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Abstract

For steel structures exposed to environmental loading, Polycyclic fatigue is one of the main

causes of mechanical failure. Since a linear damage accumulation does not take into account

the loading history, the formulation of a nonlinear accumulation seems to be a particularly

suitable approach for minimizing control and maintenance. A deterministic model that takes

into account the loading history is therefore chosen and a strategy is proposed to introduce

material randomness by Bayesian calibration of the model parameters from random SN-curves.

This model is then applied to the case of a tee joint loaded in fatigue for three different

loads with random material parameters. On this example, the linear accumulation of damage

underestimates the probability of failure compared to the non linear accumulation.
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1. Introduction

A large number of structures must be monitored and inspected to ensure their reliability.

The planning of these inspections has to be optimized from reliability assessment (risk-based

inspection) [1, 2]. Too frequent inspections increase monitoring costs, whereas too long intervals

between inspections can increase repair costs. In-depth knowledge of these structures and their

environment allows to identify their failure modes. Then, the development of numerical tools to

estimate and predict the state of the structures can be used to plan inspection and maintenance

actions.

Fatigue plays a predominant role in the performance of a large number of steel structures

such as aircraft [3, 4], ships [5, 6, 7] or offshore platforms [8, 9]. In addition, these structures are

subject to uncertainties in geometry [10, 11], material [12, 13] and loading [14, 15, 16] due to the

presence of welded joints and environmental conditions. Reliability theory allows accounting

for these uncertainties and there relative effect in structural engineering. The performance

function G(t) then describes the failure mode at time t. Thus, the probability of failure is

Pf = Prob(G(t) ≤ 0). In the case of fatigue, the performance function is usually expressed as

G(t) = DC −D(t), where DC is the critical damage and D(t) is the damage at time t.

There are many approaches to estimate damage in a semi-probabilistic framework [17, 9].

One of the most popular (especially in the industrial field) is the Rainflow counting and SN

(RSN) approach. It consists in four steps: first, an initial study is performed to estimate the

structural stress at the point most likely to fail (hot spot stress) [18]. Second, the signal is

processed to identify and characterize the cycles that constitute it. This amounts to identifying

the n(∆σi) number of cycles of amplitude ∆σi where i ∈ J1; IK. The most common method is

Rainflow counting [19]. Third, each ∆σi value is associated with a number of cycles to failure

N(∆σi). This association is based on the SN-curves defined as N(∆σi) = b∆σi
a, where a and

b are the SN parameters according to a quantile. Fourth, according to the Palmgreen-Miner

formula [20, 21], the total damage is estimated as the sum of the damages caused by the cycles

of amplitude ∆σi such as D =
I∑

i=1

n(∆σi)
N(∆σi)

. Consideration of the loading hazard is then done

by defining ∆σi as random while consideration of the material hazard is done by defining b

as random. The assumption of linear damage accumulation leads to a very cost-effective RSN
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approach. However, it assumes that the loading history (the order of cycles) has no effect on

the damage and can therefore lead to large approximation errors. Several formulations have

been proposed to overcome this problem [17]. However, since they are all based on empirical

studies, their applications remain limited. For this reason, continuous damage approaches that

take into account the loading history [22, 23, 24] are considered. In this paper, we select the

two-scale damage model [25] which is appropriate for polycyclic fatigue of steel structures.

Then, the material parameters of the model are considered as random variables and their

distribution is identified by calibration from random SN-curves. To perform this calibration,

the method proposed in [26] is considered and improved in two aspects: the choice of supports

during initialization is optimized and the identified distributions are conservative. Afterwards,

to observe the effects of loading history, the model is applied on the study case of a welded

joint for three different loads. Finally, the obtained results are compared with those of the

RSN approach to quantify the approximation gaps caused by a linear accumulation of damage.

Moreover a time variant sensitivity analysis is proposed to analyze the role of each basic random

variable during the probabilistic damage propagation.

In Section 2, the two-scale damage (2SD) model of Lemaitre and Doghri is described. In

Section 3, a two-step strategy for identifying the distribution of four random material parame-

ters from SN-curves is proposed. Finally, in Section 4, this new method is applied to a welded

joint and the estimated probabilities of failure are compared with those of the RSN approach.

2. Non-linear damage accumulation in a deterministic context

To account for the loading history in the damage calculation, the 2SD model of Lemaitre

and Doghri [25] is chosen. Indeed, this model is based on the thermodynamics of irreversible

processes and it does not require the counting of cycles. It can be used for a wide range

of loadings, including non periodic loading for which global energetical approaches cannot be

applied [27] and non proportionnal multiaxial loading for which standard approaches such as

critical plane analysis [28] are very expensive. Finally, it is appropriate for the polycyclic

fatigue of steels structures considered in this paper. In the following subsections, its principle

and equations are introduced in a deterministic formalism and then derived for the case of a
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uniaxial tensile mechanical problem.

2.1. Description of the two-scale damage model

To investigate the effects of nonlinear damage accumulation, the 2SD model of Lemaitre

and Doghri is considered. Polycyclic fatigue tests on steel [29, 30] show the presence of localized

cracks at the microscopic scale. Therefore, in [25], a non linear damage model considering a

macroscopic scale and a microscopic scale is developed. At the macroscopic scale, the behavior

is linear elastic. At the microscopic scale, assuming that the damage occurs during plasticity,

the behavior is elastoplastic damaging. The connection between the two scales is then ensured

by a localization relationship where only the macroscopic scale affects the microscopic scale.

