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Abstract—Immersive display systems like the one proposed
by ICE® technology aims to enhance visual immersion by
widening the field of view. However, creating immersive content
while maintaining immersion integrity is a challenging task
due to the sensitivity of human peripheral vision to flickering
and movement. Moreover, identifying elements in videos that
may disrupt immersion and determining whether they can be
expanded into an immersive context is a complex and time-
consuming process due to the lack of automatic methodologies.
In this paper, we propose a pipeline for automatically gener-
ating content for lateral displays from movies. The pipeline
consists of several steps. Firstly, the input content is divided
into cinematic shots, and then further segmented into snippets.
Next, domain-specific features are extracted using dedicated video
deep learning models. Additionally, handcrafted features are
computed to provide task-specific information. These extracted
features are utilized to predict the required processing steps
for generating lateral content that aligns with ground-truth
annotations provided by cinema experts. The results obtained
from our pipeline show promising accuracy and demonstrate the
potential for this specialized application.

Index Terms—immersive display system, Deep Learning, ex-
trafoveal video, Wide Field of view

I. INTRODUCTION

From the earliest audiovisual creation dates we can find,
immersion has always been sought. From Chauvet cave paint-
ings [1], to cinema theaters, 3D movies, VR headsets until
nowadays new sensory experiences such as haptic gloves,
research has continuously pushed forward experiences to be
closer and closer to reality.

Even when focusing only on the visual sensory system,
merely fulfilling the human FoV (Field-of-View) with adapted
content of view is still a complex task to achieve today. Some
may choose to record a wider camera view in order to display
it on a specific format, such as IMAX [2], Barco Escape [3] or
ScreenX [4]. This approach is based on pre-production and can
be achieved by multi-camera support to record surrounding
contents, or by a very wide-lens camera. The latter lowers
the quality of the overall image, as a single camera attempt
to cover the same wide FoV [5]. Either way, camera will
inevitably disturb lighting and microphone placement [5]. The
high cost of these very specific camera setup is a major
drawback of this method.

Lateral displays Main screen Lateral displays

Fig. 1. Photo of an ICE immersive Theater, showing a movie with its lateral
displays.

To solve pre-production problems, multiple techniques are
oriented towards real-time generation of surrounding content.
A few techniques work with LED lights such as the Ambilight
[6], SparseLightVR [7], Ambiculus [8] and DeepDive [9] that
provide ambient color lighting around the TV screen or around
lenses of a head-mounted display. More advanced techniques,
related to outpainting i.e. expanding an image content beyond
its borders, focus on real-time generation. These methods such
as Infinity-By-Nine [10] (inspired by the CAVE [11] system)
or more recently ExtVision with deep learning techniques [12],
introduce artifacts, including spatial incoherence or flickering
problems due to the real-time generation constraint. While, the
human peripheral vision is less sensitive to color and texture,
allowing to be less demanding in terms of quality of the sur-
rounding content (which defines the so-called Focus+Context
[13] system), it is more sensitive to motion and flicker [14].

To avoid such artifacts having an impact on the user’s qual-
ity of experience, post-production involving content-designers
team, could be considered. However this may significantly
increase the cost of content production like movies. Finding
solutions to make the process automated is an important
challenge of the last decade. To cope with this problem,
another approach consists of dropping the real-time constraint,
although visual artifacts may persist [15].

This paper tackles this problem for a very specific context,
where the tolerance towards visual artifacts is very close
to zero. This context is the immersive cinema and more
precisely the ICE Immersive technology [16]. This theater
system provides post-processed lateral contents to offer an



Fig. 2. Five possible processings, applied to the same frame, showing an
accelerating spaceship and a rock cliff: P1) details, P2) seam carving, P3)
less details, P4) blur and P5) static.

immersive environment to the user illustrated in Fig. 1. The
first milestone of ICE expert’s working process is to choose
what processing to use as a baseline for a given cinematic
shot and this paper will be focused on this part. Experts have
a panel of five processing (represented in Fig.2, described in
Table I) from which they can choose. Each processing has
its own benefits and disadvantages. Adequate processings are
used according to shots in Fig.3.

