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Abstract: We study the probability of an undetected error for general q-ary codes. We give upper
and lower bounds on this quantity, by the Linear Programming and the Polynomial methods, as a
function of the length, size, and minimum distance. Sharper bounds are obtained in the important
special case of binary Hamming codes. Finally, several examples are given to illustrate the results of
this paper.
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1. Introduction

Let A = {a1, . . . , aq} be an alphabet with q distinct symbols, where q > 2 and the
alphabet do not have any structure. For instance, A can be Fq, the finite field with q
elements, or Zq, the ring of integers modulo q. Moreover, a linear [n, k] code is a subspace
of the vector space Fn

q and k is the dimension of the subspace. For every two vectors x,
y ∈ An, the (Hamming) distance dH(x, y) between x and y is defined as the number of
coordinates where they are different. A nonempty subset C of An with cardinality M is
called a q-ary (n, M) code, whose elements are called codewords. The minimum distance
d of the code C is the minimum distance between any two different codewords in C. The
distance distribution of C is defined as

Ai =
1
M
|{(x, y) : x, y ∈ C, dH(x, y) = i}|, i = 0, 1, . . . , n. (1)

Assume that the code C is used for error detection on a discrete memoryless channel
with q inputs and q outputs. Each symbol transmitted has a probability 1− p of being
received correctly and a probability pq = p/(q− 1) of being transformed into each of the
q− 1 other symbols. It is natural to let 0 6 p 6 (q− 1)/q. Such a channel model is called
a q-ary symmetric channel qSC(p). When such a code is used on the symmetric q-ary
channel qSC(p), errors occur with a probability p

q−1 per symbol.
Let x ∈ C be the codeword transmitted and y = x + e ∈ Fn

q be the vector received,
where e = y− x is the error vector from the channel noise. Obviously, e ∈ C if and only
if y ∈ C. Note that the decoder will accept y as error free if y ∈ C. Clearly, this decision
is wrong, and such an error is not detected. Thus, when error detection is being used,
the decoder will make a mistake and accept a codeword which is not the one transmitted if
and only if the error vector is a nonzero codeword [1,2]. In this way, the probability that
the decoder fails to detect the existence of an error is called the probability of undetected
error and denoted by Pue(C, p), which is defined as

Pue(C, p) =
n

∑
j=1

Aj

(
p

q− 1

)j
(1− p)n−j. (2)
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In general, the smaller the probability of undetected error Pue for some p, the better the code
performs in error detection. However, this function is difficult to characterize in general.

As for the code C, comparing its Pue with the average probability Pue [3,4] for the
ensemble of all q-ary linear [n, k] codes is a natural way to decide whether C is suitable for
error detection or not, where

Pue(p) = q−(n−k)
(

1− (1− p)k
)

.

According to [4], there exists a code C such that Pue(C, p) > q−(n−k) and there are many
codes, the Pue of each of whom is smaller than q−(n−k). In fact, it was commonly assumed
that Pue(C, p) 6 q−(n−k) for the linear [n, k] code C in [5], where q−(n−k) = q−r is called the
q−r bound. The q−r bound is satisfied for certain specific codes, e.g., Hamming codes and
binary perfect codes, when 0 < p < 1/2.

For the worst channel condition, i.e., when p = (q− 1)/q,

Pue

(
C,

q− 1
q

)
= q−(n−k)

(
1−

(
1− q− 1

q

)k
)

= Pue

(
q− 1

q

)
.

From the above formula, a code C is called good if Pue(C, p) 6 Pue((q − 1)/q) for all
0 < p < (q− 1)/q. In particular, if Pue(C, p) is an increasing function of p in the interval
[0, (q− 1)/q], then the code is good, and the code is called proper. There are many proper
codes [1], for example, perfect codes (and their extended codes and their dual codes),
primitive binary 2-error correcting BCH codes, a class of punctured of Simplex codes,
MDS codes, and near MDS codes (see [5–9] for details). Moreover, for practical purposes,
a good binary code C may be defined a bit different, i.e., Pue(C, p) 6 cPue(C, 1/2) for every
0 6 p 6 1/2 and a reasonably small c > 1. Furthermore, an infinite class C of binary
codes is called uniformly good if there exists a constant c such that for every 0 6 p 6 1/2
and C ∈ C, the inequality Pue(C, p) 6 cPue(C, 1/2) holds. Otherwise, it is called ugly,
for example, some special Reed–Muller codes are ugly (see [10]).

