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Abstract:   We have considered the negative influence of spherical aberrations (SA) on 

longitudinal and transversal forces occurring in optical tweezers based on a focused Gaussian 

beam (GB). We have shown that, for a given power and incident beam width, the replacement 

of the usual GB by a “rectified” LGp0 (one peak surrounded by p rings having the same sign) 

improves the longitudinal force by a factor ranging from (p+1) to (p+2). The “rectification” of 

a LGp0 beam is assumed to be done by a binary diffractive optical element which transforms 

the negative rings into a positive one. 
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1. Introduction 

Optical trapping based on the use of one or several laser beams is a field having received 

much attention since the early 1970s when the pioneer Arthur Ashkin (Nobel prize in Physics 

2018) laid the foundation stone of this discipline [1,2]. This seminal work has given a 

significant number of applications of the single-beam gradient force optical trap also called as 

optical tweezers [3]. These applications encompass both physics and biology. For a survey of 

the literature dedicated to optical tweezer applications see Ref. [4,5]. The modelling of the 

interaction between a small particle and a laser beam is different depending on the ratio 

between the particle size and the wavelength λ of the trapping laser beam. For sake of 

simplicity, we will assume a spherical dielectric particle of radius a. Usually, three cases can 

be distinguished: 

- Geometrical optics regime (a>> λ ) 

- Generalised Lorenz-Mie regime (a λ≈ ) 

- Rayleigh regime (a<< λ ). In this regime, the particle is treated as a point dipole 

subject to the laser electrical field. The latter, for the sake of simplicity, is assumed to 

have the cylindrical symmetry around the direction of propagation ẑ . 

In the following, we are considering the Rayleigh regime that is involved when trapping 

nanoparticles. In this regime, since a<< λ  it is reasonable to admit that the electrical field E
r

 

of the laser light is uniform inside the nanosphere. It results in an induced dipole having a 

dipole moment p
r

 given by 

     Ep
rr α=       (1) 

 

where α is the polarisability of the particle, given by the Clausius-Mossotti relation [5] 
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where mp nnm /=  is the ratio of the refractive index of the particle pn  and the surrounding 

mdium mn . In the dipole approximation (a<< λ ) there are two relevant forces exerted by  

light on the particle [6]: a scattering force and a gradient force. 

The time-averaged gradient force gradF
r

is given by 
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rrrrrr
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By definition, the intensity ),( zI ρ of the laser beam is the time-averaged of the Poynting 

vector modulus which takes the following form 
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r
ε=     (4) 

where r (z) is the radial (longitudinal) coordinate, and c the speed of light in vacuum. Note 

that it is important to distinguish between the “true” intensity given by Eq. (4) and the optical 

intensity usually expressed by 
2

),( zrE
r

. 

By considering Eq. (2) and (4),  the gradient force can be written as follows 
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The gradient operator ∇
r

can be written as the sum of longitudinal and transverse components:  

     rz ∇+∇=∇
rrr

      (6) 

 

As pointed out above, the nanosphere acts like an oscillating dipole, and consequently will 

radiate an electromagnetic wave in all directions that causes a momentum transfer to the 

particle. A force is involved in this transfer which is called as scattering force scatF
r

 pushing 

the particle along the direction of propagation of the laser beam: 
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 The criterion for realising the axial stability [3] of the single-beam trap is scatgrad FF > . This 

condition is fulfilled provided strong intensity gradients are achieved, and that necessitates a 

highly focused laser beam. This objective is severely obstructed by the presence of spherical 

aberration originating from the two following causes: 

(i) A tight focusing involves significant spherical aberration due to the high numerical 

aperture of the utilised focusing microscope objective. Such spherical aberration 

can be corrected by construction. Generally, optical tweezers usually involve the 

use of an oil-immersion objective allowing high values of the numerical aperture 

(NA). Note that in this paper we do not wish to be in the case of a tight focusing 

for several reasons discussed in Section 2. 
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(ii) Spherical aberration will be introduced as a result of the mismatch in the refractive 

indices between objective oil and water when the trapped particle is suspended in a 

water solution [7-9].  

 

Since, broadly speaking the effect of spherical aberration on the focusing properties is a 

diminution of the focused intensity, we can expect that the trapping force will decrease 

[10,11]. As a consequence, for keeping high the trapping force in optical tweezers a strategy 

of spherical aberration compensation has been implemented by quite a lot researchers [12-15]. 