Using the actual movie frames to extend the image in real
time induces a discontinuity in the image. This phenomenon
can result in an apparent object duplication, deformation, or
temporal phase shift when an object moves into or out of the
shot. This is why special care is needed to choose adequate
lateral content. Details (Fig.2.P1) is used to emphasize fast
moving video sequences because the human eye is more
tolerant to temporal phase shift under this condition (Example
in Fig.2.P1, left content). Landscapes can also be emphasized
by detailed choices, as they tend to have few to no salient
object, or to have repetitive pattern (such as Fig.2.P1, right
content and Fig.3.P1). The human eye is more tolerant in
discontinuity when it occurs on patterned image. Both can

TABLE I
DESCRIPTION OF THE DIFFERENT PROCESSINGS.

Details
(P1)

Intakes a slice of the frame and scales up its horizontal
size (×6.7)

Seam
Carving
(P2)

Applies a Seam Carving algorithm to the entire frame,
i.e. extending image pixels of lowest density, then intakes
a slice of the resulted frame and enlarge its horizontal
size (×6.7)

Less Details
(P3)

Intakes a thinner slice of the frame than ”Details” and
scales up its horizontal size (×10)

Blur (P4) After applying less details, applies an important vertical
blur to the resulted image

Static (P5) Applies a single color for the entire cinematic shot

Fig. 3. Basic processing techniques when used by experts on adequate shots,
same order than on Fig.2.

provide solutions when a detailed choice would emphasize
the action, but a salient element is too close to the border of
the screen and thus, would be duplicated in lateral screens,
breaking the immersion. In Fig.3.P2, seam carving gets rid of
the elbow of the pilot, whereas Fig.3.P3, less details avoids
the ship, both located too close to a border. Blur option is
employed in situations where the shot exhibits a medium-
speed motion or features a prominent object situated close to
the frame’s edge, disrupting the viewer’s immersion (refer to
Fig.3.P4). This includes scenarios such as a character leaping
out of a car or a person’s head appearing duplicated on the
lateral screen.

option is used when the shot is medium-speed or with
a too salient object near the border, breaking immersion
(Fig.3.P4), with a character jumping out of car, or a head that
duplicates itself in the lateral screen). At any time, the side
panels should not draw the spectator’s attention more than the
initial sequence does. This is why static choice is useful for
low-speed video sequences, such as the discussion between
characters on Fig.3.P5.

Whereas this is oversimplified for the sake of this paper, the
general ideas given here remain. Decisions on each shot are
made on a case-by-case basis, with trial and error expertise. In
this paper, As the actual ICE working process is so tedious,
the goal is to push further the automation of it. To realize
it, deep learning models with similar problematics than ours
are explored. Building upon this comprehensive exploration,
we have successfully incorporated existing models tailored to
extract intricate temporal features into our video datasets. A
benchmark of these different models applied to our problem
as feature extractor with their performance is provided, taking
special care of their respective original setups (training video
framerate, resampling, etc.). Different classifier configurations
are also tried to better retrieve the obtained feature wealth.
Ablation studies are conducted on this classifier and on data
preparation to make sure the model proposed is coherent as a
whole. Results and discussion show that a deep learning model
for our very specific context is feasible and promising.

II. METHODOLOGY

Choosing the best processing to each of the cinematic shots
of a movie to offer an expansion covering the lateral displays is
tedious. The aim of the following paper is to explore solutions
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Fig. 4. Pipeline used to predict lateral contents of a given snippet, for movie expansion purpose.

to perform this task in an automatic manner. In this section, we
describe the adopted solution based on artificial intelligence.
The pipeline of this solution is given on Fig. 4.