Another way to assess the performance of a code for error detection is to give bounds
of the probability of undetected error. In [11], Abdel-Ghaffar defined the combinatorial
invariant Fj of the code C and proved that

Pue(C, p) =
n

∑
j=1

Fj

(
p

q− 1

)j(
1− qp

q− 1

)n−j
,

where

Fj =
j

∑
i=1

Ai

(
n− i
n− j

)
, j = 1, 2, . . . , n.

Using combinatorial arguments, Abdel-Ghaffar [11] obtained a lower bound on the un-
detected error probability Pue(C, p). Later, Ashikhmin and Barg called Fj the binomial
moments of the distance function and derived more bounds for Pue (see [12,13]).

In particular, constant weight codes are attractive and many bounds are developed,
for example, binary constant weight codes (see [14,15]) and q-ary constant weight codes
(see [16]). In fact, the probability of an undetected error for binary constant weight codes
has been studied and can be given explicitly (see [14,16]).

Note that when A = Fq and p→ 0, according to Equation (2), we have

Pue(C, p) ∼ Ad pq
d(1− p)n−d, (3)

where pq = p/(q− 1), d is the minimum distance of C and Ad is called the kissing number
of the linear code C. In 2021, Solé et al. [17] studied the kissing number by Linear Program-
ming and the Polynomial Method. They gave bounds for Ad under different conditions
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and made tables for some special parameters. Motivated by the work, this paper is devoted
to studying the function Pue using the same techniques.

The rest of this paper is organized as follows. In Section 2, we briefly give the definition
of the (dual) distance distribution of q-ary codes and give some trivial bounds of the
probability of an undetected error. In Section 3.1, linear programming bounds are discussed.
The applications of Krawtchouk polynomial (Polynomial Method) to error detection are
given in Section 3.2. In Section 4, some bounds better than the 2−m bound are given for
binary Hamming codes. Finally, we end with some concluding remarks in Section 5.

2. Preliminaries

Recall some basic definitions and notations from [2,18–20]. Throughout this paper,
to simplify some formulas, we let pq = p

q−1 and k = logq |C| for some real k. Furthermore,
in this paper, it is natural to define p < (q− 1)(1− p), equivalently, pq < 1− p.

2.1. Dual Distance Distribution

Assume that A = Fq is the finite field of size q and C is a subspace of Fn
q , i.e., C is

a linear code over Fq. Then, the dual code C⊥ of C is the orthogonal complement of the
subspace C. That is to say,

C⊥ = {v ∈ Fn
q : v · u = 0 for all u ∈ C},

where v · u = ∑n
i=1 viui, u = (u1, . . . , un) and v = (v1, . . . , vn). The distance distribution A′i

of C⊥ can be determined similarly. It is well known (see Chapter 5. §2. in [2]) that

A′i =
1
|C|

n

∑
i=0

AjPi(j), (4)

where Pi(j) denotes the Krawtchouk polynomial of degree i. For each integer q > 2,
the Krawtchouk polynomial Pk(x; n) is defined as

Pk(x; n) =
k

∑
j=0

(−1)j
(

x
j

)(
n− x
k− j

)
(q− 1)k−j.

When there is no ambiguity for n, the function Pk(x; n) is often simplified to Pk(x).
Note that Equation (4) holds when C is linear. When C is nonlinear, the dual distance

distribution A′i is defined by Equation (4). Furthermore, by the MacWilliams–Delsarte
inequality,

A′i > 0, (5)

holds for all i = 0, 1, · · · , n. Moreover, A0 = 1 and

qk = 1 +
n

∑
j=1

Aj, when |C| = qk. (6)

2.2. Probability of Undetected Error

The q-ary symmetric channel with symbol probability p, where 0 6 p 6 (q− 1)/q, is
defined as follows: symbols from some alphabet A with q elements are transmitted over
the channel, and

P(b received | a sent) =

{
1− p, b = a,

p
q−1 , b 6= a,

where P(b received | a sent) is the conditional probability that b is received, given that a is
sent. For a q-ary code C, when it is used on such a channel, it is possible that the decoder
fails to detect the existence of the errors. Thus, Pue, the function in terms of the weight
distribution of C is given in Equation (2). Clearly, this is a difficult computational problem
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for large parameters n, k, d, and q (see [2]). Hence, it is better to give bounds for Pue. For
example, here are some trivial bounds.

Theorem 1. For every q-ary code C with |C| = qk, if p < (q− 1)(1− p), then

(qk − 1)pq
n 6 Pue(C, p) 6 (qk − 1)pq

d(1− p)n−d,

where pq = p
q−1 . Especially, when q = 2 and 0 < p < 1

2 , we have

(2k − 1)pn 6 Pue(C, p) 6 (2k − 1)pd(1− p)n−d.

