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A NEW DISCRETIZATION OF THE EULER EQUATION VIA

THE FINITE OPERATOR THEORY

MIGUEL A. RODRÍGUEZ AND PIERGIULIO TEMPESTA

In memoriam of our friend and colleague Decio Levi

Abstract. We propose a novel discretization procedure for the classical Euler
equation, based on the theory of Galois differential algebras and the finite

operator calculus developed by G.C. Rota and collaborators. This procedure

allows us to define algorithmically a new discrete model which inherits from
the continuous Euler equation a class of exact solutions.
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1. Introduction

The study of discrete versions of integrable ODEs has become one of the most
remarkable research lines in mathematical physics, especially in the theory of inte-
grable systems, during the last decades. A huge body of literature is available (see
e.g. the monographs [1, 7, 10, 20] and the references therein).

More specifically, the problem of discretizing dynamical systems in such a way
that their symmetry and integrability properties are preserved has also been widely
investigated in the last decades. This has been one of the fields in which the sci-
entific contribution of Decio Levi has been particularly relevant [10]. His beautiful
insight in the study of the multiple facets of discrete mathematics and his tireless
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scientific activity during several decades have crucially influenced several genera-
tions of researchers in mathematical physics - and in particular the authors of this
article in a deep way.

Among the many interesting approaches proposed for the discretization of in-
tegrable models, we shall focus in this paper on a specific research line where the
contribution of Decio Levi has also been crucial. This methodology is based on the
finite operator theory (also called Umbral Calculus), developed by G. C. Rota and
its collaborators [16, 17, 18]. The main idea of this approach is to preserve some
crucial properties of a given integrable ODE, in particular its exact solutions, in
the discretization process. By preserving some crucial algebraic structures, one can
define difference equations which inherit from the continuous counterparts exact
solutions and possibly symmetry properties [9]. This philosophy has been intro-
duced in quantum mechanics in [4] and developed in [11, 13, 12, 14] for the general
context of difference equations, by requiring that the Heisenberg-Weyl algebra be
preserved. This in turn allows one to preserve the Lorentz and Galilei invariance on
lattices. An application of this approach to the multiple scale analysis of dynamical
systems on a lattice has been proposed in [12].

A related approach in based on the idea of preserving the Leibniz rule on lattices.
This idea, under different perspectives has been proposed in [2, 23, 8, 21]. A crucial
aspect of this theory is that the standard pointwise product of functions on a lattice
is replaced by a suitable nonlocal product, in such a way that discrete derivatives act
on functions, or more generally on formal power series, as standard derivations. In
this framework, one can define discrete versions of continuous ODEs which share
with them a class of exact solutions, namely those expressed in terms of power
series.

Another important aspect of this approach is that by choosing the lattice points
as the zeroes of the basic polynomials associated with the discrete derivative we
are working with, one can avoid the main drawback of the umbral approach to
difference equations, namely the appearance of divergent power series for the solu-
tions of the discrete models. Indeed, the series expressing the exact solutions are
by construction truncated ones, and therefore convergent in an obvious sense. In
[22], this procedure has been generalized to the case of variable coefficients ODEs.

In the following, we shall adopt this discretization procedure in order to produce
a new difference equation which can be interpreted as a discrete version of the
Euler equation. Indeed, under suitable hipotheses it can be exactly solved and its
solutions are obtained in a direct way from those of the standard Euler differential
equation.

In this article, for the sake of simplicity we shall keep the mathematical formalism
to a minimum. A more formal approach and further technical details can be found
in [21, 22]; however, we will try to discuss our results in a self-contained way.

The paper is organized as follows. In section 2, we review some basic notions
of finite operator theory. In Section 3, we implement our methodology to the
discretization of Euler equation. Some exact solutions of our discrete Euler equation
are derived in Section 4. Some open question are addressed in the final Section 5.

2. The finite operator calculus: Background and notation

The finite operator theory was proposed in [18] and further developed in [17], [16]
as a formal calculus useful to treat combinatorial problems. It can be considered
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as the modern version of the umbral calculus introduced by Sylvester, Cayley and
Blissard and other authors [3]. In this section, we shall review some basic definition
and fundamental results of Rota’s approach to difference operators.

