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Abstract. Conic sections are extensively encountered in a wide range
of disciplines, including optics, physics, and various other fields. Con-
sequently, the geometric algebra community is actively engaged in de-
veloping frameworks that enable efficient support and manipulation of
conic sections. Conic-conic intersection objects are known and supported
by algebras specialized in conic sections representation, but there is yet
no elegant formula to extract the intersection points from them. This
paper proposes a method for point extraction from an conic intersec-
tion through the concept of pencils. It will be based on QC2GA, the 2D
version of QCGA (Quadric Conformal Geometric Algebra), that we also
prove to be equivalent to GAC (Geometric Algebra for Conics).

Keywords: Conics, Geometric Algebra, Projective Geometry, Clifford
Algebra, QCGA (Quadric Conformal Geometric Algebra), GAC (Geo-
metric Algebra for Conics), Pencil

1 Introduction

Geometric algebras (GA) are a convenient way to represent and manipulate
geometric primitives. They have been used in physics for decades [12,15,16] to
unify and simplify some models.

Presently, GA applications in computer sciences are widespread, used in var-
ious domains such as neural networking [4,21] and computer graphics - where
they can be used to manipulate geometric primitives [6]. For an introduction to
geometric algebras, please refer to Perwass’ and Dorst’s textbooks [19,7].

Because polynomial embedding [19] is done very naturally in geometric alge-
bras, polynomial curves and geometric algebra form a promising marriage. This
is why several GA frameworks have already been proposed for both curves and
surfaces in order to represent, transform and intersect these objects.

Perwass [19] started with a simple blade-based approach in G5,3 to represent
2D conics constructed from 5 points. This algebra also supports translations
and rotations of conics, but is presented as just a proof of concept to be further
developed. Later on, Goldman et al. proposed R(4, 4) [11], an algebra composed
of two projective R4 basis capable of supporting quadrics (and so conic when
one dimension is removed). Similarly, DCGA introduced by Easter et al. [8] is
composed of two CGA basis and can represent general Darboux cyclide, which
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embeds quadrics. The common weakness of those two algebras is that their curves
and surfaces are not constructed from control points.

Another algebra supporting quadric surfaces is QCGA (Quadric Conformal
Geometric Algebra) [1] from Breuils et al, which is a 3D extension of Perwass’
conic algebra that explores intersections and transformations. QCGA can be
lowered in dimension (by removing 7 vectors of its basis) to get QC2GA, an
algebra for handling conics. Finally, GAC (Geometric Algebra for Conics) [17]
is a more recent proposition from Hrdina et al., which unlike the other ones, is
fully dedicated to conics. It is very similar to QC2GA, the 2D version of QCGA.
These two algebras, just like Perwass’, support constructing their object from
points, and notable distinction between the two lies in the inclusion of a third
spatial dimension within QCGA, while GAC (Geometric Algebra of Conics)
offers a broader range of geometric transformations. The common point of these
algebras is the lack of way to process conic intersection objects into points, and
other things that would be extremely useful such as determining the type of a
conic. We also want to be able to tell if a conic is a pair of lines, and if so, we
should have a way to extract these two lines. Conic section also have a center
and several other relevant lines and foci that would be interesting to extract and
manipulate. GAC is actually able to extract points from conic intersection on
some very specific and easy cases [5], but what we want is a general method that
works on any intersection.

This paper presents a method to extract the points from any conic intersec-
tion objects. The paper is organized as follows : Section 2 introduces state-of-
the-art of conic intersection in both projective geometry and geometric algebra.
Section 3 focuses on QC2GA and GAC. Section 4, as a first contribution, demon-
strates that they are actually equivalent. Our major contribution is detailed in
Section 5 that presents an algorithm to find the intersection points of two conics
in QC2GA by using an associated cubic polynomial and the naturally-supported
pencils of conics.

2 Conics theoretical background

This section introduces various ways of representing conics and their properties.

2.1 Conics representation

Conics’ traces can be found as far as 380 BC by Menaechmus in the ancient
Greece. In the last couple of centuries, mathematicians linked these planar curves
to the quadratic equations of two variables and projective algebra. This is the
formalism that this paper uses.