Proof. It is easy to check that pq
j(1 − p)n−j > pq

j+1(1 − p)n−j−1 if and only if
p < (q− 1)(1− p). Hence,

Pue =
n

∑
j=d

Aj pq
j(1− p)n−j 6 pq

d(1− p)n−d
n

∑
j=d

Aj = (qk − 1)pq
d(1− p)n−d,

since pq
j(1 − p)n−j 6 pq

d(1 − p)n−d when j > d. The lower bound can be obtained
similarly.

The above bounds are trivial. However, they are both tight, because simplex codes
over the finite field Fq attain these bounds.

2.3. Some Special Bounds

It is clear that the general bounds given by Theorem 1 will be much larger (or smaller)
than the true value of Pue for a fixed code. If the distance distribution is known, one
computes Pue(C, p) (as a function of p), and if we know some particular information about
the distance distribution, then we may get some bounds. The following is a special case
and more thoughts can be seen in Section 4.

Theorem 2. Let C be a binary code with An = 1 and Ai = An−i for 1 6 i 6 n− 1, then

Pue =

{
pn+∑t

j=d Aj
(

pj(1− p)n−j+pn−j(1− p)j), n=2t+1,

pn+At pt(1− p)t+∑t−1
j=d Aj

(
pj(1− p)n−j + pn−j(1− p)j), n=2t.

(7)

Moreover, when d 6 t, we have

Pue6

pn+
(

2k−1−1
)(

pd(1− p)n−d+pt+1(1−p)t
)

, n=2t+1,

pn+At pt(1−p)t+
(

2k−1− At
2 −1

)(
pd(1−p)n−d+pt+1(1−p)t−1

)
, n=2t,

and

Pue>

pn+
(

2k−1−1
)(

pt(1− p)t+1+pn−d(1− p)d
)

, n=2t+1,

pn+At pt(1−p)t+
(

2k−1− At
2 −1

)(
pt−1(1−p)t+1+pn−d(1−p)d

)
, n=2t,

where 0 < p < 1
2 and d 6 t.

Proof. By the definition of Pue, Equation (7) holds if Ai = An−i and An = 1. Due to
0 < p < 1

2 , It is easy to check that pn−j(1− p)j 6 pj(1− p)n−j, where 0 6 j 6 bn/2c. In
addition, if n = 2t + 1, then ∑t

j=d Aj = (2k − 2)/2 = 2k−1 − 1. Similarly for the case n = 2t.
Hence, we get the bounds.
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Remark 1. If the binary code C satisfies Ai = An−i and An = 0, we can get the following bounds:

Pue6

2k−1
(

pd(1−p)n−d+pt+1(1−p)t
)

, n=2t+1,

At pt(1−p)t+
(

2k−1− At+A0
2

)(
pd(1−p)n−d+pt+1(1−p)t−1

)
, n= 2t,

and

Pue>

2k−1
(

pt(1−p)t+1+pn−d(1−p)d
)

, n=2t+1,

At pt(1−p)t+
(

2k−1− At+A0
2

)(
pt−1(1−p)t+1+pn−d(1−p)d

)
, n=2t.

Here, 0, the all zero vector, may not be a codeword.

Example 1. For a binary linear code, if the all-one vector 1 is a codeword, then Ai = An−i. So,
Theorem 2 can be applied to many codes, for example, Hamming codes. It is known that the binary
Hamming codeHm is a linear [n = 2m − 1, k = 2n − 1−m, 3] code. The distance distribution of
the [15, 11, 3] Hamming code H4 is listed in Table 1. According to Theorem 2, the values of the
bounds and true probability can be seen in Figure 1.

Table 1. Distance Distribution of the Hamming CodeH4.

i 0 3 4 5 6 7 8 9 10 11 12 15

Ai 1 35 105 168 280 435 435 280 168 105 35 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

p

0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b

TrueProb

UpperBound

LowerBound

Figure 1. Bounds in Theorem 2 of Pue for the Hamming CodeH4.

3. Universal Bounds for q-Ary Codes

In this section, we will discuss the bounds for Pue using different methods. These
bounds are for general codes, thus they do not look so good. Meanwhile, compared with
some known bounds, they do not perform better. However, it is the first as far as we know
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to give bounds for Pue using the following two methods, though they have been shown
in [21,22] due to different thoughts.

3.1. Linear Programming Bounds

Consider the linear programming problem M(n, k, d, p) that maximizes the objec-
tive function

n

∑
j=1

Aj pq
j(1− p)n−j

under the constraints:

(1) Aj > 0,
(2) ∑n

j=1 Aj = qk − 1,
(3) ∑n

j=1 AjPi(j) > −Pi(0),
(4) A1 = A2 = · · · = Ad−1 = 0.

