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Abstract: Determining histological subtypes, such as invasive ductal and invasive lobular carcinomas
(IDCs and ILCs) and immunohistochemical markers, such as estrogen response (ER), progesterone
response (PR), and the HER2 protein status is important in planning breast cancer treatment. MRI-
based radiomic analysis is emerging as a non-invasive substitute for biopsy to determine these
signatures. We explore the effectiveness of radiomics-based and CNN (convolutional neural network)-
based classification models to this end. T1-weighted dynamic contrast-enhanced, contrast-subtracted
T1, and T2-weighted MR images of 429 breast cancer tumors from 323 patients are used. Various
combinations of input data and classification schemes are applied for ER+ vs. ER−, PR+ vs. PR−,
HER2+ vs. HER2−, and IDC vs. ILC classification tasks. The best results were obtained for the ER+ vs.
ER− and IDC vs. ILC classification tasks, with their respective AUCs reaching 0.78 and 0.73 on test
data. The results with multi-contrast input data were generally better than the mono-contrast alone.
The radiomics and CNN-based approaches generally exhibited comparable results. ER and IDC/ILC
classification results were promising. PR and HER2 classifications need further investigation through
a larger dataset. Better results by using multi-contrast data might indicate that multi-parametric
quantitative MRI could be used to achieve more reliable classifiers.

Keywords: radiomic analysis; tumor characterization; IHC markers; automatic classification; multi-
contrast MRI

1. Introduction

The identification of various immunohistochemical (IHC) markers, like the status of
estrogen (ER) or progesterone (PR) hormones, or the responsiveness of the tumors to the
HER2 protein, is helpful in determining the course of treatment in breast cancer patients.
The overexpression of ER and PR receptors is observed in numerous breast cancer cases,
and this characteristic has been helpful in developing targeted treatments [1]. HER2 (human
epidermal growth factor) expression also plays an important role in breast cancer prognosis,
and its overexpression is associated with malignancy [2]. HER2 has been used to design
strategies for breast cancer treatment [3]. A combination of the statuses of various IHCs
is used to describe different molecular subtypes, of which luminal A (ER+ and/or PR+,
HER2−, low proliferation marker Ki-67) and luminal B (ER− and/or PR+, HER2+ or HER2−

with high Ki-67) are frequently used for characterizing breast tumors [4]. Another widely
used tumor characterization is triple-negative (TN), where ER, PR, and HER2 statuses are
all negative. Histologically, breast tumors may be classified as invasive ductal carcinoma
(IDC), invasive lobular carcinoma (ILC), or a combination of the two. The histological type
influences the prognosis in conjunction with the molecular subtypes [5,6]. Traditionally,
genetic approaches have been used to determine the molecular subtypes in breast cancer
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tumors. This involves the analysis of a sample obtained through a biopsy. Throughout
the past decade, there has been a continuous and ongoing exploration of the relationship
between radiomic features and the molecular subtypes of breast cancer [7–11].

A radiomic analysis involves extracting a number of features describing the shape,
size, or texture of a region selected in an image. Several existing studies have explored
the relationship between radiomics features and various IHC markers, or, on a more basic
diagnostic level, to distinguish benign and malignant tumors. Radiomics, combined with
machine learning, is used in [12] to distinguish benign satellite tumors from malignant
ones. The markers extracted from DCE (dynamic contrast-enhanced) MR images were used
in [13] to differentiate between invasive and noninvasive breast lesions. This study was
also extended to the classification of the malignancy level of breast tumors [14]. The DCE
MR images were used in [15] for the benign vs. malignant classification of breast tumors.
In another study, Chou et al. target the ductal carcinoma cases for predicting their receptor
statuses through the features in DCE MR images [16]. Tan et al. [17] used radiomics
to predict auxiliary lymph node metastasis. Radiomics analysis has also been used to
complement the traditional genetic-based analysis [18]. It should be noted that the use of
radiomics-based analysis is not exclusive to the MR image modality. For instance, radiomics
analysis on echographic images has also been used to characterize breast tumors [19,20].
Furthermore, instead of extracting the radiomics, the deep learning approaches have also
been directly applied to the image data [21].