The input data, i.e. a movie, is split into cinematic shots,
with a ground truth prediction associated to each, provided
by ICE experts. The aim is to predict, for any given shot,
which is the most adequate processing in order to offer the
user an immersive and comfortable experience. To perform
this task, the aim is to extract representative features that
could help to characterize the shot, video-specific features are
extracted by adopted deep learning models from the literature.
As our problematics include not only subjective classification
targets but also immersion and extrafoveal vision, handcrafted
features are computed to provide some specific data adapted
to our model aiming to learn how to make the best choice for
peripheral immersive content.

A. Data preprocessing

To preprocess accordingly a given movie, the movie is
divided into shots by Adobe Scene Detection tool, which
are then sub-divided into fixed length neighbouring frames
called snippets (16 frames long). If the last snippet of a shot
has a length of less than 16 frames, this snippet is ignored.
Whereas backbones have been trained on square cropped
images, decisions of our task rely more on the left and right
borders of the frames as this is where a discontinuity will
occur between the frame and its extension. Thus, it is thought
that center-cropping from the video data will seriously impair
the model training. Frame size of video data will be resized
as 112× 267 (cinema ratio preserved) without cropping.

B. Deep learning based features

In the context of our work, deep learning models that
handle correctly both spatial and temporal information are
required. This allows to solve some situations such as the case
of having salient objects appearing only on the first frames
of the shot. Furthermore, as shots can last for hundreds of
frames, long-term temporal information becomes important.
Some models, by the nature of the tasks they were designed
for, require longer term temporal information. These tasks
can be grouped under the umbrella of video understanding
[17], which includes action localization, action classification
and so on. C3D [18], I3D [19], TSP [20] and SlowFast [21]
represent examples of such models. Our application shows
similarities with the aforementioned tasks. This led us to select
three largely available and recognized models, namely, C3D

TABLE II
ORIGINAL INPUT FRAME SIZE OF EACH MODEL.

Model Frame resized to: During Train: During Test: #Params
C3D smallest side to 128, random crop center crop 78.0M

while keeping ratio 112× 112 112× 112
I3D smallest side to 256, random crop center crop 12.3M

while keeping ratio 224× 224 224× 224
TSP smallest side to 128, random crop center crop 31.3M

while keeping ratio 112× 112 112× 112

(Convolutional 3D), I3D (Inflated 3D ConvNet), and TSP
(Temporally-Sensitive Pretraining) for spatial-temporal deep
features extraction.

The latter models, often used as backbones for more
complex architectures, show some differences in terms of
training procedures. For instance, C3D has been trained with
16 RGB frame snippets, at 25 fps. I3D has been trained using
two streams composed of 64 RGB frame snippets and the
corresponding optical flow at 25 fps. When videos were shorter
than 64 frames, they were looped to reach this requirement.
Finally, TSP has been trained using 16 RGB frame snippets
temporally subsampled from 30 fps to 15. These training
procedures showcase different temporal length of the input
snippet i.e. 0.64s for C3D, 2.56s for I3D and 1.875s for TSP.
Regarding the frame size, all three models perform a similar
procedure by resizing the input video and randomly crop or
center crop during training and test stages (see Table II).
Within the framework of our problem, 16 frame snippet is
represented by 4096 features, using C3D, 1024 features using
I3D and 512 features using TSP.
C. Handcrafted features

Spatial and temporal characteristics of a given cinematic
shot are paramount attributes during the classification stage
to determine which method should be used with regards to
the ground truth. To account for these characteristics and
feed the classifier with additional handcrafted features, we
selected Spatial Perceptual Information (SI) and Temporal
Perceptual Information (TI) respectively related to details level
and movement intensity at the frame scale.

SI and TI are defined in ITU-T Recommendation P.910
(”Subjective video quality assessment methods for multimedia
applications”). SI is expressed as:

SIn = σ∗(Sobel(Fn)) (1)

based on the content edges, where SIn is the spatial informa-
tion of a single frame at time n, σ∗(·) the standard deviation
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Fig. 5. Structure of the classifier placed after feature extraction by the different
temporal backbones.

along the pixels of an image, Sobel(·) being the Sobel filter
applied to a matrix and Fn the video frame luminance plane
at time n as defined in the recommendation.

