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CLASSIFICATION OF SOME COSETS OF THE REED-MULLER CODE

This paper presents a descending method to classify Boolean functions in 7 variables under the action of the affine general linear group. The classification determines the number of classes, a set of orbits representatives and a generator set of the stabilizer of each representative. The method consists in the iteration of the classification process of RM (k, m)/RM (r -1, m) from that of RM (k, m)/RM (r, m). We namely obtain the classifications of RM (4, 7)/RM (2, 7) and of RM (7, 7)/RM (3, 7), from which we deduce some consequences on the covering radius of RM (3, 7) and the classification of near bent functions.

Introduction

Let F 2 be the finite field of order 2. Let m be a positive integer. A mapping from F m 2 into F 2 is called a Boolean function. Every Boolean function has a unique algebraic reduced representation : f (x 1 , x 2 , . . . , x m ) = f (x) = S⊆{1,2,...,m} a S X S , a S ∈ F 2 , X S (x) = s∈S x s .

The degree of f is the maximal cardinality of S with a S = 1 in the algebraic form. The valuation of f = 0, denoted by val(f ), is the minimal cardinality of S for which a S = 1. Conventionally, val(0) is ∞. We denote by B(s, t, m) the space of Boolean functions of valuation greater than or equal to s and of degree less than or equal to t. Note that B(s, t, m) = {0} whenever s > t. The space B(0, t, m) identifies with the Reed-Muller code RM (t, m) and B(s, t, m) is the representation of the quotient space RM (t, m)/RM (s -1, m). The affine general linear group of F m 2 , denoted by agl(m, 2), acts naturally over all these spaces. The number of classes of B(s, t, m), denoted by n(s, t, m), satisfies a nice duality relation : [START_REF] Dougherty | The covering radius of the Reed-Muller code RM (m -4, m) in RM (m -3, m)[END_REF] n(s, t, m) = n(mt, ms, m).

X.-D. Hou gives a proof of the above relation in [START_REF] Hou | AGL(m, 2) acting on R(r, m)/R(s, m)[END_REF]. In the proof of Lemma 1, we propose an alternative demonstration.

For the dimensions that we want to consider, all class numbers are very easy to determine using Burnside's Lemma and the theory of conjugacy classes of agl(m, 2), see e.g. [START_REF] Hou | Lectures on finite fields[END_REF].

In general, such a class number is huge, but, when it is reasonably small, one may consider to determine an orbit representative set that is a list of n(s, t, m) Boolean functions, of degree less than or equal to t, and pairwise non affine equivalent modulo RM (s -1, m). As an example, the class number n [START_REF] Gao | The covering radius of the third-order reed-muller codes rm(3, 7) is 20[END_REF][START_REF] Maiorana | A classification of the cosets of the Reed-Muller code R(1, 6)[END_REF][START_REF] Maiorana | A classification of the cosets of the Reed-Muller code R(1, 6)[END_REF] is 150357 and J. Maiorana in [START_REF] Maiorana | A classification of the cosets of the Reed-Muller code R(1, 6)[END_REF] describes a recursive algorithm to find the 150357 equivalence classes.

More generally, the classification data of the space B(s, t, m) plays an important role both in coding theory and cryptography. The covering radii of Reed-Muller codes are not generally known and the classification of B(s, t, m) can be used to bound the covering radius of RM (s -1, m) in RM (t, m) as in the paper [START_REF] Wang | The covering radius of the Reed-Muller code RM (2, 7) is 40[END_REF]. These classifications are also used to study the cryptographic parameters of Boolean functions.

This paper presents a procedure to provide classifications of Boolean functions spaces for m = 7. Precisely, we compute orbit representative sets of B(s, t, 7), for all parameters s ≤ t ≤ 7 such that n(s, t, 7) is less than 10 6 .