Likewise, let m(n, k, d, p) be the minimization of the same objective function under the
same constraints.

Theorem 3. If C is a q-ary code of parameters (n, qk, d), then m(n, k, d, p) 6 Pue 6 M(n, k, d, p).

Proof. The objective function expression comes from (2). Constraint (1) is immediate by
the definition of the distance distribution. Constraints (2) and (3) come from Equation (6)
and Equation (5), respectively. Constraint (4) is a consequence of the definition of minimum
distance.

Remark 2. Let f (x) and g(x) be two functions of x, then f . g if f < g or f ∼ g, when x → 0,
where 0 < x < 1. For example, let f (x) = x2 + x and g(x) = x3 + x, then f (x) > g(x) when
0 < x < 1. But f (x) ∼ g(x), then f (x) . g(x) when 0 < x < 1 and x → 0.

Motivated by Equation (3) and [17], we have the following result.

Theorem 4. Let C be a q-ary [n, k, d]q linear code, then when p→ 0,

(qk − 1− bLc)pq
d(1− p)n−d 6 Pue(C, p) . (qk − 1− dSe)pq

d(1− p)n−d, (8)

where L (resp. S) denotes the maximum (resp. minimum) of ∑n
j=d+1 Aj subject to the 2n− d constraints

−Pi(0)− (qk − 1)Pi(d) 6
n

∑
j=d+1

Aj(Pi(j)− Pi(d)),

for i = 1, 2, . . . , n and j = d + 1, d + 2, . . . , n.

Proof. It is clear that Pue(C, p) > Ad pq
d(1− p)n−d, then by [17], we get the left side of

Equation (8). As for the right side, if Ad < qk − 1− dSe and p is small enough, then by
Equation (3), Pue(C, p) < (qk − 1− dSe)pq

d(1− p)n−d. Otherwise, Ad = qk − 1− dSe and
then, Pue(C, p) ∼ (qk − 1− dSe)pq

d(1− p)n−d.

Table 2 is a part of Table I in [17], which is helpful to give bounds for Pue.

Table 2. Bounds of Ad for Some Binary Codes.

Parameters [9, 4, 4] [10, 4, 4] [11, 4, 5] [12, 4, 6] [13, 4, 6] [14, 4, 7] [15, 4, 8]

Upper Bound 14 15 7 14 14 8 15

Lower Bound 6 12 5 11 4 8 15
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Example 2. Let C1 be a binary [15, 4, 8] code, then

Pue(C1, p) ∼ 15p8(1− p)7.

As for the binary [12, 4, 6] code C2, we have

11p6(1− p)6 < Pue(C2, p) < 14p6(1− p)6.

Obviously, for any [n, k, d] code, one can give bounds for its Pue.

Remark 3. From the above discussion, it is clear that our bounds depend solely on the three
parameters [n, k, d] of the code, and [n, k, d] is the minimal requirement to use a code in practice.

3.2. Polynomial Method

In this section, we will give some general bounds for Pue for any binary (n, 2k, d) code.
Recall the definition of the Krawtchouk polynomials and some properties. The following
identity is a Polynomial Method of expressing the duality of LP.

Lemma 1. Let β(x) ∈ Q[x] be the polynomial whose Krawtchouk expansion is

β(x) =
n

∑
j=0

β jPj(x).

Then we have the following identity

n

∑
i=0

β(i)Ai = qk
n

∑
j=0

β j A′j. (9)

Proof. Immediate by Equation (4), upon swapping the order of summation.

From now on, we denote the coefficient of Krawtchouk expansion of the polynomial
f (x) of degree n by f j, j = 0, 1, · · · , n, i.e., f (x) = ∑n

j=0 f jPj(x).
The first main result of this section is inspired by Theorem 1 in [23], and given as

follows.

Theorem 5. Let β(x) and γ(x) be polynomials over Q such that β j 6 0, γj > 0 for j > 1 and
γ(i) 6 pq

i(1− p)n−i 6 β(i) for all i with Ai 6= 0. Then we have the upper bound

Pue 6 qkβ0 − β(0), (10)

and the lower bound
Pue > qkγ0 − γ(0). (11)

Proof. By Lemma 1, we have
n

∑
j=0

Ajβ(j) 6 β0qk.

Returning to the definition of Pue and using the property of β(j) > pq
j(1− p)n−j, we get

Pue =
n

∑
j=1

Aj pq
j(1− p)n−j 6

n

∑
j=1

Ajβ(j) 6 qkβ0 − β(0).

The proof of the lower bound is analogous and ommitted.

