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Abstract: In a previous paper, we introduced (i) a specific hyperspectral mixing model for the sea
bottom, based on a detailed physical analysis that includes the adjacency effect, and (ii) an associated
unmixing method that is supervised (i.e., not blind) in the sense that it requires a prior estimation
of various parameters of the mixing model, which is constraining. We here proceed much further,
by first analytically showing that the above model can be seen as a specific member of the general
class of mixing models involving spectral variability. Therefore, we then process such data with the
IP-NMF unsupervised (i.e., blind) unmixing method that we proposed in previous works to handle
spectral variability. Such variability especially occurs when the sea depth significantly varies over the
considered scene. We show that IP-NMF then yields significantly better pure spectra estimates than a
classical method from the literature that was not designed to handle such variability. We present test
results obtained with realistic synthetic data. These tests address several reference water depths, up
to 7.5 m, and clear or standard water. For instance, they show that when the reference depth is set
to 7.5 m and the water is clear, the proposed approach is able to distinguish various classes of pure
materials when the water depth varies up to ±0.2 m around this reference depth, over all pixels of
the analyzed scene or over a “subscene”: the overall scene may first be segmented, to obtain smaller
depths variations over each subscene. The proposed approach is therefore effective and can be used
as a building block in performing the subpixel classification of the sea bottom for shallow water.

Keywords: hyperspectral unsupervised unmixing; hyperspectral blind unmixing; spectral variability;
intraclass variability; sea bottom unmixing; adjacency effect; nonnegative matrix factorization
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1. Problem Statement

Hyperspectral sensors have a limited spatial resolution. Therefore, when observing the
Earth, each pixel of a hyperspectral image corresponds to a surface on the Earth that is often
covered by different pure materials. The radiance or reflectance spectrum of such a pixel is
then a mixture of the spectra of the corresponding pure materials. A major data processing
task then consists of unmixing observed spectra, in order to retrieve pure material spectra
from them. For a survey of these blind (i.e., unsupervised) unmixing methods, see [1] for
instance. These unmixing methods can be used as a building block in performing subpixel
classification (for instance, when considering the classification of the sea bottom for shallow
water, as in the present paper).

Most unmixing methods use a simple mixing model, based on the following assump-
tions [1]: each pure material is represented by the same spectrum in all image pixels, each
observed spectrum corresponding to a pixel is a linear combination of the above-mentioned
pure spectra, each coefficient in the above combination is equal to the fraction of the Earth’s
surface covered by the corresponding pure material in the considered pixel, and therefore
the sum of all these coefficients (called abundance fractions or abundances) is equal to
one in each pixel. However, more complex models are required to describe additional
phenomena that often occur in practical applications [1]. This especially includes three
aspects. The first one consists of intimate mixtures (i.e., at a miscroscopic scale), addressed
in [1,2] for instance. Moreover, nonlinear phenomena, especially leading to linear-quadratic
mixing models (including bilinear ones [3]), exist at a macroscopic scale, as shown in [4] for
instance. Various methods have been proposed in the literature to solve the linear-quadratic
version of the blind source separation/blind mixture identification problem in general (see
the surveys in [3,5] for instance), and more specifically for unmixing hyperspectral data
(see [4,6–21] for instance). Finally, still at the macroscopic level, it has been shown that each
type of pure material is often represented by somewhat different spectra in all pixels of a
hyperspectral image (see [22,23] for instance). For example, tiles from different roofs in a
city have somewhat different spectra, and this may be due to differences in illumination,
weathering, or composition. These tiles, however, form a class in the sense that all their
spectral vectors are close to one another, as compared with their higher distances with
respect to spectral vectors of other classes of materials (vegetation or asphalt, for instance).
This dependence with respect to the considered pixel of the spectrum associated with one
class of pure materials is called spectral variability, intraclass variability, or endmember
variability. Various methods have been proposed to handle this variability; for instance, see
the surveys in [24,25] and the original contributions in [22,23,26–47]. In particular, to pro-
cess such data, we previously developed the blind unmixing method called IP-NMF, which
stands for inertia-constrained pixel-by-pixel NMF (and its UP-NMF version, where “U”
stands for “unconstrained”), described in [22,23]. This method handles each above-defined
class of pure materials by deriving a different estimated spectrum in each pixel for this
class and by constraining, to some extent, all these estimates to remain close to one another.
These spectra are linearly combined by means of adaptive coefficients, to form estimates of
the complete observed spectra. This model and the associated unmixing method are thus
very flexible, since they do not require any prior knowledge about the distribution of the
spectra forming a class, nor about the mixing coefficients.

In contrast, when only focusing on a particular application, one may develop as-
sociated specific data models and unmixing methods. This is especially what we did
for coastal water remote sensing in the framework of the HypFoM project (see https:
//anr.fr/Projet-ANR-15-ASTR-0019, accessed on 1 February 2023) . We took various physi-
cal phenomena into account, including the influence of adjacent pixels, often referred to
as the “adjacency effect” [48] (this effect was also considered in the literature, for instance
in [49], but in the atmosphere). We thus derived the data model reported in [50]. We then
developed a corresponding unmixing method [50], which is “not blind” or “only partly
blind”, in the sense that it assumes various parameters of the above mixing model to be
known and it then only estimates the other parameters.

https://anr.fr/Projet-ANR-15-ASTR-0019
https://anr.fr/Projet-ANR-15-ASTR-0019
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In the present paper (this paper is an extension of the short conference paper [51]),
we extend the above investigation of coastal remote sensing from several points of view.
In Section 2.1, we first gather the main features of the above data model, which were
successively introduced in [50], so as to provide a ready-to-use summary of that model.
Then, in Section 2.2, we further analyze this specific model and thus show that it may
be seen as a member of the general class of models based on spectral variability that we
define above. This allows us to process such data with another unmixing method than
the approach applied to them in [50], namely with our IP-NMF algorithm. This new
approach based on spectral variability yields quite complementary features as compared
with the method used in [50]: it is (almost) blind, in the sense that it does not require one
to obtain prior estimates of the above-mentioned parameters of the mixing model by other
means; moreover, it is robust to the non-idealities that may appear in real oceanic data,
as compared with the quite specific model derived in [50], since it accepts any distribution
for pure material spectra, provided that they still form classes, as defined above. A summary
of the principles of the IP-NMF algorithm is provided in Section 3. Its application to oceanic
remote sensing data is addressed in the subsequent sections. We first define the considered
data in Section 4.1 and the selected performance criteria in Section 4.2. Test results are then
reported and discussed in Section 5. Finally, conclusions are drawn from this investigation
in Section 6.

To summarize, our main contributions in this paper are as follows:

1. In the field of remote sensing with hyperspectral imaging, when only simple situa-
tions are considered, data may be represented by the standard mixing model (i.e., the
linear model without spectral variability). In contrast, we here consider much more
challenging configurations, related to sea bottom analysis, where the so-called adja-
cency effect occurs. In [50], we showed that such configurations must be addressed
by using the much more complex data model that we developed in that paper [50].
The present paper is thus the second paper wherein this cutting-edge data model is
used to improve data analysis performance. This model is detailed in Section 2.1,
especially in (1). As explained in that section, it differs from the standard mixing
model as follows:

(a) It first includes a term that is a modified version of the standard mixing
model: the latter model, namely S ai, is here altered by the vectors k1,i defined
in Section 2. These vectors k1,i depend on the considered scene (with one
vector per pixel) and are initially unknown, which is the first challenge of the
considered configurations.

