barker ( 2014 ) include a magnetohydrodynamic 
MHD) form of their eccentric shearing box model. This was used 
o study the linear phase of the magneto-rotational instability (MRI) 
y Chan, Krolik & Piran ( 2018 ), while Lynch & Ogilvie ( 2021 ) used
he formalism to study the effect of a coherent magnetic field on
he disc vertical structure. Global simulation of MRI in eccentric 
iscs were performed by Dewberry et al. ( 2020b ) who found that
ufficiently non-linear eccentric waves can shut off the MRI. Oyang, 
iang & Blaes ( 2021 ) compared the excitation of eccentricity in

RI turbulent discs to viscous, hydrodynamical discs and found 
hat the latter were excited to larger eccentricities. Finally Chan, 
iran & Krolik ( 2022 ) performed a global simulation of the MRI in
n elliptical annulus of large ( e = 0.5) constant eccentricity moti v ated
y the highly eccentric discs found in tidal disruption events. 
One challenge for (hydro or MHD) simulations of eccentric discs is 

he strong differential precession due to pressure forces which arises 
or arbitrary eccentricity profiles. Notably this occurs for a uniformly 
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ccentric ring which, naively, might be considered the simplest ec- 
entricity profile to simulate. This strong differential precession was a 
roblem encountered by Chan et al. ( 2022 ) who utilized an elliptical
oordinate system to model a disc of uniform eccentricity, which 
ecame significantly misaligned from the simulation grid after only 
5 outer disc orbits. Strong differential precession quickly generates 
arge pressure gradients as a result of orbital compression, which can
e very difficult to resolve numerically, leading to artificial damping 
f the disc eccentricity. The strength of this differential precession 
ill depend on the magnetic field strength and configuration. The 

apid evolution of the disc orbits can potentially lead to transient
henomena that are primarily a consequence of the choice of initial
onditions. This makes it difficult to disentangle the effect of the MRI
nd parametric instability from the evolution of the non-steady initial 
onditions. It would thus be beneficial to study how the MRI develops 
n top of a steady, or slowly evolving, eccentric background. 
A solution to this problem can be found in the existence of

ccentric modes. These are untwisted eccentric discs with a time 
ndependent eccentricity profile which undergo uniform (i.e. rigid 
ody) precession as a result of pressure gradients and other non-
eplerian forces. Eccentric modes are thus a particularly suitable 

etting for numerical simulations. They are also well moti v ated
hysically as they often provide a good approximation to the relaxed
tate of many eccentric discs when excitation and damping processes 
re considered (Kle y, P apaloizou & Ogilvie 2008 ; Teyssandier &
gilvie 2016 ; Miranda, Mu ̃ noz & Lai 2017 ; Ragusa et al. 2017 ;
eyssandier & Ogilvie 2017 ). 
In this paper we extend the Hamiltonian eccentric disc theory 

f Ogilvie & Lynch ( 2019 ) to allow for the inclusion of a large
cale, structured, magnetic field in an unstratified disc. We calculate 
odal (uniformly precessing) solutions for these eccentric MHD 

iscs. Such solutions are not intended as a realistic model of a
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agnetized eccentric disc, owing to the neglect of important 3D
ffects (Ogilvie 2001 , 2008 ; Ogilvie & Barker 2014 ; Teyssandier &
gilvie 2016 ; Ogilvie & Lynch 2019 ) and unrealistic global field

tructure (see Ogilvie 1997 , for the 3D field structure in a circular
isc), ho we ver these solutions are intended to provide a convenient
etting for numerical simulations of the eccentric MRI. To this end
e run 2D MHD simulations in the code RAMSES (Teyssier 2002 ;
romang, Hennebelle & Teyssier 2006 ; Faure, Fromang & Latter
014 ) using our calculated eccentric mode as an initial condition to
est their suitability for numerical calculations. By using an eccentric
ode as our initial condition we aim to a v oid strong differential

recession, due to pressure, destroying the eccentric disc as seen in
han et al. ( 2022 ). 
This paper is structured as follows: In Section 2 , we give an

 v erview of eccentric disc geometry and orbital coordinate systems.
n Section 3 , we extent the Hamiltonian formalism of Ogilvie &
ynch ( 2019 ) to unstratified ideal MHD discs, which we use to
erive linear theory in Section 4 and compute non-linear eccentric
odes in Section 5 . We compare the eccentric disc theory against 2D
HD simulations in Section 6 . Finally, we present our conclusions

n Section 8 and a deri v ation of the magnetic vector potential is given
n the appendix to aid with future numerical work. 

 E C C E N T R I C  DISC  G E O M E T RY  

he geometry of an eccentric disc consists of a set of non-
ntersecting, confocal Keplerian ellipses where the dominant fluid

otion consists of the Keplerian motion. These Keplerian orbits
lo wly e volve due to the effects of pressure gradients and, in MHD
iscs, magnetic fields. To describe both the geometry, and dynamics,
f an eccentric discs it is often convenient to make use of an orbital
oordinate system. This is a coordinate system, based on the orbital
lements of celestial mechanics, that describes a point in the mid-
lane of the disc by an orbit labelling coordinate, specifying the orbit
he point lies on, and a coordinate denoting where along that orbit
he point lies. Typically such an orbital coordinate system will define
 time dependent map from some circular reference disc onto the
hysical eccentric disc, with the dynamics of the eccentric disc being
escribed by the slow evolution of this orbital coordinate system. 
We formulate this orbital coordinate system in terms of a La-

rangian map between the reference and physical variables a �→ x ,
here a are the orbital coordinates associated with a fluid element

nd x is the fluid element position vector in Cartesian coordinates.
his Lagrangian map can be thought of as mapping some reference
ircular state into the physical eccentric disc, similar to Ogilvie
 2018 ) and Ogilvie & Lynch ( 2019 ). We denote the Jacobian
ssociated with this Lagrangian map by J ij = 

∂ x i 
∂ a j 

and introduce
he notation 

 3 = det ( J ij ) = 

J 

J ◦
H 

H 

◦ , (1) 

here J is the Jacobian determinant of the 2D transform and H is the
isc scale height and we adopt the convention that the superscript ·
denotes a quantity in the reference circular disc. Note that this

acobian is for an orbital coordinate system using the stretched
ertical coordinate ˜ z . In Ogilvie ( 2018 ) this is approximated by its
alue at the mid-plane, which is valid when the disc is sufficiently
hin. For the unstratified discs considered here the horizontal and
ertical parts of the transform are separable so this approximation is
nnecessary. 
We can define an orbital coordinate system, following Ogilvie &

ynch ( 2019 ), where the orbits are labelled by the semimajor axis, a ,
NRAS 526, 2673–2687 (2023) 

L

nd the position around the orbit is labelled by the eccentric anomaly
 . The shape of each orbit is controlled by the orbits eccentricity, e ,
nd longitude of pericentre � . The ( a , E ) orbital coordinate system
s related to the cylindrical radius through 

 = a(1 − e cos E) , (2) 

nd to the azimuthal angle, φ, through the true anomaly f = φ − � 

hich satisfies, 

cos f = 

cos E − e 

1 − e cos E 

, sin f = 

√ 

1 − e 2 sin E 

1 − e cos E 

. (3) 

e can extend this coordinate system to 3D by taking the disc
id-plane as a reference plane and labelling points by their height

bo v e/below the mid-plane, z. One can also introduce a stretched
ertical coordinate ̃  z = z/H , where H is some characteristic vertical
ength-scale such as the disc thickness or scale height. In unstratified

odels this is typically taken to be the sonic length H = c s �−1 , with
 s the sound speed. 

It will also often be useful to make use of the mean anomaly M ,
hich is related to the eccentric anomaly through 

 = E − e sin E = n ( t − τ ) , (4) 

here n = ( GM 1 / a 3 ) 1/2 is the mean motion, M 1 is the mass of the
entral object, and τ is the time of pericentre passage. This allows
s to define an ( a , M ) orbital coordinate system where the position
round the orbit is now denoted by the mean anomaly. This can be
xtended to 3D in the same way as the ( a , E ) coordinates. 