In Section 2, we will revisit the properties of an optical tweezer enlighten by a pure Gaussian 

beam and an aberrated Gaussian beam. In Section 3, we will propose the use of rectified 

0pLG  beam as the laser beam trapping in order to reduce the negative influence of spherical 

aberrations. Note that it has been recently demonstrated that the focusing of a rectified radial 

Laguerre-Gauss beam (one peak surrounded by p rings of light) is very little sensitive to 

spherical aberration [16]. The operation of “rectification” of a 0pLG  beam is achieved by 

using a binary Diffractive Optical Element (DOE) which transforms the negative rings into a 

positive one. As a result, the focused intensity profile is quasi-Gaussian in shape [16].  

 

2. Properties of optical trapping effect by using an aberrated Gaussian beam  

The geometry of the Gaussian beam focusing is given in Fig. 1. The incident collimated beam 

on the focusing lens is a Gaussian with a width 1W  is characterised by its electric field 

distribution given by 

    ]/exp[)( 2
1

2
0 WEEin ρρ −=      (8) 

 

where ρ is the radial coordinate in the plane of the lens of focal length Lf . Note that the 

objective of this paper is to prove that the replacement of the Gaussian beam by a rectified 

Laguerre-Gaussian beam allows to reduce the bad influence of spherical aberration on the 

performance of optical tweezers. Therefore we are not looking for a tight focusing and this is 

why for the numerical calculations we will set the value of the focal length of the focusing 

lens to fL=50 mm with a numerical aperture equal to 0.3. There are at least two other reasons 

for this choice: first, the use of the same parameters as in Ref. [16] for reference purpose, and 

secondly for legitimating the use of the Fresnel-Kirchhoff integral for determining the 

diffraction fields in the framework of the paraxial approximation. For all calculation the 
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wavelength is nm 1064=λ . Note that obtening a tight focusing is always a challenge that 

continues today for a variety of laser beams (Gaussian, vortex,…) [17-19]. 

In Fig. 1, the primary spherical aberration (SA) is supposed, for sake of simplicity, set against 

the focusing lens. The complex transmittance Lτ  of the lens in the framework of the paraxial 

approximation is given by the following expression 

 

     )](exp[ ρφτ iL =        (9) 
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where λ  is the laser beam wavelength, 40W  is the spherical aberration coefficient expressed 

in units of wavelength of light, LfNA×=0ρ  is the lens radius and NA=0.3 its numerical 

aperture. Since 10 5.3 W>ρ , we can overlook any beam clipping. 

In the next, we will determine the main characteristics of the optical forces exercised over a 

dielectric nanoparticle with and without spherical aberration. 

 

 

 

 

Figure 1: Set-up showing the geometry of the diffraction of a collimated Gaussian beam 

traversing a spherical aberration and a lens of diameter 02ρ . 
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2.1 Optical tweezer without spherical aberration ( 040 =W ): 

We will assume the Rayleigh distance of the incident Gaussian beam (GB) to be very large 

compared to the focal length, i.e. LfW >>)/( 2
1 λπ . This implies that the beam-waist of the 

focused GB is located at location 0=z  coincides with the geometrical focal plane of the lens. 

In these conditions, the width 0W  of the beam-waist is given by 

 

     
1

0
W

f
W L

π
λ=       (11) 

 

and the longitudinal variations of the GB width obeys the well known relation 
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where λπ /2
00 Wz =  is the Rayleigh distance of the focused GB. The optical intensity 

distribution 
2

),( zrE
r

 of the focused GB is given by 
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where r is the radial coordinate associated with the focused GB and the on-axis intensity 2'
0E  

is related to 2
0E  the incident on-axis intensity  by the following energy conservation formula 

2
0

2
12
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W

W
EE ×=     (14) 

If we look at Eqs. (5) and (7), it is seen that the gradient and scattering forces can be written 

in the following form 

     )),((
2

1 zrEKFgrad

rrr
∇×=     (15) 

     
2

2 ),( zrEKFscat

rr
×=      (16) 

where 1K  and 2K are coefficients easily deductible. These coefficients do not depend on the 

diffraction effects induced by the spherical aberration. Consequently, it is legitimate to regard 

the possible loss of trapping stability by considering the variations of ratio R versus 40W . The 

ratio R is defined by  
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where minz is the position where the longitudinal gradient is minimum. In the above equation, 

ratio R is proportional to the ratio of the backward axial gradient force to the forward 

scattering force 

The longitudinal gradient of the optical intensity for 040 =W   is given by 
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The function 
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In the following, the numerical value of longitudinal and transversal gradients of the optical 

intensity will be normalised by the quantity normD  defined for 040 =W . This allows to easily 

see the degradation or the improvement of the gradient and scattering forces according to the 

variations of 40W  the SA coefficient. Likewise, the numerical value of the optical intensity in 

any case will be normalised by 




 2

0 )3/,0( zE
r

for 040 =W , the value of reference for the 

pure Gaussian beam.  