As stated by Faucette [9], conics are planar polynomial curves of degree 2:

C : g(x, y) = ax2 + by2 + cxy + dx+ ey + f = 0 (1)

With (a, b, c, d, e, f) ∈ K6 and K = R or C. When not degenerate and not com-
plex, a conic can be seen as the intersection between a double cone and a plane.
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It is common to work in the projective space P2 to represent points and in
P5 to represent conics. Pn is the set of all equivalence classes (ai)i∈[1,n+1] ∈
Kn+1 \ {0n} under the equivalence relation (a1, . . . , an+1) ∼ (b1, . . . , bn+1) ⇐⇒
∃λ ∈ K, (a1 . . . , an+1) = λ(b0, . . . , bn+1). A finite point (x, y) of K2 is then em-
bedded as (x, y, 1) (or more generally as (wx,wy,w)) in P2, and infinite points of
direction (x, y) is embedded as (x, y, 0). In order to embed P2 into P5, we consider
the polynomial map Q : P2 → P5 so that Q(x, y, w) = (x2, y2, xy, xw, yw,w2).
Conics are then represented by the vectors of P5, and the equation (1) becomes

C : C⊤ ·Q(x, y, w) = 0 with C = [a, b, c, d, e, f ]⊤ ∈ P5 (2)

Conics are also often represented by their Hessian matrix, which enables to
reformulate equation (1):

C : p⊤Hp = 0 with H =


a

c

2

d

2
c

2
b

e

2
d

2

e

2
f

 (3)

Assume five linearly independent points (pi)i∈[1,5] with coordinates (xi, yi, wi)i∈[1,5] ∈
P2 and another point p0 of coordinate (x, y, w) ∈ P2. Let qi = Q(pi),∀i ∈ [0, 5].
The conic equation (C) is often expressed in the form of the vanishing determi-
nant of a matrix P = [qi,j ] [13]:

C : det(P) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 y2 xy xw yw w2

x2
1 y21 x1y1 x1w1 y1w1 w2

1

x2
2 y22 x2y2 x2w2 y2w2 w2

2

x2
3 y23 x3y3 x3w3 y3w3 w2

3

x2
4 y24 x4y4 x4w4 y4w4 w2

4

x2
5 y25 x5y5 x5w5 y5w5 w2

5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (4)

Then, if we denote by mj
i (A) the respective minor of matrix A, i.e. the determi-

nant of A with its i-th column and j-th line removed. If we drop the superscript
for j = 1, i.e. mi = m1

i we have:

a = m1(P) b = −m2(P) c = m3(P)
d = −m4(P) e = m5(P) f = −m6(P)

(5)

There is a more general rule to that: the set of conics passing through n non-
aligned points is a dimension (5− n) vector subspace of P5 [10]. We could then
argue that 4 control points would form at most a 1-vector subspace, 3 points a 2-
vector subspace, etc. This implies that the n-intersection of two conics Ca and Cb

is more than their n common points, as the 3 points of a 3-intersection generates
a 2-vector subspace when the two conics only creates a 1-vector subspace.
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2.2 Type of a conic and degenerate case

When K = R, the type of the conic is ruled by these two discriminants [20]:

∆2(C) = m3
3(H) = ab− 1

4
c2 (6)

∆3(C) = det(H) = abf +
ced− c2f − bd2 − ae2

4
(7)

∆2(C) ∆3(C) type of C
+ ̸= 0 Ellipse (may be imaginary)
0 ̸= 0 Parabola
− ̸= 0 Hyperbola
+ 0 Point
0 0 Two parallel lines
− 0 Two intersecting lines

Whether K = R or C, if ∆3(C) = 0, C is called degenerate or reducible,
meaning that it can be factored into two complex lines.

2.3 Pencils

Let Ca : ga(x, y) = 0 and Cb : gb(x, y) = 0 be two conics and λ ∈ R∗. Cλ :
gλ(x, y) = ga(x, y)+λgb(x, y) = 0 is also a conic since ga and gb are linear forms
of P5 and

Ca ∩ Cb = Ca ∩ Cλ = Cb ∩ Cλ (8)

Where ∩ is the set theory intersection operator.
This is because gλ(x, y, w) = ga(x, y, w)+λgb(x, y, w) then if two of the terms

are 0, the third one is also 0, and if one term is not zero, then at least one other
is not zero. The 1-vector space generated Ca and Cb is called their pencil.