The Jacobian determinant of the ( a , M ) orbital coordinate system
an be expressed as J = J ◦j , where J ◦ = a and we have introduced the
imensionless Jacobian determinant from Ogilvie & Lynch ( 2019 ), 

 = ( J /J ◦) = 

1 − e( e + ae a ) √ 

1 − e 2 
− ae a cos E √ 

1 − e 2 
− ae� a sin E 

= 

1 − e( e + ae a ) √ 

1 − e 2 
[1 − q cos ( E − E 0 )] (5) 

hich is related to the elliptical geometry of the disc and we have
ntroduced the notation that a subscript a denotes a partial deri v ati ve
ith respect to the semimajor axis. As in Ogilvie & Lynch ( 2019 )
e have introduced the orbital intersection parameter, q , and E 0 ,

he eccentric anomaly at which the maximum orbital compression
ccurs. These are related to the orbital elements and their deri v ati ves
hrough 

 cos E 0 = 

ae a 

1 − e( e + ae a ) 
, q sin E 0 = 

√ 

1 − e 2 ae� a 

1 − e( e + ae a ) 
. (6) 

 D E R I VAT I O N  O F  T H E  E C C E N T R I C  DISC  

A M I LTO N I A N  

o derive the equation governing the evolution of the eccentric orbits,
e shall start from the Lagrangian formulation of ideal MHD. After
erforming a vertical integration we exploit a scale separation which
ccur in ‘thin’ discs where the Lagrangian can be separated into an
 (1) contribution from the Keplerian terms and O ( ε2 ) contributions

rom the internal and magnetic energies. In an unstratified disc, ε
hould be thought of as a characteristic measure of the reciprocal
ach number (or reciprocal Alfv ́en number for strongly magnetized

iscs), rather than the aspect ratio used in thin disc theory. 
The Lagrangian for ideal MHD is (e.g. Ogilvie 2016 ) 

 = 

•
ρ◦

[
1 

2 
u 

2 − 	 ( x ) − ε( a , J 3 ) − J 3 B 

2 ( a , J 3 , J ij ) 
2 μ0 ρ0 

]
d 3 a , (7) 
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here u is the fluid velocity, ρ◦ is the density in the reference disc,
 

i is the disc magnetic field, ε is the specific internal energy, and a
re the 3D Lagrangian coordinates. Ogilvie ( 2018 ) developed a fairly
eneral thin disc model based on affine transforms of fluid elements 
hich provides a convenient setting for formulating eccentric disc 
odels. The affine transform for a coplanar, unwarped, disc is 

x = x̄ + H ̃  z ̂ e z , (8) 

here x̄ are the coordinates in the disc mid-plane and ˜ z is a 
tretched v ertical coordinate. F or an unstratified disc, where 	 ( x )
s independent of the vertical coordinate, with periodic boundary 
onditions in the vertical direction, we can take H = H 

◦ and treat all
uantities as independent of ̃  z . Therefore we have J 3 = J / J ◦, J zz = 1,
 zx = J zy = 0 and we can v ertically inte grate the Lagrangian (equation
 ) to obtain, 

 = 

“
� 

◦
[

1 

2 
u 

2 − 	 ( ̄x ) − ε̄ ( ̄a , J ) − ( J /J ◦) B 

2 H 

◦

2 μ0 � 

◦

]
d 2 ā , (9) 

here � 

◦ = ρ◦H 

◦ is the surface density of the reference disc and
¯
 are the 2D Lagrangian coordinates. Here, o v erbars denote a 2D
mid-plane) coordinate system. 

To obtain the disc magnetic field, we can look for periodic solutions 
o the induction equation in an eccentric shearing box (Ogilvie & 

arker 2014 ). These periodic magnetic field solutions were derived 
y Lynch & Ogilvie ( 2021 ), and consists of a vertical field with a
uasi-toroidal (orbit following) field, 

 

i = B t0 ( a, z/H ) 
J ◦

J 

H 

◦

H 

v i orbital 

n 
+ B z0 ( a) 

J ◦

J 
ˆ e i z . (10) 

ere, B t 0 and B z0 are the toroidal and vertical magnetic fields in the
eference circular disc (we have chosen not to use the superscript ◦

o make later expressions less cumbersome). v orbital is the Keplerian 
 elocity v ector . The model of L ynch & Ogilvie ( 2021 ) was based on
he eccentric shearing box and equation ( 10 ) was setup to satisfy the
approximate) solenoidal condition of the local model (equation C17 
f Ogilvie & Barker 2014 ). One can show that it also satisfies
he exact solenoidal condition by adopting the ( a, M, ̃  z ) coordinate
ystem and taking the divergence, 

 i B 

i = 

1 

J 3 

∂ 

∂ M 

(
J 3 B t0 ( a, z/H ) 

J ◦

J 

H 

◦

H 

)

+ 

∂ 

∂ ̃ z 

(
B z0 ( a) 

J ◦

J 

)
= 0 , (11) 

s a result of the independence of J 3 B 

M (first term) and B 

z (second
erm) on M and ˜ z respectively, and we have used v i orbital = n ̂ e i M 

in
his coordinate system. 

In cylindrical, unstratified, geometry H / H 

◦ = 1 and B t 0 ( a , z/ H ) =
 t 0 ( a ). Making use of a dimensionless Jacobian determinant j = J / J ◦,
e obtain the following for the magnetic pressure due to the magnetic
eld given by equation ( 10 ), 

B 

2 

2 μ0 
= a 2 

B 

2 
t0 ( a) 

2 μ0 
j −2 1 + e cos E 

1 − e cos E 

+ 

B 

2 
z0 

2 μ0 
( a) j −2 , (12) 

here we have made use of v 2 orbital = a 2 n 2 1 + e cos E 
1 −e cos E . 

Substituting equation ( 12 ) for the magnetic pressure into the 
agrangian we arrive at 

 = 

“
� 

◦
[

1 

2 
u 2 − 	 ( ̄x ) − ε̄ ( ̄a , J ) 

− a 2 
1 + e cos E 

1 −e cos E 

( J /J ◦) −1 B 

2 
t0 ( ̄a ) H 

◦

2 μ0 � 

◦ − ( J /J ◦) −1 B 

2 
z0 ( ̄a ) H 

◦

2 μ0 � 

◦

]
d 2 ā . 

(13) 
xpanding equation ( 13 ) into the Keplerian Lagrangian L K and a
erturbation, 

 = L k −
“

� 

◦
[
V ( ̄x ) + ̄ε ( ̄a , J ) 

+ a 2 
1 + e cos E 

1 −e cos E 

( J /J ◦) −1 B 

2 
t0 ( ̄a ) H 

◦

2 μ0 � 

◦ + 

( J /J ◦) −1 B 

2 
z0 ( ̄a ) H 

◦

2 μ0 � 

◦

]
d 2 ā

(14

here V ( x ) = 	 ( x ) − 	 K ( x ). At leading order we have, 

δL 

δx 
≈ δL K 

δx 
= 0 , (15) 

hich is Keplerian orbital motion in the plane. Performing the 
hitham/orbit average (Whitham 1965 ) of equation ( 14 ), using the

act that the Lagrangian is nearly integrable, 

 = 

∫ 

m a 

[
na 2 Ṁ + na 2 

√ 

1 − e 2 �̇ + 

GM 1 

2 a 

]
d a 

−
∫ 

m a 

[
〈 V ( ̄x ) 〉 + 〈 ̄ε ( ̄a , J ) 〉 

+ a 2 
B 

2 
t0 ( ̄a ) H 

◦

2 μ0 � 

◦

〈
1 + e cos E 

1 − e cos E 

j −1 

〉
+ 

B 

2 
z0 ( ̄a ) H 

◦

2 μ0 � 

◦ 〈 j −1 〉 
]

d a, 

(16) 

here 〈·〉 = 

1 
2 π

∫ · d M denotes an orbit average and we have intro-
uced the mass per unit semimajor axis, m a , which is related to the
urface density in the reference circular disc by 

 a = 2 πa� 

◦. (17) 

The dynamics of M is dominated by orbital motion. Therefore, 
e separate out the terms in the Lagrangian describing the orbital
otion from those describing the slow evolution of the disc orbits, 

 = 

∫ 

m a na 2 
√ 

1 − e 2 �̇ da −
∫ 

m a 

[
〈 V ( ̄x ) 〉 + 〈 ̄ε ( ̄a , J ) 〉 

+ a 2 
B 

2 
t0 ( ̄a ) H 

◦

2 μ0 � 

◦

〈
1 + e cos E 

1 − e cos E 

j −1 

〉
+ 

B 

2 
z0 ( ̄a ) H 

◦

2 μ0 � 

◦ 〈 j −1 〉 
]

d a. 

(18) 

he associated Hamiltonian is obtained via a Legendre transform, 

 = 

∫ 

m a na 2 
√ 

1 − e 2 �̇ da − L 

= 

∫ 

m a 

[
〈 V ( ̄x ) 〉 + 〈 ̄ε ( ̄a , J ) 〉 

+ a 2 
B 

2 
t0 ( ̄a ) H 

◦

2 μ0 � 

◦

〈
1 + e cos E 

1 − e cos E 

j −1 

〉
+ 

B 

2 
z0 ( ̄a ) H 

◦

2 μ0 � 

◦ 〈 j −1 〉 
]

d a. 