Remark 4. The above result is a special case of Proposition 5 in [22]. More general setting of the
linear programming bounds from Section 3 (Theorem 5) were already considered in [21,22].
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The following are some properties of the Krawtchouk expansion, and we omit the
proof, since they are not difficult.

Lemma 2 ([24] Corollary 3.13). Let f (x) = ∑n
j=0 f jPj(x) and g(x) = ∑n

j=0 gjPj(x) be polyno-
mials over Q, where f j > 0, gj > 0, 0 6 j 6 n. Then the coefficients of the Krawtchouk expansion
of λ f (x) + µg(x) are nonnegative, where λ, µ are nonnegative rational numbers.

3.2.1. Upper Bounds

For convenience, let δi,j be the Kronecker symbol, i.e.,

δi,j =

{
1, if i = j,
0, if i 6= j.

Lemma 3. For general q, the coefficients of the Krawtchouk expansion of the following polynomial

gi(x) =
(−1)i−1

(i− 1)!(n− i)!
∏n

j=1(j− x)

i− x
,

are all nonnegative if and only if i is odd, where 1 6 i 6 n is an integer and 0! = 1. Moreover,
gi(j) = δi,j.

Proof. Let

h(x) =
qn−d+1

s− x

n

∏
j=d

(
1− x

j

)
=

n

∑
j=0

hjPj(x),

where d 6 s 6 n. Then, by Proposition 5.8.2 in [20],

hi =
1
qn

n

∑
j=0

h(j)Pj(i) =
1

qd−1

d−1

∑
j=0

(
n− j

n− d + 1

)Pj(i)
s− j

/(
n

d− 1

)

>
1

qd−1s

d−1

∑
j=0

(
n− j

n− d + 1

)
Pj(i)

/( n
d− 1

)

=
1
s

(
n− i
d− 1

)/(
n

d− 1

)
> 0.

Note that if d = 1, we have

h(x) =
qn

n!
(−1)i−1(i− 1)!(n− i)!gs(x).

According to Lemma 2, the coefficients of the Krawtchouk expansion of (−1)i−1gi(x) are
all nonnegative.

Obviously, for any j 6= i, gi(j) = 0, because j is a root of gi(x). Moreover,

gi(i) =
(−1)i−1

(i− 1)!(n− i)!

i−1

∏
`=1

(`− i)
n

∏
`=i+1

(`− i)

=
(−1)i−1

(i− 1)!(n− i)!

(
(−1)i−1(i− 1)!(n− i)!

)
= 1,

which means gi(j) = δi,j.
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Theorem 6. Let C be a binary code with the distance distribution Aj, where Aj = 0 for all possible
odd j, then

Pue 6 ∑
even i

pi(1− p)n−i
(

n
i

)(
1

2n−k + 1
)

, (12)

where even i means that i runs through the even intergers between d and n.

Proof. According to Lemma 3, the coefficients of the Krawtchouk expansion of the follow-
ing polynomial:

gi(x) =
(−1)i−1

(i− 1)!(n− i)!
∏n

j=1(j− x)

i− x

are nonnegative if and only if i is odd. Then, let

f (x) = ∑
even i

pi(1− p)n−igi(x) =
n

∑
j=0

f jPj(x).

Hence, f j 6 0, f (i) = pi(1− p)n−i for even i and f (i) = 0 for odd i. By the proof of
Theorem 5,

Pue 6 2k f0 − f (0),

where

f (0) = ∑
even i

(−1)pi(1− p)n−i
(

n
i

)
,

and

f0 =
1
2n ∑

even i
pi(1− p)n−i

(
n
i

)
.

Thus, the upper bound follows from Theorem 5.

Remark 5. If C is linear, then Ai is the number of codewords of weight i, which implies that
Ai 6 (n

i ). Hence,

Pue 6 ∑
i∈I

pi(1− p)n−i
(

n
i

)
,

where I = {i|Ai 6= 0}. Moreover, if Ai = 0 for all odd i, then

Pue 6 ∑
even i

pi(1− p)n−i
(

n
i

)
. (13)

Example 3. Consider the Nordstrom–Robinson code, it is a binary nonlinear code with the distance
distribution in Table 3. Moreover, the weight distribution is the same as the distance distribution.
By Equation (2),

Pue = 112p6(1− p)10 + 30p8(1− p)8 + 112p10(1− p)6 + p16.

According to Theorem 6, the values of the upper bound and true probability can be seen in Figure 2.

Table 3. Distance Distribution of the Nordstrom–Robinson Code.

i 0 6 8 10 16

Ai 1 112 30 112 1
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Figure 2. The Probability of Undetected Error of the Nordstrom–Robinson Code.