There has been an upward trend in the radiomics-based prediction of the molecular
subtypes [11,22] and continues to be a subject of interest [23–26]. Multi-contrast MR
images were used in [27] for a radiomics-based prediction of HER2 status and TN cases.
Radiomics is used for TN prediction on mono-contrast images in [28]. Xie et al. [29] also
used radiomics, but on multi-parametric data for TN prediction. In some studies, the HER2
status is reported to be difficult to predict through radiomics analysis on the regular contrast
images, but a potential for improvement for this classification by using multi-parametric
data is shown [30,31]. There are fewer studies that use radiomics to classify individual
IHC markers, as opposed to a direct characterization of molecular subtypes defined by
them. Among such studies, ER and PR classification, along with HER2 classification on MR
images is performed by Li et al. [31]. ER, PR, and HER2 prediction in the context of studying
breast cancer brain metastasis is the subject of a study by Luo et al. [32]. The classification
of ER, PR, and HER2 is conducted on radiomics and genomics data by Yoon et al. [33]. In
a recent work by Zhong et al. [34], radiomic features from parametric maps in MRI were
used to predict the ER and PR statuses. While a vast majority of the tumors are of type
IDC, ILC remains understudied [35,36] and there appears to be a limited existing literature
on the radiomics-based differentiation of the two types. A textural analysis of the breast
tumors was used by Holli et al. [37] to differentiate IDC and ILC. Both texture and entropy
features were individually used by Waugh et al. for the same task [38].

The aim of this study is to explore the predictability of various molecular signatures as
well as the histological subtypes IDC and ILC in breast tumors via both a mono- and multi-
contrast radiomics analysis and, in a limited case, compare it with a CNN (convolutional
neural network)-based approach. Although the HER2 status is frequently explored in
the literature, we found fewer studies that used radiomics for predicting the ER and PR
responses individually, rather than as a part of luminal A, luminal B or TN molecular
subtypes. In the existing literature on radiomics-based analysis, the histological subtypes
have not been as much investigated as the molecular subtypes or the IHC markers. In our
study, the IDC/ILC classification is performed on the same cohort of patients as used for
the ER, PR, and HER2 classification. A partial contribution of our study is to group these
tasks, which can individually be found in the existing literature.
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2. Materials and Methods
2.1. Image Acquisition Protocol

This study included patients who had a diagnosis of breast cancer confirmed both by a
biopsy and via a breast MRI (median age: 52 years; age range: 24–86 years; female patients
only). Furthermore, the patients were included in the study only if they did not present
a history of thoracic surgery, chemotherapy, or radiation therapy. Only the baseline MRI
at diagnosis was included before any chemotherapy or surgery. Patients were included
after their biopsy (range: 2–28 days). The MRI protocol was sequentially composed of T1-
weighted imaging (T1), Dixon T2-weighted imaging (in-phase, out-of-phase, water and fat
images) or T2 SPAIR (T2), and 3D gradient-echo dynamic contrast-enhanced (DCE) images
with fat suppression, acquired at 3 and 5 min after the intravenous injection of 0.1 mmol/kg
gadolinium-based contrast agent. Furthermore, a subtraction image (Sub) was achieved
through the subtraction of the T1 image from the DCE image. The acquisitions were
performed using three different MR systems at two different static magnetic fields (Philips
Ingenia 1.5 T, SIEMENS MAGNETOM Vida 3.0 T, and SIEMENS MAGNETOM Aera 1.5 T).
The data acquisition period is from early 2017 to mid-2020. Histological subtypes, HER2
expression, ER expression, and PR expression were retrieved from the patients’ database.
Patient data were collected after institutional review board approval. Patients who did not
consent to the use of their clinical data for an academic study were excluded, according to
national and European laws.

2.2. Segmentation of the Lesions

The lesion/tumor region in the images needs to be separated before performing a
radiomics analysis. Ideally, this should be fully automated to allow for an efficient treatment
of a large dataset, which is crucial for machine learning-based analysis. However, at this
stage, we used segmentations overseen by an experimented radiologist, with 9 years of
experience in oncology imaging, so that the impact of any segmentation errors on the
radiomics analysis is minimized. A semiautomatic tool available in ITK-SNAP [39] was
used for the guided segmentation of the tumors. The lesions were delineated on DCE
images, in which the pixels corresponding to a tumor tend to have a higher intensity
than the neighboring pixels. The guided steps allowed for an approximate segmentation
of the tumor within an ROI box drawn around the lesion. An experimented radiologist
subsequently made slice-by-slice manual correction of the segmentation mask.