Regarding TI, it is calculated on successive frames, as the
difference between pixel values of the present frame and the
successive one.

Mn(i, j) = Fn(i, j)− Fn−1(i, j) (2)
TIn = σ∗(Mn) (3)

with Fn(i, j) being the pixel value of the video frame F at
time n, ith row and jth column, and Mn being the motion
difference (pixel-wise) between two successive frames.

Our handcrafted features have one SI value and one TI
value for each frame in snippet i.e. handcrafted features are
32 scalars long as input for the classifier.

D. Classification

The baseline for our classifier which is a multilayer per-
ceptron (MLP) is represented by Fig.5 where FC stands for
fully connected layers. Handcrafted features represented by
SITI inputs of the classifier are an option attempted to account
for the variability of spatial and temporal content to improve
model performance: the same holds for the drop out layers.
Drop out layers are common to avoid overfitting, and forces
the model to attach importance to every input feature. This is
especially useful to learn from our handcrafted features. Other
attempts to improve the model have been made, like using an
additional convolutional layer before the MLP or additional FC
layers. For the latter case, the additional FC layer is followed
by ReLU activation function or drop out, to keep coherence
with the classifier as a whole. Another option lies in the fact
of feeding the model with handcrafted features as a separate
feature stream. Drop out layers on this second stream are
optional to see the variation of performance with and without
them. Predictions of this classifier are for snippets, because
shots have variable length that would not be compatible with
our classifier. To get a prediction for an entire shot, a majority
vote between snippets predictions is computed.

III. EXPERIMENTS

A. Dataset

Gaining access to cinema movies content is extremely chal-
lenging due to the strict restrictions imposed by the producers.
As of the time of writing this paper, access to such content
had not been granted. In order to validate our architecture,

TABLE III
DISTRIBUTION OF PROCESSING CHOSEN BY EXPERTS.

Process Name in trailers in movies Fused in trailers
P1 Details 13.48% 22.19%

17.66%P2 Seam 0.69% 0%
P3 Less details 3.49% 1.22%
P4 Blur 55.70% 36.27% 55.70%
P5 Static 26.64% 40.32% 26.64%

we assembled a dataset consisting of movie trailers, which
are readily accessible from CGR, without any restrictions.
These trailers provided us with the necessary ground truth
information regarding the processes applied to the frames to
obtain the left and right content for the lateral displays.

Our data set is composed of 30 trailers with a resolution of
858×2048, with labels provided by ICE experts. These trailers
have a duration between 40 and 176 seconds. C3D could not
work with our frame size of 112× 267, therefore, the original
center-cropping was specifically kept for this model.

It is acknowledged that the temporal activity of trailers
are quite different from the actual movies. Additional tuning
would be probably needed once the content is available.

We measured the occurrence of each possible processing
to apply to a given shot in the constructed dataset as well
as from the full movies, shown in Fig. III. It can be noticed
that P2 and P3 are rarely or never used whatever the explored
dataset. With the aim to avoid difficulties at the training stage,
we opted for the fusion of P2 and P3 with P1 because of the
similarity of the applied processing.

As data is quite limited for this application, since only
30 trailers are available, data augmentation appears as an
important solution to mitigate the problem. With the help
of experts, we validated a list of image transformations that
can be applied to cinematics shots without any impact on
the ground truth, as for instance: Hue shifting in the HSV
color space, saturation shifting (HSV), value shifting (HSV),
contrast increasing, rotation from −5° to +5° and vertical
flipping. Precise limit values have been empirically found with
the help of the experts.

B. Implementation details

Our experiments were run on an NVIDIA Quadro RTX
4000 with 8Go of VRAM. After conducting empirical trials,
we determined that the optimal learning rate for the classifier is
1×10−3, except in the case of C3D. For the latter, the learning
rate was adjusted to 1 × 10−4 to ensure proper learning. We
employed the Adam optimizer and a scheduler was utilized
to decrease the learning rate at each epoch using the formula
lr = lr×0.95. The chosen loss function for classification is the
cross-entropy loss, which is widely recognized as a standard
loss function for this task.

