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Abstract. The hydrogen atom is a specific, and physically relevant, Keplerian
2-body system with one of the bodies assumed infinitely heavy. Isochronous
integrable n-shell approximations for the perturbations of the hydrogen atom,
known as Stark and Zeeman effects in the presence of homogeneous electric
and magnetic fields, respectively, have been widely studied. In order to go
beyond the set of linear systems, we considered perturbations by inhomogeneous
electromagnetic fields. In particular, we found that the perturbation by a
generic inhomogeneous magnetic field results in an approximately integrable
anisochronous system which can be described as two rigid Euler tops coupled
through higher order terms.
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1. Introduction

The hydrogen atom is the quantum analogue of a specific Keplerian two-body system
where one of the bodies is assumed infinitely heavy‡ and resting at the origin. The
obvious classical analogues of this system can be found in the motion around a star of
an artificial satellite or of a planet. The unperturbed system is described (in atomic
units) by the Hamiltonian

H0 =
‖P‖2

2
− 1

‖Q‖
, (1)

where Q are position coordinates in the physical space R3, and P are the corresponding
canonically conjugate momenta. Perturbations of this system by external electric and
magnetic fields, known respectively as Stark and Zeeman effect, are among the most
widely studied systems since the beginnings of quantum mechanics and modern atomic
physics in 1930’s and the subject of many publications and monographs. We refer to
the recent review paper [1] for further bibliography and most technical details.

‡ The proton mass mp is about 1836 times the mass of the electron me which equals 1 atomic unit.
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In the case of sufficiently weak fields, the system can be considered as a
small perturbation of (1) and an averaging procedure with respect to the Keplerian
flow can be performed. In quantum mechanics, this provides the so-called n-shell
approximation, where the principal quantum number n = 0, 1, 2, . . . corresponds to
the classical Keplerian integral of motion. The corresponding classical reduced system
is an Euler-Poisson system with compact phase space S2×S2. The reduced normalized
(quantum and classical) Hamiltonian,

H = H0 +H1 +H2 + . . . (2)

can be written as function of the Keplerian invariant n, the angular (orbital)
momentum vector L = Q×P and the scaled eccentricity vector K. These are subject
to two constraints:

‖L‖2 + ‖K‖2 = n2 and L ·K = 0. (3)

Alternatively, we can use two angular momentum vectors of equal length

J1 =
L + K

2
and J2 =

L−K

2
,

for which the relations (3) become

‖J1‖ = ‖J2‖ =
n

2
. (4)

So S2×S2 can be realized in the ambient space R6 with coordinates (J1,J2). The
normal form (2) is a formal series in (L,K) (or J1 and J2). Its zero order, the normal
form of the Keplerian Hamiltonian (1),

H0 = 2n

is a constant (on S2×S2), while each higher order term Hk equals n times a
homogeneous polynomial in (L,K) of degree k.

The classical system on S2×S2 is equipped with the Poisson algebra so(4) ∼=
so(3) ⊕ so(3), where each factor is generated by the components of the respective
angular momentum J1 or J2 in a standard way. The corresponding quantum system
with Hamiltonian H(Ĵ1, Ĵ2) can be solved in the eigenbasis

|j1,m1〉|j2,m2〉 with j1 = j2 = j and mi = −j,−j+1, . . . , j−1, j

of the angular momentum operators Ĵ2
i and Ĵi,1. Note that in the quantum context,

we should distinguish the quantum number j, the shell quantum number n, and the
length

‖Ĵi‖ = 〈j,m|Ĵ2
i |j,m〉1/2 =

√
j(j + 1) ≈ j + 1

2 for j � 1.

Similarly, in the semiclassical limit of large j, the classical Keplerian action N equals
2j+1 = n+1. To avoid baroque notation, we will not distinguish between classical and
corresponding quantum quantities unless both appear together in the same context.

1.1. Stark-Zeeman effect in spatially homogeneous fields

The most widely studied case of the Stark-Zeeman effect (see [1]) is the perturbation
by static spatially homogeneous fields with Hamiltonian

H(Q,P) = H0(Q,P) + F ·Q + 1
2 G · L + 1

8 ‖G×Q‖2. (5)
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After the Keplerian normalization and reduction of (5), we obtain in the first and
principal order (because H0 becomes a constant)

H1(L,K) = n(g · L + f ·K) = n(a1 · J1 + a2 · J2).

where the constant vectors f and g are scaled field parameters F and G and a1 = g+f ,
a2 = g − f . Since the flow ϕtH1

of the Hamiltonian H1 is linear on S2×S2, and
thus integrable, the Keplerian normal form (2) can be averaged again. This second
normalization [1] with regard to ϕtH1

gives an integrable system on S2×S2 do not vary
significantly from torus to torus.

Two kinds of second normalization are possible. First rotating Ji 7→ Ai Ji = J̃i
on each sphere i = 1, 2 in S2×S2 and with Ai ∈ SO(3), we can transform H1 into

H1(L,K) = ω1J̃11 + ω2J̃21.

where ωi = n‖ai‖. If the frequencies ωi are strongly non-resonant, we can reduce the
regular T2 flow XH1

completely. In this case, J̃11 and J̃21 are two globally defined
actions with values ̃1,1 and ̃2,1. The geometry of such system is trivial: all its regular
tori T2 ⊂ S2×S2 are the fibres over points {(̃1,1, ̃2,1), 2 |̃i,1| < n} inside the interior of
the action space, while the corners and the points on the edges of the square represent
fixed points and periodic orbits, respectively. This system is also almost isochronous.

Resonances of ω1,2 may further complicate the situation, and at the same time—
make it interesting. Their quantum manifestation was first recognized in [2]. For
resonant frequencies ω1 and ω2 only one global action (a momentum) µ can be defined,
and the reduction of the corresponding S1 action brings us onto a two-dimensional
compact phase space which is homeomorphic to S2 and singular for some specific values
of µ [1, 3–5]. The system on S2×S2 with Hamiltonian H remains (approximately)
integrable, but can have critical fibres other than fixed points and periodic orbits,
notably a bitorus, a curled torus, and a pinched torus. The presence of either of
the last two fibres results in Hamiltonian monodromy. Since H1 is linear, its flow is
isochronous and, when the second normal form is considered, its frequencies are only
slightly perturbed by the higher order terms.