2.1. Delta operators and basic polynomials. Let K be a field of characteristic
zero and P be the space of polynomials in one variable x ∈ K. Let N be the set of
non-negative integers. The operator T : P → P such that Tp(x) = p(x+ h), where
h > 0 is a suitable real constant, will be said to be the shift operator. For simplicity,
we shall restrict to the case K = R. The notion of delta operator is crucial in the
development of our discretization approach.

Definition 1. An operator S is said to be shift–invariant if commutes with the
shift operator T . A shift–invariant operator Q is called a delta operator if Qx =
const 6= 0.

A simple consequence comes from the previous definition [18]:

Corollary 2. For every constant c ∈ R, Qc = 0.

Delta operators very commonly used in the applications are the standard de-
rivative D, the forward discrete derivative ∆+ = T − 1, the backward derivative

∆− = 1 − T and the symmetric derivative ∆s = T−T−1

2 . Many other interesting
examples can be found in the literature (e.g. in [18]).

Definition 3. A polynomial sequence {pn (x)}n∈N is said to be the sequence of basic
polynomials for a given delta operator Q if the following conditions are satisfied:

1) p0 (x) = 1;

2) pn (0) = 0 for all n > 0;

3) Qpn (x) = npn−1 (x) .

One can prove that there exists a unique basic sequence of polynomials associated
with a given delta operator Q. In the case of the continuous derivative operator, the
sequence of basic polynomials is given by pn(x) = xn. For the forward and backward
discrete derivatives ∆±, the associated basic polynomials are, respectively

(1) p∓0 (x) = 1, p∓n (x) := x(x± 1)(x± 2)...(x± (n− 1)).

The basic polynomials for ∆s have been explicitly determined in [12]. A general
procedure for the construction of basic polynomials for an arbitrary delta operator
has been discussed in [14]. For completeness, we shall sketch here the salient aspects
of this procedure. Let A be the algebra of shift-invariant operators, endowed with
the usual operations of sum of two operators, product of a scalar with an operator,
and product of two operators. Let x : p(x) → xp(x) denote the multiplication
operator. The Pincherle derivative of an operator U ∈ A is defined by the relation

(2) U ′ = [U, x]

In [18] it has been proved that, if Q is a delta operator, then Q′ is invertible. Let
us introduce a conjugate operator β ∈ A such that the Heisenberg-Weyl algebra is
satisfied [11]:

(3) [Q, xβ] = 1

Thus, the operator β is uniquely determined by the relation β = (U ′)−1. In order
to illustrate three simple examples, we mention that in the continuous case, Q = D,



4 MIGUEL A. RODRÍGUEZ AND PIERGIULIO TEMPESTA

β = 1; for Q = δ+, β = T−1; for Q = δ−, β = T . Generally speaking, the basic
polynomials associated with a delta operator Q can be formally computed by means
of the relation

(4) pn(x) = (xβ)n · 1 .
In particular, this relation reproduces eqs. (1).

Let F be the algebra of formal power series in x. Since the polynomials {pn(x)}n∈N
for every choice of Q provide a basis of F , any f ∈ F can be expanded into a formal
series of the form f(x) =

∑∞
n=0 anpn(x).

2.2. A general discretization scheme. Our discretization procedure is based on
the umbral correspondence [18, 4, 13, 14]: given a ODE, by replacing the continous
derivative with a delta operator Q, and the basic sequence xn with the basic poly-
nomials pn(x) for Q, one can construct a formal discretization of the original ODE.
However, in order for this discretization to be effective, it is also crucial to replace
the pointwise product of functions with a suitable ∗ product, which is associative
and commutative, in such a way that

(5) pn(x) ∗ pm(x) := pn+m(x).

This product for the forward difference operator ∆, has been proposed in [23] and
in [8]. Given a choice of Q, one can define the notion of Rota algebra, introduced
[21] : it is the space (F ,+, ·, ∗Q), endowed with the composition laws of sum of
series, multiplication by a scalar and the ∗ product (5).

If f and g are formal series defined on a lattice of points L, expanded in terms
of a basic sequence, we have that

(6) ∆(f ∗ g) = (∆f) ∗ g + f ∗ (∆g) .

In other words, ∆ acts as a derivation with respect to the ∗-product: the Leibniz
rule is restored on F . If the zeroes of the basic polynomials coincide with the set
of points of our lattice, then we have an effective discretization, since the series
involved truncate. We shall explain this crucial point in detail in the forthcoming
discussion.