Our approach gives complete classifications : not only sets of orbit representatives, but also for each representative, a generator set of stabilizer group. The most interesting cases are the classifications of B(3, 4, 7) and of B [START_REF] Hou | AGL(m, 2) acting on R(r, m)/R(s, m)[END_REF][START_REF] Qingshu | Almost enumeration of eightvariable bent functions[END_REF][START_REF] Qingshu | Almost enumeration of eightvariable bent functions[END_REF]. From the first one, we determine the classification of near bent functions. From the second, we refind, with an alternative method, the covering radius of RM (3, 7) obtained in [START_REF] Gao | The covering radius of the third-order reed-muller codes rm(3, 7) is 20[END_REF].

All computed data are available on the project page [START_REF] Gillot | Classification of b[END_REF].

Boolean functions

A Boolean function f is a member of B(s, t, m) if and only if s ≤ val(f ) and deg(f ) ≤ t. Denoting S the complement set of S ⊆ {1, 2, . . . , m}, the complementary transform S X S → S X S maps B(s, t, m) onto B(mt, ms, m), in particular, these spaces have the same dimension. A Reed-Muller code of order k in m variables is the space of Boolean functions of degree less or equal to k :

RM (k, m) = {f ∈ B(m) | deg(f ) ≤ k}.
Note that Reed-Muller spaces are nested :

RM (-1, m) (0) ⊂ RM (0, m) ⊂ RM (1, m) ⊂ • • • ⊂ RM (m -1, m) ⊂ RM (m, m) B(m)
.

The quotient space RM (k, m)/RM (k -1, m) is the space of homogeneous forms of degree k, identified with the space B(k, k, m), its dimension is the value of the binomial coefficient m k . The dimension of B(s, t, m) is equal to the sum of binomial coefficients t k=s m k . It is easy to see that the weight of a Boolean function is even if and only if its degree is not maximal, consequently the orthogonal of

RM (k, m) is RM (m -k -1, m), with respect to the scalar product f, g = x∈F m 2 f (x)g(x).
Lemma 1 (duality). For all s, t such that s ≤ t ≤ m, B(mt, ms, m) is a representation of B(s, t, m) * , the dual space of B(s, t, m). It means that for any form φ ∈ B(s, t, m) * there exists one and only one g ∈ B(mt, ms, m) such that φ(f ) = f, g , for all f ∈ B(s, t, m).

The product X S g = X S X S + • • • has degree m whence X S is member of B(s, t, m) which is not orthogonal to g. In other words, the space B(mt, ms, m) is a representation of B(s, t, m) * .

Action of the affine general linear group

First, let us recall some definitions. Let (G, * ) be a finite group and let U be a finite set, a right group action of G on U is a mapping from U × G to U denoted by (u, g)

-→ u • g satisfying u • e = u and (u • g) • h = u • (g * h), for u ∈ U , g, h ∈ G
and e the identity of G. The orbit of an element u is the set of elements in U to which u can be moved by the elements of G, denoted by

O u = {u • g | g ∈ G}. The stabilizer subgroup of G with respect to u ∈ U is the set of elements in G that fixes u, denoted by stab(u) = {g ∈ G | u • g = u}.
The affine general linear group acts naturally on the right over Boolean functions. The action of s ∈ agl(m, 2) on a Boolean function

f is f • s, the composition of applications. The order of agl(m, 2) is 2 m m-1 i=0 (2 m -2 i ) ≈ 0.29 2 m 2 +m
. Note that the number of orbits of this group action has doubly exponential growth with the parameter m. For m = 7, it is already numerically impossible to list the ≈ 2 74 classes of Boolean functions !

The Reed-Muller spaces are invariant under the action of agl(m, 2). Considering the action modulo RM (r, m), the space of functions of degree less or equal than r, we introduce objects at level r. Two Boolean functions f and g in m variables are equivalent at level r, if there exists s ∈ agl(m, 2) such that f • s ≡ g mod RM (r, m). We introduce two notations f ∼ r g for the equivalence at level r, and stab r m (f ), for the stabilizer of f at level r :

(2) f ∼ r g ⇐⇒ ∃s ∈ agl(m, 2), f • s ≡ g mod RM (r, m).
(

) stab r m (f ) = {s ∈ agl(m, 2) | f • s ≡ f mod RM (r, m)}. 3 
In this paper, we consider the action of agl(m, 2) over B(s, t, m) as the composition of applications modulo RM (s -1, m). Precisely, two elements f, g ∈ B(s, t, m) are in the same orbit, under this action, if and only if they are equivalent at level s -1, that is f ∼ s-1 g. In this context, the stabilizer of f is nothing but stab s-1 m (f ) the stabilizer at level s -1.