A notable example of singular reduction can be given for the axially symmetric
field configuration where f = (f, 0, 0)T , g = (g, 0, 0)T (parallel fields) and

H1(L,K) = n(fK1 + gL1) = n(g + f)J11 + n(g − f)J21.

In this case, H is already integrable, since it commutes with J11+J21, and it is natural
to perform a reduction procedure with respect to the corresponding S1 action. The
corresponding momentum L1, the first component of the orbital angular momentum
L, is a global action with values m ∈ [−n, n]. The reduced phase spaces Pm are
diffeomorphic to S2 for all 0 < |m| < n, while P±n are points and P0 is a sphere with
two singular points, similar to the one Richard Cushman called a “lemon” [6].

1.2. Beyond the most studied cases. The idea of this paper

In this paper we investigate what kind of perturbed Keplerian systems can be obtained
as perturbations of the hydrogen atom by external fields other than those described
in sec. 1.1.

One possibility would be to consider oscillating electromagnetic fields. In the
simplest cases, for example when a circularly polarized field plus a static one
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perpendicular to the polarization plane is present (see for instance [7]), it is possible to
completely remove the time dependence by considering a rotating frame of reference.
This, however, adds a centripetal term which is linear in the angular momentum
components and cannot be removed. If the time dependence cannot be removed by
simple means, for example this happens if we add a generic static field to a circularly
polarized one, we have to consider an extended phase space (where an additional degree
of freedom is added and time become a canonical coordinate) on which the dynamics
is described by an (extended) time-independent Hamiltonian (sometimes called the
Floquet Hamiltonian). In this case it is possible to employ standard perturbation
theory to perform an average over the time coordinate (which is akin to an angle).
When we consider Keplerian orbits whose frequencies are resonant with the frequency
of the external field (this case is analysed for instance in [8]) it is not possible to remove
completely the time dependence, and the averaged system is still time-dependent. This
requires a considerably more complicated analysis. Finally, for those n-shells whose
Keplerian frequency is not in resonance with the periodic field, a complete average
removes the extra degree of freedom. A first order analysis accounts for the effects
produced by the averaged field which are similar to the ones described in this paper
produced by a static field, while a theory taking into account higher orders might
exhibit new terms. In conclusion, the study of periodic fields either gives no clear
advantage or is substantially more complicated. So in this paper we will consider only
time independent fields.

In order to preserve the approximate Keplerian symmetry and be able to descend
on S2×S2 the fields should remain sufficiently weak (relative to the value of n).
Furthermore if we consider static fields, in order to eliminate H1 as a principal order,
the homogeneous field components defined by the linear scalar and vector potentials
φ and A should vanish (or at least they should be made insignificant).

Considering analytic potentials φ and A at Q = 0, the next, and yet unexplored,
possibility is given by perturbations by inhomogeneous fields described by quadratic
potentials. These perturbations contribute to H2, which is a homogeneous quadratic
polynomial in the components of J1 and J2, and, of course, to higher terms in (2).
Typically we will obtain on S2×S2 a completely non-integrable system. We can also
obtain a nontrivial approximately integrable anisochronous system. In the former case,
H2 does not Poisson commute with any other function of (J1,J2). On the other hand,
if the system with Hamiltonian H2 is integrable then the frequencies vary significantly
between regular tori. Finally, in the presence of a Lie symmetry on S2×S2, such an
S1 symmetry, we will obtain a system similar to the axially symmetric system already
described in sec. 1.1.

As an example of an interesting approximately integrable system, consider a
linear combination H2 = c1J

2
11 + c2J

2
21 or, more generally, a linear combination of

two reduced Euler top Hamiltonians. The motion of the tops is coupled through the
higher order terms in H. In this work, we show that any perturbation due to a purely
vector potential without linear terms (inhomogeneous magnetic field) results in such
a system. On the other hand, we also find that a more complex integrable system
on S2×S2 known as the Manakov top [9] cannot be realized as a perturbation of the
hydrogen atom by constant external fields.

Why should such systems be of any particular interest to physics? One of
the important reasons is that the compactness of S2×S2 and the straightforward
quantization procedure make them attractive for “low-cost” studies of quantum–
classical correspondence in the context of quantum manifestations of dynamical
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chaos, or the Nekhoroshev stability in perturbed integrable systems, and other such
phenomena which would remain otherwise inaccessible even to modern computers
due to the exponentially long times during which the classical dynamics should be
investigated.

2. Spatially inhomogeneous perturbations

A static electromagnetic field (in the absence of charge and currents) is characterized
by two vectors F (electric field) and G (magnetic field) satisfying Maxwell equations:

∇ · F = 0

∇× F = 0

∇ ·G = 0

∇×G = 0.

(6)

Since the domain on which the field is considered is simply connected, it is possible
to define a scalar potential φ and a vector potential A such that

F = −∇φ
G = ∇×A.

Using the potentials, the Hamiltonian for the hydrogen atom in the presence of a static
external electromagnetic field (in atomic units) can be rewritten as

H =
‖P‖2

2
− 1

‖Q‖
+ P ·A(Q) +

1

2
‖A(Q)‖2 − φ(Q). (7)

The fields alone don’t determine uniquely the potentials and it is necessary to fix the
gauge. A convenient choice is given by the multipolar (also known as line, point or
Poincaré) gauge, defined by the conditions:

A(Q) ·Q = 0

φ(0) = 0

A(0) = 0.

In this way, an explicit expression for the potentials, in terms of the fields, is given by
(see for instance [10]):

A(Q) = −Q×
∫ 1

0

G(λQ)λdλ

φ(Q) = −Q ·
∫ 1

0

F(λQ)dλ.