Remark 4. The difference equations obtained by following this procedure naturally
inherit from the continuous counterparts the class of real analytic exact solutions,
which are expressed in terms of convergent power series. Indeed, their discrete
versions are represented in terms of finite series obtained replacing xn with the
corresponding basic polynomial pn(x); the coefficients of these expansions coincide
with those of the analytic solutions of the original models [23, 21, 22]. In this
technical sense, we say that this procedure preserves integrability.

3. The forward discrete derivative and the associated calculus

Since in the forthcoming discussion we shall focus on the operator ∆+ := ∆, in
order to fix the notation we propose here some useful formulas. We introduce a
uniform lattice L in the positive semi-axis R+,

(7) xn = nh, h > 0, n ∈ N,
and, given a function u(x) of a real variable, we define its discretization as the set
of all of its values at the lattice points:

(8) un := u(xn) = u(nh).
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The k-degree basic polynomials for the forward discrete derivative operator on the
uniform lattice are

(9) (x)0 := 1, (x)k :=

k−1∏
j=0

(x− jh), k = 1, 2, . . .

These polynomials have zeros at the lattice points xi, i = 0, . . . , k − 1. For n ≥ k,
we have:

(10) (nh)k =

k−1∏
j=0

(nh− jh) = hkn(n− 1) · · · (n− k + 1) =
n!hk

(n− k)!
, n ≥ k

Let Q be a delta operator acting on P, and {pn(x)}n∈N be the basic sequence of
polynomials of order n uniquely associated with Q. Let F be the algebra of formal
power series in x. Since the polynomials {pn(x)}n∈N for every choice of Q provide
a basis of F , they allow us to expand a function u(x) in terms of a formal power
series [21]:

(11) u(x) =

∞∑
k=0

ζkpk(x), ζk ∈ R

In this way, we extend the action of delta operators on functions. In general, the
formal series (11) is divergent. However, in the case of Q = ∆, since the lattice
points coincides with the zeroes of (x)n, the series expression for u(x) on the lattice
truncates. Indeed, we have:

(12) un =

∞∑
k=0

ζkpk(nh) =

n∑
k=0

n!hk

(n− k)!
ζk .

The coefficients ζk can be obtained from the values of un by solving a system of
linear equations [21]. We obtain the formula

(13) ζk =
1

hk

k∑
j=0

(−1)k−j

j!(k − j)!
uj .

In the discretization process that we shall implement below, the continuous
derivatives are replaced by the operators:

(14) u′ → ∆un =
1

h
(un+1 − un) , u′′ → ∆2un =

1

h2
(un+2 − 2un+1 + un)

etc. The discretization of the derivative at the lattice points (the upper limit in the
sums can be be taken equal to n, because pi(mh) = 0 when i > m) can be written
in terms of the basic polynomials1(we only consider second order derivatives in this
article):

u′(nh)→
n+1∑
j=0

jζjpj−1(nh),(15)

u′′(nh)→
n+2∑
j=0

j(j − 1)ζjpj−2(nh)(16)

1The bounds in the sums can be adjusted in order that null terms are not present in the
sums, but we always take into account that a negative factorial in the denominator yields 0 in the

corresponding term
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4. A discretization of the homogeneous Euler equation

In this section, as an application of the theory of discretization outlined before,
we shall consider homogeneous linear equations of second order:

(17) x2u′′ + axu′ + bu = 0, a, b ∈ R

We describe the discretization procedure in a step-by-step fashion, in order to
illustrate it in a self-consistent way. A more abstract, formal approach based on
category theory can also be implemented [22].

4.1. The construction of the model. Given the differential equation (17), we
substitute xk by pk(nh), the derivatives by their discrete versions (15), (16) and
the usual product by the ∗ product. Explicitly, we have
(18)

p2(nh)∗
n+2∑
k=0

k!ζk
(k − 2)!

pk−2(nh)+a p1(nh)∗
n+1∑
k=0

k!ζk
(k − 1)!

pk−1(nh)+b

∞∑
k=0

ζkpk(nh) = 0,

that is

(19)

n∑
k=0

(
1

(k − 2)!
+

a

(k − 1)!
+

b

k!