Example 4. Let E be the set of binary vectors of length n and even weight, then it is actually the
Reed–Muller code RM(n− 1, n) in Problem 5 in [2] and is generated by all the binary vectors of
weight 2. Hence,

Pue(E , p) =
bn/2c

∑
i=1

(
n
2i

)
p2i(1− p)n−2i.

Remark 6. The bound is suitable for many codes, and thus it seems not good. In fact, there exists
some code C, whose Pue is very large.

Motivated by [17], we have the following upper bounds for linear codes over F2.

Proposition 1. When C is a q-ary linear [n, k, d] code and p is small enough, we have the
following statements:

(1) If n + 1 + qd− nq > 0, then

Pue .
qk + nq− n− 1
n− nq + 1 + qd

pq
d(1− p)n−d;

(2) If n + qd− nq− 1 < 0, then

Pue .
qk−2n(qn− n− qd + 1) + n(d− 1)

n− d
pq

d(1− p)n−d;

(3) If q = 2, n− 2d > 0, (n− 2d + 2)2 > n, and Ai 6= 0 only if d 6 i 6 n− 2d, then

Pue .
2k−2((n− 2d + 2)2 − n) + (d− 1)(n− d + 1)

n + 1− 2d
pd(1− p)n−d.

Proof. These three bounds can be deduced easily by Equation (3) and Corollaries 4–6 in [17].
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Remark 7. The results in Corollary 4–6 in [17] are actually the upper bounds of Ad under different
conditions. Considering Equation (3), it is necessary to make p small enough. According to the
proof of Theorem 4, if Ad does not meet such bounds, then “<” holds.

3.2.2. Lower Bounds

Similar to Proposition 1, by Corollaries 1–3 in [17], we have

Proposition 2. If C is a q-ary linear code, then we have the following statements:

(1) If d = d(n− 1)(q− 1)/qe, then

Pue >
qk − nq + n− 1
(n− d)q− n + 1

pq
d(1− p)n−d;

(2) If qd > nq− n− 2q + 1, then

Pue >
qk−2n(n− qn + qd + 2q− 1)− nd− n

n− d
pq

d(1− p)n−d;

(3) If q = 2 and all weights of C are in [d, n− d], with n− 2d > 0 and (n− 2d− 1)2 < n + 1,
then

Pue >

(
2k−2(n2 − 4nd− 3n) + (2k + 1)d(d + 1)

2d− n
− d− 1

)
pd(1− p)n−d.

When using quadratic polynomials, we have the following bound.

Proposition 3. Let f0, f1 and f2 be nonnegative rational numbers such that

f0 − f1n + f2

(
n
2

)
6 pd(1− p)n−d and f1 + n f2 6 2d f2,

then, for a binary (n, 2k, d) code, we have

Pue > 2k f0 − pd(1− p)n−d − 2 f1n,

where 0 6 p 6 1
2 .

Proof. It is known that, when q = 2, P0(x) = 1, P1(x) = n− 2x and P2(x) = 2x2− 2nx+(n
2).

Let f (x) = f0P0(x) + f1P1(x) + f2P2(x) and then it is a quadratic function whose axis of
symmetry is f1+n f2

2 f2
. Considering that pi+1(1− p)n−i−1 > pi(1− p)n−i, it is sufficient to

show that
f (n) 6 pd(1− p)n−d and

f1 + n f2

2 f2
6 d,

i.e., f (i) 6 f (n) 6 pd(1− p)n−d 6 pi(1− p)n−i for i > d. Equivalently,

f0 − f1n + f2

(
n
2

)
6 pd(1− p)n−d, f1 + n f2 6 2d f2.

The result follows from Theorem 5.

4. Good Bounds for Hamming Codes

Recall that the weight enumerator of the code C is the homogeneous polynomial

WC(x, y) = ∑
c∈C

xn−wt(u)ywt(u),
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where wt(u) means the Hamming weight the codeword u. The binary Hamming codeHm
is a [n = 2m − 1, k = n−m, d = 3] code, with the weight enumerator

(x + y)n + n(x + y)(n−1)/2(x− y)(n+1)/2

n + 1
,

whose distance distribution Ai satisfies

n

∑
i=1

iAiyi−1 +
n

∑
i=0

Aiyi +
n−1

∑
i=0

(n− i)Aiyi+1 = (1 + y)n,

and the recurrence A0 = 1, A1 = 0,

(i + 1)Ai+1 + Ai + (n− i + 1)Ai−1 =

(
n
i

)
.