2.3. Data Preparation and Experimental Setup

Some small artifacts in the masks (like thin gaps or uneven boundaries) introduced
due to manual delineation of the tumor were smoothed out through simple mathematical
morphology operations (sequential opening and closing using a 3 × 3 × 3 pixels cubic
kernel). Among the T2-weighted acquisitions, fat-suppressed (with Dixon fat–water de-
composition or spectral attenuated inversion recovery (SPAIR)) images were selected for
radiomics analysis. All three image types (DCE, Sub, and T2) were extrapolated to the
same dimensions using ITK libraries [40]. The same segmentation mask, with necessary
extrapolation, was applied to the three image types. We excluded the tumors having very
small sizes (smaller than 5 mm) because they are potentially inadequate for a radiomics
analysis and are subject to particular consideration [41]. Indeed, the dimensions of some
convolution kernels come very close to the size of small tumors. The tumors with roots
spread in the entire gland were also excluded due to their complex bifurcations and very
irregular shape, which pose difficulty in precise segmentation.

For experimental purposes, we divided our data into five sets (folds) by random
selection of patients. Initially, we established the feasibility of the radiomics-based classifi-
cation of molecular subtypes by training different machine learning models on four of the
five folds to maximize the classification precision on the fifth one. In a second setup, we
reserved one fold as a pseudo-external validation dataset (referred to as a test dataset in the
article). After training the model on three folds to obtain optimum results on a fourth layer,
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the model was applied to the test dataset. We also tried to determine the impact of the MRI
contrast on the classification task. Therefore, the experiments were performed either on the
individual types of images (mono-contrast) or on a combination of types (multi-contrast).
In the case of mono-contrast, the data from only one type of image (DCE, T2, or Sub) were
used, whereas the data from two or three types of images were combined in multi-contrast
experiments.

We used the setup with a test dataset in two other types of experiments. One set of
these additional experiments was to explore the performance of the CNN-based approach,
for which we compared the performance on the mono-contrast data with the radiomics
approach. The second set of the exploratory experiments applied the radiomics-based
approach on a dataset having a stricter exclusion criterion regarding the tumor sizes to have
a more homogeneous data in this regard. For this, we retained only the tumors with a size
within 50% of the median size of the tumors in the previous dataset. We used the average
of the length, width, and height of a tumor in the orientation defined by the acquisition
setup as a representative of its size. Since the tumors may be quite irregular in shape, we
used this indicator of size, rather than the precise 3D volume, for a basic statistical analysis
of the homogeneity of tumor sizes.

2.4. Radiomics-Based Classification

Figure 1 illustrates a radiomics-based pipeline for classifying the molecular subtypes.
PACS is the database that contains the complete patient scans. The images, along with
the histology results, obtained from this database are anonymized and annotated. Once
the tumors have been segmented, a radiomics analysis is performed over the region
corresponding to the segmentation mask. The details of the extracted features can be
found in [42]. Figure 2 summarizes the categories of the 342 radiomics features extracted.
Since the initial radiomics set contains several hundred features, a dimension reduction
algorithm is applied to select the most pertinent and uncorrelated radiomic features. A
classification model is subsequently trained on the reduced number of radiomic features.
The approaches used in the key steps of this pipeline are presented in detail below.
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The radiomic features were extracted from the zones of the tumors corresponding to
the manually segmented masks. From each image, 6 contrast images were derived by using
different intensity levels (8, 16, 24, 32, 48, and 64). This allows for taking into account the
intensity variation in the original image due to variations in acquisition conditions. The
radiomic features extracted from these six contrast images were then averaged. A total of
342 radiomic features describing the tumor’s size, shape, or texture, were extracted. All of
these radiomic features are not necessarily relevant, and using all of them might result in
an ineffective model. Hence, a dimension reduction was needed. Two kinds of dimension
reduction algorithms were tested: (i) ReliefF [43]—selection of the least correlated features
and (ii) LASSO (least absolute shrinkage and selection operator)—regression-based.