 

2.2 Optical tweezer with spherical aberration ( 040 ≠W ): 

Before proceeding, it is important to have a global vision of the intensity distribution around 

the focal region of a Gaussian beam focused and subject to a spherical aberration. In Fig. 2 is  

plotted the two dimensional intensity distribution (longitudinal and transversal) for W40=0 and 

W40=10λ. In the presence of spherical aberration we observe several effects: (i) a widening of 

the focal volume accompanied by an intensity reduction, (ii) the maximum of intensity is 

shifted toward the lens, and (iii) a deformation of the radial intensity distribution which is no 

longer Gaussian especially before the geometrical focal plane, i.e. for z<0. All these 

phenomena contribute to reduce the efficiency of optical tweezers in presence of a spherical 

aberration as it will be shown below. 
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Figure 2: Two-dimensional intensity distribution of a Gaussian beam of width mmW  111 =  

focused by a lens of focal length mmfL  50=  for (a) W40=0 and (b) W40=10λ. Note that the 

position 0=z corresponds to the geometrical focus of the lens. 
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Usually, in diffraction problems we consider separately the longitudinal and transversal 

effects in order to improve the description accuracy. With that in mind, the on axis-intensity 

2
),0( zE  is plotted versus z the longitudinal position in Fig. 3 for several values of 40W  the 

SA coefficient. As expected, the effect of the SA on the focusing of a Gaussian beam include 

two aspects: 

(i) In Fig. 3-a, one observes that the position maxz  of the best focus (maximum of the 

on-axis intensity) is shifted toward the lens for 040 >W . That is why we defined a 

focal length 40f  associated with the SA [16] 

40

2
0

40
34 W

f
λ

ρ=     (20) 

       The position of the best focus should obey to the following equation 

      
40max

111

ffz L

+=                 (21) 

 

(ii)  In Fig. 3-a it is seen that as 40W  is increased, the intensity of the best focus 

decreases while the depth of focus (DoF) increases. The DoF can be defined as the 

width of the on-axis intensity distribution. 

 

It is important to note that focusing a GB subject to SA does not lead systematically to a 

lower intensity in the focal point compared to aberration-free focusing. Indeed, it has been 

demonstrated [20] that a lens with negative SA can achieve a smaller focused beam radius, a 

larger maximum of the on-axis intensity 
2

),0( zE than without SA. For a positive SA, one get 

exactly the opposite, that is to say a larger focused beam radius and a smaller maximum 

focused on-axis intensity. However, in the latter case if some hard clipping is added, it can 

result in a stronger focus [21]. 
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Figure 3: (a) Variations of the normalised on-axis intensity distribution versus the 

longitudinal position. (b) Variation of 





∇

2
),0(.ˆ zEz z

rr
 the longitudinal gradient of the on-axis 

intensity versus the longitudinal position. The incident Gaussian beam of width mmW  111 =  

is focused by a lens of focal length mmfL  50=  for several values of 40W  the spherical 

aberration coefficient. Note that the position 0=z corresponds to the geometrical focus of the 

lens. 
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Fig.3-b shows the variation of 





∇

2
),0(.ˆ zEz z

rr
 the longitudinal gradient of the on-axis 

intensity for several values of 40W . For 040 =W , the longitudinal gradient is symmetric with 

respect to the origin 0=z . The plots in Fig.3-b are no longer symmetrical for 040 ≠W . It is 

observed that the longitudinal gradient force pointing toward the z<0 direction is smaller than 

that oriented in the z>0 direction. As a result, this effect can threaten the stability of the trap. 