Moreover,

(1 + y)n =
∑n

i=1 iAiyi

y
+

n

∑
i=0

Aiyi + ny
n−1

∑
i=0

Aiyi − y
n−1

∑
i=0

iAiyi

=
n−1

∑
i=1

Aiyi
(

i
y
− iy

)
+ (ny + 1)

n−1

∑
i=1

Aiyi + yn + nyn−1 + ny + 1.

Let α ∈ F2m be a primitive element and let g(x) ∈ F2[x] be the minimal polynomial
of α with respect to F2. According to Exercise 7.20 in [20], g(x) can be regarded as the
generator polynomial of a Hamming code. Since deg(g(x)) = m > 1, then

g(x)
∣∣∣∣ xn − 1

x− 1
= 1 + x + x2 + · · ·+ xn−1,

which implies that the all-one vector is a codeword of the Hamming code and An = 1.
Note that

Pue =
n

∑
i=1

Ai pi(1− p)n−i = (1− p)n
n

∑
i=1

Ai

(
p

1− p

)i
.

Hence,
n−1

∑
i=1

Ai

(
p

1− p

)i
=

Pue − pn

(1− p)n .

Let y = ε = p
1−p , where p ∈ (0, 1/2), then

(nε + 1)(Pue − pn) + (1− p)n
n−1

∑
i=1

Aiε
i
(

i
ε
− iε

)
= 1− pn − np(1− p)n−1 − npn−1(1− p)− (1− p)n.

According to Chapter 6, Exercise(E2), page 157 in [2], there are n− 4 nonzero weights of
Hm. Considering that An = 1, we have Ai = 0 if and only if i = 1, 2, n− 1, n− 2. Since
0 < p < 1/2, then 0 < ε < 1 and we have

3
ε
− 3ε 6

i
ε
− iε 6

n− 3
ε
− (n− 3)ε.
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Obviously,

(1− p)n
n−1

∑
i=1

Aiε
i
(

i
ε
− iε

)
6 (1− p)n

n−1

∑
i=1

Aiε
i
(

n− 3
ε
− (n− 3)ε

)

=

(
n− 3

ε
− (n− 3)ε

) n−1

∑
i=1

Ai pi(1− p)n−i

=

(
n− 3

ε
− (n− 3)ε

)
(Pue − pn).

Similarly,

(1− p)n
n−1

∑
i=1

Aiε
i
(

i
ε
− iε

)
>
(

3
ε
− 3ε

)
(Pue − pn).

Thus,

Pue 6
1− pn − np(1− p)n−1 − npn−1(1− p)− (1− p)n

3
ε − 3ε + nε + 1

+ pn (14)

=
p(1− p)− pn+1(1− p)− np2(1− p)n − npn(1− p)2 − p(1− p)n+1

(n− 1)p2 − 5p + 3
+ pn

and

Pue >
1− pn − np(1− p)n−1 − npn−1(1− p)− (1− p)n

n−3
ε − (n− 3)ε + nε + 1

+ pn (15)

=
p(1− p)− pn+1(1− p)− np2(1− p)n − npn(1− p)2 − p(1− p)n+1

(n− 1)p2 − (2n− 7)p + n− 3
+ pn.

Summarize the above discussions, we get

Theorem 7. Let Hm be the binary [n = 2m − 1, k = n − m, 3] Hamming code, then when
0 < p < 1/2 and m > 3, we have the upper bound Equation (14) and the lower bound
Equation (15) for Pue, respectively.

Proof. Note that the upper bound should be larger or equal than the lower bound, then

(−(2n− 7)p + n− 3)− (−5p + 3) = (n− 6)(1− 2p) > 0.

It is sufficient to solve the inequality n = 2m − 1 > 6, due to 1− 2p > 0. Hence, m > 3.

Remark 8. The difference of the upper bound and the lower bound is small.
Let U(n, p) = H1/H and L(n, p) = H2/H be the bound given by Equation (14) and

Equation (15), respectively, where H1 = (n− 1)p2 − 5p + 3, H2 = (n− 1)p2 − (2n− 7)p +
n− 3 and

H = p(1− p)− pn+1(1− p)− np2(1− p)n − npn(1− p)2 − p(1− p)n+1.

In fact, H is a polynomial of p whose degree n + 2 and the leading coefficient is

hn+2 = 1 + (−1)n+2n− n + (−1)n+2 = (1 + (−1)n) + n((−1)n − 1) 6= 0,
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while the product H1H2 is just a polynomial whose degree is 4. Then,

U(n, p)− L(n, p) =
(H2 − H1)H

H1H2
=

(n− 6)(1− 2p)H
H1H2

−→ (n− 6)(1− 2p)hn+2 pn+2

(n− 1)2 p4 −→ 0 (n→ +∞).