For ReliefF, 32 most relevant features were selected, whereas a relaxed reduction
weight for LASSO was selected over a hundred features. The reduced features were selected
by using only the train and validation datasets (the data were also z-score normalized with
respect to the combined train and validation datasets before the dimension reduction). The
list of features thus obtained was then used to select the same features for the test dataset
as well.

Two types of classification models were used: (i) support vector machine (SVM, with
a linear kernel and no regularization) for a linear classification and (ii) a fully connected
neural network (FCNN) with five layers (with the number of neurons in these layers being
50, 40, 30, 20, and 10). Different combinations of dimension reduction approaches and
classification models were used. For each experiment, one of the five folds was retained as
the test dataset. For the remaining data, 25 models for each experiment were generated by
randomly dividing the train–validation dataset into 25% validation and 75% train dataset
(considering that one-fifth of the data was retained for the test, this amounts to a 20/20/60
split into test/validation/train). Out of 25 models, the one with the optimum performance
on the validation dataset was retained for a given test fold. The results were averaged over
5 cycles by choosing different test folds.

2.5. CNN-Based Classification

As a second approach to classifying tumor subtypes, we used a CNN-based classi-
fication scheme applied directly to the manually segmented tumors. This was achieved
through an adaptation of faster R-CNN architecture [44] that employed a dense U-Net [45]
with 3 resolution levels for feature extraction. Since a preliminary comparison of the 3D
and 2D classifications did not indicate any notable differences in the performance, we opted
for a 2D model due to significantly less computation time and memory overload. We first
trained the region proposal networks (RPN) of faster R-CNN for lesion detection tasks on
patches of 384 × 384 pixel size. The patches were randomly sampled from the larger MR
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images with the constraint that 90% of them should contain a lesion. Squares of sizes 5, 10,
25, 50, and 100 pixels were used as anchors for the RPN. We used distance-IoU loss [46] for
bounding-box regression and focal loss for classification. The detection results achieved an
average recall of 90% across 5 cross-validation folds at the cost of an average of 10 false pos-
itives per patient. We used these pretrained RPN to train a full faster-RCNN architecture on
the tumor subtype classification task. After the feature maps were computed, we extracted
the features corresponding to a given region of interest with the ROI align technique [47].
Since reducing the number of parameters helps to prevent overfitting, we applied adaptive
average pooling to reduce the multi-dimension vector to a 1D vector. We mapped a single
linear layer on this vector that had the number of classes to be predicted as output. We
used the same 5-fold data split scheme as used for the radiomics approach for training and
testing the CNN-based classification model. All experiments were performed using Adam
optimizer with default parameters [48].

3. Results

After presenting the dataset used in the experiments, the AUC (short for AUROC, the
area-under-the-receiver–operator curve) results for different experimental setups are given.

3.1. Dataset

Although a database of 534 tumors (from 367 patients) was available, the exclusion of
78 tumors due to some factors, such as incomplete histological data, limited the number
of tumors available in this study. Moreover, we excluded twenty-five tumors due to their
small size (smaller than 5 mm) and two tumors due to their very large size (spread in
the entire gland). For comparison purposes, only the tumors for which all three types
of acquisitions (DCE, Sub, and T2) were available were retained. These exclusion and
selection criteria left us with 429 tumors from 323 patients.

Figure 3a summarizes the number of tumors for both categories of different classi-
fication tasks addressed in this study. Not only was there a large imbalance in classes
for all tasks, but the tumors also displayed wide heterogeneity in other aspects as well,
as Figure 3b illustrates for tumor sizes. The tumor size distribution was 24.6 ± 16.6 mm
(mean ± SD), with a median value of 20.3 mm, around which most of the tumors are
located. Please note that each of the ER, PR, HER2, and IDC/ILC statuses is not available
for all the tumors. Hence, a disparity in the number of total number of tumors and the
number of samples available for a given classification task is shown in Figure 3a. Figure 3b,
on the other hand, is a histogram of the tumor size distribution of all 429 tumors.
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3.2. Classification Results

Table 1 presents the results for different approaches without setting apart a test dataset.
The results are obtained over random 80/20 training/validation splits. The results shown
are the ones with the best AUC of the 25 models for the radiomics-based approach. For the
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experiments involving results given in Table 2, the dataset is divided into five patient-wise
folds, as described in Section 2.4. This table displays results both for the radiomics-based
and R-CNN-based approaches for various input images. To consider the impact of the
tumor size heterogeneity, Table 3 shows the results of classification tasks performed using
only the tumors of mean size 20 ± 10 mm. Table 4 presents category-wise numbers of
radiomic features selected by the ReleifF method for a set of experiments involving T2
images.