(19) 

Henceforth, we shall only consider Keplerian potentials so that 
 ( ̄x ) = 0. For a perfect gas we can write (Ogilvie & Lynch 2019 ), 

 a 〈 ̄ε ( ̄a , J ) 〉 = H 

◦
a F 

( γ ) , (20) 

here we have introduced the geometric part of the Hamiltonian, 

 

( p) = 

1 

p − 1 
〈 j −( p−1) 〉 , (21) 

long with the circular Hamiltonian density, 

 

◦
a = 2 πaP 

◦
g , (22) 

here P 

◦
g is the vertically integrated gas pressure in the reference

isc. Introducing the Alfv ́en velocity in the reference disc: v i a0 =
MNRAS 526, 2673–2687 (2023) 
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i 
0 / 

√ 

μ0 ρ◦, we parametrize the magnetic field strength in terms of a
imensionless toroidal ( V t ) and vertical ( V z ) Alfv ́en velocities, where
 t = av E a0 /c s and V z = v z a0 /c s . 
From Ogilvie & Lynch ( 2019 ) we have the following expression

or F 

(2) , 

F 

(2) ( e, q, E 0 ) 

= 〈 j −1 〉 = 

√ 

1 − e 2 

1 − e( e + ae a ) 

q − e(1 −
√ 

1 − q 2 ) cos E 0 

q 
√ 

1 − q 2 
. (23) 

imilarly we can obtain an expression for 
〈

1 + e cos E 
1 −e cos E j 

−1 
〉
, 

〈
1 + e cos E 

1 − e cos E 

j −1 

〉
= 

√ 

1 − e 2 

1 − e( e + ae a ) 

q + e(1 −
√ 

1 − q 2 ) cos E 0 

q 
√ 

1 − q 2 

= F 

(2) ( e, q, E 0 + π ) . (24)

hus the vertical magnetic field acts like a γ = 2 perfect gas, while
he quasi-toroidal magnetic field acts like a γ = 2 gas with an anti-
hased orbital compression. 
We can then write the Hamiltonian as: 

 = 

∫ 

H 

◦
a 

(
F 

( γ ) ( e, q, E 0 ) + 

γ

2 V 

2 
t F 

(2) ( e, q, E 0 + π ) (25) 

+ 

γ

2 V 

2 
z F 

(2) ( e, q, E 0 ) 

)
d a, 

here the factor of γ in the magnetic terms appear as a result of factor-
ng out H 

◦
a . This Hamiltonian can be split into contributions from the

as internal energy, and the energy in the quasi-toroidal and vertical
agnetic fields, with H = H gas + H tor + H vert , corresponding to the
rst second and third term in the brackets of equation ( 25 ). As in gas
iscs each of these terms are a product of the, geometry independent,
amiltonian density in the reference disc and a geometric part which

ncapsulates the dependence on the orbital geometry. 
It is convenient to reformulate this Hamiltonian as a Hamiltonian

or a single ef fecti ve gas. We can do this by introducing a new
eometric part of the Hamiltonian, 

 V t ,V z ( e, q, E 0 ) = 

1 

1 + 

γ

2 ( V 

2 
t + V 

2 
z ) 

F 

( γ ) ( e, q, E 0 ) 

+ 

γ

2 V 

2 
t 

1 + 

γ

2 ( V 

2 
t + V 

2 
z ) 

F 

(2) ( e, q, E 0 + π ) 

+ 

γ

2 V 

2 
z 

1 + 

γ

2 ( V 

2 
t + V 

2 
z ) 

F 

(2) ( e, q, E 0 ) , (26) 

hich is a weighted sum of two adiabatic gas F 

( p ) with different ratio
f specific heats and a third non-adiabatic gas term for the toroidal
eld. In this case the Hamiltonian can be written as: 

 = 

∫ 

˜ H 

◦
a F V t ,V z ( e, q, E 0 )d a, (27) 

here we have introduced 

˜ 
 

◦
a = 2 πa( P 

◦
g + P 

◦
m 

) = 

(
1 + 

γ

2 
V 

2 
t + 

γ

2 
V 

2 
z 

)
H 

◦
a = 

1 + β◦

β◦ H 

◦
a , 

(28) 

hich is the Hamiltonian density in the reference circular disc and
◦, the plasma- β in the reference circular disc. Unlike the simpler
erfect gas case F V t ,V z is no longer only a function of the geometry for
 given ratio of specific heat, it also depends on the ‘partial pressure’
f the constitutive effective gases on a given orbit. 
NRAS 526, 2673–2687 (2023) 
Hamilton’s equations in the non-canonical e ( a , t ), � ( a , t ) are
Ogilvie & Lynch 2019 ) 

 a 

∂ e 

∂ t 
= 

√ 

1 − e 2 

na 2 e 

δH 

δ� 

, (29) 

 a 

∂ � 

∂ t 
= −

√ 

1 − e 2 

na 2 e 

δH 

δe 
. (30) 

The ideal MHD eccentric disc Hamiltonian preserves the symme-
ries of the unmagnetized eccentric disc Hamiltonian of Ogilvie &
ynch ( 2019 ); i.e. time translation and global rotation, with the
amiltonian only depending on � through its deri v ati ve � a . As

uch, following Ogilvie & Lynch ( 2019 ), one can show that the total
amiltonian, H, which in an unstratified disc corresponds to the sum
f the magnetic and internal energies, and the angular momentum
eficit (AMD), a positive definite measure of the total eccentricity
ommonly used in celestial mechanics, 

 = 

∫ 

m a na 2 
(

1 −
√ 

1 − e 2 
)

d a, (31) 

re conserved. 
The simplest solutions to the eccentric disc equations are the

ccentric modes, which are solutions where e is independent of time
nd the disc is untwisted and uniformly precessing at an angular
requency ω. These solutions are a particularly convenient setting
or numerical simulations as they a v oid strong differential precession
een in generic eccentricity profiles. The eccentric mode equation is
btained from equation ( 30 ), 

 a ω = −
√ 

1 − e 2 

na 2 e 

δH 

δe 
. (32) 

equation ( 29 ) is automatically satisfied as the disc is untwisted (so
δH 

δ� 

= 0) and e is independent of time. 
As shown in Ogilvie & Lynch ( 2019 ), equation ( 32 ) can be written

s: 

 

δL 

δe 
= 

δH 

δe 
, (33) 

here 

 = 

∫ 

m a na 2 
√ 

1 − e 2 d a, (34) 

s the angular momentum. Equation ( 33 ) can be interpreted as a
ariational problem which makes H (here corresponding to the
otal disc internal + magnetic energy) stationary at a fixed angular

omentum L = const. 
For constant V t , V z , the eccentric mode equations are explicitly

Ogilvie & Lynch 2019 ): 

− ωm a 

˜ H 

◦
a 

na 2 e √ 

1 − e 2 
= 

∂ F V t ,V z 

∂ e 
− ae a 

∂ 2 F V t ,V z 

∂ e ∂ f 

− a (2 e a + a e aa ) 
∂ 2 F V t ,V z 

∂ f 2 
− d ln ( ˜ H 

◦
a ) 

d ln a 

∂ F V t ,V z 

∂ f 
, 

(35) 
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1 This form of Hamilton’s equations for the eccentric disc theory was 
originally suggested by Prof. Gordon Ogilvie in an earlier draft of Ogilvie & 

Lynch ( 2019 ) as a way of connecting Hamiltonian eccentric disc theory with 
the Shr ̈odinger equation. 
2 This can be shown by deriving the linear, magnetized, eccentric disc 
equations following a similar procedure to Goodchild & Ogilvie ( 2006 ), 
a task that is significantly more involved than taking the linear limit of the 
Hamiltonian theory. 
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here we have introduced f = e + ae a . If V t or V z depends on the
emimajor axis then the equation for an eccentric mode becomes, 

−ωm a 

˜ H 

◦
a 

na 2 e √ 

1 − e 2 

= 

∂ F V t ,V z 

∂ e 
− ae a 

∂ 2 F V t ,V z 

∂ e ∂ f 

− a (2 e a + a e aa ) 
∂ 2 F V t ,V z 

∂ f 2 
− d ln ( H 

◦
a ) 

d ln a 

∂ F V t ,V z 

∂ f 

− γ

2 

β◦

1 + β◦

( 

dV 

2 
t 

d ln a 

∂ F 

(2) 

∂ f 

∣∣∣∣
E 0 = π

+ 

dV 

2 
z 

d ln a 

∂ F 

(2) 

∂ f 

∣∣∣∣
E 0 = 0 

) 

. 

(36) 

ote that we have the perfect gas circular Hamiltonian density ( H 

◦
a )

n the forth term on the right-hand side. We also have F 

(2) | E 0 = 0 =
 

(2) ( e , q( e , f ) , 0) and F 

(2) | E 0 = π = F 

(2) ( e , q( e , f ) , π ). 
For untwisted discs F V t ,V z ( e, f ) has an apparent singularity when

 = f , where the eccentricity gradients v anish. Follo wing Ogilvie &
ynch ( 2019 ) this apparent singularity can be remo v ed using the

rigonometric parametrization e = sin 2 α, f = sin 2 β. Expressions
or F 

(1) ( e , q , 0) and F 

(2) ( e , q , 0), in terms of this parametrization
re given in appendix C of Ogilvie & Lynch ( 2019 ). For including
uasi-toroidal fields we will also need 

 

(2) ( e, q, π ) = cos (2 α) cos ( α − β) sec (2 β) sec ( α + β) . (37) 

 LINEA R  T H E O RY  

hen e , ae a , and ae � a are much less than unity, the geometric part
f the Hamiltonian density in a 2D disc can be approximated as
Ogilvie & Lynch 2019 ) 

 

(2D) ≈ 1 

2 
e( e + ae a ) + 

1 

4 
γ

[
( ae a ) 

2 + ( ae� a ) 
2 
]
, (38) 

here we have dropped an unimportant constant term, that has no 
nfluence on the dynamics, so that we can use this expression for
sothermal discs. In addition to equation ( 38 ) we require the linear
imit of F 

(2) ( e , q , E 0 + π ), to include the quasi-toroidal field, this can
e obtained in a similar way and is 

 

(2) ( e, q, E 0 + π) ≈ 1 

2 
e( e + ae a ) + 

1 

2 

[
( ae a ) 

2 + ( aeω a ) 
2 
] + aee a , 

(39) 

here the first two terms arise from the adiabatic variation of the
agnetic pressure, similar to the vertical field, while the last term 

rises from the magnetic tension and the non-adiabatic variation of 
he magnetic pressure. Combining these we arrive at an expression 
or F V t ,V z , 