Pencil(Ca, Cb) = {K(Ca + λCb) K,λ ∈ K} (9)
= {K(cos(θ)Ca + sin(θ)Cb) K, θ ∈ K} (10)

Four non-aligned points also generate a pencil of conics, but the reciprocal is
not true: the intersection of two conics might contain less than 4 points (when
K = R) or have one or several multiple points (see figure 1).

2.4 Intersecting conics

Finding the intersection between two conic sections is an old problem. Two
different conics can have from 0 to 4 points of intersections (the intersection
of a conic with itself is of course the whole conic). Gröbner basis [14] can be
used to express the conic intersection problem as a quartic polynomial. Also,
Faucette [9] describes a method to solve any quartic polynomial by finding the
intersection points of two conics. Therefore, finding the intersection points of
two conic sections is equivalent to find the root of a quartic polynomial.
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Fig. 1. The pencil (in grey) generated by two conics (in red and yellow) with 4 inter-
section points (left) and 2 intersection points (right).

The method described by Faucette [9] consists of finding a degenerate conic
(i.e. that can be factored into two lines) in the pencil generated by the two
intersecting conics. That pair of lines is then separated into two distinct lines,
which can be subsequently used to find the intersection points with one of the
conics of the pencil. Another method is to directly solve the associated quartic
equation of the problem . Richter-Geber [20] reformulates this method in a more
complete way and gives a detailed process to find the intersections. Just like [9],
they solve the associated cubic equation, find any complex solution using a given
formula, split the resulting degenerate complex conic into two complex lines and
intersect the two resulting complex lines with one of the intersecting conic. Both
of these method heavily relies on complex numbers and lines, but one could
choose to only use real lines if they limited themselves to conic-lines intersections.

Now that conic intersections are introduced, the following section will present
two algebras that handle conics.

3 A look into QC2GA and GAC

3.1 Conics and Geometric Algebra

Let’s look back at equations (4) and (5), assuming that K = R. Computing the
determinant of the matrix P can be done by working in G6 =

∧
P5 [19,18], where

we find that the parameters of the conic (a, b, c, d, e, f) are the coordinates of
the blade of grade 5,

∧
i∈[1,5]

qi. The equation of the conic (4) then becomes.

C : q1 ∧ q2 ∧ q3 ∧ q4 ∧ q5 ∧ q = 0 (11)

Hence five points determines a conic gives us a natural outer product repre-
sentation of the implicit equation of the conic. This leads directly to Perwass’



6 Clément Chomicki, Stéphane Breuils, Venceslas Biri, and Vincent Nozick

proposition [19], and then to QC2GA [1] and GAC [17]. In these algebras, points
and conics are represented this way with their respective G5,3 bases:

p = x2e1 + y2e2 + xye3 + xe4 + ye5 + e6 (12)
C = p1 ∧ p2 ∧ p3 ∧ p4 ∧ p5 ∧ e7 ∧ e8 (13)

= aec1 + bec2 + cec3 + dec4 + eec5 + fec6 (14)

In (12), ec1, . . . , ec6 denotes the (right) complement-dual of the multivectors e1, . . . , e6,
defined through m ∧mc = I for all multivector m [3].

3.2 Two-dimensional Quadric Conformal Algebra (QC2GA)

QC2GA is the 2D-version of the QCGA algebra [1] by Breuils et al. Its signature
is R5,3, but we use this more convenient non-diagonal basis:

e1 e2 eo1 e∞1
eo2 e∞2

eo3 e∞3

e1 1 . . . . . . .
e2 . 1 . . . . . .
eo1 . . 0 -1 . . . .
e∞1 . . -1 0 . . . .
eo2 . . . . 0 -1 . .
e∞2

. . . . -1 0 . .
eo3 . . . . . . 0 -1
e∞3

. . . . . . -1 0

QC2GA formalism relies on the following blades:

eo = eo1 + eo2 (15) e∞ =
e∞1 + e∞2

2
(16)