(b) Moreover, the data model (1) includes a second term, namely k2,i � (S Api),
which accounts for the adjacency effect and thus does not appear at all in
the simple configurations addressed in the literature. This term depends on
the vectors k2,i defined in Section 2. These vectors k2,i also depend on the
considered scene (with one vector per pixel) and are initially unknown, which
is the second challenge of the considered configurations.

2. The class of data analysis methods that is considered in this paper is hyperspectral
unmixing. The unmixing methods proposed in the literature for the standard mixing
model cannot be used here, because we consider a more complex mixing model,
as stated above. Therefore, in [50], we developed the first method intended for our
new data model. However, this method is restricted because it requires one to know
(i.e., to previously estimate) the values of all parameter vectors k1,i and k2,i of the
data model mentioned above, i.e., the method is supervised. Therefore, our main
theoretical contribution in the present paper consists of a new approach to handling
our recent data model in an unsupervised way, hence without knowing all pixel-
dependent parameter vectors k1,i and k2,i. To this end, we first provide an analysis of
that model, which then allows us to show how to handle the considered data with
an unsupervised unmixing method, which we propose for data that have spectral
variability. Thus, our approach is promising thanks to our ability to handle spectral
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variability, whereas standard unmixing methods (such as VCA) cannot handle it and
provide low performance if applied to data that have such variability.

3. The above expectation about unmixing performance is actually confirmed in this
paper, because we also provide an experimental contribution, which proves the
attractiveness of our approach. More precisely, we show that our algorithm yields
better performance than the VCA unmixing method (intended for the standard mixing
model) when applied to the considered realistic data.

2. Mixing Model for Oceanic Remote Sensing: Original and New Versions
2.1. Original Mixing Model

The investigation reported in the present paper is based on the analysis of the radiative
transfer within the oceanic layer and on its subsequent reformulation as a mixing model,
as provided in [50]. The latter paper showed that the reflectance associated with pixel i
of the observed image reads as follows, after subtracting the subsurface diffuse upward
reflectance from the water column (without interaction with the bottom):

xi = k1,i � (S ai) + k2,i � (S Api) (1)

where� stands for the element-wise product. This expression uses the following quantities.
S is the matrix containing the pure material spectra sj (without variability) of the image,
respectively, in each of its columns. The column vector ai contains all abundances aj,i of the
pure materials in the considered pixel. The term S ai in (1) thus explicitly reads

S ai =
J

∑
j=1

sjaj,i (2)

where J is the number of pure materials. Therefore, this term S ai is a linear combination of
the pure material spectra sj. It should be noted that it is the same as the simplest mixing
model in remote sensing, defined at the beginning of Section 1.

Similarly, the term S Api of (1) represents the effect of adjacent pixels, by forming
another linear combination of the pure material spectra sj, where each coefficient contained
in Api may be seen as an “equivalent abundance”, equal to a weighted sum of the actual
abundances aj,n of the pure materials in the set V(i). This set consists of the considered
pixel i and of its neighborhood. More precisely, this term S Api explicitly reads

S Api =
J

∑
j=1

[
∑
n

pn,i aj,n

]
sj (3)

with pn,i =
1 - δi

N if n ∈ V(i) and n 6= i, with pn,i = δi if n = i and with pn,i = 0 otherwise.
N defines the number of neighbors considered in the scene and δi is the environment
parameter, which defines the proportion of diffuse light rising to the surface after interacting
with the target.

Finally, the terms k1,i and k2,i of (1) are defined as

k1,i = Ei � (πE(0-))� Tdir (4)

k2,i = Ei � (πE(0-))� Tdi f (5)

where � stands for element-wise division. Ei is the total downward irradiance at the
sea bottom, for pixel i. E(0-) is the downward irradiance at the subsurface level. Tdir is
the direct upward transmission vector and Tdi f is the diffuse upward transmission vector
(see [50]). It should be stressed that the adjacent pixels contribute to the upward light
through the diffuse light.
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2.2. Analysis of the Mixing Model

Using (2) and (3), the original mixing model (1) may be expressed as

xi = k1,i � (
J

∑
j=1

sjaj,i) + k2,i � (
J

∑
j=1

[
∑
n

pn,i aj,n

]
sj). (6)

After some manipulations, it may be rewritten as

xi =
J

∑
j=1

ρi,j (7)

where

ρi,j =

(
aj,ik1,i +

[
∑
n

pn,i aj,n

]
k2,i

)
� sj (8)

is the contribution of the jth pure material in the spectrum xi observed for pixel i. It should
be noted that the vector before sj in (8) depends on the considered pixel i. This means that
a given (class of) pure material, with index j, yields different contributions, not only in
terms of scale factors but also of the shape / direction of the spectral vectors ρi,j, in different
pixels. These contributions are then linearly combined (i.e., they are just added, whereas
all scaling factors are already included at different stages in the expression (8) of ρi,j), to
form a complete observed spectrum xi. Therefore, disregarding the specific structure of the
mixing model (7) and (8), the main feature of the data faced in the considered application is
that each observed spectrum is a linear combination of pure material contributions with
pixel-dependent shapes. Moreover, the vectors k1,i and k2,i in (8) depend on the pixel through
its depth (they also depend on the water quality, which is considered to be constant over
all pixels in this investigation). The analyzed image may therefore be split into several data
sets, by using available techniques to roughly estimate the depth of each pixel and then
gathering, in each data set, the observed spectra corresponding to similar depths. Thus,
in each data set, the vectors k1,i and k2,i and hence the resulting vectors ρi,j for a given
class have relatively similar directions, so that our concept of non- (or weakly) overlapping
classes applies to these data. The above specific oceanic data model therefore belongs to
the much more general class of models involving spectral variability with classes that we
described in Section 1. These oceanic data may therefore be processed by means of the
above-mentioned IP-NMF blind unmixing method (including its UP-NMF version) with
the associated advantages that we defined in Section 1.

3. Blind Unmixing Method for Spectral Variability

Before applying the IP-NMF method to the considered framework, we here summarize
the required principles of this method. In our linear mixing model including spectral
variability, a separate set of J pure material spectra ri,j, with j ranging from 1 to J, is
associated with each pixel i. Each recorded spectrum xi (corresponding to the above-
defined spectrum xi of (1) in our oceanic application) is then expressed with respect to
this pixel-dependent set of pure material spectra, still considering a linear model to combine
them. This model reads (In the standard mixing model, i.e., the model without variability,
the abundance fractions ci,j are coefficients used to create a weighted sum of pure spectra,
in order to model a mixed observed spectrum, and the set of pure spectra thus used is the
same in all pixels (i.e., these spectra can be denoted as rj instead of ri,j in (9)). In our mixing
model (9), the abundance fractions ci,j play the same role as in the standard model, but they
weight pure spectra that depend on the considered pixel i and that are therefore denoted
as ri,j)

xi =
J

∑
j=1

ci,jri,j ∀i ∈ {1, ..., I} (9)
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where I is the number of pixels in the image. This model also uses the types of constraints
defined above for the simplest mixing model, which are (i) the nonnegativity of all spec-
tra ri,j and all mixing coefficients ci,j, and (ii) the sum-to-one constraint. The extended
mixing model (9) may then be expressed in matrix form as follows. We first introduce
Ri = [ri,1, ..., ri,J ]

T , which contains the set of J source (i.e., pure) spectra associated with

the observed spectrum xi. Then, R̃ =

R1
...
RI

 is the matrix containing all the source spectra

of the complete scene and C̃ is the block-diagonal extended mixing coefficient matrix,
expressed as

C̃ =


c1

T 0...0 ... 0...0
0...0 c2

T ... 0...0
. . .