The stability of the optical trap can be described by using the ratio R defined by Eq. (17) and 

plotted versus .40W in Fig. 4. Before interpreting the plot of Fig. 4, we must first remark that 

the stability condition of the optical trap is expressed by the following inequality 

 

1)(/)( minmin, >= zFzFR scatzgradF

rr
   (22) 

 

Let 0FR  the value of FR  for the ideal optical tweezer, i.e. for 040 =W . The necessary 

condition for keeping a trapping capacity is 10 >× RRF . For instance, if 20 =FR  then from 

fig.5 we deduce that the trap remains stable if λ1.340 <W . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Variations of the ratio 
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3. Enhancing the efficiency of an optical tweezer 

As pointed out above, mitigation of the spherical aberration is fundamental for maintaining a 

high quality in the trapping laser beam focusing [12-15]. The aim of this paper is to propose a 

new strategy for reducing the effect of SA on the focus quality and that for the sake of 

enhancement of the trapping forces. In the next, instead of the usual Gaussian beam, we will 

consider as input laser beam in Fig. 1 two families of laser beams. The first one is the radial 

Laguerre-Gauss beams 0pLG  made up of a central peak surrounded by p rings of light. The 

second one noted 0pLGR −  results from the “rectification” of a 0pLG  beam. The operation of 

rectification of a 0pLG  beam by a binary diffractive optical element (BDOE) consists to 

transform the rings having a negative electric field into a positive one. The 0pLGR −  beams 

have been considered through several papers [22-25] where the BDOE used is described in 

detail, and will be not repeated here. There are three key points to remember about the 

properties of a focused 0pLGR − beam which is made up, at the lens input, of a central peak 

surrounded by p positive rings of light. The first one is that a focused 0pLGR −  beam give 

rise to a single-lobed intensity profile in the focal plane of the focusing lens [22,23]. The 

second one is that a 0pLGR −  beam is less sensitive than the 00LG  beam to a spherical 

aberration in comparison with the usual GB [16]. The third one is the possibility to produce a 

single-lobed focal spot with a central intensity of about p times the intensity produce by the 

focusing of a GB having the same power and same width based on the second-order intensity 

moment [26]. One can expect that a 0pLGR −  beam, characterised by a given power and a 

given width based on second-order intensity moment, could be superior to the usual Gaussian 

beam, having the same characteristics, for achieving an optical tweezer. On the other hand, 

some authors have considered the use of Laguerre-Gauss beams in trapping of particles [27-

33], but very little attention has been devoted to focusing of 0pLG  beams subject to spherical 

aberration. To the best of our knowledge, this is the first comparative study of performances 

of optical tweezers using 0pLG  and 0pLGR −  beams subject to spherical aberration that is 

presented hereafter. 

Before proceeding, let us define the electric fields associated with 0pLG  and 0pLGR −  

0pLG  beam:   ]/exp[)/2()( 2
0

22
0

2
0 pppin WWLpEE ρρρ −××=   (23) 

                 0pLGR −  beam:   ]/exp[)/2()( 2
0

22
0

2
0 ppppin WWLEE ρρρ −××=   (24) 
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where pL is the Laguerre polynomial of order p (p=0-5), and 0pW  is the width of the Gaussian 

term. We will impose two essential requirements to the 0pLG  and 0pLGR −  beams. First, 

they carry the same power, and secondly they have the same width based on the second-order 

intensity moment. These two requirements are satisfied [16] if one takes the following 

parameters appearing in Eq. (23) and (24) 

 

     12000 +×= pEEp      (25) 

     
12

00
0 +

=
p

W
Wp      (26) 

 

All the beams, whatever the mode order p have the same width 000 12 WpWp =+× , where 

00W  is the width of the LG00 Gaussian beam. The need for equal beam width whatever the 

mode order p is dictated by the presence of spherical aberration which increases with 4ρ  as 

shown in Eq. (10). Likewise, the beam power has to be the same for all beams otherwise we 

cannot compare the trapping forces.  

Although the Gaussian beam is generally considered as the ideal laser beam for optical 

tweezers, it could be considered that the use of 0pLG  beam is incongruous since its intensity 

profile after focusing is made up of several rings. However, this approach is wrong since the 

trapping of a nanoparticle does not directly involve the whole beam profile but rather the local 

longitudinal and transversal gradients of intensity. In addition, it is important to note that a 

rectified 0pLG  beam after focusing leads to a quasi-Gaussian intensity profile free from any 

rings [22,23]. It will be shown in the next Sections that a rectified 0pLG  beam compared to a 

Gaussian beam having the same width and power can show a higher performance in term of 

trapping force. In the following, the study of optical forces will be divided into two parts: 

longitudinal and transversal forces. Before going into details let us examine the plots in Fig. 5 

displaying the variations of the on-axis intensity and longitudinal gradient when the incident 

light is a rectified LG50 beam subject to a spherical aberration W40=0, 4λ and 10λ. The 

comparison between Fig. 3 and 5 demonstrates clearly that the stability of the tweezers for a 

rectified LG50 beam is more resistant against the spherical aberration than the Gaussian beam. 