Table 1. AUC results for various classification models without test dataset holdout.

Classification
Task

Methodology

Mono-Contrast
(Val. Data AUC)

Multi-Contrast
(Val. Data AUC)

DCE Sub T2 DCE + Sub DCE + T2 Sub + T2 DCE + Sub
+ T2

HER2+

vs.
HER2−

ReliefF + FCNN 0.61 0.66 0.69 0.65 0.65 0.61 0.57

ReliefF + SVM 0.61 0.62 0.60 0.59 0.60 0.59 0.61

LASSO + FCNN 0.61 0.60 0.64 0.67 0.59 0.64 0.65

LASSO + SVM 0.63 0.70 0.63 0.61 0.59 0.65 0.61

ER+

vs.
ER−

ReliefF + FCNN 0.80 0.78 0.81 0.77 0.81 0.87 0.87

ReliefF + SVM 0.77 0.73 0.78 0.80 0.83 0.76 0.80

LASSO + FCNN 0.85 0.87 0.85 0.90 0.88 0.91 0.93

LASSO + SVM 0.86 0.84 0.85 0.88 0.89 0.91 0.95

PR+

Vs.
PR−

ReliefF + FCNN 0.59 0.67 0.65 0.69 0.69 0.68 0.58

ReliefF + SVM 0.63 0.61 0.64 0.58 0.67 0.64 0.66

LASSO + FCNN 0.42 0.61 0.71 0.55 0.57 0.63 0.59

LASSO + SVM 0.63 0.68 0.55 0.56 0.65 0.59 0.64

IDC
vs.

ILC

ReliefF + FCNN 0.78 0.80 0.82 0.79 0.79 0.80 0.83

ReliefF + SVM 0.74 0.73 0.80 0.80 0.85 0.84 0.81

LASSO + FCNN 0.79 0.74 0.87 0.80 0.85 0.83 0.80

LASSO + SVM 0.78 0.86 0.83 0.76 0.85 0.78 0.82

Table 2. AUC results for various classification models on an unseen test dataset.

Classification
Task

Methodology

Mono-Contrast
(Test Data AUC)

Multi-Contrast
(Test Data AUC)

DCE Sub T2 DCE +Sub DCE + T2 Sub + T2 DCE + Sub
+ T2

HER2+

vs.
HER2−

ReliefF + FCNN 0.57 0.51 0.53 0.48 0.51 0.49 0.53

ReliefF + SVM 0.57 0.58 0.53 0.50 0.53 0.49 0.53

LASSO + FCNN 0.53 0.53 0.50 0.49 0.52 0.53 0.56

LASSO + SVM 0.52 0.53 0.50 0.50 0.49 0.56 0.53

Faster R-CNN 0.51 0.53 0.45

ER+

vs.
ER−

ReliefF + FCNN 0.68 0.66 0.71 0.67 0.74 0.72 0.64

ReliefF + SVM 0.60 0.61 0.55 0.66 0.65 0.68 0.66

LASSO + FCNN 0.67 0.68 0.64 0.70 0.66 0.73 0.78

LASSO + SVM 0.73 0.70 0.72 0.74 0.74 0.74 0.73

Faster R-CNN 0.70 0.68 0.72
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Table 2. Cont.