0...0 0...0 ... cT
I

 (10)

where ci = [ci,1, ..., ci,J ]
T is the column vector containing the set of mixing coefficients

associated with the ith observed spectrum. Equation (9) then yields the matrix expression

X = C̃R̃. (11)

To fit the mixing model (11), the IP-NMF method adapts two matrices that, respectively,
aim at estimating C̃ and R̃ and that have the same structure as above. More precisely, due
to the intrisic indeterminacies of the model (9), the pure material spectra ri,j of (9) can only
be estimated up to an unknown permutation (which corresponds to reordering the indices
j in (9)) and up to unknown scale factors (since such scale factors for ri,j are compensated
for by having inverse factors for the coefficients ci,j in (9)). The above-mentioned adaptive
matrices are also denoted as C̃ and R̃ below, for the sake of simplicity. They are updated so
as to minimize the cost function

Jipnm f =
1
2

∥∥X - C̃R̃
∥∥2

F + µ
J

∑
j=1

Tr(Cov(R̃Cj)) (12)

where
∥∥.
∥∥

F is the Frobenius norm and the term
∥∥X - C̃R̃

∥∥2
F is the reconstruction error that is

widely used in Nonnegative Matrix Factorization (NMF) methods [52,53], but that is here
extended to the non-standard matrices C̃ and R̃. The term µ ∑J

j=1 Tr(Cov(R̃Cj)) of (12) is a
penalty term involving, for each class j of pure materials, the quantity Tr(Cov(R̃Cj)). This
quantity is the trace of the covariance matrix of the matrix R̃Cj that contains all estimates
of pure material spectra for the jth class and for pixels 1 to I, respectively, in its rows 1 to
I. This quantity Tr(Cov(R̃Cj)) is the inertia of the set of points defined by these spectra
(hence the name inertia-constrained pixel-by-pixel NMF, or IP-NMF, of this unmixing
method). This inertia measures the spread of the estimated pure spectra for one class
and all pixels. The overall penalty term of (12) thus forces, separately for each class, the
associated estimated pure spectra for all pixels to remain similar during adaptation, up to a
degree that is controlled by the parameter µ.

The cost function (12) is minimized by using a gradient descent approach, constrained
by nonnegativity and sum-to-one conditions. Details about this algorithm and the corre-
sponding pseudo-code are available in [22,23].

The UP-NMF method (where “U” stands for “unconstrained”) is a specific version of
IP-NMF, obtained by setting µ = 0. Its adaptation step thus does not enforce the estimated
spectra of each class to remain similar, but they may remain similar because they were
initialized to the same value.

In the following tests, the adaptive variables R̃ and C̃ are initialized with the results of
the classical VCA [54] method (for all pixels) and of the FCLS [55] or LSQNONNNEG [56]
methods.
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4. Data and Performance Criteria
4.1. Considered Data

We here aim at accurately, and hence numerically, evaluating the performance of the
considered unmixing methods. The approach used to this end may be described as follows.
Let us first consider the case when the recorded data would actually obey the model (9).
When processing a matrix X of mixed spectra with the above-defined IP-NMF method,
for each pixel i and each pure material j, after reordering, we obtain a spectrum ei,j that
estimates the pure spectrum ri,j of (9), up to a scale factor as discussed in Section 3. We then
aim at comparing these estimated spectra ei,j to the actual pure spectra ri,j. Implementing
this type of protocol for a matrix X of real, i.e., measured, mixed data would be constraining,
but it is feasible when not considering the above extended model (9) and only the standard
mixing model from the literature (i.e., the linear model without variability). More precisely,
this protocol can be implemented in this case because it only requires one to know all the
above-mentioned actual pure spectra (i.e., ground truth) involved in the considered scene,
i.e., only a few spectra, because, in this case, each pure material is assumed to be represented
by the same spectrum in all pixels. These spectra may be obtained by performing actual
measurements at some locations of the considered Earth area. Moreover, if the considered
scene contains some pure pixels, their spectra can be used as the ground truth for pure
spectra. In contrast, the above protocol cannot be extended to real data X that obey the
more complex data model (9) considered in the present paper because, due to variability,
for each class j of pure materials, one would need all versions ri,j of the corresponding
spectrum for all pixels i, which is not feasible because one cannot reasonably perform
on-site measurements corresponding to all pixels and all pure materials, nor request all
image pixels to be pure (the unmixing problem would then disappear).

To avoid the above-defined problem, we hereafter use mixed data X that are synthetic
but realistic. First, the matrix X to be processed is created by using the detailed data model
(6) with known parameter values, in order to know the “ground truth” that corresponds to
X. Moreover, to make these data realistic, the model parameters are set to relevant values,
as will now be shown.

For the pure spectra sj of (6), here with J = 4, we use real spectra of two algae,
namely Caulerpa Taxifolia and Posidonia, together with clear sand and a dark substratum.
These spectra contain 31 spectral bands over the [400 nm, 700 nm] range and are shown in
Figure 1.
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Figure 1. Real pure reflectance spectra: Caulerpa Taxifolia, substratum, sand and Posidonia. These
spectra contain 31 spectral bands over the [400 nm, 700 nm] range.

We numerically generate the coefficients aj,i and pn,i of (6), so as to simulate relevant
pure material “abundances”. To this end, we use the same protocol as in [50]. The consid-
ered images contain 100× 24 pixels and the maps of coefficients aj,i are shown in Figure 2.
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They are such that each pixel contains contributions from at least two pure materials, each of
them having a maximum abundance of 80 %. Moreover, the pure materials are distributed
so as to have a spatial structure, with some materials more prominent in different regions
(see Figure 2), which makes the considered images realistic.

Taxifolia

5 15

20

40

60

80

100

0.2

0.4

0.6

0.8

Substratum

5 15

20

40

60

80

100

0.2

0.4

0.6

0.8

Sand

5 15

20

40

60

80

100

0.2

0.4

0.6

0.8

Posidonia

5 15

20

40

60

80

100

0.2

0.4

0.6

0.8

Figure 2. Maps of coefficients aj,i for all classes of pure materials (Caulerpa Taxifolia, substratum, sand
and Posidonia). We numerically generated the coefficients aj,i and pn,i of (6), so as to simulate relevant
pure material “abundances”. To this end, we used the same protocol as in [50]. The considered
images contain 100× 24 pixels.