)
k!ζkpk(nh) = 0,

or,

(20)

n∑
k=0

(k(k − 1) + ak + b) ζkpk(nh) =

n∑
k=0

Λkζkpk(nh) = 0,

where

(21) Λk = k(k − 1) + ak + b

is the indicial polynomial of the Euler differential equation (17).
The difference equation for uk can be easily written using (10) and (13):

(22)

n∑
k=0

k∑
j=0

(−1)k−jn!Λk

j!(k − j)!(n− k)!
uj =

n∑
k=0

k∑
j=0

(−1)k−jΛk

(
n

k

)(
k

j

)
uj = 0 .

Changing the order of the sums, we obtain the relation

(23)

n∑
j=0

 n∑
k=j

(−1)k−jΛk

(
n

k

)(
k

j

)uj = 0

which, using some combinatorial identities of Appendix A, becomes:

(24)

n∑
j=0

(
n

j

) n∑
k=j

(−1)k−jΛk

(
n− j
k − j

)uj =

n∑
j=0

(
n

j

)
cnjuj = 0

where,

(25) cnj =

n∑
k=j

(−1)k−j
(
n− j
k − j

)
Λk =

n−j∑
k=0

(−1)k
(
n− j
k

)
Λk+j
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Using again the results from Appendix A, we get

n−j∑
k=0

(−1)k
(
n− j
k

)
Λk+j(26)

=

n−j∑
k=0

(−1)k
(
n− j
k

)(
k2 + (a+ 2j − 1)k + j2 + (a− 1)j + b

)
This formula can be rewritten as

n−j∑
k=0

(−1)k
(
n− j
k

)
Λk+j =

n−j∑
k=0

(−1)k
(
n− j
k

)
k2 + (a+ 2j − 1)

n−j∑
k=0

(−1)k
(
n− j
k

)
k

(27)

+
(
j2 + (a− 1)j + b

) n−j∑
k=0

(−1)k
(
n− j
k

)
= 2δn−j,2 − δn−j,1 − (a+ 2j − 1)δn−j,1 +

(
j2 + (a− 1)j + b

)
δn−j,0 .

Finally, for the coefficients of the difference equation (24) we get

cnj = 2δn−2,j − (a+ 2j)δn−1,j +
(
j2 + (a− 1)j + b

)
δn,j

Consequently, equation (24) is a three-points difference equation and the only co-
efficients different from zero for a given n are

(28) cn,n−2 = 2, cn,n−1 = −a− 2(n− 1), cnn = n2 + (a− 1)n+ b .

Therefore, our difference equation becomes:

(29)

(
n

n− 2

)
cn,n−2un−2 +

(
n

n− 1

)
cn,n−1un−1 +

(
n

n

)
cnnun = 0

We arrive at the following result.

Definition 5. We shall call the difference equation

(30) (n2 + (a− 1)n+ b)un − n(a+ 2n− 2)un−1 + n(n− 1)un−2 = 0

the discrete Euler equation.

4.2. The continuous limit. The difference equation (30), which has been ob-
tained by an algorithmic, purely algebraic procedure, can be considered as the dis-
crete version of the continuous model (17), defined on the Rota algebra (F ,+∗∆).
However, there is also a direct relation among equations (30) and (17).

Precisely, if h → 0 and nh remains finite with nh ≡ x, the continuous limit of
the difference equation can be obtained as follows. Rewrite the equation (30) as:

(31) n(n− 1)h2un − 2un−1 + un−2

h2
+ a(nh)

un − un−1

h
+ bun = 0

Then, in the limit when n → ∞, our discrete model converts into the original
differential equation

(32) x2u′′ + axu′ + bu = 0
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4.3. Exact solutions of the discrete Euler equation. The Euler equation (17)
has (in the generic case) two independent solutions of the form xr where r is a root
of the indicial polynomial, Λr = 0. They represent a basis of the space of solutions.
Let us assume that r ∈ N. This restriction on the coefficients a, b in eq. (17)
ensures the existence of analytic solutions.

According to our procedure, in order to inherit exact solutions of the discrete
equation (30) from the continuous one, we expand the known solutions of eq. (17)
in terms of the basic sequence associated with the ∆ derivative. By using eqs.
(11)-(12), we obtain the discrete function:

(33) un = pr(n) =
n!

(n− r)!
, n ≥ r

Let us show directly that this expression is an exact solution of the difference
equation (30). By substituting it in the equation, we have

(34) (n2+(a−1)n+b)
n!

(n− r)!
−n(a+2n−2)

(n− 1)!

(n− 1− r)!
+n(n−1)

(n− 2)!