Indeed, unlike the Gaussian enlightening (Fig.3-b) the longitudinal gradient force is relatively 
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symmetric on both sides of the focal plane for the rectified LG50 beam (Fig. 5-b) which augurs 

well for a good trapping stability. In the next, we will see the role of the mode order p of the 

incident LGp0 beam on the tweezers performances when subject to a spherical aberration. 

 

 

 

 

 

Figure 5: (a) Variations of the normalised on-axis intensity distribution versus the 

longitudinal position. (b) Variation of 





∇

2
),0(.ˆ zEz z

rr
 the longitudinal gradient of the on-axis 

intensity versus the longitudinal position. The incident light is a rectified LG50 beam having 

the same width and power than the Gaussian beam in Fig. 3.Note that the position 0=z  

corresponds to the geometrical focus of the lens. 
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3.1 Longitudinal optical forces 

As before for the Gaussian beam in Section 2, we will introduce in Eq. (27) a normalised ratio 

pZ associated with a 0pLG  or 0p
R

LG  beam as input of the focusing lens,  

 

{ }
{ } 0

0

0

0

40

40

=
=

>
>=

W

pF

W

pF

p
R

R
Z      (27) 

 

The ratio pZ  is defined as the value of FR  normalised by the value of FR  (see Eq. (22)) 

determined for a 00LG  input without spherical aberration ( 040 =W ). Depending on the 

magnitude of ratio pZ , it can be seen if the efficiency of the optical trapping force is 

improved ( 1>pZ ) or not improved ( 1<pZ ) compared to the case of a Gaussian beam 

enlightening. The results are shown in Fig. 6-a for a pure 0pLG  beam and in Fig. 6-b for a 

rectified 0pLG  beam. It is seen in Fig.6-a that replacing the usual Gaussian beam by a pure 

0pLG  beam improves very little the enhancement of the ratio pZ which can be considered as 

a figure of merit of the optical tweezers.  In contrast, when the enlightening beam is a rectified 

0pLG  beam Fig. 6-b shows clearly that the improvement of pZ  the longitudinal figure of 

merit of the optical tweezers. Indeed, it is seen that without SA ( 040 =W ) the factor by which 

the ratio pZ  for a Gaussian beam enlightening is multiplied varies from (p+1) until (p+2). It 

is important to remember that all the 0pLG beams, for p=0 to 5, have the same power and the 

same width based on the second-order intensity moment as expressed through Eqs. (25) and 

(26). In addition, it is seen in Fig. 6 that the figure of merit pZ is resilient to the SA as much 

as the mode order p is high. For instance, the relative variation of pZ  for a 00LG  ( 50LGR − ) 

input is about -56% (-8.7%) when the SA coefficient 40W  varies from 0 to λ5 . It is clear that 

using a rectified 0pLG  as input beam of the optical tweezers, in place of the usual Gaussian 

beam, not only improves the longitudinal optical forces but also exhibits a low sensitivity to 

the spherical aberration. Now, it remains to carry out in the next Section a comparative 

analysis of the transverse optical force when the input is a 00LG , a 0pLG  and a 0pLGR −  

beam. 
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Figure 6: Variations of ratio { } { } 0
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0

0
4040 /

=
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pF

W

pFp RRZ versus the spherical aberration 

coefficient when the input beam is (a): a pure 0pLG  beam and (b): a rectified 0pLG  beam. 
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3.2 Radial optical forces 

The radial force exerted by the optical tweezers is proportional to the radial gradient of the 

intensity profile determined in the plane of the best focus. As in the previous Section, it is 

convenient to introduce a radial factor of merit noted pR  and defined as follows 

 

{ }
{ } 0

0max

0

0max

40

40

)(

)(

=

=

>

≥

∇
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=

W

p
r

W

p
r

p

rI

rI

R r

r

    (28) 

As for the longitudinal forces discussed in Section 3.1, it is easy to interpret the meaning of 

ratio pR . The efficiency of the optical trapping radial force, compared to the case of a 

Gaussian beam enlightening, is improved if 1>pR  and not improved if 1<pR . The results 

are shown in Fig. 7-a (Fig. 7-b) for the 0pLG  ( 0pLGR − ) beam as input on the focusing lens. 