The k1,i and k2,i vectors of (6) were derived from the physical model of the OSOAA
radiative transfer simulator [57]. These vectors depend on the considered water quality
(clear or standard) and on the depth di of the considered pixel i. We set these depths by
creating a synthetic sea bottom profile, first defined by a reference depth dre f and where
each pixel depth di is randomly and uniformly drawn in an interval ranging from −∆ to
+∆ around depth dre f . The vectors k1 and k2 were first computed by the OSOAA software
only for depths equal to 1, 2, 3, 4, 5 and 10 m. For any considered sea profile, these results
from OSOAA were then used to derive the values of k1,i and k2,i for any depth di of a pixel
i of the considered scene. To this end, the following linear interpolation was used:

k1,i = (0.5 − α)k1(d −i ) + (0.5 + α)k1(d+i ) (13)

k2,i = (0.5 − α)k2(d −i ) + (0.5 + α)k2(d+i ) (14)

where d −i and d+i are the pixel-dependent closest depths, respectively, below and above
di, for which OSOAA results are available (i.e., 1, 2, 3, 4, 5 and 10 m, as stated above).
Moreover, α depends on the considered value di of the interpolation point, with respect
to the reference points d −i and d+i . Figures 3 and 4, respectively, illustrate the variations
in k1,i and k2,i with respect to wavelength for the reference depth dre f = 1.5 m, for depth
variations over the considered scene defined by ∆ = 0.05 m and for clear water.
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Figures 5–8 show the contributions ρi,j, defined by (8), within all mixed spectra xi.
Each of these figures corresponds to a given class j of pure materials and to all pixels i .

Figure 3. Variations in k1,i vs. wavelength, for all image pixels (one plot per pixel). Conditions:
reference depth dre f = 1.5 m, depth variations over considered scene defined by ∆ = 0.05 m, clear
water. The k1,i and k2,i vectors of (6) were derived from the physical model of the OSOAA radiative
transfer simulator [57]. These vectors depend on the considered water quality (clear or standard)
and on the depth di of the considered pixel i.

Figure 4. Variations in k2,i vs. wavelength, for all image pixels (one plot per pixel). Conditions:
reference depth dre f = 1.5 m, depth variations over considered scene defined by ∆ = 0.05 m, clear
water. The k1,i and k2,i vectors of (6) were derived from the physical model of the OSOAA radiative
transfer simulator [57]. These vectors depend on the considered water quality (clear or standard)
and on the depth di of the considered pixel i.

Figure 5. Contributions ρi,j of Caulerpa taxifolia in the mixed reflectance spectra corresponding to all
pixels (see (8), one plot per pixel). Conditions: clear water, reference depth dre f = 1.5 m and depth
variations over considered scene defined by ∆ = 0.25 m.
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Figure 6. Contributions ρi,j of substratum in the mixed reflectance spectra corresponding to all pixels
(see (8), one plot per pixel). Conditions: clear water, reference depth dre f = 1.5 m and depth variations
over considered scene defined by ∆ = 0.25 m.

Figure 7. Contributions ρi,j of sand in the mixed reflectance spectra corresponding to all pixels (see (8),
one plot per pixel). Conditions: clear water, reference depth dre f = 1.5 m and depth variations over
considered scene defined by ∆ = 0.25 m.

Figure 8. Contributions ρi,j of Posidonia in the mixed reflectance spectra corresponding to all pixels
(see (8), one plot per pixel). Conditions: clear water, reference depth dre f = 1.5 m and depth variations
over considered scene defined by ∆ = 0.25 m.
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4.2. Performance Criteria

Let us first consider the case where the measured data actually obey the model (9).
Then, for each pixel i and each pure material j, the tested IP-NMF method yields a spectrum
ei,j that estimates the pure spectrum ri,j of (9) but only up to a scale factor, as stated in Section 3:
this scale indeterminacy is intrinsic to the mixing model (9) with spectral variability and
very common in blind source separation/unsupervised unmixing problems, apart from the
simplest remote sensing configuration defined in Section 1. This estimated spectrum ei,j
should therefore be compared in terms of vector direction, not of magnitude, with its target
value, which is ri,j .

Now, consider mixed data defined by the model (7) and (8). Here, again, a comparison
in terms of vector directions should be performed, but now between the result ei,j of IP-
NMF and the actual contribution of pure material j in the observed spectrum (7) for pixel i,
i.e., ρi,j. The spectra ei,j and ρi,j are therefore compared by computing their Spectral Angle
Mapper (SAM) [58] (we again stress that we only consider the directions of the vectors ei,j
and ρi,j, and hence their SAM, so that this analysis does not depend on associated scale
factors, such as the coefficients ci,j that appear in (9)). This SAM is then averaged over all
pure materials and all pixels, thus yielding a unique performance figure for the complete
image. This procedure is repeated for several runs (5 runs in the tests reported below), with
different randomly drawn pixel depths. The mean of SAM over these runs is denoted as
SAM(IP-NMF). As a comparison, we also compute the overall SAM, denoted as SAM(VCA),
obtained when processing these data with the classical VCA method [54], which does not
take spectral variability into account. Starting from the above overall SAM values of both
considered methods, the percentage of improvement in SAM for our IP-NMF method,
with respect to VCA, is then derived by computing

SAM(VCA) − SAM(IP-NMF)
SAM(IP-NMF)

. (15)

5. Test Results and Discussion

The above-defined protocol was applied to different water qualities and to various
values of dre f , ∆ and of the inertia penalty coefficient µ of the cost function (12), to analyze
the performance in a variety of configurations. The results thus obtained are provided in
the following subsections. Each of these subsections corresponds to a given type of water
and a given value of dre f , whereas ∆ and µ are varied. Three cases are thus considered for
the type of water and value of dre f , with increasing complexity.

5.1. Results for Clear Shallow Water

As a first step, we here investigate the case when the water is clear [48] and the
reference depth of the scene is set to dre f = 1.5 m. In these conditions, various tests showed
that IP-NMF has very low sensitivity with respect to the value of µ and that the optimum
value (This optimum value was confirmed by other tests, performed with dre f = 3.5 m
and standard-quality water) of µ most often ranges from 150 to 200 (IP-NMF is therefore
more efficient with these values of µ than its version corresponding to µ = 0, i.e., UP-NMF).
As an example, the variations in the overall SAM of our IP-NMF method, with respect to
µ and for ∆ = 0.25 m, are shown in Table 1. The results reported in this and subsequent
sections were therefore obtained when the parameter µ of the IP-NMF method was set to
150, and by performing 400 iterations with this method.

In the above conditions, five values were considered for the magnitude ∆ of pixel-
depth variations around dre f . The corresponding results are shown in Table 2 and lead to
the following conclusions. Our IP-NMF method always yields better performance than
VCA and, when the magnitude ∆ of depth variations and hence the variability increase, i.e.,
when conditions become more difficult, the percentage of improvement in SAM for our
IP-NMF method, with respect to VCA, monotonically increases, up to 14 % for ∆ = 0.25 m.
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This confirms the better ability of IP-NMF to take into account the spectral variability
induced by a non-constant sea depth.

Table 1. Overall SAM, in degrees, of our IP-NMF method, versus its parameter µ. Conditions: clear
water, reference depth dre f = 1.5 m (i.e., shallow water), depth variations over considered scene
defined by ∆ = 0.25 m.