For simplicity, the Lin-Taylor relationship [31] is considered:

εµ = ε (1)

Where ε = εe is the macroscopic elastic strain tensor, εµ = εµe + εµp is the microscopic strain

tensor with an elastic part εµe and a plastic part εµp and □µ is the notation for quantities at

the microscopic scale. At the macroscopic scale, the Hooke’s law reads:

σ =

(
E

1− 2ν
PH +

E

1 + ν
PD

)
: ε (2)

Where σ is the Cauchy stress tensor at the macroscopic scale, PH is the hydrostatic projector,

PD is the deviatoric projector, E is the Young modulus, ν is the Poisson’s ratio and A : B

is the double dot product defined by AijklBkl. At the microscopic scale, the Hooke’s law of a

damaging material reads:

σµ = (1−Dµ)

(
E

1− 2ν
PH +

E

1 + ν
PD

)
: εµe (3)

Where σµ is the Cauchy stress tensor at the microscopic scale and Dµ is the damage. To

simplify this expression, the effective stress is introduced σ̃µ = σµ

(1−Dµ)
:

σ̃µ =

(
E

1− 2ν
PH +

E

1 + ν
PD

)
: εµe (4)
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To account for plasticity, a Von Mises yield surface f with linear kinematic hardening Xµ is

used:

f =

√
3

2
∥PD : σ̃µ −Xµ∥ − σµ

y (5)

Where ∥□∥ stands for the L2 norm as ∥x∥ =
√∑

i,j

x2
ij and σµ

y is the yield strength. The

hardening evolution is given by:

dXµ =
2

3
C(1−Dµ)dεµp (6)

Where C is the hardening modulus. The increment of plasticity is defined by:

dpµ =

√
2

3
||dεµp|| (7)

In addition, the model predicts a plasticity threshold pD. When pµ ≥ pD the damage is initiated.

This damage increment can then evolve as follows:

dDµ =

(
Y µ

S

)s

dpµ (8)

Where the elastic energy release rate is Y µ = 1
2
σ̃µ : εµe and the damage parameters are S

and s. Finally, the critical damage DC is defined such as Dµ ∈ [0, DC ]. The case Dµ = DC

represents the coalescence of microscopic cracks into a macroscopic crack. We consider that

rupture occurs only a few cycles after Dµ = DC . As a consequence, we do not model nor

compute the propagation of the macroscopic crack. This assumption is suitable for structures

with low redundancy [26].

2.2. Model formulation in the context of a tensile fatigue problem

A calibration of the material parameters from random SN-curves is performed in Section

3. Knowing that most SN-curves are obtained from tension-compression tests with a constant

stress amplitude centered at zero, the model is applied in this framework. Considering the

equations in Section 2.1 and in the case of a one-dimensional (1D) problem, the following
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formula is obtained:

N̂ =
2C + 3E

6(∆σi − 2σµ
y )
pD +

C(2ES)s(2s+ 1)

3
(
σ̃µ2s+1

i − (2σµ
y − σ̃µ

i )
2s+1

)DC (9)

where N̂ is the estimated number of cycles to failure (Dµ = DC), ∆σi is the imposed stress

amplitude at the macroscopic scale and σ̃µ
i =

C∆σi+3Eσµ
y

2C+3E
is the imposed effective stress at the

microscopic scale. The proof of this formulation is given in Appendix A.

3. Material parameters calibration from SN-curves in a stochastic context

This section details the calibration of the eight material parameters of the 2SD model from

random SN-curves [18]. The SN-curves of a tubular joint are considered here. Since these

curves are probabilistic, the calibration consists in identifying the distribution of the material

parameters: E, ν, s, σµ
y , C, S, pD, DC from the distribution of SN-curves. According to the

literature [32], for steel studies the coefficients of variation of E and ν are smaller than 5%.

Thus E and ν are considered deterministic where E = 2.1×1011 Pa and ν = 0.30. According

to Lemaitre, the most appropriate value for the parameter s is 1 [33, 26]. Moreover, the

yield strength σµ
y is easily identified from SN-curves since it corresponds to the amplitude at

which the fatigue limit is reached, i.e. σµ
y = 41.703 MPa for the SN-curves used in this paper

(Figure 1). For these reasons, the parameters (E, ν, s, σµ
y ) are considered deterministic and

Z = (C, S, pD, DC) random. The following subsections present the random SN-curves and the

Bayesian calibration techniques. Finally, a two step strategy is proposed to select the supports

of the random variables and to identify their distribution. The aim of these two steps is to

avoid high numerical costs while obtaining results with high accuracy.

3.1. Description of random SN-curves

Det Norske Veritas (DNV) [18] provides a set of coefficients to model random SN-curves with

a bilinear approximation in log-log coordinates. These coefficients come from pratical fatigue

tests and are valid for fixed geometry and material properties. The distribution of N for a

stress range ∆σi in the case of exposition to sea water with cathodic protection is computed
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following equation:

log10(N) =

 alog10(∆σi) + log10(b) if ∆σi ≥ 2σµ
y

+∞ otherwise
(10)

Where a is deterministic and log10(b) is defined as the realization of log10(B) ∼ N (E,V)

(normal distribution of expectation E and variance V.). Each SN-curve N(∆σi) is obtained

for one realization of B. In this probabilistic format, a SN-curve represents the set of stress

amplitudes ∆σi as function of a quantile of N .

In DNV [18], several classes are defined to represent the variety of welded joints and the

exploitation conditions (with or without cathodic protection, within sea water or not...). For

example, considering that asymptotic fatigue limit is reached for 106 cycles, the class T cor-

responds to a tubular joint and the class D is used for computation at a hot spot. The value

of a and the distribution of log10(b) are identical for these two classes in the case of exposition

to sea water with cathodic protection. In Section 4, the study case is a T-joint for which we

do the computation at one hot spot. The deterministic value for the slope is a = −3. The

recommanded value for the variance V is 0.22 in DNV and 0.2752 in [34]. In this paper, we

choose V = 0.272 in order to represent the variability of the material. Finally, instead of giving

the expectation E, we give the value of log10(b) corresponding to the quantile 2.3% (Q2.3). This

value is log10(b) = 11.764. Knowing that log10(B) follows a distribution N(E,V = 2.72), it is

possible to deduce SN-curves corresponding to other quantiles as shown in Figure 1 for 5% (Q5)

and 25% (Q25). In this Figure, the distribution of N(∆σi) is plotted for each of the 10 stress

amplitudes ∆σi from the known analytical distribution given in Equation (10). We also plot

in Figure 2 the quantiles for different values of the variance V.
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Figure 1: SN-curves for different probabilities of failure
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Figure 2: SN-curves for different quantiles and different variances V

3.2. Bayesian Calibration by MCMC

As defined in [35, 36, 37], a Bayesian calibration aims at updating the distribution of one

or more random variables Z from a set of observed measurements and a prior knowledge about

the distribution. Equation (9) enables to write N̂ as a function of Z and ∆σi. Since there is no

parametric distribution as a solution to this problem, Z is estimated by minimizing an error

according to a metric and an optimization function. Thus, an error term ξ is expressed such

that:

N(∆σi) = N̂(∆σi,Z) + ξ (11)
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It is usually defined as ξ ∼ N (0,Vξ) and independent of Z [38]. Since the variance Vξ is

unknown, it must be estimated. Therefore, it is considered as random and is added to the

vector of random variables to be identified (Z,Vξ). In this context, Bayes’ theorem allows to

calculate the posterior distribution fZ,Vξ
(z,Vξ) from the prior distribution pZ,Vξ

(z,Vξ):

fZ,Vξ
(z,Vξ) = pZ,Vξ

(z,Vξ)L(z, N(∆σi))c (12)

Where L(z, N(∆σi)) is the likelihood function of the observations and c is a normalization

factor (also called marginal likelihood). Due to the stochastic dimension of the problem, the

computation of c is numerically extremely expensive. However, since it is a normalization

factor, its value can be neglected in a first step. In a second step, c is computed at a lower

cost by normalizing the posterior probability densities. This is the principle of numerous

numerical methods such as Variational Bayesian Inference [39], Transport Maps [40] and Monte

Carlo Markov Chain (MCMC) [41]. In [26], the authors apply the latter with the Metropolis

Hastings algorithm [42, 43]. In presence of very limited previous studies or knowledge, the prior

distributions are considered uniform and the likelihood function is defined as follows:
L(z, N(∆σi)) =

I∏
i=1

φξ (ξi)

ξi = min
k∈J1;KK

|log10(Nk(∆σi))− log10(N̂(∆σi, z))|
(13)

where I is the number of observed stress amplitudes, K is the number of realizations at each

stress amplitude and φξ is the density probability function of ξ. For each stress amplitude ∆σi,

K realizations Nk(∆σi) are obtained using the distribution defined in Equation (10). Note

that the SN-curves give the number of cycles to failure Nk(∆σi), while the two-scale damage

model (9) gives the number of cycles leading to the formation of a crack at the macroscopic

scale Dµ = DC . Thus, identifying the material parameter distribution of the two-scale damage

model using the SN-curves assumes that fatigue damage, when it reaches DC , leads to failure

after few additional cycles.

MCMC calibration methods rely on a key principle: the supports of the distribution should

be sufficiently wide to embrace the potential observed realization of each random variable and
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sufficiently narrow to avoid high computational costs due to unrealistic realizations. This is

challenging for outputs with high variabilities. For this reason, from expert judgment, the

authors of [26] had to reduce the size of the supports to a reasonable one before performing the

calibration. In the next subsections, this method is improved in two ways: first, by proposing a

strategy to justify the choice of supports and second, by adding a conservative criterion during

the identification of probabilistic distributions.

3.3. From wide to improved supports

The purpose of this subsection is to select improved supports of prior distributions to avoid

high computational costs during the identification of distributions. In [22, 44, 32], several sets

of parameters for steel structures are proposed. Using the minimum and maximum values

obtained for each of the parameters, supports are provided for each of the random variables

Zj ∈ [ZW
minj

, ZW
maxj

] for j ∈ J1, 4K such as:

Z =



C

S

DC

pD


ZW

min =



2×103

10−3

0

0



(MPa)

(MPa)
ZW

max =



3×106

7

1

10



(MPa)

(MPa)

However, these supports are not consistent for a given material because they mix identification

on different type of steels. As a consequence, the objective is to provide improved supports

[Z∗
minj

, Z∗
maxj

] included in the wide supports [ZW
minj

, ZW
maxj

] (where W stands for wide). Their

boundaries are determined such that the difference between the observed and estimated SN-

curves for Q2.3 is minimal. This amounts to solving the following problem.


(Z∗

min,Z
∗
max) = argmin

(Zminj ,Zmaxj )∈Ω

(∣∣∣a−â(Z,Zmin,Zmax)
a

∣∣∣+ ∣∣∣ b−b̂(Z,Zmin,Zmax)
b

∣∣∣)
Ω = {(Zminj

, Zmaxj
) ∈ [ZW

minj
, ZW

maxj
]× [ZW

minj
, ZW

maxj
] | ∀j ∈ J1, 4K, Zminj

< Zmaxj
}

(14)

Where (a; log10(b)) = (−3; 11.764) as precised in subsection 3.1 and (â, b̂) are obtained by linear

regression from the 2.3% quantile of N̂(∆σi,Z).

Knowing that a and log10(b) are the slope and y-intercept of the SN-curve, respectively,
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One-At-a-Time [45] elastic sensitivity analysis is performed to study the effect of each random

variables on (â, b̂). Figure 3 shows the number of cycles computed with (9) for I = 10 and by

using three values of Zj: ZW
minj

, ZW
maxj

and ZW
meanj

= 1
2
(ZW

minj
+ ZW

maxj
). For each subfigure, the

SN-curves with the same markers are obtained by varying the same parameter and fixing the

others. Conversely, the SN-curves with the same type of lines are obtained by fixing the same

parameter and varying the others. In Figure 3a, for a low value of C, C mainly affects the

slope of the SN-curve, while for high value it mainly affects the y-intercept. In Figure 3c, for

high values of (C, S,DC), pD only affects the slope, while for low values it mainly affects the

y-intercept. In Figures 3b and 3d, regardless the values of (C; pD), S and DC only affect the

y-intercept. As a result, two types of random variables are distinguished: those that affect the

y-intercept (C,DC , S) and those that affect the slope (C, pD). Based on this observation, the

optimization consists in truncating the distributions of Z by reducing the size of its supports.

As the truncation on the supports of (C, pD) affects â and as the truncation on the supports

(C,DC , S) affects b̂, (14) writes:



(Z∗
min,Z

∗
max) = argmin

(Zminj ,Zmaxj )∈Ω
(θ + γ)

θ =
∣∣∣a−â(Z,Zmin1 ,Zmax1 ,Zmin4 ,Zmax4 )

a

∣∣∣
γ =

∣∣∣ b−b̂(Z,Zmin1 ,Zmax1 ,Zmin2 ,Zmax2 ,Zmin3 ,Zmax3 )

b

∣∣∣
Ω = {(Zminj

, Zmaxj
) ∈ [ZW

minj
, ZW

maxj
]× [ZW

minj
, ZW

maxj
] | ∀j ∈ J1, 4K, Zminj

< Zmaxj
}

(15)

Finally, the values of (I,K) must be determined. To achieve a confidence level of 99% in

the description of N(∆σi), K is set equal to 2×104. Then, the larger I, the better stresses

are discretized and the longer the computation time. A compromise is found with I = 10 for

∆σ ∈ [93.4, 493.4] MPa. For (I,K) = (10, 2×104), the optimization is performed by solving

(15). The following results are obtained.