Classification
Task

Methodology

Mono-Contrast
(Test Data AUC)

Multi-Contrast
(Test Data AUC)

DCE Sub T2 DCE +Sub DCE + T2 Sub + T2 DCE + Sub
+ T2

PR+

vs.
PR−

ReliefF + FCNN 0.52 0.53 0.49 0.57 0.50 0.58 0.55

ReliefF + SVM 0.49 0.58 0.52 0.51 0.50 0.53 0.55

LASSO + FCNN 0.50 0.49 0.53 0.52 0.54 0.51 0.49

LASSO + SVM 0.51 0.49 0.52 0.48 0.47 0.55 0.51

Faster R-CNN 0.54 0.53 0.49

IDC
vs.

ILC

ReliefF + FCNN 0.64 0.67 0.73 0.67 0.67 0.70 0.68

ReliefF + SVM 0.64 0.66 0.70 0.68 0.73 0.71 0.70

LASSO + FCNN 0.61 0.68 0.64 0.64 0.68 0.67 0.68

LASSO + SVM 0.62 0.65 0.69 0.69 0.63 0.64 0.69

Faster R-CNN 0.58 0.51 0.56

Table 3. AUC of test data results for various prediction models for small variation in tumor size.

Classification
Task

Methodology

Mono-Contrast
(Test Data AUC)

Multi-Contrast
(Test Data AUC)

DCE Sub T2 DCE + Sub DCE + T2 Sub + T2 DCE + Sub
+ T2

HER2+

vs.
HER2−

ReliefF + FCNN 0.58 0.61 0.57 0.55 0.55 0.59 0.55

ReliefF + SVM 0.56 0.55 0.64 0.57 0.58 0.62 0.55

LASSO + FCNN 0.48 0.56 0.51 0.57 0.53 0.58 0.52

LASSO + SVM 0.55 0.55 0.59 0.58 0.56 0.58 0.53

ER+

vs.
ER−

ReliefF + FCNN 0.69 0.65 0.79 0.69 0.68 0.72 0.74

ReliefF + SVM 0.73 0.70 0.8 0.64 0.77 0.75 0.73

LASSO + FCNN 0.70 0.60 0.73 0.64 0.69 0.73 0.64

LASSO + SVM 0.71 0.71 0.74 0.71 0.75 0.69 0.74

PR+

vs.
PR−

ReliefF + FCNN 0.53 0.49 0.56 0.51 0.59 0.53 0.53

ReliefF + SVM 0.52 0.54 0.60 0.59 0.59 0.52 0.57

LASSO + FCNN 0.54 0.55 0.55 0.46 0.53 0.51 0.49

LASSO + SVM 0.48 0.56 0.53 0.41 0.53 0.51 0.51

IDC
vs.

ILC

ReliefF + FCNN 0.68 0.62 0.70 0.64 0.65 0.67 0.74

ReliefF + SVM 0.70 0.63 0.68 0.65 0.70 0.70 0.70

LASSO + FCNN 0.67 0.62 0.69 0.66 0.67 0.70 0.75

LASSO + SVM 0.69 0.64 0.69 0.70 0.69 0.65 0.71
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Table 4. The types of radiomic features retained for various classification tasks after dimension
reduction through ReliefF on data obtained from T2 images. The result is given for a single experiment
chosen arbitrarily. The input data and their division into the training, validation, and test folds are
the same for each classification task.

Classification
Task

Number of Reduced Radiomic Features by Categories

Size and Shape Texture

HER2+

Vs.
HER2−

Conventional measurements and features:
n = 10 Moments: n = 5

Descriptor-based features: n = 2;
Gray level co-occurrence matrix;

(GLCM) features: n = 15

ER+

vs.
ER−

Conventional measurements and features:
n = 3 Transforms: n = 1

Descriptor-based feature: n = 2;
Gabor filter responses: n = 3;

Other frequency-based features: n = 17;
GLCM features: n = 6

PR+

vs.
PR−

Conventional measurements and features:
n = 3 Moments: n = 4 Transforms: n = 1

Descriptor-based features: n = 3;
Gabor filter responses: n = 4;

Other frequency-based features: n = 4;
GLCM features: n = 11;

Neighboring gray tone difference matrix
(NGTDM) features: n = 1;

Gray level run length matrix
(GLRLM) features: n = 1

IDC
vs.