µ SAM of IP-NMF (◦)

25 4.30

50 4.26

75 4.22

100 4.20

125 4.17

150 4.15

175 4.13

200 4.13

The results obtained in this first configuration are made more explicit by displaying
the pure material spectra estimates ei,j separately obtained by IP-NMF in each image pixel
i, for each class j of materials. The spectra obtained for the highest considered value of
∆, namely ∆ = 0.25 m, are provided in Figures 9–12. This shows that the shapes of these
estimated spectra ei,j are similar to those of the components ρi,j shown in Figures 5–8. This
is consistent with the discussion provided in Section 4.2, since the spectra ei,j estimate the
components ρi,j up to scale factors. Moreover, the actual components ρi,j of any given
class j of pure materials have significantly different magnitudes from one pixel to the
other, as shown by the wide envelope of the plots of these pixel-dependent spectra in any
of Figures 5–8. In contrast, the freedom of the scale factors of the estimated spectra ei,j
(corresponding to ci,j in (9)) is used by the IP-NMF method in order to obtain these spectra
with relatively similar scales, as explained in Section 3 (see the inertia, i.e., spread, terms in
the cost function). The envelope of the plots in any of Figures 9–12 is thus narrow, and this
is not an issue for the tests that we performed: only the shapes of these spectra should be
taken into account.

Figure 9. Pure material spectra estimates ei,j for Caulerpa taxifolia and all pixels (one plot per pixel).
Conditions: clear water, reference depth dre f = 1.5 m (i.e., shallow water) and depth variations over
considered scene defined by ∆ = 0.25 m (highest considered value). The parameter µ of the IP-NMF
method was set to 150 and we performed 400 iterations with this method.
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Table 2. (a) Overall SAM, in degrees, of our IP-NMF method and of VCA, versus magnitude ∆ of
pixel-depth variations around reference depth dre f . (b) % of improvement in SAM of IP-NMF, as
compared with SAM of VCA. Conditions: clear water, dre f = 1.5 m.

∆ (m) SAM of IP-NMF SAM of VCA % of Improvement

0.05 4.30 4.58 6.5

0.10 3.90 4.19 7.4

0.15 4.13 4.52 9.4

0.20 3.96 4.34 9.6

0.25 4.15 4.73 14.0

Figure 10. Pure material spectra estimates ei,j for substratum and all pixels (one plot per pixel).
Conditions: clear water, reference depth dre f = 1.5 m (i.e., shallow water) and depth variations over
considered scene defined by ∆ = 0.25 m (highest considered value).The parameter µ of the IP-NMF
method was set to 150 and we performed 400 iterations with this method.

Figure 11. Pure material spectra estimates ei,j for sand and all pixels (one plot per pixel). Conditions:
clear water, reference depth dre f = 1.5 m (i.e., shallow water) and depth variations over considered
scene defined by ∆ = 0.25 m (highest considered value). The parameter µ of the IP-NMF method
was set to 150 and we performed 400 iterations with this method.
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Figure 12. Pure material spectra estimates ei,j for Posidonia and all pixels (one plot per pixel).
Conditions: clear water, reference depth dre f = 1.5 m (i.e., shallow water) and depth variations over
considered scene defined by ∆ = 0.25 m (highest considered value). The parameter µ of the IP-NMF
method was set to 150 and we performed 400 iterations with this method.

5.2. Results for Standard-Quality Shallow Water

We now consider the case when the reference depth of the scene is still set to
dre f = 1.5 m, but we address a standard water quality [48]. The variations in the per-
formance of IP-NMF and VCA with respect to ∆ are shown in Table 3. Here, again, IP-NMF
always yields better performance than VCA. In most cases, the percentage of improvement
in SAM for our IP-NMF method, with respect to VCA, monotonically increases with ∆
and is higher than for the corresponding case with clear water. Its maximum value is here
higher than 18 %.

Table 3. (a) Overall SAM, in degrees, of our IP-NMF method and of VCA, versus magnitude ∆ of
pixel-depth variations around reference depth dre f . (b) % of improvement in SAM of IP-NMF, as
compared with SAM of VCA. Conditions: standard-quality water, dre f = 1.5 m.

∆ (m) SAM of IP-NMF SAM of VCA % of Improvement

0.05 3.75 3.83 2.1

0.10 3.02 3.28 8.6

0.15 3.59 4.02 12.0

0.20 3.90 4.61 18.2

0.25 5.54 6.53 17.9

5.3. Results for Clear Deep Water

We eventually investigated the influence of the reference depth of the scene, by
considering the much more difficult case in which it is set to dre f = 7.5 m, whereas we
keep clear water, as in the first case (we here consider clear water because, for this water
depth, the sea bottom is almost not visible for standard water). The variations in the
performance of IP-NMF and VCA with respect to ∆ are shown in Table 4. Here, again,
IP-NMF always yields better performance than VCA and the percentage of improvement in
SAM for our IP-NMF method, with respect to VCA, often increases with ∆. That percentage
of improvement is somewhat lower in this difficult case than in the previous two, but still
significant: up to more than 8 %.

The SAM of IP-NMF is here significantly higher than in the previous two cases: for the
same range of values of ∆, it here increases up to 7.00◦, as compared with the maximum
values 4.15◦ and 5.54◦ obtained in the previous two cases. One may relate these values
to the fact that the SAM-based classification method available in the commercial ENVI
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software, version 2019, [59] considers that spectra from a class have a SAM lower than
0.1 rad ' 5.73◦, with respect to the representative of that class. Therefore, for the maximum
value ∆ = 0.25 m, IP-NMF can hardly separate the considered classes of materials for the
low signal magnitude faced in the difficult conditions considered in the present section.
For the water depth variability defined by ∆ = 0.25 m, IP-NMF is therefore of main interest
for moderately deep water. However, when considering ∆ ≤ 0.2 m, IP-NMF remains
satisfactory even in the difficult conditions considered here, since the maximum SAM is
then 5.32◦, which is compatible with the 5.73◦ bound of the ENVI software. Moreover,
the magnitude of ∆ may be decreased by splitting the overall scene into subscenes, as
explained in Section 2.2 and hereafter.

Table 4. (a) Overall SAM, in degrees, of our IP-NMF method and of VCA, versus magnitude ∆ of
pixel-depth variations around reference depth dre f . (b) % of improvement in SAM of IP-NMF, as
compared with SAM of VCA. Conditions: clear water, dre f = 7.5 m.