Thus, the affine general linear group acts over the B(s, t, m), the corresponding class number n(s, t, m) is given by Burnside's formula :

(4) |agl(m, 2)| × n(s, t, m) = s∈agl(m,2) ♯fix s,t m (s) = s∈Γ R(s) ♯fix s,t m (s).
where fix

s,t m (s) is the set {f ∈ B(s, t, m) | f • s ≡ f mod RM (s -1, m)}, i.
e. the kernel of the endomorphism of B(s, t, m) defined by f → f • s. In practice, we reduce the sum to the Γ, a set of representatives of conjugacy classes of agl(m, 2), and R(s) the size of the conjugacy class of s, see book [START_REF] Hou | Lectures on finite fields[END_REF] for the finite fields combinatoric details.

Lemma 2 (formula). For all s, t such that s ≤ t ≤ m,

n(s, t, m) = n(m -t, m -s, m) 1
Proof. The number of orbits of a finite space E under the action of a subgroup G of the general linear group aut(E) is the same that the number of orbits of the dual group G * . The Lemma statement is a particular case of this result. For s ∈ agl(m, 2), the adjoint of the automorphism f → f •s corresponds to the inverse of s, because

f • s, g = x∈F m 2 f • s(x)g(x) = x∈F m 2 f (x)g • s -1 (x) = f, g • s -1 .
The result follows using Burnside's formula by observing

f ∈B(s,t,m) g∈B(s,t,m) * (-1) f •s+f,g = f ∈B(s,t,m) g∈B(s,t,m) * (-1) f,g•s -1 +g ♯B(s, t, m) * × ♯fix s,t m (s) = ♯B(s, t, m) × ♯fix m-t,m-s m (s -1 )
In this paper, by a classification at level r of degree k in m variables, we mean a classification of B(r + 1, k, m), that is a set of orbit representatives at level r under the right action of agl(m, 2), and for each orbit representative f , a generator set of stab r m (f ), the stabilizer of f at level r. It is important to note that at level r, we calculate modulo RM (r, m), and we consider polynomials whose valuations are strictly greater than r.

Recall that agl(m, 2) can be generated by three following transformations of v = (v m , v m-1 , . . . , v 1 ) : the shift operator S : v → (v m-1 , . . . , v 1 , v m ), the transvection T : v → (v m , . . . , v 2 , v 1 + v 2 ) and the translation U : v → v + (0, . . . , 0, 1).

In next section, we detail the procedure that we used to build a classification at level r -1 from a classification at level r. Starting at level k, there is only one orbit {0} = B(k + 1, k, m) stabilized by full group agl(m, 2) = S, T, U . One can start from this classification at level k to determine the classifications at level k -1, level k -2, etc. The process can be stopped at any level or be continued until level -1 to reach the classfication of B(0, k, m) = RM (k, m). In this way, we classify B(s, t, m) in ts + 1 iterations starting from the classification of B(t + 1, t, m) = {0}.

Descending procedure

In order to deduce a classification at level r -1 from a classification a level r, we have to consider some "boundary actions" on B(r, r, m) the space of homogeneous forms of degree r.

An element s of the stabilizer of f at level r induces an action on homogeneous forms of degree r defined for u ∈ B(r, r, m) by

u → u • s + f • s + f mod RM (r -1, m)
Lemma 3 (boundary). Let R be a set of orbit representatives of degree k at level r. For each f ∈ R, U(f ) denotes a set of orbit representatives of B(r, r, m) under the boundary action of stab r m (f ). We obtain that {f + u | f ∈ R, u ∈ U(f )} is a set of orbit representatives with same degree at level r -1.