 V t ,V z ( e, q, E 0 ) ≈ 1 

2 
e( e + ae a ) + 

˜ γ

4 

[
( ae a ) 

2 + ( aeω a ) 
2 
]

+ 

γ

2 V 

2 
t 

1 + 

γ

2 ( V 

2 
t + V 

2 
z ) 

aee a , (40) 

here we have introduced a modified ratio of specific heats 

˜ = γ
1 + V 

2 
t + V 

2 
z 

1 + 

γ

2 ( V 

2 
t + V 

2 
z ) 

. (41) 

o connect with the existing work on linear eccentric disc theory, it
s useful to rewrite equation ( 40 ) in terms of the complex eccentricity
 = e exp ( i� ), the geometric part of the Hamiltonian in the linear
imit is then 

 V t ,V z ( e, q, E 0 ) ≈ 1 
2 [ | E | 2 + Re ( aE E ∗a )] + 

˜ γ
4 | aE a | 2 (42) 

+ 

γ
2 V 

2 
t 

1 + 

γ
2 ( V 

2 
t + V 2 z ) 

Re ( aE E ∗a ) . 

he, non-canonical, Hamilton’s equations for the complex eccentric- 
ty are 1 

 a Ė = −2 i 
√ 

1 − e 2 

na 2 

δH 

δE ∗ , (43) 

ith the functional deri v ati ve of E ∗ being related to the functional
eri v ati ve of e and � through, 

δ

δE ∗ = 

1 

2 
e i� 

(
δ

δe 
+ 

i 

e 

δ

δ� 

)
. (44) 

ubstituting in the Linear form of the Hamiltonian into equation ( 43 )
nd performing the functional deri v ati ve we obtain a linear equa-
ion for the evolution of the complex eccentricity in an unstratified
deal MHD disc, 

 � 

◦na 3 
∂ E 
∂ t 

= 

∂ 

∂ a 

(
i ̃  γP 

◦a 3 
∂ E 
∂ a 

)

+ i a 2 
d P 

◦

d a 
E + i ∂ a 

[ 

a 2 
( aB 

φ
0 ) 

2 

μ0 

] 

E, (45) 

here we have used M a = 2 πa � 

◦ and ˜ H 

◦
a = 2 πaP 

◦. The first two
erms on the right-hand side correspond to an adiabatic gas with an
f fecti ve ratio of specific heats, ˜ γ set by the plasma- β. The final term
rises from the non-adiabatic change to the magnetic pressure from 

he stretching of the magnetic field lines. 2 Terms arising due to the
agnetic tension cancel with additional non-adiabatic terms along 
ith the modification to the background rotation profile as a result
f the magnetic tension in the unperturbed disc. 
Specializing to an eccentric mode in a disc with a purely vertical

eld ( V t = 0), the equation simplifies to 

 � 

◦na 3 ωE = 

∂ 

∂ a 

(
˜ γP 

◦a 3 
∂ E 
∂ a 

)
+ 

d P 

◦

d a 
a 2 E . (46) 

hen the gas pressure, P g , and dimensionless Alfv ́en velocity, V z ,
re constant one can rewrite the abo v e equation as 

 � 

◦na 3 ˜ ω E = 

∂ 

∂ a 

(
γP 

◦
g a 

3 ∂ E 
∂ a 

)
, (47) 

here we have introduced a rescaled precession frequency ˜ ω = 

/ (1 + V 

2 
z ). Therefore, under these restrictions on the pressure

nd magnetic field, the eccentric mode in the magnetized and 
nmagnetized discs are identical and differ only by their precession 
requency. 

 N O N - L I N E A R  M O D E S  IN  A N  I SOTHERMAL  

ISC  

ur primary moti v ation for extending the unstratified eccentric disc
heory to include magnetic fields is to provide initial conditions for
MNRAS 526, 2673–2687 (2023) 
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Figure 1. Eccentricity profiles of the eccentric modes used in simulations 
with max ( e ) = 0.2, max ( e ) = 0.35, and max ( e ) = 0.5 respectiv ely. F or both 
modes l MRI = c s / n ( a min ), a min = 1, a in = 1.5, a out = 4.5, a max = 5, and 
w transition = 0.05. The eccentric modes in the unmagnetized and MHD discs 
with a purely vertical field are almost indistinguishable. The dotted line is the 
‘limiting slope’ solution. 

Figure 2. Minimum (dashed lines) and maximum (solid lines) plasma beta 
on orbits for the eccentric modes with a purely vertical field and no taper. 
The dotted line is the plasma beta in the circular disc. Orbital compression 
can lead to significant local enhancement of the magnetic fields, while at 
the eccentricity maxima the plasma- β is constant around the orbit. The 
simulations do not reach as extreme plasma- βs as a result of the taper. 
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imulations of the eccentric MRI. As such we focus on calculating the
on-linear eccentric modes found in a disc contained between two,
ircular, rigid walls as done to setup the hydrodynamical simulations
f Barker & Ogilvie ( 2016 ), rather than the more realistic free
oundaries considered in Ogilvie & Lynch ( 2019 ). As a model of
 realistic MHD disc, ho we ver, the unstratified model derived in the
revious section has major limitations; namely it fails to account
or the dynamical vertical structure of the disc which is known to
e important to correctly describe the dynamics of eccentric discs
gilvie ( 2001 , 2008 ), Ogilvie & Barker ( 2014 ), and Ogilvie &
ynch ( 2019 ) and can significantly increase the field strength of

he quasi-toroidal field, particularly for more non-linear eccentric
iscs (Lynch & Ogilvie 2021 ). There is also the issue of how the disc
nteracts with the external magnetic fields. 

We, thus, consider a simple MHD generalization of the mode
omputed in Barker & Ogilvie ( 2016 ). This consists of a globally
sothermal disc with a constant reference surface density, � 

◦, with
he Hamiltonian density in the reference circular disc being H 

◦
a =

 πac 2 s � 

◦, where c s is a constant sound speed. 
For the modes that will be simulated in Section 6 , we impose a

urely vertical field with, 

 t = 0 , V z = 

nl MRI 

2 πc s 
√ 

16 / 15 
W ( a) . (48) 

or comparison, in this section, we also compute a quasi-toroidal
ase with 

 t = 

nl MRI 

2 πc s 
√ 

16 / 15 
W ( a) , V z = 0 . (49) 

n both cases l MRI is a constant length-scale, which in the vertical
eld case corresponds to the length-scale of the fastest growing MRI
ode in the reference circular disc. W ( a ) describes the taper on the

nner and outer disc boundaries, for which we use 

 ( a) = 

1 

2 

[
1 + tanh 

(
a − a in 

w transition 

)][
1 − tanh 

(
a − a out 

w transition 

)]
, (50) 

hen we wish to include a taper. The disc is contained within two
igid circular walls located at a min and a max , such that a min ≤ a in ≤ a out 

a max . We therefore have boundary conditions e ( a min ) = e ( a max ) =
. The precession frequency of the mode, ω, is an eigenvalue of
he problem. One can solve equation ( 36 ) for the eccentric mode
y specifying e a on the inner boundary and employing a shooting
ethod to obtain ω. 
To provide initial conditions for our simulations we solve for

ccentric modes with l MRI = c s / n ( a min ), a min = 1, a in = 1.5, a out =
.5, a max = 5, and c s = 0.05, with purely vertical fields. These
odes are shown in Fig. 1 . The simulated modes with different

hoices of parameters (as discussed in Section 6 ) have functionally
ndistinguishable eccentricity profiles. 

The MHD eccentric modes depicted in Fig. 1 are nearly indistin-
uishable from the unmagnetized case. The same is true of eccentric
odes computed using a similar strength quasi-toroidal field. This

s perhaps not surprising given the magnetic field strength in these
iscs is set by the requirement that the circular reference disc is MRI
nstable. This means the plasma- β in the reference disc never drops
elow β = 84. In the eccentric disc, the range of plasma- β attained
s greater as a result of the lateral orbital compression which occurs
n the presence of eccentricity gradients. 

Figs 2 and 3 show the minimum and maximum plasma- β on an
rbit, in the absence of a taper, for the vertical and quasi-toroidal field
odels, respectively. In the absence of a taper the orbital compression

esults in regions of high magnetic field strengths in the inner disc,
NRAS 526, 2673–2687 (2023) 
articularly for the mode with max [ e ] = 0.5. This effect is lessened
hen the taper is included as the magnetic field strength drops to

ero close to the boundary where the effects of orbital compression
re greatest. Despite attaining plasma- β as low as β ∼ 4 for the
ax [ e ] = 0.5 mode, without taper, differs only slightly from the

nmagnetized case (having a slightly lower eccentricity gradient
n the inner boundary). This is, in part, a geometric effect where
he shape of highly non-linear eccentric mode is dictated by the
equirement that | q | < 1 to a v oid an orbital intersection. As discussed
n Barker & Ogilvie ( 2016 ) and Ogilvie & Lynch ( 2019 ), this results
n a limiting slope solution given by 

e = 

{
a − a min , a min < a < ā 

−a + a max , ā < a < a max 
(51) 

here ā = ( a min + a max ) / 2. In principle higher order limiting slope
olutions might depend on the magnetic field strength as it is not
bvious how the mode selects nodes for the higher order modes. 
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Figure 3. Same as Fig. 2 but for a quasi-toroidal field. There is a greater 
variation of the magnetic field around the orbit in the inner disc. Unlike 
the vertical field case the stretching of the field lines around an eccentric 
orbit means the magnetic field al w ays varies around the orbit, even at the 
eccentricity maxima where the surface density is constant. 