ILC

Conventional measurements and features:
n = 2

GLCM features: n = 19;
GLRLM features: n = 1;
NGTDM features: n = 5;

Gray level size zone matrix;
(GLSZM) features: n = 5

4. Discussion
4.1. Findings

The proportion of positive and negative responses of different molecular signatures
in our dataset does not diverge significantly from their occurrence reported in the general
population [49–51]. Nevertheless, there is a noticeable unbalance between the two classes
for all the IHCs and histological types. This can cause a strong bias toward the larger
class during the training of a neural network model for their prediction, and, consequently,
render it largely imprecise. This observation makes the AUC a more useful metric for
appreciating the classification results on these data. The results in Table 1 present an insight
into the potential of the radiomics-based classification. The best results on the validation
data were obtained for ER+ vs. ER− and IDC vs. ILC classification tasks, with the AUC
surpassing 0.8 for several classification models. Furthermore, the results on the multi-
contrast data tended to be better than on the mono-contrast alone. The results obtained
using LASSO-based reduction and FCNN-based classification schemes were slightly better
than those obtained by using ReliefF and SVM. For the classification tasks involving HER2
and PR, the results were significantly poorer, with AUCs around 0.6 in the majority of the
experiments.

At present, we do not have access to data for external validation. Hence, for a rigorous
evaluation (at the expense of reducing our training dataset) we set aside a part of our data
as pseudo-external data, which we will herein refer to as the test dataset. For this setup, we
also compare the performance with an R-CNN-based scheme, applied directly to the image
data. The relative performance of various classification tasks in this setup (see Table 2) was
in agreement with the previously discussed validation results. The experiments were most
successful for ER and IDC vs. ILC tumor classification tasks, with AUC often approaching
or surpassing 0.7 in both cases. The results were most unsatisfactory for the prediction
of HER2 and PR statuses. In the case of multi-contrast experiments, an improvement in
the ER and IDC/ILC (especially ER) classification was observed. The improvement with
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T2+Sub or DCE + T2 + Sub combinations was more pronounced, with the ER classification
AUC reaching 0.78. On the other hand, the performance of HER2 and PR classification
tasks did not improve with any of the multi-contrast combinations.

The performance of the R-CNN-based approaches is comparable to that of the radiomics-
based one. Once again, a higher AUC of around 0.7 was reached for ER classification. For
the IDC vs. ILC classification, the AUC was relatively lower than that of the radiomics-
based approach. This difference might be explained by the lack of sufficient data to train
deep-learning models. Training on a large dataset is needed to efficiently extract the relevant
features directly from the images. The radiomics-based approach, on the other hand, uses
mathematically formulated radiomic features. As for the computation times, the radiomics-
based approach took from a few seconds to 1 or 2 min, depending on the classification
methodology used, whereas the R-CNN approach required several hours to train a model
even on the images resampled to a smaller size.

In the case of using the tumors with limited size variations (Table 3), while the general
tendency for the ER and IDC/ILC classification was about the same as in the previous
results, there was an improvement in the HER2 and PR classification results: for both cases,
the results showed a tendency to approach or even sometimes surpass 0.6 AUC. This is
in contrast to the previous results, where the AUC was not much different from that of a
random classifier. This might indicate that the tumor heterogeneity influences the classifier
and, consequently, an extensive training set covering vast variations in tumor sizes might
be helpful in training a more reliable classifier.

Finally, we add a brief discussion on the radiomic features selected for the classifi-
cation tasks. The radiomic features summarized in Table 4 correspond to only one set of
experiments involving ReliefF-based dimension reduction that we conducted to obtain the
results presented in this work. One of the salient observations is regarding the categories
of features retained for the IHC classification tasks (involving ER, PR, and HER2) and the
tumor-type classification (IDC vs. ILC). While all the classification tasks selected more tex-
ture features than the size and shape features, there was an overwhelmingly larger selection
of texture features (30 out of 32) for the tumor-type classification. Furthermore, the texture
features for the ER and PR classification tasks generally included several frequency-based
features (Gabor filter responses), whereas the IDC vs. ILC classification favored the gray-
level matrix-based texture features. The next step after the identification of the pertinent
radiomic features is to analyze their repeatability. There have been some preliminary
studies on both contrast images and multi-parametric MRIs [52,53] in this regard. While a
detailed presentation of the features selected in our various experiments would be quite
voluminous, we do note a few key observations. The features selected depended not only
on the classification task, but also on the contrast types used. The repeatability of features
in the tasks with a higher classification accuracy was considerably higher than the other
classification tasks. For instance, a large majority of the radiomic features remained the
same in the case of ER+ vs. ER− classification task for five experiments for different folds
of the training dataset. However, less than half were reproducible for HER2+ vs. HER2−

classification task.