Proof. We start by showing the elements of this set are not equivalent at level r -1. Indeed, let f ′ and f be in R, and two forms u ′ ∈ U(f ′ ) and u ∈ U(f ) such that

f + u ∼ r-1 f ′ + u ′ . There exists s ∈ agl(m, 2) such that f ′ + u ′ ≡ (f + u) • s mod RM (r -1, m).
Reducing more, we obtain f ′ ≡ f • s mod RM (r, m); so that f ′ and f are equivalent at level r, thus f ′ = f . The boundary action of s ∈ stab r m (f ) sends u to u ′ and finally u ′ = u. Now, we prove that the set represents all polynomials at level r -1. Indeed, for g ∈ B(r -1, k, m), there exists a pair (t, f ) ∈ agl(m, 2)×R such that g•t ≡ f mod RM (r, m), whence g•t ≡ f +v mod RM (r -1, m), where v is a form of degree r. Moreover, there is a boundary action s ∈ stab r m (f ) that sends v to some u ∈ U(f ) whence g•ts

≡ (f +v)•s ≡ f +u mod RM (r -1, m).
For a right action of a group G on a set U and u ∈ U , we denote by O u the orbit of u, S u the stabilizer of u and s u the order of S u .

Lemma 4 (class formula). If G is a finite group acting on a finite set U then the size of the orbit of an element u ∈ U is equal to |G|/s u .

Proof. There is a bijection from G/S u onto O u the orbit of u.

Lemma 5 (Schreier). Let L be a set of generators of a finite group G right acting on a finite set U . Let O u be the orbit of some element

u ∈ U . If R : O u → G is a map such that u • R(x) = x for all x ∈ O u then {R(x)λR(x • λ) -1 | λ ∈ L, x ∈ O u } generates the stabilizer S u of u.
Proof. See [START_REF] Seress | Permutation group algorithms[END_REF]. Knowing the value s u , one can build a generator set of its stablizer S u applying Lemma. We implement this idea in the algorithm generatorSet where * denotes the law group and • denotes the action of the group. Now, we describe our descending procedure based on Lemma 3 and Lemma 5 to construct a set of orbit representatives at level r -1 from level r. In view of dimension of forms space B(r, r, m) and to save memory space, we proceed in two phases :

(1) For each representative f at level r, we use a classical algorithm to enumerate an orbit representatives set of B(r, r, m) under the action of stab r m (f ). For each representative u, we obtain the orbit O u , and by Lemma 4, the order s u of stab r-1 m (f + u) is equal to ♯stab r m (f )/♯O u . (2) For each representative f at level r, let L be a generator set of stab r m (f ). For each pair (u, s u ), obtained in (1), we apply generatorSet(u, L, s u ) to construct a set of generators of stab r-1 m (f + u).

results and applications

Our implementation in C language of the descending procedure, without any parallelization, builds the full classification of B(2, 6, 6) in 15 secondes. It classifies B [START_REF] Gillot | Classification of b[END_REF][START_REF] Hou | AGL(m, 2) acting on R(r, m)/R(s, m)[END_REF][START_REF] Qingshu | Almost enumeration of eightvariable bent functions[END_REF] in three days by requiring about 50GB of memory.

The values of n(s, t, 7) for 0 ≤ s ≤ t ≤ 7 are listed in Table 1. For all parameters 0 ≤ s ≤ t ≤ 7 such that n(s, t, 7) < 10 6 , the descending procedure classifies B(s, t, 7), it computes for each orbit, a representative and also a generator sets of the corresponding stabilizer. All the numerical data are available in project page [START_REF] Gillot | Classification of b[END_REF]. In the next subsections, we focus on applications of the classifications of B(3, 4, 7) and B(4, 7, 7). 5.1. Using invariant. An alternative way to build a list of orbit representatives is to use invariants. Success for invariant based approach is not guaranteed for two reasons : small orbits are hidden and difficult to detect, and the invariants used may not be discriminating enough ! Moreover, invariant approach does not give orbit sizes and even less the generator set of stabilizers. The invariant approach proposed in [START_REF] Qingshu | Almost enumeration of eightvariable bent functions[END_REF] failed to find a list of representatives of B [START_REF] Gillot | Classification of b[END_REF][START_REF] Hou | AGL(m, 2) acting on R(r, m)/R(s, m)[END_REF][START_REF] Qingshu | Almost enumeration of eightvariable bent functions[END_REF]. In that case, the number of orbits is n(3, 4, 7) = 68433 and using invariants, the authors got 68095 classes whence missing 338 orbits.