Figure 4. Mode number dependence of the magnetic field enhancement for 
modes with max [ e ] = 0.1. Dashed line shows the function 1/(1 − q max ), which 
is the approximate magnetic field enhancement for disc with low eccentricity. 
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The large orbital compression responsible for the regions of greatly 
nhanced magnetic fields in the modes calculated abo v e are primarily
 consequence of the adoption of rigid circular boundaries. As shown 
n Ogilvie & Lynch ( 2019 ), adoption of more realistic free boundaries
onditions result in more moderate eccentricity gradients for a given 
ax [ e ]. In Appendix A , we solve for the MHD eccentric modes with

ree boundaries and a taper in both the magnetic field and the surface
ensity. The variation of the magnetic field strength and the orbit are
uch reduced compared with the equi v alent rigid boundary eccentric 
ode due to the smaller eccentricity gradients. This confirms that 

he strong enhancement of the magnetic fields seen in the modes 
omputed for Figs 2 and 3 are primarily a consequence of the rigid
all boundaries. 
While the strong enhancement of the magnetic field in the 

undamental (zero node) modes considered thus far are primarily 
 consequence of the choice of boundary conditions, higher order 
odes (i.e. with multiple nodes) will attain larger eccentricity 

radients for a given max [ e ]. Fig. 4 shows the maximum magnetic
eld enhancement for eccentric modes with max [ e ] = 0.1. These
odes are discrete due to the boundary conditions. Increasing mode 

umber results in an increased max [ q ], resulting in an increasing
agnetic field enhancement due to the greater lateral compression. 
his magnetic field enhancement approximately follows 1/(1 −
 max ) for small max [ e ]. This magnetic field enhancement may have
mportant consequence for the eccentric MRI if the higher field 
trengths are able to stabilize the MRI. 

 N O N - L I N E A R  SI MULATI ONS  

e have run non-linear MHD simulations to demonstrate the 
ntegrity of the eccentric disc solutions calculated in Section 5 ,
pecifically the vertical field case including a taper. We limit our
ocus to purely 2D simulations in this paper in order to isolate
he eccentric modes’ role as MHD equilibria, which are of course
nstable in three dimensions. In a companion paper, we explore the
rowth and turbulent saturation of the instabilities of these equilibria 
n fully 3D simulations. 

.1 Setup 

e use a uniform grid version of the code RAMSES (Teyssier
002 ; Fromang et al. 2006 ; Faure et al. 2014 ), 3 which employs
 high-order Godunov method to solve the magnetohydrodynamic 
quations under the cylindrical approximation (i.e. without vertical 
ravity). Taken with a purely isothermal equation of state, these are 

∂ ρ

∂ t 
+ ∇ · ( ρu ) = 0 , (52) 

∂ ( ρu ) 

∂ t 
+ ∇ · ( ρu u − B B ) + ∇ 

(
P + 

B · B 

2 

)
= −ρ∇	, (53) 

∂ B 

∂ t 
+ ∇ · ( u B − B u ) = 0 , (54) 

here ρ is the gas density, P = c 2 s ρ is the pressure, c s is the sound
peed, u is the fluid velocity field, 	 = −GM 1 / R is the (Newtonian
nd cylindrical) gravitational potential of a central mass M , and
 is the magnetic field. We initialize purely 2D simulations with

he surface densities, radial and azimuthal velocities, and purely 
ertical magnetic fields (from equations B1 –B4 ) corresponding to 
ccentricity profiles like those shown in Fig. 1 . Table 1 lists rele v ant
roperties. We do not simulate the quasi-toroidal field case in this
aper. This case is complicated by the difficulty in ensuring that the
olenoidal condition is satisfied when switching from the orbital to 
he polar grid, this is best done by use of a vector potential (derived
n Appendix B2 ) which is not implemented in the version of RAMSES

e are using. 
We impose quasi-rigid wall boundary conditions at both the inner 

nd outer radial boundaries r 0 = a min and r 1 = a max , fixing u R = 0, and
etting u φ by the Keplerian angular velocity of the circular reference
isc. Non-zero eccentricity gradients at the boundaries imply non- 
ero surface density variations with φ. We therefore use a zero-
radient boundary condition for the density, setting its value in the
host cells to the value of the last cell in the active domain. We lastly
et B z to zero in the ghost cells ( B R and B φ remain identically zero
hroughout, and so the magnetic field remains trivially solenoidal in 
hese 2D simulations). 

To track the evolution of eccentricity in our simulations, we 
ompute the semimajor axis of each grid cell from (e.g. Miranda
t al. 2017 ) 

( R, φ) = 

(
2 

R 

− u 

2 

GM 1 

)−1 

, (55) 
MNRAS 526, 2673–2687 (2023) 
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M

Table 1. Details of the non-linear simulations considered in this paper. All simulations were run on a uniform cylindrical 
mesh with a out / a in = 5, and c s = 0.05 a min n ( a min ). The magnetized runs include purely vertical fields as described by 
( 48 ), with l MRI = c s / n ( a min ), w transition = 0.1 a min , a in = 2 a min , and a out = 4 a min (except for m35t, which uses w transition = 

0.05 a min , a in = 1.5 a min , and a out = 4.5 a min ). The final three columns compare precession frequencies predicted by the 
eccentric mode calculations with frequencies and decay rates measured in the simulations. 

Simulation Max ( e ) B z ? N R × N φ Predicted ω Simulation R e ( ω) Simulation I m ( ω) 

h2 0.20 No 480 × 800 −0.004235 −0.0044 −4.8 × 10 −5 

h35 0.35 No 480 × 800 −0.005012 −0.0054 −1.0 × 10 −4 

h5 0.50 No 480 × 800 −0.007459 −0.0045 −5.5 × 10 −3 

m2 0.20 Yes 480 × 800 −0.004244 −0.0044 −4.8 × 10 −5 

m35 0.35 Yes 480 × 800 −0.005042 −0.0054 −1.0 × 10 −4 

m35t 0.35 Yes 480 × 800 −0.005047 −0.0055 −9.9 × 10 −5 

m35l 0.35 Yes 240 × 400 −0.005042 −0.0033 −3.8 × 10 −4 

m35h 0.35 Yes 960 × 800 −0.005042 −0.0053 −6.2 × 10 −5 

m5 0.50 Yes 480 × 800 −0.007582 −0.0045 −5.5 × 10 −3 

m5h 0.50 Yes 960 × 800 −0.007582 −0.0046 −5.6 × 10 −3 
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nd the eccentricity vector from 

e = [ e cos �, e sin � ] = ( GM 1 ) 
−1 

[
u 

2 R − ( u · R ) u 

] − ˆ R . (56) 

inning the eccentricity values in every cell by semimajor axis, we
verage within each bin to produce 1D eccentricity profiles ˜ e = ˜ e ( a)
t each time-step. These we use in turn to compute the integrated
ngular momentum deficit C. We additionally consider the time-
volution of the total Hamiltonian 

 = 

∫ a max 

a min 

∫ 2 π

0 
( c 2 s � ln � + P m 

) R d φ d R, (57) 

hich is conserved in the ideal secular theory. 

.2 Results 

 or a giv en eccentricity profile and resolution, our hydrodynamic
nd MHD simulations show remarkably similar evolution. Table 1
ompares the precession frequencies we observe in simulations
gainst the eigenvalues computed in generating our initial conditions.
e measure precession rates in the simulations by fitting lines to

inned arguments of pericentre ˜ ω that have been averaged over
he interior of the disc. The measured precession frequencies agree
easonably well with the predicted eigenvalues, except in simulations
hat we identify as under-resolved (namely m35l, h5, m5, m5h). For
he simulations, we also estimate eccentricity decay rates (listed as
maginary parts of the frequencies) by fitting slopes to the natural
ogarithm of the AMD as a function of time, and assuming that the
MD decays as e 2 . 
The space–time diagrams in Fig. 5 show radial profiles of radial

elocity as a function of time for most of the hydrodynamic and
HD simulations listed in Table 1 . Sliced at a fixed φ = 0, these

pace–time diagrams illustrate the coherent precession of untwisted
ccentric distortions for maximum eccentricities of 0.2 and 0.35. The
odes initialized with max [ e ] = 0.5 involve very strong eccentricity

radients (and hence density variations) near the inner boundary,
oming closer to the limiting eccentric mode shape for our radial
xtent r 1 / r 0 = 5. Their interaction with the inner boundary leads to
hock formation that is visible in the bottom three panels of Fig. 5 .
lthough the eccentric distortions in these simulations continue to
recess, they clearly take on a different character from the initial
onditions. P apaloizou ( 2005 ) observ ed such shocks in simulations
nitialized with linear eccentric modes prescribed a finite amplitude,
nd Barker & Ogilvie ( 2016 ) excluded them by considering only
maller values of max [ e ]. 
NRAS 526, 2673–2687 (2023) 
F or a giv en value of the maximum eccentricity in the simulation
omain, these space–time diagrams show very little difference
etween the hydrodynamic and MHD simulations; the vertical
agnetic field simply causes slightly more rapid precession. The

pace–time diagrams in Fig. 6 illustrate the corresponding evolution
f the vertical field with time. The simulations m35 and m35t have
imilar values of max [ e ], but two different widths of ‘envelope’
see equation 50 ) for the vertical magnetic field ( w transition = 0.1 and
.05, respecti vely). The dif ferent distributions of vertical magnetic
ux do little to alter the characteristics or behaviour of the eccentric
ode. 
Fig. 7 provides a quantitative measure of eccentricity decay,

lotting the per cent change in inte grated AMD v ersus time. F or
ower eccentricities (max [ e ] = 0.2, 0.35) we attribute eccentricity
ecay both to numerical diffusion, and to weak damping by the
nitial growth of the Papaloizou–Pringle instability (see Barker &
gilvie 2016 ). The level of decay over the simulation runtimes (of
00 T 0 , where T 0 = 2 π / �0 and �0 = 

√ 

GM/a 3 in are the orbital period
nd angular velocity at the inner boundary) is consistent with the
ydrodynamic results reported by Barker & Ogilvie ( 2016 ). 