From Maxwell equations (6) we have that

∆F = 0

∆G = 0,

and therefore F and G are harmonic vector functions. Using the analyticity of
harmonic functions, we can rewrite them as F = F0 +F1 + . . . and G = G0 +G1 + . . .



Hydrogen atom in inhomogeneous static fields 6

where the components of Fk and Gk are k-homogeneous polynomials. Consequently
we can write A = A0 +A1 + . . . and φ = φ0 +φ1 + . . . where φk and Ak are potentials
for Fk and Gk respectively. We have that

Ak(Q) =
1

k + 2
Gk(Q)×Q

φk(Q) = − 1

k + 1
Fk(Q) ·Q

In particular, if G and F are linear, we can introduce two 3×3 matrices F and G such
that

F(Q) = FQ

G(Q) = GQ

Maxwell equations (6) are, in this case, equivalent to:

trF = 0,

F− FT = 0,

trG = 0,

G− GT = 0,

and Hamiltonian (7) becomes:

H = H0 +
Q · FQ

2
+

L · GQ

3
+
‖Q× GQ‖2

18
, (8)

where H0 is the unperturbed Kepler Hamiltonian.

3. Kustaanheimo-Stiefel regularization

The n-shell approximation is defined by considering the normal form of H obtained
through an averaging procedure over the flow of H0. In order to perform this average
one has to deal with the singularity at the origin. A way to do this is through the
Kustaanheimo-Stiefel regularization (introduced in [11]). In this section we will give a
brief description of the procedure. By doing so we can introduce explicitly the rescaled
field matrices A and B which replace F and G and absorb the unimportant constants.
Further details are common with the approach developed earlier, see [1].

The crucial point of the regularization process is to consider, starting from the
original Hamiltonian H, a new Hamiltonian HKS whose orbits, on a given energy
surface, correspond, up to a reparametrization of time, to the ones of H. The flow is
now complete and it is shown that HKS, as a system, is equivalent to a perturbed four
dimensional oscillator in the 1 : 1 : 1 : 1 resonance.

Let (q, p) be coordinates on T ∗(R4 \{0}) = R4 \{0}×R4 and define the functions

Q(q) = (Q1(q), . . . , Q4(q)) = (Q(q), Q4(q))

P (q, p) = (P1(q, p), . . . , P4(q, p)) = (P(q, p), P4(q, p))

as:

Q(q, p) = MKS(q)q

P (q, p) =
1

2‖q‖2
MKS(q)p
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where

MKS(q) =


q1 −q2 −q3 q4
q2 q1 −q4 −q3
q3 q4 q1 q2
q4 −q3 q2 −q1


define also the function ζ(q, p) and the 1-form θ as

ζ(q, p) = −2‖q‖2P4(q, p) = q1p4 − q4p1 + q3p2 − q2p3
θ = q4dq1 − q1dq4 + q2dq3 − q3dq2.

The functions (Q(q),P(q, p)) determine a surjective map ΦKS from T ∗(R4 \ {0}) onto
T ∗(R3 \{0}). If H is a Hamiltonian on T ∗(R3 \{0}) it is possible to define its pullback
HKS on T ∗(R4 \ {0}) as:

HKS(q, p) = H(Q(q),P(q, p)).

The map ΦKS itself is not symplectic, since it is straightforward to verify (using the
fact that ‖q‖−1MKS(q) is orthogonal) that

P(q, p) · dQ(q) = p · dq + ‖q‖−2ζθ.

However, it is immediate to see that ζ commutes with both Q and P (and hence
with HKS) and so, from ΦKS, we can induce a function Φ̂KS obtained via symplectic
reduction of T ∗(R4\{0}) with respect to the S1 action of ζ on the hypersurface defined
by ζ = 0. Φ̂KS is a symplectic diffeomorphism. From a practical point of view it is
sufficient to consider HKS defined above as a Hamiltonian on T ∗(R4 \ {0}) imposing
the condition ζ = 0 (this in general simplifies considerably the expressions involved).

If H is a Hamiltonian defined on T ∗(R3 \ {0}) and E ∈ R, we can consider the
Hamiltonian:

Ĥ(Q,P) = 4‖Q‖(H(Q,P)− E) + 4.

Even though in general the flows of H and Ĥ are not related, the energy surfaces
H−1(E) and Ĥ−1(4) coincide. On this common level set the orbits of H and Ĥ are
the same, up to a time reparametrization. If H = H(0) + V is the perturbed Kepler
Hamiltonian, using the fact that (when ζ = 0):

‖Q(q)‖ = ‖q‖2

‖P(q, p)‖2 =
‖p‖2

4‖q‖2
,

we have:

ĤKS(q, p) =
‖p‖2 + (−8E)‖q‖2

2
+ ‖q‖2VKS(q, p)

where VKS(q, p) = V (Q(q),P(q, p)). This shows that after regularization our system
becomes a perturbed harmonic oscillator, in particular ĤKS can be defined in the
origin and so we can consider T ∗R4 as its natural phase space.

Defining Ω =
√
−8E, we consider the canonical transformation:

(p, q) = (Ω1/2p′,Ω−1/2q′)
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along with the time-energy rescaling:

(t, ĤKS) = (Ω−1t′,ΩĤ ′KS)

obtaining
Ĥ ′KS(q′, p′) = 2n+ v(q′, p′) = 4Ω−1

where

2n =
‖q′‖2 + ‖p′‖2

2

v(q′, p′) = Ω−2‖q′‖2FKS(Ω−1/2q′,Ω1/2p′)

For the case of the hydrogen atom in an electromagnetic field defined by linear electric
and magnetic fields F (Q) and G(Q), if

A = 8Ω−4F

B = −3Ω−3G,
(9)

Hamiltonian (8) becomes:

H(q, p) = 2n+
1

16
‖q‖2Q(q) · AQ(q)− 1

6
‖q‖2L(q, p) · BQ(q) + . . .

where
L(q, p) = Q(q)×P(q, p)

is the orbital angular momentum. Here we dropped the primes, the hat and the
subscript KS: from now on we will only deal with the regularized Hamiltonian, and
we also ignored high order terms. Note that (9) is the constant energy scaling. The
other possibility is the n-shell scaling. See [1] for more details.