∆ (m) SAM of IP-NMF SAM of VCA % of Improvement

0.05 3.97 4.03 1.5

0.10 4.75 4.82 1.5

0.15 5.00 5.18 3.6

0.20 5.32 5.75 8.1

0.25 7.00 7.44 6.3

6. Conclusions

The first contribution in this paper consists of an analysis of the specific hyperspectral
mixing model that we recently introduced for the sea bottom. We analytically showed
that such data can be processed with blind unmixing methods designed to handle spectral
variability and we defined such a method. We then developed a detailed framework to
numerically create realistic ocean remote sensing data. We used it to assess the performance
of the proposed approach, by comparing the estimated spectra provided by our unmixing
method to the ground truth that was here available thanks to our numerical framework. It
should be noted that, in contrast, applying our method to real data would be of interest but
would not allow one to perform the above-mentioned detailed performance assessment.
This results from the fact that such an analysis requires a ground truth consisting of a
different spectrum for each type of pure material and each pixel, due to spectral variability,
and this cannot be built in practice for a reasonable number of pixels. Nonetheless, in our
realistic numerical framework, the proposed method always outperforms the considered
method from the literature and is able to distinguish various classes of oceanic pure
materials even in difficult conditions—for instance, for reference water depths up to 7.5 m if
pixel depths vary up to±0.2 m around that reference. Moreover, as explained in Section 2.2,
the overall scene may be first segmented, in order to obtain smaller depth variations over
each subscene and thus to ensure that, for instance, these variations do not exceed the
above-mentioned ±0.2 m range. Our unmixing method may then be successfully applied
separately over each subscene.

This investigation therefore confirms that, for complex observed oceanic scenes, the
data model that we recently introduced allows one to develop associated unmixing methods
that yield better performance than unmixing methods from the literature intended for the
standard mixing model. Thus far, we have developed two complementary methods for our
data model. The method of [50] exploits the entire structure of our model but is supervised
(i.e., non-blind), since it requires one to know (or to previously estimate) some of the
parameters of the model, which is constraining. In contrast, the new method proposed
in the present paper is unsupervised and therefore more attractive, but it only exploits
part of the structure of the considered data model, by reformulating it so as to insert it
into the more general class of models with intraclass variability and by then processing
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the data with a generic method intended for intraclass variability. This therefore opens the
way to future investigations, where we will aim at developing a third type of method that
combines the attractive features of the above two, i.e., that operates in an unsupervised
way and that exploits all the structure of the considered specific data model, by estimating
all its parameters. One may expect to thus achieve better unmixing performance for data
that obey the considered model.

Author Contributions: Conceptualization, Y.D.; methodology, Y.D., S.E.-B., F.Z.B. and M.S.K.; soft-
ware, S.-E.B. and F.Z.B.; validation, Y.D., S.-E.B., F.Z.B., M.S.K., M.G., X.L., B.L., M.C., S.J., A.M.,
X.B. and V.S.; formal analysis, Y.D.; investigation, Y.D., S.-E.B., F.Z.B. and M.S.K.; resources, M.G.,
X.L., B.L. and M.C.; data curation, S.-E.B., F.Z.B. and M.G.; writing—original draft preparation, Y.D.;
writing—review and editing, S.-E.B., F.Z.B., M.S.K., M.G., X.L., B.L., M.C., S.J., A.M., X.B. and V.S.;
visualization, Y.D.; supervision, Y.D., M.G. and V.S.; project administration, Y.D., M.G. and V.S.;
funding acquisition, Y.D., M.G. and V.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the French Defense Agency in the framework of the “ANR/ASTRID
HypFoM 15-ASTR-0019” project.

Data Availability Statement: Data unavailable due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral unmixing overview:

Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379.
[CrossRef]

2. Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [CrossRef]
3. Deville, Y.; Duarte, L.T.; Hosseini, S. Nonlinear Blind Source Separation and Blind Mixture Identification. METHODS for Bilinear,

Linear-Quadratic and Polynomial Mixtures; Springer Briefs in Electrical and Computer Engineering, Springer Nature; Springer:
Berlin/Heidelberg, Germany, 2021. [CrossRef]

4. Meganem, I.; Déliot, P.; Briottet, X.; Deville, Y.; Hosseini, S. Linear-quadratic mixing model for reflectances in urban environments.
IEEE Trans. Geosci. Remote Sens. 2014, 52, 544–558. [CrossRef]

5. Deville, Y.; Duarte, L.T. An overview of blind source separation methods for linear-quadratic and post-nonlinear mixtures. In
Proceedings of the 12th International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA 2015), Liberec,
Czech Republic, 25–28 August 2015; LNCS 9237; Springer International Publishing: Cham, Switzerland, 2015; pp. 155–167.

6. Deville, Y.; Hosseini, S. Blind source separation methods based on output nonlinear correlation for bilinear mixtures of an
arbitrary number of possibly correlated signals. In Proceedings of the Eleventh IEEE Sensor Array and Multichannel Signal
Processing Workshop (SAM 2020), Hangzhou, China, 8–11 June 2020.

7. Meganem, I.; Deville, Y.; Hosseini, S.; Déliot, P.; Briottet, X.; Duarte, L.T. Linear-quadratic and polynomial Non-negative Matrix
Factorization; application to spectral unmixing. In Proceedings of the 19th European Signal Processing Conference (EUSIPCO
2011), Barcelona, Spain, 29 August–2 September 2011.

8. Benhalouche, F.Z.; Deville, Y.; Karoui, M.S.; Ouamri, A. Hyperspectral endmember spectra extraction based on constrained
linear-quadratic matrix factorization using a projected gradient method. In Proceedings of the 2016 IEEE International Workshop
on Machine Learning for Signal Processing (MLSP 2016), Salerno, Italy, 13–16 September 2016; pp. 1–6.

9. Benhalouche, F.Z.; Karoui, M.S.; Deville, Y. Linear-quadratic NMF-based urban hyperspectral data unmixing with some known
endmembers. In Proceedings of the 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
(WHISPERS 2018), Amsterdam, The Netherlands, 23–26 September 2018.

10. Benhalouche, F.Z.; Deville, Y.; Karoui, M.S.; Ouamri, A. Hyperspectral unmixing based on constrained bilinear or linear-quadratic
matrix factorization. Remote Sens. 2021, 13, 2132. [CrossRef]

11. Benkouider, Y.K.; Benhalouche, F.Z.; Karoui, M.S.; Deville, Y.; Hosseini, S. Bilinear matrix factorization using a gradient method for
unmixing hyperspectral images combined with multispectral data. In Proceedings of the 9th Workshop on Hyperspectral Image
and Signal Processing: Evolution in Remote Sensing (WHISPERS 2018), Amsterdam, The Netherlands, 23–26 September 2018.

12. Deville, Y. From separability/identifiability properties of bilinear and linear-quadratic mixture matrix factorization to factorization
algorithms. Digit. Signal Process. 2019, 87, 21–33. [CrossRef]

13. Eches, O.; Guillaume, M. A bilinear-bilinear nonnegative matrix factorization method for hyperspectral unmixing. IEEE Geosci.
Remote Sens. Lett. 2014, 11, 778–782. [CrossRef]

http://doi.org/10.1109/JSTARS.2012.2194696
http://dx.doi.org/10.1109/79.974727
http://dx.doi.org/10.1007/978-3-030-64977-7
http://dx.doi.org/10.1109/TGRS.2013.2242475
http://dx.doi.org/10.3390/rs13112132
http://dx.doi.org/10.1016/j.dsp.2019.01.011
http://dx.doi.org/10.1109/LGRS.2013.2278993


Remote Sens. 2023, 15, 4583 17 of 18

14. Guerrero, A.; Deville, Y.; Hosseini, S. A blind source separation method based on output nonlinear correlation for bilinear
mixtures. In Proceedings of the 14th International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA
2018), Guildford, UK, 2–5 July 2018; Part of Springer Nature 2018, LNCS 10891; Springer International Publishing AG: Cham,
Switzerland, 2018; pp. 183-192,

15. Huard, P.; Marion, R. Study of non-linear mixing in hyperspectral imagery—A first attempt in the laboratory. In Proceedings of
the Third Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS 2011), Lisbon,
Portugal, 6–9 June 2011.