The shock formation in the simulations with larger max [ e ] =
.5 leads to much stronger eccentricity damping initially (until t �0 

 400), and shallower, ‘bursty’ decay at later times. We attribute
his stochastic evolution to periodic interaction between the strongly
odified distortion and the inner boundary. Fig. 7 quantitatively

emonstrates the similarity of the hydrodynamic and MHD results
or a given eccentricity profile and resolution, regardless of vertical
ux distribution (compare m35 and m35t). 
The curves in Fig. 8 show the evolution of the total Hamiltonian

equation 57 ), which is clearly not conserved in our simulations.
diabatic damping, i.e. damping which is slow relative to the
recession time-scale, should lead to a slow evolution of the eccen-
ricity along the family of ideal eccentric modes, towards modes of
ower amplitude. As in the unmagnetized case (Ogilvie & Lynch
019 ), equation ( 33 ) implies that an infinitesimal change in the
otal Hamiltonian is related to an infinitesimal change in the AMD
y d H = −ωd C. The modes in our simulations have retrograde
recession ( ω < 0) meaning a decrease in AMD should lead to a
ecreasing H, when damping is slow enough. Thus slowly damped
odes should follow the blue curve in Fig. 9 which shows the
-AMD phase space. Ho we ver, Figs 8 and 9 demonstrate secular

rowth for the simulations with max [ e ] = 0.2, 0.35 (except for the
ow-resolution simulation m35l, which shows similar decay to the
imulations with max [ e ] = 0.5). 
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Figure 5. Space–time diagrams showing radial profiles of radial velocity at a fix ed φ v ersus time for both hydrodynamic (names starting with h ) and MHD ( m ) 
simulations. The periodic changes in the sign of v r o v er t �0 ∼ 1000 illustrate the retrograde precession of the eccentric distortions. 
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One potential explanation for this growth is that non-adiabatic 
amping in our simulations shifts the initialized eccentric profiles 
way from the family of ideal eccentric modes that minimize H for
 given AMD. In particular when damping is strong enough, the 
ccentric disc will develop a twist as a result of the disc transporting
MD to compensate for spatial variations of the damping rate 

Ferreira & Ogilvie 2009 ). Fig. 9 shows that the resolved simulations
volve from the untwisted ‘modal’ H-AMD relation (blue curve) 
o the ‘maximally twisted’ H-AMD relation (Orange Curve). The 
atter is obtained by taking a given eccentric mode and twisting it
ntil it reaches an orbital intersection everywhere. This is consistent 
ith the disc gradually twisting, o v er the course of the simulation,

ausing a growth in the total Hamiltonian. This is supported by the
imulations orbital elements, computed using 56 , and from looking 
t the residual in the radial velocity when the radial velocity of the
ntwisted eccentricity profile is subtracted; both of which show the 
isc becoming increasingly twisted with time. This twisting of the 
isc occurs o v er 1000s of orbits and is thus much milder than that
een for non-modal initial profiles (e.g. the const- e profiles studied
y Chan et al. 2022 ) which become highly twisted o v er 10s of orbital
eriods. 
Fig. 10 plots profiles of binned eccentricity ˜ e ( a) at the beginning

solid lines) and end (dashed lines) of our simulations. For max [ e ] =
.2 and 0.35, the plot shows the decay of eccentric modes that
etain roughly the same profile in eccentricity, except in m35l (which
as half the radial and azimuthal resolution). Although the profiles 
or the simulations with max [ e ] = 0.5 deviate qualitatively, h5,
5, and m5h remain strongly distorted and relatively untwisted 
MNRAS 526, 2673–2687 (2023) 
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M

Figure 6. Same as Fig. 5 , but for vertical magnetic field in the MHD simulations. 

Figure 7. Time-evolution of angular momentum deficit (equation 31 ) for 
all of the simulations listed in Table 1 . The AMD of the magnetized and 
unmagnetized discs are nearly indistinguishable (e.g. see the curves for h2 
and m2, h35 and m35, and h5 and m5). 
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Figure 8. Time-evolution of the conserved Hamiltonian (equation 57 ) for 
all of the simulations listed in Table 1 . As with Fig. 7 , the evolution of 
the total-Hamiltonian for the magnetized and unmagnetized disc is nearly 
indistinguishable. 
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y the end of the simulations. The panels in Fig. 11 show snap-
hots of radial velocity (top) and vertical magnetic field (bottom)
t the end of the simulations m2 (left), m35 (middle), and m5
right). 
NRAS 526, 2673–2687 (2023) 
The differences with increasing resolution illustrated by Figs 7 –
0 (compare m35, m35l, m35h, and m5, m5h) indicate that care
hould be taken in resolving disc distortions with strong eccen-
ricity gradients. We do not claim to have completely resolved
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Figure 9. Plot showing simulations’ time evolution in H-AMD phase 
space. All ten simulations from Figs 7 and 8 are represented by points 
with colours that run from dark to light as time progresses. The blue and 
orange curv es respectiv ely illustrate the relationship between H and AMD 

for ideal untwisted eccentric modes, and eccentric distortions with twists set 
everywhere equal to the values required for orbital intersection. For better 
visibility, the y-scale transitions from log to linear at H = 0 . 06 . . 

Figure 10. Binned eccentricity profiles at the beginning (solid) and end 
(dashed) of our simulations. The modes with max [ e ] = 0.2, 0.35 decay to 
qualitatively similar eccentricity profiles (except in the low-resolution run 
m35l). On the other hand, shocks in the simulations initialized with eccentric 
distortions with max [ e ] = 0.5 lead to strongly modified eccentricity profiles. 

a  

d
w
p
T  

t  

c
 

a  

d
D

8

I
t  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/526/2/2673/7261739 by guest on 07 February 2024
he eccentric modes’ precession in any of our simulations; m35l, 
35, and m35h demonstrate a clear reduction in AMD decay with 

ncreasing resolution. Ho we ver, this decay is slo w compared with
he dynamical time-scales of interest for magnetorotational and 
arametric instabilities. Further, m35 and m35h exhibit qualitatively 
imilar if not quantitatively identical evolution. 

 DISCUSSION  

t the magnetic field strength rele v ant to the MRI the magnetic
eld has negligible influence on the eccentric modes, which are 
lmost indistinguishable from their unmagnetized counterparts. In 
D (i.e. specifically suppressing the MRI and parametric instability), 
he evolution of the magnetized and unmagnetized eccentric modes 
n RAMSES is qualitatively the same. There are some differences 
een between the magnetized and unmagnetized simulations with 
ax [ e ] = 0.5, ho we ver these simulations are not adequately

esolved. 
Although the magnetic field has little effect on the eccentric 
ode, the presence of an eccentric mode can have a strong in-
uence on the magnetic field: with lateral compression by the 
rbital motion, the presence of eccentricity gradients can enhance 
he magnetic field strength in regions of the disc. Similarly the 

agnetic field strength is reduced in regions of the disc where 
he orbital velocity diverges. Despite the strong magnetic field 
nhancements, the magnetic field configurations we setup are stable 
n our 2D simulations and their slow evolution is consistent with 
hat expected due to the evolution of the eccentricity profile. In
he simulated modes, the enhancement of the magnetic field is 
rimarily a result of the imposition of circular rigid wall boundaries. 
o we ver, this ef fect is potentially very important in short wave-

ength/tightly wound eccentric discs such as those expected in the 
nner regions of black hole discs as simulated by Dewberry et al.
 2020b ). 

One issue that we have encountered is the difficulty of both re-
olving and converging the eccentric modes in numerical simulations. 
his is important for studies of the eccentric MRI, as having a high
nough resolution to resolve the MRI (e.g. as measured by MRI
uality factors) may not be sufficient to ensure that the simulation 
s well resolved. One also needs adequate horizontal resolution to 
esolve the the eccentric mode as well. This is particularly important 
f one is interested in analysing the effects of the MRI on the
ccentric disc as the strong damping of the eccentricity by the 
rid may o v erwhelm the effects of the MHD turbulence. Given the
elatively strong damping seen in our 2D simulations, assessing the 
nfluence of the MRI on the eccentric disc will pro v e challenging
nless MRI is very efficient at damping (or in principle exciting) 
ccentricity. 