I▷o = (eo1 − eo2) ∧ eo2 (17) I▷∞=(e∞1
−e∞2

)∧e∞2
(18)

Io = eo1 ∧ eo2 ∧ eo2 (19) I∞ = e∞1
∧ e∞2

∧ e∞3
(20)

Iϵ = e1 ∧ e2 ∧ e3 (21) I = Iϵ ∧ I∞ ∧ Io (22)

QC2GA points
QC2GA
p and conics

QC2GA

C are defined as follows:

QC2GA
p = eo + xe1 + ye2 + x2 e∞1

2
+ y2

e∞2

2
+ xye∞3

(23)
QC2GA

C =
QC2GA
p1 ∧ QC2GA

p2 ∧ QC2GA
p3 ∧ QC2GA

p4 ∧ QC2GA
p5 ∧ I▷o (24)

QC2GA

C∗ = a(
e∞1

2
)−1 + b(

e∞2

2
)−1 + ce−1

∞3
+ de−1

1 + ee−1
2 + fe−1

o (25)

= −2aeo1 − 2beo2 − ceo3 + de1 + ee2 − fe∞ (26)

With (a, b, c, d, e, f) ∈ R6 the parameters of the conic C represented by
QC2GA

C .
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QC2GA supports intersections of conics, and evaluating if a point lies on one:
QC2GA

Inter =
QC2GA

C1 ∨
QC2GA

C2 = (
QC2GA

C∗
1 ∧

QC2GA

C∗
2 )∗ (27)

QC2GA
p ∈

QC2GA

C ⇐⇒ QC2GA
p ∧

QC2GA

C = 0 ⇐⇒ QC2GA
p · (

QC2GA

C∗ ) = 0 (28)

3.3 Geometric Algebra for Conics (GAC)

GAC is another geometric algebra for conics from [17] by J. Hrdina et al. Its
basis (e1, e2, n̄+, n+, n̄−, n−, n̄×, n×) has the same signature as QC2GA.

Points
GAC
p and conics

GAC

C are constructed this way in GAC:

GAC
p = n̄+ + xe1 + ye2 +

x2 + y2

2
n+ +

x2 − y2

2
n− + xyn× (29)

GAC

C =
GAC
p1 ∧

GAC
p2 ∧

GAC
p3 ∧

GAC
p4 ∧

GAC
p5 ∧ eo2 ∧ eo3 (30)

GAC

C∗ = −(a+ b)n̄+ − (a− b)n̄− − cn̄× + de1 + ee2 − fn+ (31)

The usage we have of GAC is the same than QC2GA.
GAC

Inter =
GAC

C1 ∨
GAC

C2 = (
GAC

C∗
1 ∧

GAC

C∗
2 )

∗ (32)
GAC
p ∈

GAC

C ⇐⇒ GAC
p ∧

GAC

C = 0 ⇐⇒ GAC
p · (

GAC

C∗ ) = 0 (33)

4 GAC and QC2GA are equivalent

The metric of GAC and QC2GA are identical, and at first sight the objects of
these algebras looks very similar. It would make sense to find out that these
two algebras are the same thing, which would unify all the work done on these
two algebras. We actually can express GAC basis with QC2GA’s, which shows
a direct equivalence between QCGA and GAC objects:

n̄+ = eo1 + eo2 (34) n̄− = eo1 − eo2 (35) n̄× = eo3 (36)

n+ =
e∞1 + e∞2

2
(37) n− =

e∞1 − e∞2

2
(38) n× = e∞3

(39)

GAC
p = eo + xe1 + ye2 +

x2e∞1
+ y2e∞2

2
+ xye∞3 =

QC2GA
p (40)

GAC

C = −2aeo1 − 2beo2 − ceo3 + de1 + ee2 − fe∞ =
QC2GA

C (41)

Thanks to this reformulation, we establish the equivalence of GAC and QC2GA.
GAC possess versors for rotation, translations, dilation and even "general reflec-
tion" (which looks similar as a CGA’s spherical inversion but with conics [19]).
QC2GA also have rotations and translations (inherited directly from Perwass’
conformal conic algebra), and its translator is easier to express than GAC’s.
Due to the equivalence of these two algebras, tools from GAC and QC2GA can
be utilized interchangeably. For the rest of this article, we will then omit the
"QC2GA" or "GAC" on top of the geometric objects and follow the formalism
of QC2GA, and every property relative to QC2GA will also hold for GAC.
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5 Extracting points from QC2GA conics intersections