4.2. Comparison with Existing Studies

Although our performance level and results of the MRI radiomics-based IHC clas-
sification task do not consistently match with those found in the existing literature, the
tendency of ER status to be more easily predictable and the better classification found using
multi-contrast data are in agreement with the existing literature. In a study performed
by Li et al. [31] on the TCGA dataset, the AUCs for ER, PR, and HER2 classification tasks
were 0.89, 0.69, and 0.65, respectively. In a more recent study, Luo et al. [32] reported
promising results in a breast cancer brain metastases study, with ER, PR, and HER2 be-
ing 0.89, 0.88, and 0.87, respectively, on a cohort of 68 patients. In their comparison of
radiomics-based and genomics-based classifications, Yoon et al. [33] reported the AUC
values for the radiomics-based classification of ER, PR, and HER2 as 0.82, 076, and 0.72, re-
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spectively. For the ER and PR classification tasks, Zhong et al. [34] obtained their respective
AUCs as 0.76 and 0.81 by using the radiomic features from the intratumoral region, and
0.73 and 0.71 for the peritumoral region. The difficulty of obtaining a better performance
for HER2 classification is also reported in a previous study [30]. They worked with an
extensive initial radiomic feature set of over one thousand features and obtained a better
performance (AUC 0.86) using multi-contrast data. Huang et al. [54] obtained an AUC
of 0.86 in leave-one-out cross-validation (LOOCV) for HER2 prediction that reached 0.86,
using radiomics analysis on multi-parametric images.

As for the classification of the histological subtypes, Waugh et al. [38] obtained a
0.75 AUC using co-occurrence matrix features and a 0.63 AUC using entropy features
for the classification of 92 IDC and 45 ILC tumors by using a K-nearest neighbor (kNN)
classifier. Their results, whose AUC values vary between 0.62 and 0.75, are very close to
ours depending on the classification method and the image types used. Holli et al. [37]
differentiated 10 IDC and I0 ILC cases by using co-occurrence matrix features by using
kNN and other methods. They achieved an accuracy between 80 and 100% depending on
the classification method and the types of MRI used.

4.3. Limitations

In addition to the need to further investigate the PR and HER2 classification tasks, this
study has some limitations. The dataset for all the classification tasks is very unbalanced.
This is the reason we have used only the AUC and not the metrics such as precision
and recall to assess our results as the last two metrics are likely to be biased by the over-
represented class. It would be interesting to have obtained the results with a balanced
dataset. Since the class unbalance agrees with the distribution of the studied molecular
subtypes in the general population, such data would likely need to be sampled from a larger
cohort of patients by discarding some data from the over-represented class. Furthermore,
we have only analyzed the inhomogeneity in terms of tumor sizes only. A thorough study
of the impact of various characteristics, like texture and shape, would be helpful in the
selection of more pertinent radiomic features. Additionally, for a practical application, the
radiomics analysis should be robust to the acquisition setup [55]. The data used in this
study come from three different MR systems at two different static magnetic fields. At
this stage, we have not yet developed a method to select only the radiomics features that
remain independent of the acquisition setup.

5. Conclusions

In this work, we have shown that multi-contrast MRI-based radiomics could bring
insights into the histological subtype classification (IDC vs. ILC) and ER molecular sub-
type classification of breast cancer. In addition, the CNN-based methods yielded results
comparable to the radiomics-based classification. The diagnostic performances for the
classification of PR and HER2 remain insufficient and further studies need to be performed
to try to improve the performances by using other sources of radiomics such as multi-
parametric quantitative MRI. The multi-parametric approach might also be helpful in
investigating the repeatability of the radiomics features independent of the contrast types.
Furthermore, model training on a more extensive dataset and validation on external data
are highly desirable. Finally, a fully automated precise segmentation of the tumors is crucial
for efficiently treating large data.
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