In this paper, we have limited our focus to the 2.5D cylindrical disc
etup. This setup has a number of advantages numerically (easier to 
mplement the vertical boundary and to achieve adequate vertical 
esolution), ho we ver it does not give a good approximation to a
hysical 3D disc. As in hydrodynamic eccentric discs, the variation 
f vertical gravity and pressure around an eccentric orbit leads to 
 dynamically varying scale height around an orbit. This causes 
rograde precession of the eccentric disc (Ogilvie 2001 , 2008 ; 
gilvie & Barker 2014 ; Ogilvie & Lynch 2019 ). More importantly

he vertical compression induced by the scale height oscillation can 
reatly enhance the quasi-toroidal magnetic fields in non-linearly 
ccentric discs (Lynch & Ogilvie 2021 ). Additionally the periodic 
olution to the induction equation within the disc needs to match on
o the current free external field. This can be constructed in a circular
isc via matched asymptotics (Ogilvie 1997 ). Ho we ver for non-
xisymmetric discs, the set of external field solutions (which can be
escribed using cylindrical harmonics) are generically incompatible 
ith the field configuration within an eccentric disc (excepting the 
urely quasi-toroidal case where no magnetic flux leaves the disc). 
he internal and external fields could be connected by a force free

ransition layer in the upper disc atmosphere. Ho we ver, such a field
onfiguration is likely unstable even in the absence of the MRI. 

The full 3D problem is important, ho we v er, and deserv es further
ttention. A simpler initial approach might be to simulate a 3D MHD
isc while exciting eccentricity at the outer boundary (similar to 
ewberry et al. 2020b ) and observe the magnetic field response. 

 C O N C L U S I O N  

n this paper, we have extended the Hamiltonian eccentric disc 
heory of Ogilvie & Lynch ( 2019 ) to include a magnetic field in an
MNRAS 526, 2673–2687 (2023) 
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nstratified, cylindrical geometry. We have solved for the uniformly
recessing eccentric mode solutions of our model and shown that, for
agnetic field strengths rele v ant to the onset of MRI, the resulting

ccentricity profile, and precession rate, is nearly identical to the
nmagnetized case. While such eccentric modes are of limited utility
n describing realistic 3D eccentric discs due to several important
hysical effects not being present in the unstratified geometry, they
rovide a useful setting for the study of the eccentric MRI and
agnetized parametric instability to further our understanding of

ow disc turbulence operates in eccentric discs. More broadly, this
ill help inform our understanding of how disc turbulence operates

n flows that vary on the orbital time-scale. To this end we confirm the
uitability of our eccentric mode solutions for numerical applications
y using them as initial conditions for 2D MHD simulations in RAM-
ES . In 2D simulations, we obtain long lived uniformly precessing
ccentric flows that agree closely with the analytical predictions.
hese flows will provide the background state for 3D, unstratified,
imulations studying the stability of these eccentric discs to both the

RI and parametric instability which will be presented in a future
ublication. 

C K N OW L E D G E M E N T S  

he authors would like to thank Guillaume Laibe and Enrico Ragusa
or many helpful comments on the draft of this manuscript and the
nonymous re vie wer for comments and suggestions, which impro v ed
he clarity of the paper. 

EML w ould lik e to thank the European Research Council (ERC).
his research was supported by the ERC through the CoG project
ODCAST no. 864965. This project received funding from the
uropean Union’s Horizon 2020 research and innovation program
nder the Marie Skłodowska-Curie grant agreement no. 823823. 
JWD gratefully acknowledges support from the Natural Sciences

nd Engineering Research Council of Canada (NSERC), [funding
eference #CITA 490888–16]. 
NRAS 526, 2673–2687 (2023) 
ATA  AVAI LABI LI TY  

he data underlying this article will be shared on reasonable request
o the corresponding author. 

EFERENCES  

arker A. J. , Ogilvie G. I., 2016, MNRAS , 458, 3739 
han C.-H. , Krolik J. H., Piran T., 2018, ApJ , 856, 12 
han C.-H. , Piran T., Krolik J. H., 2022, ApJ, 933, 81 
ewberry J. W. , Latter H. N., Ogilvie G. I., Fromang S., 2020a, MNRAS ,

497, 435 
ewberry J. W. , Latter H. N., Ogilvie G. I., Fromang S., 2020b, MNRAS ,

497, 451 
aure J. , Fromang S., Latter H., 2014, A&A , 564, A22 
erreira B. T. , Ogilvie G. I., 2009, MNRAS , 392, 428 
romang S. , Hennebelle P., Teyssier R., 2006, A&A , 457, 371 
oodchild S. , Ogilvie G., 2006, MNRAS , 368, 1123 
ley W. , Papaloizou J. C. B., Ogilvie G. I., 2008, A&A , 487, 671 
ynch E. M. , Ogilvie G. I., 2021, MNRAS , 501, 5500 
iranda R. , Mu ̃ noz D. J., Lai D., 2017, MNRAS , 466, 1170 
gilvie G. I. , 1997, MNRAS , 288, 63 
gilvie G. I. , 2001, MNRAS , 325, 231 
gilvie G. I. , 2008, MNRAS , 388, 1372 
gilvie G. I. , 2016, J. Plasma Phys., 82, 205820301 
gilvie G. I. , 2018, MNRAS , 477, 1744 
gilvie G. I. , Barker A. J., 2014, MNRAS , 445, 2621 
gilvie G. I. , Lynch E. M., 2019, MNRAS , 483, 4453 
yang B. , Jiang Y.-F., Blaes O., 2021, MNRAS , 505, 1 
apaloizou J. C. B. , 2005, A&A , 432, 757 
ierens A. , McNally C. P., Nelson R. P., 2020, MNRAS, 496, 2849 
agusa E. , Dipierro G., Lodato G., Laibe G., Price D. J., 2017, MNRAS , 464,

1449 
eyssandier J. , Ogilvie G. I., 2016, MNRAS , 458, 3221 
eyssandier J. , Ogilvie G. I., 2017, MNRAS , 467, 4577 
eyssier R. , 2002, A&A , 385, 337 
hitham G. B. , 1965, J. Fluid Mech. , 22, 273 
ienkers A. F. , Ogilvie G. I., 2018, MNRAS , 477, 4838 

anazzi J. J. , Ogilvie G. I., 2020, MNRAS, 499, 5562 
c fields (bottom) in the simulations m2, m35, and m5. Steep density gradients
ure 11. Snapshots showing end-state radial velocities (top) and vertical mag
m5 lead to the development of shocks that are likely unresolved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ig
n 

http://dx.doi.org/10.1093/mnras/stw580
http://dx.doi.org/10.3847/1538-4357/aab15c
http://dx.doi.org/10.1093/mnras/staa1897
http://dx.doi.org/10.1093/mnras/staa1898
http://dx.doi.org/10.1051/0004-6361/201321911
http://dx.doi.org/10.1111/j.1365-2966.2008.14070.x
http://dx.doi.org/10.1051/0004-6361:20065371
http://dx.doi.org/10.1111/j.1365-2966.2006.10197.x
http://dx.doi.org/10.1051/0004-6361:200809953
http://dx.doi.org/10.1093/mnras/staa4026
http://dx.doi.org/10.1093/mnras/stw3189
http://dx.doi.org/10.1093/mnras/288.1.63
http://dx.doi.org/10.1046/j.1365-8711.2001.04416.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13484.x
http://dx.doi.org/10.1093/mnras/sty588
http://dx.doi.org/10.1093/mnras/stu1795
http://dx.doi.org/10.1093/mnras/sty3436
http://dx.doi.org/10.1093/mnras/stab1212
http://dx.doi.org/10.1051/0004-6361:20041948
http://dx.doi.org/10.1093/mnras/stw2456
http://dx.doi.org/10.1093/mnras/stw521
http://dx.doi.org/10.1093/mnras/stx426
http://dx.doi.org/10.1051/0004-6361:20011817
http://dx.doi.org/10.1017/S0022112065000745
http://dx.doi.org/10.1093/mnras/sty899


Eccentric modes in unstratified MHD discs 2685 

MNRAS 526, 2673–2687 (2023) 

Figure A1. (Left) Example eccentric modes with free boundaries. (Right) Same as Fig. 2 but for the modes with free boundaries. The equi v alent modes with 
quasi-toroidal fields look broadly similar. There is much less enhancement of the magnetic field as modes with realistic boundaries are less steep than those with 
rigid boundaries. 

APPEN D IX  A :  M O D E S  WITH  FREE  B O U N DA R I E S  

As discussed in Ogilvie & Lynch ( 2019 ), the large eccentricity gradients seen in our simulated modes, which are responsible for the strong 
variation of the density around the orbit, are primarily a consequence of imposing rigid circular boundaries. More realistic free boundaries, 
appropriate for an eccentric disc of finite extent, tend to result in smaller eccentricity gradients for a given value of max [ e ], reducing the level 
of magnetic field concentration by the eccentric mode. 