Training is performed for 50 epochs involving 9 fixed
random splits of the dataset including training and validation
sets. To ensure sufficient validation coverage, a minimum of
20% of the trailers is reserved for validation in each split. The
dataset is carefully partitioned to avoid any overlap between
the trailers used in the training set and those used in the



TABLE IV
ACCURACY OF DIFFERENT MODELS AS TEMPORAL FEATURE

EXTRACTORS, IN DIFFERENT CONFIGURATIONS OF CLASSIFIER

Configurations TSP C3D I3D
Default 68.02% 54.99% 65.44%

Data Augmentation 68.85% 52.69% 68.18%
Convolution 66.92% 54.24% 66.91%

Drop Out 70.32% 46.97% 66.42%
SITI 69.95% 56.97% 68.94%

Two-Stream 69.53% 57.42% 68.48%
red2nd stream

dropout 69.66% 55.14% 67.58%

validation set. This precautionary measure ensures that the
training data and validation data are not correlated, thereby
preserving the integrity of the evaluation process.

Despite the fusion of three processings, there is a need
to address the issue of label imbalance during training. To
achieve a balanced representation of labels, a sampling strategy
is employed on each epoch. This strategy involves randomly
dropping snippets with over-represented labels from both
training and validation sets. This process continues until a state
of perfect equilibrium is reached, where label occurrences are
evenly distributed across the dataset.

C. Results and discussion

Table IV presents the individual performance of models with
one configuration at a time, while table V showcases the per-
formance when multiple configurations are combined. In both
tables, green cells indicate better performance compared to the
default classifier, while red cells indicate worse performance.
The best feature extractor for a given classifier configuration
is highlighted in bold.

A notable observation from these tables is that C3D, serving
as a temporal model for our specific task, consistently under-
performs compared to the other two models, regardless of the
classifier configuration. On the other hand, TSP emerges as
the most effective model for our task, followed by I3D. This
discrepancy could be attributed to the fact that I3D is trained
on 64-frame snippets, which may not align well with the shot
lengths present in our dataset (see Fig. 7).

When testing the different configurations separately (Table
IV), we found that data augmentation, SITI, and dropout

TABLE V
ACCURACY OF DIFFERENT MODELS AS TEMPORAL FEATURE
EXTRACTORS, IN DIFFERENT COMBINED CONFIGURATIONS

Data
aug.

Drop
Out

SITI Two
Stream

2nd

stream
dropout

TSP C3D I3D

69.56% 47.78% 67.93%
71.72% 53.03% 69.12%
71.21% 50.11% 67.42%
69.89% 48.99% 67.16%
71.43% 56.40% 68.69%
68.21% 57.88% 68.85%
68.28% 54.90% 68.14%
70.88% 54.48% 68.87%
69.17% 51.52% 70.54%
69.28% 47.69% 69.70%

Fig. 6. Confusion matrices between predicted labels and ground truth: default
MLP configuration (top), best MLP configuration (bottom).

techniques significantly improved the performance of the
model when using TSP and I3D as feature extractors. Dropout
showed the best improvement for TSP features, SITI input
as a separate input improved C3D features the most, and
concatenating SITI input with I3D features yielded the best
performance increase. These findings highlight the effective-
ness of these techniques in enhancing the model’s performance
for different feature extraction architectures.

Confusion matrices for the default classifier is given on
Fig.6, top matrices. It is clear that C3D does not output
relevant enough features (according to our task) for the clas-
sifier to distinguish blur labels from others. Even though Blur
labels are the most difficult label to predict correctly for any
feature extractor with 56% accuracy for TSP and I3D.The
main difference between the accuracies of I3D and TSP lies
in their ability to correctly predict details labels, with TSP
achieving 74% accuracy compared to 67% for I3D.