C ∈ [2×106; 3×106] (MPa)

S ∈ [10−3; 1] (MPa)

DC ∈ [0; 0.5]

pD ∈ [0; 1]

(16)
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Figure 3: Elastic sensitivity analysis of Z

3.4. Identification of the probabilistic distributions with a conservative criterion

The purpose of this subsection is to improve the identification method proposed in [26]

to achieve a better fitting while ensuring conservative SN-curves: the quantile of SN-curves

built with 2SD model should be less than the Q2.3 of the reference whatever the stress. Since

MCMC is not a deterministic method, it is possible to exploit its variability in output. L×M

identifications of Z are performed, where L is the number of resampling observed 2×104 data

sets Nk(∆σi) and M is the number of identified distributions by parameters performed for each

data set. As a consequence, L ×M estimated SN-curves are built for Q2.3. Finally, the most

accurate identification of Z is the one that minimizes the error between observed and estimated

SN-curves. For l ∈ L, the observations affect the identification of Z and hence N̂l,m. The

error βl,m is the sum over all the stress amplitudes of the relative error between the number of

cycles leading to rupture N (see Equation (10)) and the estimated number of cycles leading to
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rupture N̂ (see Equation (9)). It is written:

βl,m =
I∑

i=1

|b∆σi
a − N̂l,m(∆σi,Z)|

b∆σi
a

(17)

It is also desirable to obtain optimal and conservative set (l∗,m∗) that underestimate the number

of cycles to failure. The problem writes:


(l∗,m∗) = argmin

(l,m)∈U
βl,m

U = {(l,m) ∈ J1;LK × J1;MK} ∩ {(l,m) ∈ N∗2 | ∀i ∈ J1; IK, b∆σi
a − N̂l,m(∆σi,Z) ≥ 0}

(18)

Finally, the values of (L,M) must be determined. MCMC computational time is driven by

several factors: the cost of the model, the width of the distribution supports, the shape of the

prior distributions, the correlation between the variables and the number of random variables.

The model is analytical and the support of the distributions is selected as narrow as possible.

Therefore, these two factors reduce numerical costs. However, four random variables are consid-

ered, the prior distributions are chosen uniform (which is the less informative distribution) and

it is very difficult to assume correlation between the random variables. Therefore, these three

factors increase numerical costs and lead to slow convergence: for (L,M) = (1, 1) the average

time for an identification of 104 realizations is about 45 minutes with around 2.5× 105 calls to

the model. Using the MCMC algorithm, two independent convergence studies are performed.

In the first one, M = 1 is fixed and L varies on the interval J1; 20K. In the second one, L = 1

is fixed and M varies on the interval J1; 20K. The maximum computation time is fixed to 3.5

days (5040 minutes),then L×M must be less than or equal to 112. The problem writes:


(L∗,M∗) = argmin

(L,M)∈V

(
M∑

m=1

β1,m +
L∑
l=1

βl,1

)
V = {(L,M) ∈ J1; 20K × J1; 20K} ∩ {(L,M) ∈ N∗2 | L×M ≤ 112}

(19)

After the computation of the quantity
(

M∑
m=1

β1,m +
L∑
l=1

βl,1

)
for all couples (L,M) ∈ V , the

optimal couple (L∗,M∗) = (10, 10) is obtained. This optimization is carried out on a grid to
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avoid any local minimum solution. The MCMC output variability domain and the optimal

SN-curves with and without this conservative criterion are plotted in Figure 4. Each point

represents the number of cycles to failure estimated for a given stress amplitude. For each

curve, the estimated points are aligned. This property is not imposed during MCMC and

confirms the idea that the size of the populations generated by MCMC is large enough (for

evaluating a 2.3% quantile) and that the 2SD model suits the properties of an SN-Curve. Figure

4 also shows that the optimal non conservative set overestimates the number of cycles to failure

for ∆σi ≥ 257.6 MPa. To thoroughly illustrate the identification, in Figure 5, we give both

the Q2.3 quantile and the distributions of number of cycles to failure generated from the SN-

curve using Equation (10) (observations) and the number of cycles to failure obtained after

the Bayesian calibration with the continuous damage model. The relative errors between the

estimated and observed number of cycles to failure are listed in Table 1. The signs confirm

the previous remark. Note that the errors are very high for ∆σ1 = 93.40MPa. This is justified

by the shape of the SN-curves obtained with the 2SD model. Indeed, there curves are of class

C1 unlike the observed SN-curves which are bilinear, as illustrated in Figure 6. Thus, for

loads with stress amplitude close to the asymptotic fatigue limit, the two approaches are no

longer comparable. However, there is no consequence since the 2SD model is not dedicated to

gigacyclic fatigue, but only to polycyclic fatigue.

Figure 4: SN-curves with an without conservative criterion
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Figure 5: SN-curves (2.3% quantile) and distributions for observations and optimal and conservative set
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Figure 6: Q2.3 quantile for SN-curve (oberserved) and identified
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∆σi

(MPa)

Relative error for

optimal set

Relative error for

optimal and conservative set

93.40 −66.77 −50.34

137.8 9.62 18.33

182.3 5.42 14.29

226.7 3.55 12.50

271.2 −1.46 7.81

315.6 −1.36 6.91

360.1 −2.02 6.46

404.5 −5.09 3.43

449.0 −4.14 3.85

493.4 −5.88 1.86

Table 1: Relative error (%) between estimated and observed number of cycles to failure for Q2.3%

Statistics of Z and their coefficient of variation are given in Tables 2 and 3 for the set

(l∗,m∗). The only non-negligible correlation coefficient is R(S,DC) = −0.260 meaning that

(S,DC) are fairly linearly correlated. Since these coefficients provide limited information, they

are completed by studying the joint distributions plotted in Figure 7. No significant nonlinear

correlation is observed. The random variables C and pD are therefore considered independent

and S and DC correlated. Moreover, the distributions of C and pD are close to uniform

distributions. Distributions of the parameters being identified, 2SD model and RSN approach

are compared in Section 4.