16. Jarboui, L.; Hosseini, S.; Deville, Y.; Guidara, R.; Hamida, A.B. A new unsupervised method for hyperspectral image unmixing
using a linear-quadratic model. In Proceedings of the First International Conference of Advanced Technologies for Signal and
Image Processing (ATSIP 2014), Sousse, Tunisia, 17–19 March 2014; pp. 423–428.

17. Jarboui, L.; Hosseini, S.; Guidara, R.; Deville, Y.; Hamida, A.B. A MAP-based NMF approach to hyperspectral image unmixing
using a linear-quadratic mixture model. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP 2016), Shanghai, China, 20–25 March 2016; pp. 3356–3360.

18. Meganem, I.; Déliot, P.; Briottet, X.; Deville, Y.; Hosseini, S. Physical modelling and non-linear unmixing method for urban
hyperspectral images. In Proceedings of the Third Workshop on Hyperspectral Image and Signal Processing (WHISPERS 2011),
Lisbon, Portugal, 6–9 June 2011.

19. Meganem, I.; Deville, Y.; Hosseini, S.; Déliot, P.; Briottet, X. Linear-quadratic blind source separation Using NMF to unmix urban
hyperspectral images. IEEE Trans. Signal Process. 2014, 62, 1822–1833. [CrossRef]

20. Sigurdsson, J.; Ulfarsson, M.O.; Sveinsson, J.R. Blind nonlinear hyperspectral unmixing using an lq regularizer. In Proceedings
of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2018), Valencia, Spain, 22–27 July 2018;
pp. 4229–4232.

21. Su, Y.; Li, J.; Qi, H.; Gamba, P.; Plaza, A.; Plaza, J. Multi-task learning with low-rank matrix factorization for hyperspectral
nonlinear unmixing. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2019),
Yokohama, Japan, 28 July–2 August 2019; pp. 2127–2130.

22. Deville, Y.; Revel, C.; Achard, V.; Briottet, X. Application and extension of PCA concepts to blind unmixing of hyperspectral
data with intra-class variability. In Advances in Principal Component Analysis—Research and Development; Naik, G.R., Ed.; Springer:
Singapore, 2018; pp. 225–252.

23. Revel, C.; Deville, Y.; Achard, V.; Briottet, X.; Weber, C. Inertia-constrained pixel-by-pixel nonnegative matrix factorisation: A
hyperspectral unmixing method dealing with intra-class variability. Remote Sens. 2018, 10, 170. [CrossRef]

24. Borsoi, R.A.; Imbiriba, T.; Bermudez, J.C.M.; Richard, C.; Chanussot, J.; Drumetz, L.; Tourneret, J.-Y.; Zare, A.; Jutten, C. Spectral
variability in hyperspectral data unmixing. A comprehensive review. IEEE Geosci. Remote Sens. Mag. 2021, 9, 223–270. [CrossRef]

25. Zare, A.; Ho, K.C. Endmember variability in hyperspectral analysis. IEEE Signal Process. Mag. 2014, 31, 95–104 . [CrossRef]
26. Cheng, Y.; Zhao, L.; Chen, S.; Li, X. Hyperspectral unmixing network accounting for spectral variability based on a modified

scaled and a perturbed linear mixing model. Remote Sens. 2023, 15, 3890. [CrossRef]
27. Imbiriba, T.; Borsoi, R.A.; Bermudez, J.C.M. Generalized linear mixing model accounting for endmember variability. In

Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018), Calgary, AB,
Canada, 15–20 April 2018; pp. 1862–1866.

28. Brezini, S.E.; Deville, Y.; Karoui, M.S.; Benhalouche, F.Z.; Ouamri, A. A penalization-based NMF approach for hyperspectral
unmixing addressing spectral variability with an additively-tuned mixing model. In Proceedings of the 2021 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS 2021), Brussels, Belgium, 11–16 July 2021; pp. 3841–3844.

29. Azar, S.G.; Meshgini, S.; Beheshti, S.; Rezaii, T.Y. Linear mixing model with scaled bundle dictionary for hyperspectral unmixing
with spectral variability. Signal Process. 2021, 188, 108214. [CrossRef]

30. Benhalouche, F.Z.; Karoui, M.S.; Deville, Y. Gradient-based NMF methods for hyperspectral unmixing addressing spectral
variability with a multiplicative-tuning linear mixing model. In Proceedings of the 2021 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS 2021), Brussels, Belgium, 11–16 July 2021; pp. 3205–3208.

31. Deville, Y.; Faury, G.; Achard, V.; Briottet, X. An NMF-based method for jointly handling mixture nonlinearity and intraclass
variability in hyperspectral blind source separation. Digit. Signal Process. 2023, 133, 103838. [CrossRef]

32. Drumetz, L.; Veganzones, M.A.; Henrot, S.; Phlypo, R.; Chanussot, J.; Jutten, C. Blind hyperspectral unmixing using an extended
linear mixing model to address spectral variability. IEEE Trans. Image Process. 2016, 25, 3890–3905. [CrossRef] [PubMed]

33. Hong, D.; Zhu, X.X SULoRA: Subspace unmixing with low-rank attribute embedding for hyperspectral data analysis. IEEE J. Sel.
Top. Signal Process. 2018, 12, 1351–1363. [CrossRef]

34. Hong, D.; Yokoya, N.; Chanussot, J.; Zhu, X.X. An augmented linear mixing model to address spectral variability for hyperspectral
unmixing. IEEE Trans. Image Process. 2019, 28, 1923–1938. [CrossRef]

35. Karoui, M.S.; Benhalouche, F.Z.; Deville, Y. Hyperspectral unmixing with a modified augmented linear mixing model addressing
spectral variability. In Proceedings of the 2022 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium
(M2GARSS 2022), Istanbul, Turkey, 7–9 March 2022; pp. 66–69.

36. Liu, H.; Lu, Y.; Wu, Z.; Du, Q.; Chanussot, J.; Wei, Z. Bayesian unmixing of hyperspectral image sequence with composite priors
for abundance and endmember variability. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5503515. [CrossRef]

http://dx.doi.org/10.1109/TSP.2014.2306181
http://dx.doi.org/10.3390/rs10111706
http://dx.doi.org/10.1109/MGRS.2021.3071158
http://dx.doi.org/10.1109/MSP.2013.2279177
http://dx.doi.org/10.3390/rs15153890
http://dx.doi.org/10.1016/j.sigpro.2021.108214
http://dx.doi.org/10.1016/j.dsp.2022.103838
http://dx.doi.org/10.1109/TIP.2016.2579259
http://www.ncbi.nlm.nih.gov/pubmed/27305674
http://dx.doi.org/10.1109/JSTSP.2018.2877497
http://dx.doi.org/10.1109/TIP.2018.2878958
http://dx.doi.org/10.1109/TGRS.2021.3064708


Remote Sens. 2023, 15, 4583 18 of 18

37. Ren, L.; Hong, D.; Gao, L.; Sun, X.; Huang, M.; Chanussot, J. Orthogonal subspace unmixing to address spectral variability for
hyperspectral image. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5501713. [CrossRef]

38. Sahadevan, A.S.; Ahmad, T.; Lyngdoh, R.B.; Kumar, D.N. Endmember variability based abundance estimation of red and black
soil over sparsely vegetated area using AVIRIS-NG hyperspectral image. Adv. Space Res. 2023, in press. [CrossRef]

39. Salehani, Y.E.; Arabnejad, E.; Gazor, S. Augmented Gaussian linear mixture model for spectral variability in hyperspectral
unmixing. In Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2021),
Toronto, ON, Canada, 6–11 June 2021; pp. 1880–1884.