push( u ) 7 R [ u ] ← id 8 Y ← { u } 9 while ( order( <S> ) < s u ) { 10 pop( x ) 11 for λ ∈ L { 12 y ← x • λ 13 if y ∈ Y { 14 push(y) 15 R[ y ] ←R[ x ] * λ 16 Y← Y ∪ {y} 17 } else { 18 s ← R[x] * λ * inverse ( R[ y ] ) 19 if ( s not in <S> ) 20 S ←S ∪ {

Counting near bent functions.

Let us recall that a 7-bit Boolean function is near bent when its Walsh spectrum takes three values 0, ±16. Such a function has degree less or equal to 4. The set of near bent functions is invariant under the action of affine general linear group. From the classification of B [START_REF] Gillot | Classification of b[END_REF][START_REF] Hou | AGL(m, 2) acting on R(r, m)/R(s, m)[END_REF][START_REF] Qingshu | Almost enumeration of eightvariable bent functions[END_REF], it is possible to count the number of near bent functions. For each f ∈ B(3, 4, 7), we determine the number N (f ) of quadratic forms q ∈ B(2, 2, 7) such that f + q is near bent. By this naive approach, one find the total number of near-bent functions in seven variables:

f ∈B(3,4,7)/∼ 2 N (f ) × ♯agl(m, 2) ♯stab 2 7 (f ) = 88624918554694407235840 ≈ 2 76.3
In Table 2, we can read the number of classes of B(s, t, m) whose the stabilizer has a small order. For example, there are 50308 classes of B(3, 4, 7) with a stabilizer of order 1 that represents 74% of classes. It is not reasonable to store the full . However, we can adapt the descending method to classify the set of near bent functions f + q where ♯stab 2 7 (f ) > 1. Finally, we obtain 4243482 classes of near bent functions in B [START_REF] Gao | The covering radius of the third-order reed-muller codes rm(3, 7) is 20[END_REF][START_REF] Hou | AGL(m, 2) acting on R(r, m)/R(s, m)[END_REF][START_REF] Qingshu | Almost enumeration of eightvariable bent functions[END_REF]. Note that 99.2% of classes have a trivial stabilizer. The classification of the near bent function of B(2, 4, 7) is availble on the website of the project. We hope that all the data presented here can be used to answer the following open problems :

Open problem 1. It is well known that the restriction to any hyperplane of a bent function is near bent. Are all the near bent function a restriction of a bent function ?

Open problem 2. As suggested in note [START_REF] Qingshu | Almost enumeration of eightvariable bent functions[END_REF], is it feasible to count/classify the 8-bit bent function from the classification 7-bit near bent functions ? 5.3. Covering radius of RM [START_REF] Gillot | Classification of b[END_REF][START_REF] Qingshu | Almost enumeration of eightvariable bent functions[END_REF]. In 2019, Wang [START_REF] Wang | The covering radius of the Reed-Muller code RM (2, 7) is 40[END_REF] proved that the covering radius of RM (2, 7) is equal to 40. A part of that proof, is based on the classification of B [START_REF] Gao | The covering radius of the third-order reed-muller codes rm(3, 7) is 20[END_REF][START_REF] Maiorana | A classification of the cosets of the Reed-Muller code R(1, 6)[END_REF][START_REF] Maiorana | A classification of the cosets of the Reed-Muller code R(1, 6)[END_REF]. The covering radius of RM (3, 7) into RM (4, 7) is known to be 20 see [START_REF] Dougherty | The covering radius of the Reed-Muller code RM (m -4, m) in RM (m -3, m)[END_REF]. In the recent preprint [START_REF] Gao | The covering radius of the third-order reed-muller codes rm(3, 7) is 20[END_REF], Gao, Kan, Li and Wang showed the covering radius of RM (3, 7) is less or equal to 20 using the classification of B [START_REF] Hou | AGL(m, 2) acting on R(r, m)/R(s, m)[END_REF][START_REF] Maiorana | A classification of the cosets of the Reed-Muller code R(1, 6)[END_REF][START_REF] Maiorana | A classification of the cosets of the Reed-Muller code R(1, 6)[END_REF]. All these methods use more or less computer assistance. Here, we point out how to use directely the classification of B(4, 7, 7) to obtain that the covering radius of RM (3, 7) is less or equal to 20. The key point is to use a variation of Leon's algorithm to exibit small weight codewords in the translate of a code.