The best configurations of the models, as listed in Table
V, involve combination of configurations. For TSP, the best
combination is SITI+Drop Out achieving an accuracy of
71.72%. For I3D, the best combination is SITI+Data Aug-
mentation+Drop Out+2stream with an accuracy of 70.54%.
The confusion matrices for these best classifier configurations
can be seen in Fig. 6, bottom matrices. It is worth noting
that, in these configurations, the prediction of the blur label
improves for all feature extractors.

D. Ablation study

Deeper multi-layers perceptron: The addition of more fully
connected layers, along with corresponding ReLU and dropout
layers if necessary, did not lead to any improvement in the
performance of the models tested in this study. This suggests
that the existing three fully connected layers in our MLP are
sufficient to capture all possible feature associations, at least
within the number of epochs the model was trained for.

Traditional regression classifiers: Instead of using a MLP
as a classifier, traditional regression models were tested using
TSP features concatenated with our handcrafted features. The
results showed an accuracy 60.40% with Gradient Boosting,
65.70% with Random Forest and 57.90% with SVR. These
performances were found to be worse compared to training
the MLP as a classifier.



Fig. 7. Shot length in the trailer dataset built. First red line is the shortest
shot (6 frames). Second red line is the most occuring shot length (16 frames).

Padding: Instead of dropping the remaining frames after
snippets splitting, zero-padding could be used until completion
of 16-frame snippets. This padding resulted in worse perfor-
mance, no matter the configuration of the classifier or the used
model. From TSP features, The decrease of accuracy was of
0.93% for default MLP, 1.87% for Data Augmentation MLP,
2.59% for Drop Out MLP, and 2.95% for SITI MLP.

Resampling: Our original data is based on movies standard
frame-rate, i.e., 24 frames per second.

Considering that TSP sub-samples its 30 fps videos and
is trained on a 15 fps basis, a possible approach would be
to re-sample our own movies from 24 fps to 15. However,
as depicted in Fig. 7, the distribution of shot lengths in our
dataset reveals that 16-frame shots are quite prevalent.

This observation can be attributed to the fact that the
available data consists of movie trailers rather than full-length
movies. Hence, when re-sampling the data to 15 fps, the
resulting snippets need to be padded to reach a length of
16 frames. Without this padding, the dataset would have
insufficient data. To assess the impact of this added padding,
an additional test involving TSP without re-sampling but with
padding is included in the ablation study mentioned earlier.

TSP 15 fps with padding performs most of the time better
than TSP 24 fps with padding on a given configuration:
−0.04% accuracy on default MLP but +1.77% on Data
Augmentation MLP, +0.20% on Drop Out MLP, +2.93% on
SITI MLP. This observation is probably due to the fact that
TSP is trained on 15 fps videos in the original paper. TSP 15
fps with no padding would possibly be an option to explore,
except that too many shots are too short in our trailer dataset
i.e. 24 frames long or fewer, giving a single snippet after
resampling (Fig. 7). If possible, re-sampling accordingly to the
trained frame rate is a viable option to improve performance.

IV. CONCLUSION

This work introduces a pipeline that automates the gen-
eration of lateral content for immersive display systems us-
ing movies. By leveraging temporal classification models as
backbones, the method effectively determines the optimal
processing techniques for different cinematic shots. Through
extensive experiments, the potential of temporal deep learning
models for generating immersive contexts is demonstrated,
showcasing promising accuracy and highlighting the advan-
tages over existing approaches like generative deep learning
models or patch matching. The exploration of different clas-

sifier configurations yields some improvements compared to
the baseline, indicating the potential for further enhancement.
However, due to restrictions imposed by producers, the study
was constrained to a limited dataset of 30 trailers. Future
directions include expanding the dataset to include full-length
movies, allowing for increased quantity and diversity in the
training data. Additionally, the architecture can be improved by
incorporating perceptual models and diverse features, which
would contribute to further advancements in performance.
Moreover, A subjective experiment involving both naive and
expert observers is planned to study validity of the predicted
results.
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