C (MPa) S (MPa) DC pD

Mean 2.507×106 0.612 0.303 0.554

Standard deviation 2.900×105 0.2313 0.116 0.260

Table 2: Means and standard deviations of Z
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R C (MPa) S (MPa) DC pD

C (MPa) 1 −0.058 −0.039 0.003

S (MPa) −0.058 1 −0.260 −0.022

DC −0.039 −0.260 1 −0.019

pD 0.003 −0.022 −0.019 1

Table 3: Bravais-Pearson correlation coefficients of Z

Figure 7: Joint and marginal distributions of Z

4. Comparison of damage estimated by linear and non-linear accumulation in a

stochastic context

To compare the 2SD model with the RSN approach, the case of a cantilever plate welded

to a rigid plate and loaded in bending is considered. It is representative of the loading of steel

17



bridges, ships and offshore studies. Three loads that result in the same damage according to

the RSN approach and represent three time series are then generated. After propagating the

material uncertainties, the final damage distribution is analyzed for each load and a sensitivity

analysis of the damage with respect to Z is performed. Finally, the three probabilities of failure

are estimated and compared with those from the RSN approach.

4.1. Study case: modeling of a welded joint

As illustrated in Figure 8, two rectangular plates P1 and P2 in the plane Oxy are considered

and welded to form a T-joint. Since this type of structure is most sensitive to bending, a

distributed load along y is applied to the boundary of P2 on the opposite side of the weld. To

simplify the study, P1 is considered infinitely rigid and stress concentrations due to welding are

not accounted for. Finally, P2 is isolated and modeled by a two-dimensions (2D) rectangular

structure clamped at x = 0 and loaded on the opposite side. For the 2SD model, at the

macroscopic scale, the behavior is assumed to be linear elastic isotropic, where E = 2.1×1011

Pa and ν = 0.30. At the microscopic scale, the behavior is assumed to be isotropic elastoplastic

damaging, where E = 2.1×1011 Pa, ν = 0.30, s = 1 and σµ
y = 41.703 MPa are the deterministic

microscopic parameters and Z = (C, S, pD, DC) are the stochastic microscopic parameters

whose distributions were identified in subsection 3.4. The structure is meshed with quadrilateral

elements and only one element is considered damageable. Since cracks often occur in the

neighborhood of the filet weld, the hot spot is located near the clamping. The damageable

element is therefore positioned in this area (black finite element in Figure 8).

 

𝑃ଵ           𝑃ଶ         

𝑂 

𝐵 

𝐴 

𝐹(𝑡) 
𝑦 

𝑥 

Figure 8: Modeling, boundary conditions and mesh of P2
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The objective of this section is to analyze the effect of the load history by comparing the

2SD model and the RSN approach with random material properties. Three loads Fq(t) for

q ∈ {1, 2, 3} with increased complexity are defined according to two criteria:

• Equivalent number of cycles n∗

• Equivalent damage D∗ according to the RSN approach

Since the defined problem is driven by an imposed load Fq(t) and the damage calculation

is driven by the local stress σq(x0, y0, t) in the damageable element centered in (x0, y0), a

relationship must be defined between Fq(t) and σq(x0, y0, t). When the 2SD model is applied

in 2D, the local stress is written:

σq(x0, y0, t) =

σxxq (x0, y0, t) σxyq (x0, y0, t)

σxyq (x0, y0, t) σyyq (x0, y0, t)

 (20)

Parameters of the 2SD model being identified from a 1D test we first check that we are

close to this configuration. According to location of the damageable element and boundary

conditions, the damageable element is mainly stressed in tension-compression. The effects of

σyyq (x0, y0, t) and σxyq (x0, y0, t) being weak, the von Mises stress (21) will be used for both

the RSN and the 2SD model whose parameters are the same in all the direction (isotropy of

damage model).

σq(x0, y0, t) =

√
3

2

∥∥PD : σq(x0, y0, t)
∥∥ (21)

Since at the macroscopic scale the behavior is linear elastic, σq(x0, y0, t) is written:

σq(x0, y0, t) = α(x0, y0)Fq(t) (22)

Where α(x0, y0) only depends on the geometry. Finally, all that remains is to define σq(x0, y0, t)

for q ∈ {1, 2, 3} as function of D∗ and n∗. The most simple stress signal σ1(x0, y0, t) =

α(x0, y0)F1(t) is a sinus with a constant amplitude stress ∆σ1,1 and n(∆σ1,1) cycles. To avoid

any effect of the mean stress, σ1(x0, y0, t) is centered in 0. The associated final damage is then
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written D1 =
n(∆σ1,1)

N(∆σ1,1)
. The period T1 and the stress amplitude ∆σ1,1 are chosen such as:


n(∆σ1,1)

N(∆σ1,1)
= D∗

n(∆σ1,1) = n∗
(23)

According to (10) and knowing that the considered time domain is t ∈ [t0; tend], the system

becomes:  ∆σ1,1 =
(

n∗

bD∗

) 1
a

T1 = tend

n∗

(24)

The second signal σ2(x0, y0, t) = α(x0, y0)F2(t) is a realization of a Gaussian process with

Gaussian correlation. Its parameters are the variance V2, expected value E2 and correlation

length L2. As for σ1(t), E2 is set equal to zero. Knowing that V2 affects ∆σi,2 while L2 affects

n(∆σi,2), L2 is first computed with (25) by setting a variance V = 1 arbitrarily then V2 is

computed with (26).

L2 = argmin
L∈R+

∣∣∣∣∣n∗ −
I∑

i=1

n (∆σi,2(V),L)

∣∣∣∣∣ (25)

V2 = argmin
V∈R+

∣∣∣∣∣D∗ −
I∑

i=1

n (∆σi,2(V),L2)

N(∆σi,2(V))

∣∣∣∣∣ (26)

The last signal, σ3(x0, y0, t) = αxx(x0, y0)F3(t) is a realization of a Gaussian process with

Matern correlation. It allows the introduction of small irregularities (which could represent

measurement uncertainties, for example) compared to σ2(x0, y0, t). Its parameters are assumed

to be identical to those used for σ2(x0, y0, t). The σ2(x0, y0, t) and σ3(x0, y0, t) realizations

of the random field were generated using the Uqlab framework [46] through Karhunen Loève

expansion [47]. With (n∗, D∗) = (104, 1) and (t0, tend) = (0; 1.06×104), the parameters obtained

for each signal are the following:

• For σ1(t), ∆σ1,1 = 385 MPa and T1 = 1.04

• For σ2(t), V2 = 2.59×104 MPa2 and L2 = 0.30
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• For σ3(t), V3 = 2.59×104 MPa2 and L3 = 0.30

Finally, truncated series of the signals are shown in Figure 9 where t ∈ [4958.6; 4969.5]. An

example with two signals composed of two amplitudes of sinus is developed in Appendix B to

illustrate the ability of the 2SD model to take into account the loading history.