4. Keplerian normal form and reduction. Our main result

In order to descend on S2 × S2 (through a symplectic reduction procedure) we need
first to average H over the flow of H0. We obtain the averaged Hamiltonian

H = 2n+H2 + . . .

In this way H becomes a perturbation on S2 × S2 of H2 which commutes with n and,
by the construction outlined in sec. 3, with ζ.

In the KS space T ∗R4 we can have only 6 linearly independent quadratic
polynomials in the q and p variables that commute with n and ζ. We can choose
these polynomials to be L = (L1, L2, L3) and K = (K1,K2,K3) defined as:

L =
1

2
(q× p + q p4 − p q4)

K = −1

4
(MKS(q)q + MKS(p)p)

where q = (q1, q2, q3) and p = (p1, p2, p3). They satisfy the relations

‖L‖2 + ‖K‖2 = n2 +
ζ2

4

L ·K = −1

2
ζn.

(10)



Hydrogen atom in inhomogeneous static fields 9

L and K correspond respectively to the orbital angular momentum and to the
(rescaled) Runge-Lenz vector for the original Kepler problem.

It is convenient to introduce

J1 =
L + K

2
and J2 =

L−K

2

for which relations (10) become

‖J1‖ =
n

2
+
ζ

4

‖J2‖ =
n

2
− ζ

4

and denoting Jα = (Jα1, Jα2, Jα3)

{Jαi, Jβj} = δαβεijkJαk. (11)

This means that J1 and J2 parametrize a space symplectomorphic to S2×S2 equipped
with the standard so(4) ∼= so(3)⊕so(3) structure (in particular if the system is defined
through a regularization procedure, we have that ζ = 0 and so the radii of the spheres
are the same and equal to n/2).

Using standard methods of the invariant theory [12, 13], we can show that any
function that commutes with n and ζ can be written in terms of the components of J1

and J2. This implies that the phase space obtained through the symplectic reduction
of the T2 symmetry generated by n and ζ, on which H2 is naturally defined, is S2×S2
with the symplectic structure (11).

The expression of H2 can be computed by means of standard techniques. The
leading order of the perturbation is a homogeneous polynomial of degree 4 in (q, p)
times ‖q‖2 (due to the regularization procedure). After averaging under the flow of
H0 this gives a quadratic form in the components of J1 and J2 times n.

There we stop at this principal nontrivial term. We assume homogeneous fields
vanishing and we neglect all higher order terms such as the ones produced by second
averaging, coming from higher order inhomogeneities, and quadratic Zeeman term.

We can now state our main result. We have found that

H2 = nJ̃ ·M J̃ (12a)

where J̃ = (J1,J2) and M is the 6× 6 matrix:

M =

(
A + B − 3

2A
− 3

2A A− B

)
; (12b)

the 3× 3 matrices A and B are introduced in (9) and depend on the field parameters.
It can be shown that for general fields F and G the system with this Hamiltonian

H2 on S2 × S2 is not Liouville integrable, see sec. 7. In the subsequent sections, we
consider two groups of specific results: the inhomogeneous field is defined purely by
the vector potential (sec. 5); the system has an additional axial symmetry (sec. 6). In
both cases the system with H2 is Liouville integrable.

5. Perturbations by a pure magnetic field

When the field is purely magnetic then matrix A = 0 and the Hamiltonian H2 is given
by

H2 = n(JT1 BJ1 − JT2 BJ2)
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If R ∈ SO(3) is an orthogonal transformation that diagonalizes B, then the
canonical transformation defined by

(P,Q) = (RP̃,RQ̃)

leaves the Kepler Hamiltonian invariant and induces, on the reduced phase space
S2×S2, the symplectic change of coordinates

(J1,J2) = (RJ̃1,RJ̃2).

In this new coordinate system H2 becomes (dropping the tilde from the dynamical
variables):

H2 = nλ1(J2
1,1 − J2

2,1) + nλ2(J2
1,2 − J2

2,2) + nλ3(J2
1,3 − J2

2,3) (13)

where λ1, λ2 and λ3 are the eigenvalues of B. It is not restrictive to consider the
situation λ1 ≥ λ2 ≥ λ3 (and λ1 6= λ3, otherwise the traceless matrix B would be zero).
Adding to equation (13) the quantity nλ3(J2

2 − J2
1), which vanishes on S2×S2, and

dividing by the positive quantity 2(λ1 − λ3) (through a rescaling of time) we obtain

H2 = n(Kλ(J1)−Kλ(J2))

where

Kλ(Ji) =
J2
i1

2
+ λ

J2
i2

2
i = 1, 2

is the Hamiltonian of a rigid rotor on S2 and

λ =
λ2 − λ3
λ1 − λ3

∈ [0, 1].

Adding the (constant) quantity n‖J2‖2 to H2 and performing a rotation around the
second axis on the second sphere we have:

H2 = n(Kλ(J1) +K1−λ(J2)).

From these expressions it is straightforward to conclude that, no matter what the field
parameters are, H2 is integrable, being the sum of two uncoupled 1-degree of freedom
systems. The anisochronicity of Kλ, moreover, implies the anisochronicity of H2.

5.1. Convexity properties

Since H2 is integrable its local representatives are functions of the local actions only.
Along with the anisochronicity of the motions it is interesting to verify the convexity
in the actions §. This plays a crucial role when higher order terms of H are taken
into account. In this case the system is no longer Liouville integrable but it is, in
fact, a perturbation of H2. Through Nekhoroshev theory it is possible however to
prove, under convexity assumptions on H2 and provided that the perturbation is small
enough, that the dynamics of the action variables is bounded over an exponentially
long time scale. See [14] for a detailed account on Nekhoroshev theory.