An intersection might contain from 0 to 4 points. However, the grade of that ob-
ject is always 6. Therefore it is neither trivial to distinguish the type of intersec-
tion nor to extract the points, hence our method. By selecting a real degenerate
conic from the intersection object’s pencil, the conic is factorized into two lines.
These lines are then intersected with another conic from the same pencil, result-
ing in the desired intersection points. Notably, this method exclusively operates
on real objects, unlike from Faucette’s approach that uses complex lines.

5.1 Pencil of conics in QC2GA

Let Inter be an intersection of two conics and p a point not in Inter, we define
C = Inter ∧ p as the conic passing through every point of Inter and through p.
Summation of two conics is allowed by QC2GA, hence we can write ∀λ ∈ R, Cλ =
Ca + λCb. Summations of points is also supported, which gives the following:

Inter = Ca ∨ Cb = (C∗
a ∧ C∗

b )
∗ (42)

Ca = Inter ∧ pa pa ∈ Ca \ Cb (43)
Cb = Inter ∧ pb pb ∈ Cb \ Ca (44)
Cλ = Inter ∧ (pa + λpb) (45)

The pencil of Ca and Cb is then generated by their intersection Inter.

5.2 Extraction method

The next step consists in the extraction of the points contained in an intersection.
The two conics will be used to find a new pair of conics with one degenerate,

by finding the root of an associated cubic polynomial. The degenerate conic will
then be factored into two lines, that will be intersected with the other conic to
get the intersection points using a simpler algorithm.

Building two conics from Inter In order to build two conics from Inter, one
could just pick two random points and use the formulas of (42)-(45), but this
would lead to possibilities of pa and pb to generate the same conic. In order to
avoid that, it is possible to only pick one point pa randomly, to generate a conic
Ca from it and Inter and to extract Cb as the normed element in the 2D-vector
space Inter perpendicular to Ca.

Ca = Inter ∧ pa (46) Cb = Inter ∧ Ca
c (47)

Finding a degenerate conic (Algorithm 1) Now that we have two relevant
conics to work with, we would like to find a degenerate conic, because a degen-
erate conic is either a point (which makes the problem trivial as we just take
that point as the eventual solution), or a pair of lines that we will treat as two
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Algorithm 1: Find a degenerate conic and a different one in the
pencil of Inter

Function gen_degen_and_other
Input: Inter
Output: Cdeg, C⊥

do pa ← random_point() while pa ∧ Inter = 0
Ca ← Inter ∧ pa Cb ← Inter ∧ (Cc

a)

a← ∆3(Cb) b← ∆3(Ca + Cb) +∆3(Ca − Cb)

2
−∆3(Ca)

d← ∆3(Ca) c← ∆3(Ca + Cb)−∆3(Ca − Cb)

2
−∆3(Cb)

∆0 ← b2 − 3ac ∆1 ← 2b3 − 9abc+ 27a2d

Ω− ←
3

√
∆1 −

√
∆2

1 − 4∆3
0

2
Ω+ ←

3

√
∆1 +

√
∆2

1 − 4∆3
0

2
λ← −3a µ← b+Ω− +Ω+

Cdeg ← λCa + µCb C⊥ ← −µCa + λCb

distinct lines, which reduces the conic-conic intersection to the simpler task of
determining conic-line intersections. Finding a degenerate conic in the pencil of
C1 and C2 can be done by solving the equation ∆3(C1 + λC2) = 0, which can
be expanded into equation (48).