That is to say, the lower bound and the upper bound are very close. On the other hand,

H1 >
12n− 37
4(n− 1)

and H2 >
n + 1

4
.

Then,

U(n, p)− L(n, p) =
(H2 − H1)H

H1H2
=

(n− 6)(1− 2p)H
H1H2

<
(n− 6)(1− 2p)p(1− p)

H1H2
<

(n− 6)(1− 2p)p(1− p)
12n−37
4(n−1)

n+1
4

=
16(n− 1)(n− 6)
(n + 1)(12n− 37)

p(1− p)(1− 2p)

6

√
3

18
16(n− 1)(n− 6)
(n + 1)(12n− 37)

−→ 2
√

3
27
≈ 0.1283 (n→ +∞).

Here, let F(p) = p(1− p)(1− 2p), then its derivative is F′(p) = 6p2 − 6p + 1. Note that the
roots of F′(p) are 3±

√
3

6 . Since 0 < p < 1/2, then we choose the root p0 = 3−
√

3
6 . Hence,

F(p) 6 F(p0) =

√
3

18
≈ 0.0962.

Thus the difference of the upper bound and the lower bound is about 0.1283 at most, and tends to 0
when n→ +∞.

Example 5. Using the bounds in Theorem 7, the results in Figure 1 can be improved. See Figure 3.
When m = 5, the bounds Equations (15) and (14) are also valid. See Figure 4.
Note that the difference of the bounds Equations (15) and (14) is about 0.05, which is much

smaller than the given 0.1283.
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Figure 3. Bounds in Theorem 7 of Pue for the Hamming CodeH4.
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Figure 4. Bounds in Theorem 7 of Pue for the Hamming CodeH5.

It is known that the Hamming codes satisfy the 2−m bound when 0 < p < 1/2
i.e., Pue 6 2−m. See [5] for more details. In fact, the obtained new bound is better than the
ordinary 2−m bound, when p is not large.

Theorem 8. Let Hm be the binary [n = 2m − 1, k = n − m, 3] Hamming code, then when
0 < p < 1/2 and m ≥ 3, we have

Pue 6
p− p2

(n− 1)p2 − 5p + 3
+ pn. (16)

Moreover, if p < p0, this upper bound is better than the 2−m bound, where p0 is the smaller root of
the equation (2m+1 − 2)x2 − (2m + 5)x + 3 = 0.

Proof. Assume that
p− p2

(n− 1)p2 − 5p + 3
<

1
2m ,

then it is sufficient to solve the inequality

(2m+1 − 2)p2 − (2m + 5)p + 3 > 0.

Obviously, the inequality holds when p < p0, where

p0 =
(2m + 5)−

√
(2m + 5)2 − 12(2m+1 − 2)
2(2m+1 − 2)

is the smaller root of the equation (2m+1 − 2)x2 − (2m + 5)x + 3 = 0.

Example 6. It is clear that when p is small enough, the new upper bound Equation (14) is smaller
than the 2−m bound in Figures 3 and 4.

Remark 9. Of course, the weight distribution of the binary Hamming codes can be computed and
expressed by the sum of combinatorial numbers, which are usually very large when m is large. So,
the method in this section is to estimate Pue quickly. Compared with the 2−m bound, our bounds are
better when p is small enough.
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5. Conclusions

In this paper, we studied the probability of an undetected error Pue and gave many
bounds for Pue. The main contributions of this paper are the following:

(1) The bounds obtained from the linear programming problem are given in Theorem 4.
The bounds obtained from the Polynomial Method are given. According to the
main Theorem 5, we get Theorem 6 (applied to the codes with even distances)
and Proposition 3.

(2) Combining the results of [17], we give the bounds in Propositions 1 and 2.
(3) We find sharper bounds for binary Hamming codes (see Theorems 7 and 8).

To the best of our knowledge, that is the very first time that the LP method has been
applied to bound Pue. Even though computing Pue exactly requires knowledge of the code
weight spectrum, our bounds depend solely on the three parameters [n, k, d], of the code.
The weight frequencies are only used as variables in the LP program. Knowing the three
parameters [n, k, d] is the minimal requirement to use a code in applications.

To sum up, our bounds are most useful when the exact weight distribution is too hard
to compute. Our bounds perform well when p is small enough and the kissing number Ad
is known, and there are many such codes.

We mention the following open problems. The readers interested in Hamming codes
are suggested to derive bounds for general q-ary Hamming codes with q > 2. Moreover, it
is worth mentioning that the linear programming problem works better numerically than
the Polynomial Method. The interest of the latter lies in producing bounds with closed
formulas. It is a challenging open problem to derive better bounds with polynomials of
degree higher than 2.
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