§ A polynomial function H2 in the two (local) actions is convex if its second derivative H′′2 is a
positive definite quadratic form. Note, however, that the concept of convexity can be defined without
employing the local representatives.
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We prove that in the case of the presence of an axially symmetric magnetic field
(λ = 0) there is no convexity in the actions, while in the non-axially symmetric case,
a generic linear magnetic field provides convexity (at least in a region of the phase
space). Therefore, such systems are suitable for studying quantum manifestations of
Nekhoroshev stability, a widely acknowledged aspect of classical dynamics which has
not yet been observed in the quantum world (a first step toward this has been done
in [15]).

5.1.1. Special non-convex case When λ = 0 (the field is axially symmetric), H2 =
n(J2

11 − J2
21). When 2Ji1 6= ±n for i = 1, 2, J11 and J21 are valid action variables for

the system and we have that the Hessian matrix of H2 is

H′′2 (J1,J2) =

(
1 0
0 −1

)
,

showing that the system is non-convex. An equivalent situation arises when λ = 1.

5.1.2. Convexity in the non-axially symmetric case When λ ∈ (0, 1), Kλ admits a
separatrix which defines four disjoint regions on S2 where action-angle coordinates
should be constructed separately.

Just as for the reduced Euler top, an explicit expression for the action in terms
of elementary functions is not possible. It is, however, possible to give an expression
for the period of the system as a function of the energy. Let h be the energy (with a
slight abuse of notation we will identify both the energy value and the Hamiltonian
with h). Supposing 0 ≤ 8h < λn2 it is can be shown that (an analysis of the dynamics
of the Hamiltonian Kλ can be found for example in [16]):

T (h) =
8n√

λ(n2 − 8h)
K

(
8h(1− λ)

λ(n2 − 8h)

)
where K(m) is the complete elliptic integral of the first kind. The action can be
expressed as a function of the energy

I(h) =
1

2π

∫ h

0

T (Σ)dΣ

and the Hamiltonian, as a function of the action, can be found by inverting I(h). It
is possible to express the frequency map ω = h′ as a function of the energy through
the relation:

ω(I(h)) =
2π

T (h)
.

To compute the Hessian M = h′′ of the Hamiltonian with respect to the actions, we
use the formula that relates the second derivative of a function with the one of its
inverse:

M(I(h)) = −4π2 T
′(h)

T 3(h)
.

The case λ < 8hn−2 ≤ 1 can be analysed in an analogous way by employing the

substitution (h, λ)→ (n
2

8 − h, 1− λ).
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Using the fact that

K ′(m) =
E(m)− (1−m)K(m)

2m(1−m)
,

where E(m) is the elliptic integral of the second kind (a standard expression that can
be found, for instance, in [17]), introducing the function

x = x(h) =
8h(1− λ)

(n2 − 8E)λ
∈ [0, 1].

it is possible to see that

M(I(h)) =
π2

4n2
(1− x)(1− λ)K(x)− (1− (1− x)λ)E(x)

(1− x)xK(x)3
(14)

From this expression it is possible to check that (Imax here is the value of the action
at the separatrix)

M(0) = −1 + λ

2n2

lim
I→Imax

M(I) = −∞

If we want to prove that M(I) is negative for I ∈ [0, Imax), it is sufficient to prove
that M is a decreasing function. From an analysis of the zeros of its derivative, it can
be seen that any critical point of M in the interval x = x(h(I)) ∈ (0, 1), corresponds
to a zero of

P (x) = 3E(x)2 − 2(2− x)E(x)K(x) + (1− x)K(x)2.

Now that any dependence from λ has been factored out, it is a matter of standard
analysis to show that P (x) does not possesses zeros for x ∈ (0, 1). These calculations
show that, for 8h(I) < λn2,

M(I) ≤ −1 + λ

2n2
< 0,

while for 8h(I) > λn2 we have

M(I) ≥ 2− λ
2n2

> 0.

Back to the original system, the actions for H2 are defined in a straightforward
way from the actions for the two rotors. In particular around each minimum and each
maximum of H2 on S2×S2 we have that the Hessian of H2 is bounded away from zero:

‖H′′2‖ ≥
1 + min(λ, 1− λ)

2n2
> 0

and so the Hamiltonian is convex (in other regions‖, however, H′′2 is not positive
defined and so there H2 is not convex).

‖ There are sixteen disjoint connected regions on S2×S2, each one defined as the product of a region
containing a maximum or a minimum on S2 of the Hamiltonians Kλ and K1−λ. H2 is convex in the
eight zones related to the pairs of maxima or minima.
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6. Perturbations by an axially symmetric field

Generally, when an electric field is present, there are no simple integrals of motion.
An exceptional case is encoutered when an electromagnetic field is invariant under
any rotation around a fixed axis. In this case, there exists a non-zero W ∈ R3 and
R ∈ SO(3) such that:

RW = W

RF(Q) = F(RQ)

RG(Q) = G(RQ).

By a suitable choice of the reference frame, it is not restrictive to consider the case
W = (1, 0, 0)T . In this way, we can find constants α and β such that

A =
β

3
diag(2,−1,−1)

B =
αβ

3
diag(2,−1,−1).

Having already analysed the purely magnetic case A = 0, we can, after a
reparametrization of time, let β = 1.

With all these simplifications the averaged Hamiltonian (12a) becomes:

H2 = n

(
K2

1 +
ξ

4
+ αK1L1 −

n2

6

)
(15)

where
ξ = 4(J1 · J2 − J11J21) = L2 −K2 − (L2

1 −K2
1 ).

A consequence of the invariance of the original system is the invariance of H2 under
simultaneous rotations around the first axes on the two spheres. Furthermore,

{H2, L1} = 0.