(n− 2− r)!
= 0

and simplifying:

(35) (n2 + (a− 1)n+ b)− (a+ 2n− 2)(n− r) + (n− r)(n− r − 1) = 0

we finally get

(36) r(r − 1) + ar + b = 0

which is an identity since r is a root of the indicial polynomial.

5. Future perspectives

This work is part of a research project concerning the discretization of ODEs
and PDEs in the algebraic framework of the finite operator calculus. In the case of
the Euler equation, we have shown the effectiveness of our discretization procedure,
by deriving the new discrete model (30). In particular, a class of exact solutions of
this model is inherited by construction from the continuous Euler equation.

For a large class of variable coefficients ODEs, several general results and different
examples have been obtained in [22]. A discrete version of the classical Frobenius
theorem for ODEs is also in order [15].

The discretization approach proposed deserves further investigation. Among
the related open problems, we wish to address the study of the symmetry groups
possibly admitted by our discrete models, in the spirit of Lie’s approach to ODEs,
and the definition of appropriate boundary value problems.

More generally, we plan to extend the discretization procedure based on Rota
algebras to the case of evolution equations and partial differential equations, both
linear and nonlinear. Several preliminary results show the potential applicability of
this technique also to the construction of new integrable quantum models defined
on a lattice [5]. This also paves the way to possible applications of the theory in
discrete formulations of quantum gravity [6, 19].

Appendix A. Some useful combinatorial identities

The following formula (the Newton binomial) holds for any a ∈ C:
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(37)

n∑
k=0

(−1)n−k
(
n

k

)
ak = (a− 1)n

When a = 1, it reduces to

(38)

n∑
k=0

(−1)n−k
(
n

k

)
= 0, n > 0

If n = 0 we can write for any a:

(39)

n∑
k=0

(−1)n−k
(
n

k

)
ak = 1 .

Then, for a = 1 and any n ∈ N ∪ {0} we have the identity

(40)

n∑
k=0

(−1)n−k
(
n

k

)
= (−1)nδn0 = δn0

Taking formally the derivative with respect to a in (37) and then multiplying both
sides by a, we obtain

(41)

n∑
k=0

(−1)n−k
(
n

k

)
kak = na(a− 1)n−1 .

Thus, if a = 1, we get

(42)

n∑
k=0

(−1)n−k
(
n

k

)
k = 0, n > 1

Again, if n = 1, we get 1, then:

(43)

n∑
k=0

(−1)k
(
n

k

)
k = (−1)nδn1 = −δn1

Taking the second derivative in (37), we deduce the relation

(44)

n∑
k=0

(−1)n−k
(
n

k

)
k(k − 1)ak−2 = n(n− 1)(a− 1)n−2

which can also be written as:

(45)

n∑
k=0

(−1)n−k
(
n

k

)
k2ak −

n∑
k=0

(−1)n−k
(
n

k

)
kak = n(n− 1)a2(a− 1)n−2

or,

(46)

n∑
k=0

(−1)n−k
(
n

k

)
k2ak = na(na− 1)(a− 1)n−2

If a = 1:

(47)

n∑
k=0

(−1)n−k
(
n

k

)
k2 = 0, n > 2



10 MIGUEL A. RODRÍGUEZ AND PIERGIULIO TEMPESTA

However, if n = 1

(48)

n∑
k=0

(−1)k
(
n

k

)
k2 = (−1)nδn1 = −δn1

and, if n = 2

(49)

n∑
k=0

(−1)k
(
n

k

)
k2 = 2(−1)nδn2 = 2δn2

that is:

(50)

n∑
k=0

(−1)k
(
n

k

)
k2 = 2δn2 − δn1 =


0, n = 0

−1, n = 1

2, n = 2

0, n > 2

In particular, in the case under study:
n∑

k=0

(−1)k
(
n

k

)
Λk =

n∑
k=0

(−1)k
(
n

k

)
k2 + (a− 1)

n∑
k=0

(−1)k
(
n

k

)
k + b

n∑
k=0

(−1)k
(
n

k

)
=2δn2 − δn1 − (a− 1)δn1 + bδn0 = 2δn2 − aδn1 + bδn0(51)
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Departamento de F́ısica Teórica, Facultad de Ciencias F́ısicas, Pza. de las Ciencias 1,

Universidad Complutense de Madrid, 28040 – Madrid, Spain, and Instituto de Ciencias
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