4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969

t

-600

-400

-200
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200
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) 
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)

1
(t) where 

1,1
 = 385 MPa and T

1
=1.04

2
(t) where V

2
 = 2.59 10

4
 and L

2
 = 0.30

3
(t) where V

3
 = 2.59 10

4
 and L

3
 = 0.30

Figure 9: Truncated series of the three signals where t ∈ [4958.6; 4969.5] ⊂ [t0; tend]

4.2. Propagation of material uncertainty

Two strategies to compute the fatigue damage are compared: the RSN approach and the 2SD

model. To propagate the material uncertainty, a sample P of 5000 realizations is considered.

It is sufficient for evaluating a 2.3% quantile.

4.2.1. Propagation of material uncertainty with the Rainflow counting and SN approach

In the case of the RSN approach, the material uncertainty comes from the random variable

B in (10). A population of P realizations of B are randomly generated by latin hypercube

sampling and for each of them, the final damage is calculated such as:

D(tend) =
I∑

i=1

n(∆σi)

b∆σi
a

(27)

Figure 10 plots the final damage distributions D(tend). Regardless of the applied stress, the

distribution of the final damage is equivalent to a lognormal distribution. Moreover, the damage

distributions do not have a finite upper bound. This is a consequence of the damage formulation,
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which does not take into account the critical damage. Finally and as expected, the final damage

distributions are equivalent for the first two loadings.0 0.5
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Figure 10: Probability densities of Dµ(tend) computed with the RSN approach

4.2.2. Propagation of material uncertainty with the two-scale damage model

Equations (1) to (8) are discretized with a time step ∆t = 0.005 and a radial return algorithm

is used. A sample of P realizations of Z is then randomly generated by latin hypercube

sampling and rejection sampling (to preserve the correlation between the random variables)

from the population identified in subsection 3.4. For each realization, the damage trajectory is

computed using the 2SD model. In the special case where the damage reaches the realization of

the critical damage before tend, the final damage is therefore set equal to the critical damage and

the computation is stopped. This method is applied to the structure defined in Figure 8 for each

of the three signals. In Figure 11, the final damage distributions Dµ(tend) are plotted for each of

the signals. Regardless of the signals, the distributions have the same shape: asymmetric and

defined on the same support as DC , i.e. [0; 0.5]. Similarly, the expectations for the final damage

are the same regardless of the load: 0.1123 ± 0.025. Thus, this distributions differ mainly in

their variance and distribution tail. For example, the 8th decile is 0.88 for σ1(x0, y0, t), 0.87 for

σ2(x0, y0, t) and 0.80 for σ3(x0, y0, t).

Moreover, distributions of Dµ(tend) and DC are very different. This means that DC is not

the only random variable acting on Dµ(tend). This is the reason why, the influence of the other

random variables is examined by setting up Z̄ as the vector of material random variables that

cause final damage greater than or equal to the critical damage; in other words, the vector

of random variables leading to failure. In Figure 12, distributions of Z and Z̄ are plotted as

a function of applied load. The distributions of Z are normalized, while the distributions of
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Z̄ are plotted such that the proportionality relation between the number of failed realizations

obtained and the P realizations is respected. Regardless of the load, distributions of C̄ and C

are approximately the same. On the other hand, distributions of (S̄, D̄C , p̄D) and (S,DC , pD)

are very different. For low values of S and DC almost all realizations lead to failure. This is

justified by taking the equations of the 2SD model presented in subsection 2.1:

• the lower S, the higher dDµ(t)

• the lower DC , the sooner the failure

• the lower pD, the sooner the damage is initiated
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Figure 11: Probability densities of Dµ(tend) (computed with the 2SD model) and DC
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Figure 12: Comparison of probability densities between Z and Z̄

4.3. Fatigue damage sensitivity analysis

To better understand how the 2SD model behaves with respect to the random variables,

a sensitivity analysis of the damage is performed. Many approaches exist [45]. Three criteria

have been formulated to select the most appropriate: it must be global (by taking into account

the whole domain of definition of random variables), able to take into account the distribution

of the parameters as well as their correlation and be robust. Since Borgonovo’s method [48]

meets these criteria, this method is applied with the Uqlab framework [49]. The time variant

sensitivity index δ(Dµ(t), Zj) of Dµ(t) with respect of Zj is then written:

δ(Dµ(t), Zj) =
1

2

∫ Zjmax

Zjmin

fZj
(zj)

∫ DCmax

DCmin

∣∣fDµ(t)(D
µ(t))− fDµ(t)|Zj

(Dµ(t)|zj)
∣∣ dDµ(t)dzj (28)
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where fZj
and fDµ(t) are the probability distribution functions of Zj and Dµ(t), respectively.

Figure 13 shows the sensitivities of the damage with respect to the random variables over time.

The regularity of the trend suggests that the size of the population and the estimation technique

of the indexes are suitable. These results can be explained by considering the equations of the

model:

• DC is used only when Dµ(t) = DC . As time progresses, the number of trajectories that

have reached DC increases. It is therefore consistent that δ(Dµ(t), DC) starts from zero

and then increases with time.

• pD is used only when the damage is initiated, i.e. pµ(t) = pD. In a first step, as the

number of trajectories reaches pD, δ(Dµ(t), pD) increases with time. In a second step,

the number of trajectories that reach pD is not large enough compared to the number

of trajectories that have already exceeded it and δ(Dµ(t), pD) starts to decrease until it

reaches zero.

• C is used in the computation of the hardening:

Dµ(t) = 1−
√

3

2

||dXµ(t)||
Cdpµ(t)

(29)

By definition, Dµ(t) increases with time. Therefore, the ratio ||dXµ(t)||
dpµ(t)

decreases with

time. Thus, δ(Dµ(t), C) increases until the onset of damage and once the majority of

trajectories reach pD, the ratio ||dXµ(t)||
dpµ(t)

causes a decrease in the weight of C, making

δ(Dµ(t), C) decrease.