∆3(C2)λ
3 +

(
∆3(C1 + C2) +∆3(C1 − C2)

2
−∆3(C1)

)
λ2

+

(
∆3(C1 + C2)−∆3(C1 − C2)

2
−∆3(C2)

)
λ+∆3(C1) = 0

(48)

To solve this cubic equation, we use a formula similar than Cardano’s, but which
allows to do less divisions and which allows us to easily obtain a real root when
k = 0:

∆0 = b2 − 3ac ∆1 = 2b3 − 9abc+ 27a2d (49)

Ω± =
3

√
∆1 ±

√
∆2

1 − 4∆3
0

2
xk = −b+ ei

2πk
3 Ω+ + ei

−2πk
3 Ω−

3a
(50)

Using this approach, we may write the Algorithm 1 that samples a degenerate
conic and another conic significantly different (noticing that λCa + µCb is a
rotation of angle arctan(µ/λ) in the pencil) from the degenerate one from the
pencil of conic of Inter. The variables a, b, c, d are not conic parameters, but
rather the four parameters of the cubic polynomial.
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Factorize lines pairs (Algorithm 2) A line pair is of the form:

l1 = cos(α1)x+ sin(α1)y + w1 (51)
l2 = cos(α2)x+ sin(α2)y + w2 (52)

C : Kl1l2 = ax2 + by2 + cxy + dx+ ey + f = 0 (53)

where K ∈ R∗ is a multiplicative constant coming from the projective aspect of
the conic (it can be any constant). These two lines can be extracted using the
method presented by Richter-Gebert [20]. This method is also used by Byrtus
et al for their specific GAC intersection extraction [5] . Algorithm 2 implements
that.

Algorithm 2: Line pair factorization algorithm
Function factor_line_pair

Input: Cdeg

Output: α1, α2, w1, w2 // lines angles and offsets

H ← hessian_matrix(Cdeg) A← adjoint(H) i← arg min
k
{Ak,k}

D ←

 0 −Ai,2 +Ai,1

+Ai,2 0 −Ai,0

−Ai,1 +Ai,0 0

 /
√
−Ai,i N ← H +D

u1, v1, w1 ← N
[
∗, arg max

j
{N [1, j]2 +N [2, j]2]}

]
u2, v2, w2 ← N

[
arg max

j
{N [j, 1]2 +N [j, 2]2]}, ∗

]
α1 ← arctan2(v1, u1) α2 ← arctan2(v2, u2)

return {α1, α2, w1/
√

u2
1 + v21 , w2/

√
u2
2 + v22}

Conic-line intersection (Algorithm 3) The idea is to rotate the problem
to have the line vertical (which means a known x), and we are then left with a
trivial quadratic polynomial in y.

Algorithm 3: Conic-Line intersection algorithm
Function conic_line_inter

Input: C, θ, w
Output: points

R← qc2ga_rotor(−θ) [a, b, c, d, e, f ]← RCR̃

x← −w δ ← (cx+ e)2 − 4b(ax2 + dx+ f) γ ← cx+ e

2b

p0 ←
(
cos(θ)x− γ sin(θ)
sin(θ)x+ γ cos(θ)

)
u← 1

2b

(
− sin(θ)
cos(θ)

)
switch sgn(δ) do

case + do return {p0 ±
√
δu}

case 0 do return {p0}
case − do return {}

end
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5.3 Full Algorithm

Using the algorithms we just presented, we can write the Algorithm 4 that
extracts the points in an intersection object. This algorithm have been imple-
mented in C++ with Garamon [2] (see https://github.com/technolapin/
qc2ga-intersection). Figure 2 gives outputs of our code.

Algorithm 4: Point extraction algorithm
Function extract_pts_from_inter

Input: Inter
Output: a set of points

Cdeg, C⊥ ← gen_degen_and_other(Inter)
α1, α2, w1, w2 ← factor_line_pair(Cdeg)
return conic_line_inter(C⊥, α1, w1) ∪ conic_line_inter(C⊥, α2, w2)

Fig. 2. Extraction of 0,1,2,3 and 4-intersections where the green curve is the degenerate
conic, which can be a line pair or a point. The 4-intersection is depicted twice with
different line pairs.

6 Conclusion

This paper established the equivalence of QC2GA and GAC, and presented a
geometric-algebra driven method for the decomposition of a conic-conic inter-

https://github.com/technolapin/qc2ga-intersection
https://github.com/technolapin/qc2ga-intersection


12 Clément Chomicki, Stéphane Breuils, Venceslas Biri, and Vincent Nozick

section object into points. Further work is to be done to increase the part of
geometric algebra in the process.
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