Since we are dealing with a two degree of freedom system this implies that H2 defines
a Liouville integrable system on S2 × S2.

In order to study the geometry of the family of tori of our present system (i.e.
of the integrable fibration) we use reduction of the S1 symmetry action. Since similar
analysis can be found elsewhere (see for example [6]), we do it very briefly. We
also should note that, the n-shell energy-momentum diagrams in this section and
the particular degeneracy patterns can be observed experimentally (by measuring the
energies of the quantum states and finding their quantum number m of the angular
momentum projection).

6.1. Reduction of the axially symmetric case

Since H2 is invariant under the Hamiltonian S1 action generated by L1 it is convenient
to perform the symplectic reduction relative to this action. A generic L1-invariant
Hamiltonian can be written as a function of L1, K1, ξ and σ, where

σ = 2(L2K3 − L3K2) = 4(J22J13 − J12J23).
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These four invariants satisfy the relation

σ2 + ξ2 − ((n+ L1)2 −K2
1 )((n− L1)2 −K2

1 ) = 0. (16)

For a fixed value m of L1, equation (16) defines a (possibly singular) symplectic
manifold Rm and the reduction procedure associating to any invariant Hamiltonian
on S2 × S2 a reduced Hamiltonian on Rm.

For m 6= 0,±n, Rm is a two-dimensional differentiable manifold diffeomorphic
to S2, whose each point is lifted to a generic circular orbit of the S1 action. For
m = ±n, Rm reduces to a point and the orbits of the action are the fixed points
K = 0, L = (±n, 0, 0)T . R0 is homeomorphic to S2, but the reduction relative to the
points σ = ξ = 0, K1 = ±n is singular and the orbits of the action above these points
are the fixed points L = 0, K = (±n, 0, 0)T . Naturally, the four isolated fixed points
are the equilibria of H2 on S2 × S2.

6.2. Analysis of the invariant fibration in the reduced phase space

The system with Hamiltonian H2 can be regarded as an integrable system on the (at
most) two-dimensional phase space Rm. The geometry of the corresponding invariant
(singular) fibration is defined by the level sets of H2, see the typical example in fig. 1
and the explanation below. The analysis is quite simple and easy to follow. It relies
on classifying intersections in R3 of the sphere-like shape Rm with cylindrical (in σ)
level sets of H2.

When H2 is a submersion, and Rm is nonsingular, the regular fibres are, by
the Liouville-Arnol’d theorem, the disjoint unions of one-dimensional tori, while the
connected components of the critical fibres represent equilibria or separatrices of the
system. When H2 is defined by (15), the regular fibres can either be connected or have
two connected components. At critical energies separating regular energy intervals, we
find invariant fibres with a different number of connected components. These critical
fibres can be of two kinds:

(i) The fibre is connected and contains a hyperbolic fixed point for the flow of H2:
it resembles a figure eight and represents a separatrix of the reduced system;

(ii) At least one of the connected components of the fibre is an elliptic fixed point for
the flow of H2.

On Rm, when |m| < n (the case |m| = n is trivial), H2 possesses a single global
minimum (elliptic fixed point) and so for “low” energies the invariant fibres are
connected. If m is large enough (i.e. |m| > mα for some mα ∈ (0, n), depending
on the value of α), then all fibres are connected and the only other critical fibre is
the global maximum (an elliptic fixed point). If, on the other hand, m is close to 0
(fig. 1), then a hyperbolic fixed point with a corresponding eight-shaped singular fibre
(yellow line in fig. 1) are present, and at energies higher than that of this fibre, we
have a continuous family of disconnected regular fibres. If α = 0, then there is only
one more critical fibre which corresponds to the global maximum of the energy and
which is a disjoint union of two elliptic fixed points. If α 6= 0 (fig. 1), we have a local
maximum of the energy corresponding to the disjoint union of a circular orbit and a
fixed point followed by the global maximum which corresponds to a single fixed point.

To compute the energy values at the critical fibres on Rm it is sufficient to find
the values of (K1, ξ, σ) for which

c(K1, ξ, σ) = ξ2 + σ2 − ((n−m)2 −K2
1 )((n+m)2 −K2

1 ) = 0
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Figure 1. Constant energy level sets and the reduced phase space for L1 = 0.3
and α = .5 shown in the projection on the σ = 0 plane with coordinates (ξ,K1).
The image of the reduced phase space R0.3 is shaded gray. Each line represents a
level set of H2; bold lines mark the intersection with R0.3. Continuous black and
coloured lines represent regular and critical fibres, respectively. Critical points of
H2 on R.3 are shown in red. In the light grey area we have connected regular
fibres; in the dark grey area, we have fibres with two connected components.

and such that dH2(K1, ξ, σ) ∧ dc(K1, ξ, σ) = 0. Calculations are greatly simplified by
the fact that H2 does not depend on σ and consequently for any critical point we have
σ = 0. This leads to equations

K3
1 + 4ξK1 − (m2 + n2)K1 + 2αmξ = 0

ξ2 − ((n−m)2 −K2
1 )((n+m)2 −K2

1 ) = 0,

which can be rewritten as ξ = P (K1) and Q(K1) = 0 where polynomials P and Q
depend parametrically on m, n, and α. The solutions of this system give the critical
points of H2 and the corresponding critical fibres. The discriminant ∆(m) of Q is a
polynomial that depends parametrically on α. This polynomial has one real root mα in
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the open interval (0, n). This threshold value mα signals the existence of disconnected
regular invariant fibres for |m| < mα.

6.3. Analysis of the invariant fibration on S2 × S2

It is straightforward to extend the previous analysis in order to describe the invariant
singular fibration defined by H2 on S2 × S2. For 0 < |m| < n, the connected
components of any regular fibre lift to two-dimensional tori, the elliptic points lift
to periodic orbits and the eight-shaped fibres lift to bitori (two two-dimensional tori
“glued” together on a circle). For |m| = 0, the situation is the same, except for the
fibre that contains only the two singular points of R0 (and that corresponds to the
global maximum of H2). The corresponding fibre on S2×S2 is a disjoint union of two
fixed points. Finally, in the case |m| = n, the single invariant fibre is lifted to a fixed
point on S2 × S2.