• S is used in the computation of the damage:

dDµ(t) =
Y µ(t)

S
dpµ(t). (30)

To understand the evolution of δ(Dµ(t), S), it is necessary to study the behavior of

Y µ(t)dpµ(t) with time. Since (30) only allows to conclude that this term is positive,

a numerical study was therefore performed. As shown Figure 14, the product Y µ(t)dpµ(t)

oscillates with time and that its envelope curve increases. δ(Dµ(t), S) will increase rapidly
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at first when the damage initiates. Then its speed will decrease because it is no longer

due to the onset of damage, but to the term Y µ(t)dpµ(t).

The evolution of the sensitivity indexes is similar regardless of the load. The main difference

is the time at which the intersection between δ(Dµ, DC) and δ(Dµ, pD) occurs. In fact, for

σ1(x0, y0, t) it occurs at t1 = 6 676s, for σ3(x0, y0, t) it occurs at t3 = 9 382s, and for σ2(x0, y0, t)

it does not occur in the considered time interval. This intersection happens when the number

of trajectories where pµ = pD is equal to the number of trajectories where Dµ = DC . Note that

t1 ≪ t3 < tend. σ1(x0, y0, t) and σ2(x0, y0, t) were defined to cause the same final damage for the

same number of cycles according to the RSN approach. Damage initiates later when the signal

has a variable amplitude (compared to constant amplitude). Then σ3(x0, y0, t) was defined as

equivalent to σ2(x0, y0, t) with an additional noise. Thus, for the same considered time interval,

σ3(x0, y0, t) is composed of a larger number of cycles than σ2(x0, y0, t). Therefore, the damage

is initiated earlier for σ3(x0, y0, t).
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Figure 13: Sensitivity analysis of Dµ with respect to Z: δ(Dµ,Z)
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Figure 14: First Loading, Y µ(t)dpµ(t) as function of time

where C = 2.507×106 MPa, S = 0.612 MPa, DC = 0.303 and pD = 0.554

To conclude, this sensitivity analysis shows that, regardless of the load, the damage is

initially mostly sensitive to pD and then to DC .

4.4. Comparison of the probabilities of failure between the RSN approach and the 2SD model

The instantaneous probabilities of failure are defined as follows, according to the definition

of the damage:

• PRSN
fq

(t) = Prob (1−D(t) ≤ 0) where the dammage is computed with (27)

• P 2SD
fq

(t) = Prob (DC −Dµ(t) ≤ 0) where the dammage is computed with (1) to (8)

The final probabilities of failure obtained for each of the three loads are reported in the Table 5.

First, as expected, the probabilities of failure obtained with the RSN approach are equivalent

for the first two loads:

PRSN
f1

(tend) ≃ PRSN
f2

(tend) ≃ 2.3% (31)

Second, the difference obtained for 2SD model and RSN approach is about 1 point. This

corresponds to the error made in the calibration of the material parameters in Section 3. Third,

the different results between the two methods for loads 2 and 3 illustrate the effect of loading
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history on the final damage. We observed that:

P 2SD
f2

(tend) ≃ 2PRSN
f2

(tend) (32)

P 2SD
f3

(tend) ≃ 3PRSN
f3

(tend) (33)

It is clear these differences are significant and highlight the limits of a linear accumulation of

damage.

First loading Second loading Third loading

2SD model 166 206 662

RSN approach 109 109 263

Table 4: Number of failed realizations

First loading Second loading Third loading

2SD model 3.5 4.3 13.1

RSN approach 2.3 2.3 5.5

Table 5: Probability of failure Pfq (tend) (%)

5. Conclusion and outlook

The planning of maintenance operations is a challenge. Accurate numerical tools able to

quantify the state of a structure are a great help for decision making. However, to develop such

objects, it is necessary to formulate as few approximations as possible. In the context of steel

structures subjected to polycyclic fatigue, this is precisely the objective of the proposed work.

By selecting a continuous damage model and calibrating its material parameters from random

SN-curves, a method accounting for both loading history and material hazard is proposed.

First, a Bayesian calibration of the uncertain material parameters is developed and carried

out in three steps: selection of uncertain parameters, choice of prior distributions and Bayesian

calibration. The main contributions are the implementation of a strategy for selecting prior

supports, the exploitation of variability in MCMC output and the achievement of results that

guaranty conservative SN-curves. The Bayesian calibration enables to provide distributions for
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the four material parameters representing material randomness where C and pD are independent

and are following a uniform law while S and DC are correlated and are following a lognormal

law.

Second, the two scale continuous damage model enables to take into account the history of

damage evolution and does not require cycles counting step. This model is compared to the

RSN approach using three loadings on a T-joint. For a signal with a constant stress amplitude,

RSN approach and 2SD model give equivalent probability of failure. For complex signals (with

random stress amplitudes), the RSN approach leads to an underestimation of the probability of

failure by a factor 2 and 3. This paper thus quantifies, in a stochastic context, the interest for

a non-linear damage assessment and opens its use for structural health monitoring objectives

where time histories are measured.

However, the proposed method has a major drawback compared to the RSN approach:

the extremely high numerical cost. Future work will therefore focus on the development of

strategies to keep the numerical cost as low as possible. In particular, the implementation

of a metamodel adapted to continuous damage models for time-dependent reliability will be

investigated. The idea is to metamodel a control variable selected from the sensitivity analyses

performed in this paper. As shown by the sensitivity analysis of damage as a function of

random material variables, loading does not affect the sensitivity and thus the choice of control

variable. The development of this metamodel should be a key element to account for more

complex structures, a larger number of damageable elements, and geometric variability. It is

mandatory for using this method inside digital twins for updating damage from monitoring.