40. Shi, S.; Zhao, M.; Zhang, L.; Chen, J. Variational autoencoders for hyperspectral unmixing with endmember variability. In
Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2021), Toronto, ON,
Canada, 6–11 June 2021; pp. 1875–1879.

41. Su, L.; Liu, J.; Yuan, Y.; Chen, Q. A multi-attention autoencoder for hyperspectral unmixing based on the extended linear mixing
model. Remote Sens. 2023, 15, 2898. [CrossRef]

42. Thouvenin, P.A.; Dobigeon, N.; Tourneret, J.Y. Hyperspectral unmixing with spectral variability using a perturbed linear mixing
model. IEEE Trans. Signal Process. 2016, 64, 525–538. [CrossRef]

43. M. Xu, Zou, X.; Liu, S.; Sheng, H.; Yang, Z. Manifold regularized sparse archetype analysis considering endmember variability.
IEEE Geosci. Remote Sens. Lett. 2023, 20, 5506805.

44. Yu, J.; Wang, B.; Lin, Y.; Li, F.; Cai, J. A novel inequality-constrained weighted linear mixture model for endmember variability.
Remote Sens. Environ. 2021, 257, 112359. [CrossRef]

45. Zhang, G.; Mei, S.; Xie, B.; Feng, Y.; Du, Q. Spectral variability augmented two-stream network for hyperspectral sparse unmixing.
IEEE Geosci. Remote. Sens. Lett. 2022, 19, 6014605. [CrossRef]

46. Zhao, M.; Shi, S.; Chen, J.; Dobigeon, N. A 3-D-CNN framework for hyperspectral unmixing with spectral variability. IEEE Trans.
Geosci. Remote. Sens. 2022, 60, 5521914. [CrossRef]

47. Karoui, M.S.; Benhalouche, F.Z.; Deville, Y. A gradient-based method for the modified augmented linear mixing model addressing
spectral variability for hyperspectral unmixing. In Proceedings of the 2022 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS 2022), Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 3279–3282.

48. Chami, M.; Lenot, X.; Guillaume, M.; Lafrance, B.; Briottet, X.; Minghelli, A.; Jay, S.; Deville, Y.; Serfaty, V. Analysis and
quantification of seabed adjacency effects in the subsurface upward radiance in shallow waters. Opt. Express 2019, 27, A319–A338.
[CrossRef]

49. Wang, X.; Zhong, Y.; Zhang, L.; Xu, Y. Blind hyperspectral unmixing considering the adjacency effect. IEEE Trans. Geosci. Remote
Sens. 2019, 57, 6633–6649. [CrossRef]

50. Guillaume, M.; Juste, L.; Lenot, X.; Deville, Y.; Lafrance, B.; Chami, M.; Jay, S.; Minghelli, A.; Briottet, X.; Serfaty, V. NMF
hyperspectral unmixing of the sea bottom: Influence of the adjacency effects, model and method. In Proceedings of the
WHISPERS 2018, Amsterdam, The Netherlands, 23–26 September 2018.

51. Deville, Y.; Brezini, S.E.; Benhalouche, F.Z.; Karoui, M.S.; Guillaume, M.; Lenot, X.; Lafrance, B.; Chami, M.; Jay, S.; Minghelli, A.;
Briottet, X.; Serfaty, V. Hyperspectral oceanic remote sensing with adjacency effects: From spectral-variability-based modeling
to performance of associated blind unmixing methods”, In Proceedings of the 2019 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS 2019), Yokohama, Japan, 28 July–2 August 2019; pp. 282–285.

52. Cichocki, A.; Zdunek, R.; Phan, A.H.; Amari, S.-I. Nonnegative Matrix and Tensor Factorizations. Applications to Exploratory Multi-Way
Data Analysis and Blind Source Separation; Wiley: Chichester, UK, 2009.

53. Comon, P.; Jutten, C. (Eds.) Handbook of Blind Source Separation. Independent Component Analysis and Applications; Academic Press:
Oxford, UK, 2010.

54. Nascimento, J.M.P.; Dias, J.M.B. Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci.
Remote Sens. 2005, 43, 898–910. [CrossRef]

55. Heinz, D.; Chang, C.-I. Fully constrained least squares linear spectral mixture analysis method for material quantification in
hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 529–545. [CrossRef]

56. Lawson, C.L.; Hanson, R.J. Solving Least Squares Problems, SIAM’s Classics in Applied Mathematics; Prentice-Hall: Englewoods Cliffs,
NJ, USA, 1974, 1995.

57. Chami, M.; Lafrance, B.; Fougnie, B.; Chowdhary, J.; Harmel, T.; Waquet, F. OSOAA: A vector radiative transfer model of coupled
atmosphere-ocean system for a rough sea surface application to the estimates of the directional variations of the water leaving
reflectance to better process multi-angular satellite sensors data over the ocean. Opt. Express 2015, 23, 27829–27852. [CrossRef]

58. Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image processing
system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163.
[CrossRef]

59. L3HARRIS Geospatial, ENVI Software. Available online: https://www.l3harrisgeospatial.com/docs/spectralanglemapper.html
(accessed on 1 February 2019).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TGRS.2023.3236471
http://dx.doi.org/10.1016/j.asr.2023.05.027
http://dx.doi.org/10.3390/rs15112898
http://dx.doi.org/10.1109/TSP.2015.2486746
http://dx.doi.org/10.1016/j.rse.2021.112359
http://dx.doi.org/10.1109/LGRS.2022.3214843
http://dx.doi.org/10.1109/TGRS.2022.3141387
http://dx.doi.org/10.1364/OE.27.00A319
http://dx.doi.org/10.1109/TGRS.2019.2907567
http://dx.doi.org/10.1109/TGRS.2005.844293
http://dx.doi.org/10.1109/36.911111
http://dx.doi.org/10.1364/oe.23.027829
http://dx.doi.org/10.1016/0034-4257(93)90013-N
https://www.l3harrisgeospatial.com/docs/ spectralanglemapper.html

	Problem Statement
	Mixing Model for Oceanic Remote Sensing: Original and New Versions
	Original Mixing Model
	Analysis of the Mixing Model

	Blind Unmixing Method for Spectral Variability
	Data and Performance Criteria
	Considered Data
	Performance Criteria

	Test Results and Discussion
	Results for Clear Shallow Water
	Results for Standard-Quality Shallow Water
	Results for Clear Deep Water

	Conclusions
	References