6.4. The energy-momentum map and the quantum lattice

Figure 2. Energy momentum map for the axially symmetric system for α =
0, 1, 2, 5. Lines mark critical fibres. Specifically, solid black lines represent periodic
orbits, red solid lines correspond to bitori, while blue dashed lines mark disjoint
unions of a torus and a periodic orbit. Over the light gray area the fibres are
connected, while over the darker area the fibres have two connected components.
For α = 1, 2 the lattice of the quantum spectrum is also given (for L1 ≥ 0 only,
since the picture is symmetric for negative values). Each point represents an
eigenstate of the system, the colors are related to the expectation value 〈K1〉:
green if it is greater than k̄, red if it is smaller to k̄, and black if it is equal to k̄,
where k̄ is the projection on the K1 axis of the critical point of H2 relative to the
bitorus (or to the global maximum if the former is not present).

To describe globally the invariant foliation on S2×S2 generated byH2 we consider
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the energy-momentum map

EM : S2×S2 → R2 : x 7→
(
L1(x),H2(x)

)
.

The fibres of EM are the invariant sets of the system which are found as described in
the previous sections for varying fixed values m of L1. The image of EM is illustrated
in fig. 2. In the plane parametrized by the values of EM, the images of the critical
fibres (bitori and periodic orbits) are highlighted, while the regular domains where
each point lifts to the same number of connected components T2 (one or two) are
distinguished using different colors.

We notice two qualitatively different situations. When α 6= 0 there is a triangular
region, over which we have regular fibres with two connected components. The lower
boundary of this domain is a curve representing bitori, the lateral boundaries lift to
the disjoint union of a two-dimensional torus and a periodic orbit. Surrounding this
region is another larger region where each point lifts to one connected regular fibre,
and whose boundaries represent families of periodic orbits (global maxima/minima
of the reduced system). It is interesting to observe that it is possible to “cross” the
lateral boundaries of the first (inner) region. Specifically, it is always possible to lift
any given path in the (L1,H2) plane which crosses the lateral boundaries to S2×S2 in
a way that the singular fibres are avoided, but this is not possible if the path crosses
the lower boundary. When α = 0 (purely electric field) the lateral boundaries of the
inner region merge with the boundaries of the outer one dividing the fibration in two
disconnected zones whose common boundary cannot be crossed.

In the presence of regular disconnected fibres, we can represent the image of the
EM as a two-sheeted (two cell) unfolding surface (see the discussion in [1, 18]), with
a smaller triangular sheet (or lower cell, dark gray in fig. 2) glued to the larger sheet
along the bitorus line. Regular points in each sheet (or cell) lift to a single regular
torus T2. When the bitorus line is isolated within the larger sheet (larger lower cell,
light gray), the system has monodromy for any path encircling this bitorus line (cf for
example [19]).

It is interesting to observe also how the geometry of the system is reflected in the
quantum analogue. The HamiltonianH2 can be quantized in a standard way [20]. The
joint spectra of Ĥ2 and L̂1 (the quantized projection of the angular momentum with
quantum number m) defines a lattice in R2, see fig. 2. This lattice follows the lines of
constant classical local actions of the system and shows a clear near degeneracy in the
smaller triangular sheet of the stratified EM image. To distinguish the lower and the
upper sheets, observe that classically, for a given value of L1 admitting disconnected
regular fibres (cf fig. 1, dark gray shade), there exists k̄ ∈ (−n, n) such that the
connected components of the fibre, in the inner sheet, are characterized either by
K1 < k̄ or K1 > k̄ (k̄ is the K1-component of the hyperbolic point). In the quantum
case we can classify the eigenstates of H2 by their expectation value of the quantum
observable corresponding to K1 (with respect to the value of k̄). As illustrated in
fig. 2, we can distinguish in this way the different sublattices and in particular, that
one family (green dots in fig. 2) can be defined on the whole EM image (both inside
and outside the inner region) in a regular way, enforcing the idea that the singular
lines in the EM image caused by the elliptic points are crossable. It should be noted
that this distinction of sublattices can be done only if there is no additional reversal
symmetry K1 ↔ −K1 (which is present in the case α = 0 or when L1 = 0).
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7. The general case: non-integrability

In the general case, when the system possesses no extra axial symmetry and an
inhomogeneous electric field is present, no simple integrals of motions seem to exist.
While proving non-integrability, i.e., excluding the existence of a function f on S2×S2
which is functionally independent from H2 and which Poisson commutes with H2,

{f,H2} = 0,

may be difficult (cf [7]), strong indications can be given.

Figure 3. Poincaré sections for two orbits (blue and red points) launched at the
same energy for a generic field configuration. The surface of section is defined
by J11 = 0 with coordinates given by the polar angles φ1 and φ2 corresponding
to axes J11 and J21. The blue orbit is regular; the red orbit clearly exhibits a
chaotic behaviour.

In particular, it is possible to check systematically for the presence (or absence)
of polynomial first integrals of a given maximal degree in the J components. Let
p1, . . . , pk and q1, . . . , ql be the bases for the polynomials with given maximal degrees
d and d+ 1 respectively. Since H2 is quadratic we have:

{pi,H2} =
∑
j

Pijqj ,

where P is a matrix with real entries. For any element w = (w1, . . . , wk) in the kernel
of P we can define f =

∑
i wipi satisfying

{f,H2} = 0.

So the task of finding a polynomial integral of motion f is reduced to finding
the kernel of P. Note that we should exclude from the kernel of P any “trivial”



Hydrogen atom in inhomogeneous static fields 19

invariant polynomial which can be obtained by combination (through addition and
multiplication) of H2 and the Casimirs of the system. It is always possible to suppose
that pm+1, . . . , pk define, for some m < k, a basis for the “trivial” part of the kernel
and then it is sufficient to consider only linear combinations of p1, . . . , pm.