Appendix A. Application of the 2SD model in 1D with a constant stress amplitude

A sinusoidal signal of constant amplitude ∆σ is considered. Figure A.15 represents the

evolution of macroscopic (red) and microscopic (black) stresses during a loading cycle OABCD.
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Figure A.15: Stress-strain diagram of the 2SD model during a loading cycle OABCD, [26]

Before damage initiation, with ε = εµ and εµ = εµe + εµp, the microscopic plastic strain

writes:

εµp = ε− εµe (A.1)

With Hooke’s law Eε = σ at the macroscopic scale and Eεµe = σ̃µ at the microscopic, the

previous expression becomes:

Eεµp = σ − σ̃µ (A.2)

In addition, during the OA transformation σ̃µ −Xµ > 0, the yield surface where is written:

f = |σ̃µ −Xµ| − σµ
y = 0 ⇒ Xµ = σ̃µ − σµ

y (A.3)

Because the initial damage is 0, σ̃µ = σµ so the previous expression becomes:

Xµ = σµ − σµ
y (A.4)

From the linear kinematic hardening formulation and (A.4), the microscopic plastic strain is
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expressed such that:

dXµ =
2

3
Cdεµp ⇒ εµp =

3

2C
(σµ − σµ

y ) (A.5)

Thus, with (A.2) and (A.5), the microscopic stress writes:

σµ =
2Cσ + 3Eσµ

y

2C + 3E
(A.6)

And with (A.4) and (A.6), the linear kinematic hardening reads:

Xµ =
2C(σ − σµ

y )

2C + 3E
(A.7)

Moreover since a cycle corresponds to a microscopic plastic accumulation ∆pµ = 4εµp, with

(A.5) the previous equation becomes:

∆pµ =
12(σ − σµ

y )

2C + 3E
(A.8)

Finally, the number of cycles ND necessary to initiate the damage is:

ND∆pµ = pD (A.9)

ND =
2C + 3E

12(σ − σµ
y )
pD (A.10)

According to the definition of the release rate of elastic energy and Hook’s law, Y µ is written:

Y µ =
1

2
σ̃µεµe (A.11)

Y µ =
σ̃µ2

2E
(A.12)

With (A.3), the increment of hardening is formulated dXµ = dσ̃µ. Thus, according to the

equation (A.5), the increment of microscopic plastic strain is expressed:

dεµp =
3

2C
dσ̃µ (A.13)
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From the definition of the damage and the two previous equations, the damage increment is

written:

dDµ =

(
Y µ

S

)s

dpµ (A.14)

dDµ =

(
σ̃µ2

2ES

)s
3

2C
|dσ̃µ| (A.15)

The damage associated to one cycle is :

∆Dµ =

∫
OABCD

dDµ (A.16)

∆Dµ =
3

2C(2ES)s

∫
OABCD

σ̃µ2s |dσ̃µ| (A.17)

∆Dµ =
3

C(2ES)s

∫
DOA

σ̃µ2s

dσ̃µ (A.18)

Since in A, σ̃µ
A = σ̃µ and in D, σ̃µ

A = σµ
y − (σ̃µ

A−σµ
y ) = 2σµ

y − σ̃µ then the bounds of the integrals

are written:

∆Dµ =
3

C(2ES)s

∫ σ̃µ

2σµ
y−σ̃µ

σ̃µ2s

dσ̃µ (A.19)

∆Dµ =
3
(
σ̃µ2s+1 − (2σµ

y − σ̃µ)2s+1
)

C(2ES)s(2s+ 1)
(A.20)

Since dN∆Dµ = dDµ, the formulation of the number of cycles to failure is:

dN =
C(2ES)s(2s+ 1)

3 (σ̃µ2s+1 − (2σµ
y − σ̃µ)2s+1)

dDµ (A.21)∫ N

ND

dN =
C(2ES)s(2s+ 1)

3 (σ̃µ2s+1 − (2σµ
y − σ̃µ)2s+1)

∫ DC

0

dDµ (A.22)

N = ND +
C(2ES)s(2s+ 1)

3 (σ̃µ2s+1 − (2σµ
y − σ̃µ)2s+1)

DC (A.23)

Finally, with (A.10) and knowing that ∆σ = 2σ, the previous equation becomes :

N =
2C + 3E

6(∆σ − 2σµ
y )
pD +

C(2ES)s(2s+ 1)

3 (σ̃µ2s+1 − (2σµ
y − σ̃µ)2s+1)

DC (A.24)
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Appendix B. Application of the 2SD model to illustrate the ability of the model

to take into account the loading history

The effect of the loading history is illustrated by comparing the 2SD model with the RSN

approach. Two stress signals σSL(t) and σLS(t) are defined from σ1(t). They are both composed

of n∗ = 104 cycles.

• σSL(t) is composed of a sinusoidal signal of amplitude ∆σS = 0.5∆σ1,1 = 192.5 MPa

on [0; 2
3
tend] and a sinusoidal signal of amplitude ∆σL = 1.25∆σ1,1 = 481.25 MPa on

[2
3
tend; tend].

• σLS(t) is composed of a sinusoidal signal of amplitude ∆σL = 1.25∆σ1,1 = 481.25 MPa on

[0; 1
3
tend] and a sinusoidal signal of amplitude ∆σS = 0.5∆σ1,1 = 192.5 MPa on [1

3
tend; tend].

First, the damage analysis is done for one deterministic material of parameters C = 2.5×106

MPa, DC = 0.25, pD = 0.5 and S = 0.5 MPa. The two signals lead to the same final damage

with the RSN approach. On Figure B.16, the evolution of damage computed with the 2SD

model is given. It is clearly observed that the final damage is not the same for the two signals.

Figure B.16: Damage trajectories computed with the 2SD model for σSL(t) and σLS(t)

Second, a probabilistic study is performed. As in subsection 4.2, the material uncertainties

are propagated by considering a sample P of 5000 realizations. Four probabilities of failure are

computed and plotted in Figure B.17:

• PRSN
fSL

(t) where the damage is computed with the RSN approach by considering σSL(t)

• PRSN
fLS

(t) where the damage is computed with the RSN approach by considering σLS(t)

• P 2SD
fSL

(t) where the damage is computed with the 2SD model by considering σSL(t)
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• P 2SD
fLS

(t) where the damage is computed with the 2SD model by considering σLS(t)

At t = tend, with the RSN approach, the probabilities of failure are equal:

PRSN
fSL

(tend) = PRSN
fLS

(tend) (B.1)

However, the 2SD model takes into account the loading history and the probabilities of failure

are clearly distinct:

P 2SD
fSL

(tend) ≃ 4P 2SD
fLS

(tend) (B.2)

Figure B.17: Probabilities of failure for σSL(t) and σLS(t)
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