It should be recognised the following: 

(i) The radial force obtained for a Gaussian input declines relatively rapidly as the 

spherical aberration is increased. It is observed in Fig. 7-a that the relative variation of pR  for 

a 00LG   input is about -56%  when the SA coefficient 40W  varies from 0 to λ5 . Note the 

same value has been obtained for the decrease of pZ the longitudinal factor of merit. 

(ii) The use of 0pLG or 0pLGR −  beams does not improve the radial force of the optical 

tweezers since 1<pR . 

(iii) It is observed a slight increase (decrease) of pR when the input is a 0pLG  

( 0pLGR − ) when 40W  is varied. This result is not surprising given that the 

mitigation of spherical aberration has been already observed when focusing a 

rectified 0pLG  beam [16]. 
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Figure 7: Variations of pR the radial figure of merit versus the normalised aberration 

coefficient when the input is (a): a 0pLG  beam and (b): a rectified 0pLG  beam.  

 

 

 

 

4. Discussion and conclusion 

In summary, we have investigated the influence of spherical aberration upon the performance 

of optical tweezers enlighten by a Gaussian laser beam. It is observed that a rapid decrease of 

longitudinal and radial figures of merit occurs, respectively noted 0Z  and 0R , as the spherical 

aberration is increased. The ratio 0Z  and 0R  show a relative variation of -56% when the 
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spherical aberration coefficient 40W  varies from 0 to λ5 . In order to reduce the negative 

implications of spherical aberrations on the performance of optical tweezers we hypothesised 

that the possible solution could be the use of a different beam than the usual Gaussian beam as 

input beam. For that, we selected the rectified 0pLG  beams which show a certain mitigation 

of spherical aberration as demonstrated in [16]. We also considered the use of pure 

(unrectified) 0pLG  beams. The obtained results show that the radial force exerted by the 

optical tweezers is not improved when replacing the input Gaussian beam by a 0pLG  or a 

rectified 0pLG  beam. However, the longitudinal factor of merit pZ  (ratio of gradient and 

scattering forces) of the optical tweezers is greatly increased by a factor varying from (p+1) to 

(p+2) when the input is a rectified 0pLG  beam. Contrary to the Gaussian beam, the spherical 

aberration has a small influence on the longitudinal factor of merit pZ when the input is a 

rectified 0pLG  beam. Note that the Gaussian and 0pLG  are assumed to carry the same power, 

and to have the same width based on the second-order intensity moment. Now a question 

could be raised about the way to force the fundamental mode of a laser to be a single high-

order transverse mode 0pLG . Such an oscillation can be obtained by inserting a phase [34-36] 

or amplitude mask [37-41] inside the laser cavity. The action of the phase or amplitude 

circular masks is to impose the position of the zero of intensity of the desired 0pLG  mode. 

Another less known technique for forcing the fundamental mode of a laser to be a pure 

(single) 0pLG  mode consists in replacing the cavity rear mirror by a Fox-Smith mirror [42]. 

In the case where the above intra-cavity techniques would not be practically feasible, it is 

possible to transform the usual Gaussian beam delivered by the laser outside the cavity into a 

0pLG  mode by using a simple binary diffractive element [43] similar to the device used for 

rectifying a 0pLG  beam.  

Gaussian, 0pLG  and rectified 0pLG  beams are well adapted for trapping particles having a 

refractive index higher than that of the surrounding medium. Otherwise the trapping laser 

beam must be hollow when the nanoparticle has a low-refractive index. A peculiar family of 

such laser beams is the scalar doughnut mLG0 beams having the interesting property to carry 

an orbital angular momentum hm± for each photon [44]. Such laser beams are also called as 

vortex beams having a considerable interest in trapping and guiding cold atoms or 

nanoparticles [45,46]. It should be interesting to examine the influence of a spherical 
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aberration on optical tweezers performances when the enlightening beam is a vortex beam. It 

is worthwhile to note that in addition to the above scalar vortex beams there is also the vector 

vortex beams [47,48] that have the unique characteristic to generate a non-propagating 

longitudinal electrical field oscillating with the optical frequency in the focal plane [49]. The 

existence of such longitudinal component together with the presence of a spherical aberration 

should be an interesting field of investigation for the modelling of optical tweezers based on 

vector vortex laser beams. 
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