Following the same procedure laid out in Zanazzi & Ogilvie ( 2020 ), one obtains the free boundary conditions by introducing a taper T ( a ), 4 

which drops to zero on the disc boundary, into the disc mass and internal energy by taking m a → m a T ( a ) and 〈 ̄ε 〉 → 〈 ̄ε 〉 T ( a). In an isothermal 
disc, the latter implies the sound speed also drops to zero on the boundary with c 2 s ∝ T ( a). This is in fact a requirement for the disc to truncate 
without the forces due to pressure gradients exceeding those due to gravity and dominating the dynamics of the fluid in the outer disc. Taking 
the length-scale of the taper to zero we require 

∂ F V t ,V z 

∂ f 

∣∣∣∣
a min ,a max 

= 0 , (A1) 

in order that the precession frequency remain finite. 
In the presence of a taper in the magnetic field (e.g. the magnetic fields given by equations ( 48 )–( 49 )) then equation ( A1 ) simplifies to 

∂ F 

( γ ) 

∂ f 

∣∣∣∣
a min ,a max 

= 0 , (A2) 

which matches the free boundary condition in the unmagnetized disc. 
We now consider vertical field setup for the modes computed in Section 5 , but impose equation ( A2 ) for the free boundaries. This results in the 

modes depicted in Fig. A1 a (left). Such mode have non-zero eccentricity on both boundaries and are thus a challenge to simulate numerically. 
They do, ho we ver, possess the shallo wer eccentricity gradients and monotonically decreasing profiles characteristic of the fundamental mode 
in more realistic setups. As shown by Fig. A1 a (right) the variation of the plasma- β around the orbit is much milder than that seen in the 
rigid wall case and suggests that the fundamental mode in eccentric disc does not strongly enhance the magnetic field o v er the circular value. 
As discussed in Section 5 , this is not the case for higher order modes which can support larger eccentricity gradients, and thus magnetic field 
enhancements, independently of which boundary condition is adopted. 

APPEN D IX  B:  INPUT  VARIABLES  F O R  N U M E R I C A L  SI MULATI ONS  

B1 Input variables for the RAMSES simulations 

In the a , φ grid the input variables required for simulations, for a given eccentricity profile, e ( a ), are 

ρ = ρ◦
(

1 − e( e + ae a ) √ 

1 − e 2 
− ae a √ 

1 − e 2 

cos φ + e 

1 + e cos φ

)−1 

(B1) 

4 Note T ( a ) �= W ( a ) the taper in the magnetic field as the latter is designed to isolate the magnetic field from the boundaries. 
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u R = 

an √ 

1 − e 2 
e sin φ (B2) 

u φ = 

an √ 

1 − e 2 
(1 + e cos φ) (B3) 

B z = 

nl MRI 

2 π
√ 

16 / 15 
W ( a) 

(
1 − e( e + ae a ) √ 

1 − e 2 
− ae a √ 

1 − e 2 

cos φ + e 

1 + e cos φ

)−1 

. (B4) 

These are then interpolated onto the cylindrical grid by performing a 1D interpolation from a to R for each azimuthal slice in the ( a , φ) grid 
and copying the resulting 2D fields in the vertical direction (if present). 

B2 Vector potential 

For numerical implementations, it is often useful to specify the magnetic field using a vector potential in order to ensure that the magnetic 
field is divergence free. For example transforming from the orbital coordinate system to cylindrical polars can induce a non-zero velocity 
divergence if interpolation is done on the B-field. Instead interpolating the A-field ensures the resulting magnetic field, in cylindrical polars, 
obeys the solenoidal condition. 

The vector potential obeys 

Ȧ i − εijk u 

j εkab ∂ a A b = ∂ i f , (B5) 

where an o v erdot indicates a partial deri v ati ve with respect to time, εijk indicates the permutation symbol, and f is the electrostatic potential. 
We are interested in magnetic fields which are steady on the orbital time-scale, for such magnetic fields equation ( B5 ) simplifies to 

2 u 

j ∂ [ j A i] = ∂ i f , (B6) 

where the square brackets around the indices denote that the indices are being anti-symmetrized, i.e. T [ ij ] = 

1 
2 ( T ij − T ji ). As we did when 

computing the B -field, we neglect the contribution from the slow rotation of the field due to disc precession. 
In the ( a, M, ̃  z ) orbital coordinate system, with stretched v ertical coordinate ˜ z = z/H , the fluid v elocity simplifies to u 

i = n ̂ e i M 

, where n is 
the mean motion. The steady B -field in an eccentric disc, in the ( a, M, ̃  z ) orbital coordinate system is 

B 

i = B t0 ( a , ̃  z ) j −1 h 

−1 ˆ e i ˜ M 

+ B z0 ( a ) j 
−1 H 

−1 ˆ e i ˜ z . (B7) 

Using the relationship between the A and B fields, we find that the A field must obey the following expressions in order to yield the steady 
magnetic field solution in an eccentric disc, 

0 = ∂ [ M 

A ˜ z ] , (B8) 

B t0 ( a, ̃  z ) 

jh 

= − 2 

J H 

∂ [ a A ˜ z ] , (B9) 

B z0 ( a) 

jH 

= 

2 

J H 

∂ [ a A M] . (B10) 

Substituting the expression for the velocity and equation ( B8 ) into equation ( B6 ), we find that the electrostatic potential is a function of 
semimajor axis only, f = f ( a ). This means the M and ̃  z components of equation ( B6 ) are satisfied. To obtain agreement with the B -field solution, 
we set A a = 0 and obtain the following for A M 

and A ˜ z , 

A M 

= 

∫ 

J ◦B z0 ( a ) d a , (B11) 

A ˜ z = −
∫ 

H 

◦J ◦B t0 ( a , ̃  z ) d a . (B12) 

In order to satisfy the a component of equation ( B6 ), we require the electrostatic potential satisfy 

f ( a) = −
∫ 

nJ ◦B z0 d a. (B13) 

We now transform to the ( a , E , z) orbital coordinate system, which is more useful for transforming A into other coordinate systems. To do this 
we assume that we have a thin disc, allowing us to e v aluate the coordinate transform at the mid-plane similar to Ogilvie ( 2018 ). This works 
equally well for the unstratified discs considered in the rest of this paper. The vector potential in this coordinate system is 

A a = −e a sin E 

∫ 

J ◦B z0 ( a ) d a , (B14) 

A E = (1 − e cos E) 
∫ 

J ◦B z0 ( a ) d a , (B15) 

A z = − 1 

H 

∫ 

H 

◦J ◦B t0 ( a , ̃  z ) d a . (B16) 

The general expression for A in Cartesian and cylindrical coordinates are fairly complicated, but can be obtained from the abo v e e xpressions 
as follows: 
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A x = − 1 

J 

(
e a sin E 

∂ y 

∂ E 

+ (1 − e cos E) 
∂ y 

∂ a 

)∫ 

J ◦B z0 ( a ) d a , (B17) 

A y = 

1 

J 

(
e a sin E 

∂ x 

∂ E 

+ (1 − e cos E) 
∂ x 

∂ a 

)∫ 

J ◦B z0 ( a ) d a , (B18) 

A z = − 1 

H 

∫ 

H 

◦J ◦B t0 ( a , ̃  z ) d a , (B19) 

while the expression in cylindrical polars can be obtained in the usual manor from A R = cos φA x + sin φA y and A φ = −r sin φA x + r cos φA y . 
To e v aluate these we require the follo wing expressions for the partial deri v ati ves of the Cartesian coordinates, 

∂ x 

∂ a 
= ( cos E − e) cos � − 1 − e( e + ae a ) √ 

1 − e 2 
sin E sin � − ae a cos � − a( cos E − e) � a sin � − a� a 

√ 

1 − e 2 sin E cos �, (B20) 

∂ x 

∂ E 

= −a sin E cos � − a 
√ 

1 − e 2 cos E sin �, (B21) 

∂ y 

∂ a 
= 

1 − e( e + ae a ) √ 

1 − e 2 
sin E cos � + ( cos E − e) sin � − ae a sin � − a� a 

√ 

1 − e 2 sin E sin � + a� a ( cos E − e) cos �, (B22) 

∂ y 

∂ E 

= a 
√ 

1 − e 2 cos E cos � − a sin E sin �. (B23) 

For an untwisted disc where the pericentre direction is aligned with the x -axis, these expressions simplify significantly and we arrive at the 
following expressions for A in Cartesian coordinates 

A x = − sin E 

J 

(
ae a 

√ 

1 − e 2 cos E + 

1 − e( e + ae a ) √ 

1 − e 2 
(1 − e cos E) 

)∫ 

J ◦B z0 ( a ) d a , (B24) 

A y = 

1 

J 

(−ae a sin 2 E + ( cos E − e − ae a )(1 − e cos E) 
)∫ 

J ◦B z0 ( a ) d a , (B25) 

A z = − 1 

H 

∫ 

H 

◦J ◦B t0 ( a , ̃  z ) d a , (B26) 

while in cylindrical polars A is given by 

A R = 

sin E 

J 

(
− cos φa e a 

√ 

1 − e 2 cos E − cos φ
a e a √ 

1 − e 2 
(1 − e cos E) − sin φae a sin E − ae a 

√ 

1 − e 2 

)∫ 

J ◦B z0 ( a ) d a , (B27) 

A φ = 

r 

J 

(
sin E sin φae a 

√ 

1 − e 2 cos E + sin φ sin E 

1 − e( e + ae a ) √ 

1 − e 2 
(1 − e cos E) − ae a cos φ sin 2 E + cos φ( cos E − e − ae a )(1 − e cos E) 

)

×
∫ 

J ◦B z0 ( a ) d a , (B28) 

A z = − 1 

H 

∫ 

H 

◦J ◦B t0 ( a , ̃  z ) d a . (B29) 
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