At this point, if H2 is non-integrable then matrix P has maximum rank for
every d. When the dependence on the field parameters is restored, P becomes a
matrix depending (linearly) on the parameters and the kernel is nontrivial for a given
field configuration if the determinant (which is a multivariate polynomial in the field
parameters) of any m×m submatrix of P vanishes for the corresponding parameters.
In general, using a Gröbner basis algorithm with a good choice of a limited number
of submatrices, it is possible to prove the polynomial non-integrability of the system.
Thus for example, we can show that any system that admits linear integrals is axially
symmetric.

For a purely electric inhomogeneous field, it is possible to find a basis in which the
matrix A is diagonal and, after rescaling H2, to see that the system depends essentially
on only one parameter. In this way the determinant of any square submatrix of P
is made a polynomial in one variable with only a finite number of roots that can
be examined by hand (or it is sufficient to check if different submatrices determine
polynomials with common roots). In particular, we have verified that there are no
polynomial invariants up to maximal degree 4.

Another way to demonstrate non-integrability, for a given field configuration but
without any restriction to the class of possible invariants, is to uncover the irregular
motion through numerical integration. An example is given in fig. 3 where one orbit,
shown in blue, is picked sufficiently close to an elliptic equilibrium and remains on
a KAM torus, while the other orbit, in red, is visibly chaotic. The computations in
fig. 3 were done for a generic inhomogeneous fields configuration with

A =

 2 0 −1
0 2 0
−1 0 −4

 , and B =

−2 1 −1
1 −2 −2
−1 −2 4

 .

8. Energy of the perturbed system and concrete applications

A drawback of Kustaanheimo-Stiefel regularization, which may be problematic in
applications, is that the expressions for the Hamiltonian contain, through Ω, the
(perturbed) energy of the system as a parameter instead of the principal quantum
number n. The procedure to extract energy from the Kustaanheimo-Stiefel normal
form is described in [1]. We briefly discuss here the necessary modifications that should
be employed in our case (which is relatively simple since we only use the first order
average).

The basic idea is that we can express the perturbed energy E as

E = − 1

2n2
+ ∆E, (17)

where the first term is the unperturbed Keplerian energy and ∆E is the so called
energy correction. In particular we have that (ignoring high order terms in ∆E)

4HKS = Ω−1 =
1√
−8E

=
n

2
+
n3

2
∆E + o(∆E). (18)
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In the first order approximation, we obtain from (18) that

HKS = 2n+ 2n3∆E (19a)

Furthermore we can define the n-scaled analogs of (9)

A =
n4

2
F and B = −3n3

8
G, (19b)

and from (19a) we obtain

∆E =
1

2n3
(HKS − 2n) (20)

Averaging ∆E we obtain the Hamiltonian

∆E = ∆H2 =
1

2n2
J̃ ·M J̃ . (21)

where M is the same that has been already defined in (12b) except that the new
expressions (19b) for A and B in terms of n should be used. The first order normal
form approximation of the in order to compute the energy, is obtained by adding the
unperturbed keplerian energy (in terms of n):

H = − 1

2n2
+ ∆H2 = − 1

2n2
(1− J̃ ·M J̃). (22)

For example, let us consider the magnetic case with F = 0. We have that

−J̃ ·M J̃ =
3n3

8
(J1 · GJ1 − J2 · GJ2).

Recall that G is the 3 × 3 symmetric traceless matrix defining the nonhomogeneous
(linear) magnetic field G(Q) = GQ (See section 2). If we put ourselves in a reference
frame where G is diagonal, that is

G(Q) = (λ1x, λ2y, λ3z)
T , λ1 + λ2 + λ3 = 0, λ1 ≥ λ2 ≥ λ3,

we have (using the results of Section 5) that the energy

−J̃ ·M J̃ = α(Kβ(J1)−Kβ(J2))

with

Kβ(Ji) =
1

2
(J2
i1 + βJ2

i2), α =
3

4
n3(2λ1 + λ2) and β =

λ1 + 2λ2
2λ1 + λ2

, (23)

is the sum of energies of two rigid rotors.
Since the spectrum of Kβ(Ji), i = 1, 2 is nonnegative and bounded from above

by 1
2‖Ji‖

2 = n2

8 , an estimation for the splitting relative to the keplerian energy due
to the perturbation is given by

|2n2∆H2| ≤
3

32
n5(2λ1 + λ2).

This shows that, in order to justify the perturbative regime, we should require

3

32
n5(2λ1 + λ2) << 1 and therefore 2λ1 + λ2 <<

32

3
n−5.

Notice that here the field parameters λi are in atomic units.
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9. Discussion. Specifics of the physical realisation

The fact that any perturbation of the hydrogen atom by a sufficiently weak spatially
inhomogeneous magnetic field without (or with a very small) homogeneous component
is equivalent—in the n-shell approximation—to a nearly integrable system of two
identical Euler tops with conserved angular momenta of equal length ‖J1‖ = ‖J2‖ =
n/2 coupled through higher order terms (sec. 5), a system that is isochronous and
generally convex, is certainly a nontrivial and interesting result. It can be very
interesting to observe experimentally the fine structure of the n-shell energy levels
corresponding to this case. And when such observation become possible, interesting
and new phenomena can be studied, notably the Nekhoroshev stability [15].

It is, therefore, pertinent to discuss whether and how such perturbation can
be indeed achieved physically. In comparison to the case of homogeneous fields, a
number of new challenging difficulties is evident. First of all, the fields should be
inhomogeneous on the scale of the classical orbit with Keplerian action n¶ while
the homogeneous component should be excluded (or at least made smaller than the
inhomogeneous part). Secondly, the position of the atom with regard to the created
field becomes also critical on the same scale. We hope however that contemporary
experimental techniques are or will soon become capable of solving these problems.
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