Given the generator matrix G of an [n, k]-Reed-Muller code C, the algorithm distance(f, G, T) applies a random procedure to check the existence of a Boolean function of weight less or equal to T in the translate code f + C. This algorithm uses three components : The algorithm finishes when it finds a Boolean function g in the translate code of weight less or equal to T or when the number of trials exceeds an arbitrary limit maxIter.

We apply distance(f, G, T) to each representative of B(4, 4, 7) to prove the non-existence of Boolean functions at distance greater than 20 from RM [START_REF] Gillot | Classification of b[END_REF][START_REF] Qingshu | Almost enumeration of eightvariable bent functions[END_REF]. This work requires an average of 538.6 trials with standard deviation 806.17.

Open problem 3. In [START_REF] Dougherty | The covering radius of the Reed-Muller code RM (m -4, m) in RM (m -3, m)[END_REF], the covering radius of RM (4, 8) in RM (5, 8) is shown to be 26. Is it possible to build a classification of B [START_REF] Hou | Lectures on finite fields[END_REF][START_REF] Maiorana | A classification of the cosets of the Reed-Muller code R(1, 6)[END_REF][START_REF] Seress | Permutation group algorithms[END_REF] and to apply similar methods in order to determine the covering radius of RM (4, 8) or at least in RM (6, 8) ?

Conclusion

We present an efficient descending method to classify the cosets of Reed-Muller codes. This procedure allow us to obtain the classification of two important cosets of length 128 : RM (4, 7)/RM (2, 7) and RM (7, 7)/RM [START_REF] Gillot | Classification of b[END_REF][START_REF] Qingshu | Almost enumeration of eightvariable bent functions[END_REF]. The first one provides the classification of near bent functions in seven variable. From the the second, we explain how we refind the value of the covering radius of RM [START_REF] Gillot | Classification of b[END_REF][START_REF] Qingshu | Almost enumeration of eightvariable bent functions[END_REF].

1 Listing 1 .1 3 / 4 // knowing its order s u 5 S ←∅ 6

 113456 Construction of a generator set of S u . Algorithm generatorSet( u , L, s u ) 2 { // return a generator set of the stabilizer of u / under the action of the group generated by L

Listing 2 . 7 while 8 g•

 278 Counting trials to find a small cosetword. 1 maxIter = 2048 2 Algorithm distance( f , G, T ) 3 { 4 // G generator matrix of a [ n,k]-Reed-Muller code 5 ( score > T ) and ( trails < maxIter) { action(f) returns a random action of agl(m, 2) on f • pivoting(G) applies Gauss elimination algorithm to the generator matrix G choosing a random pivot on each of its line. Each line of the matrix obtained has weight less or equal to nk + 1 • reduce(g,G) transforms g adding to it the lines of G corresponding of the pivot position. More precisely, for each line L i of G, let us denote p i the position of the pivot on this line, reduce adds to g the line L i when g(p i ) = 1. It appears that the weight of g after reduction is at most nk.

Table 1 .
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		s\t 1 2	3	4	5	6	7
		0 3 12 4		12	179 1890 3486
		5			4	8	12
		6				2	3
		7					2

Table 2 .

 2 Multiplicities of small order stablizers.

	order	1	2	3	4	6 7	8 12 14 16
	B(3, 4, 7) 50308 9591 134 3059 235 12 1877 163 15 895
	B(4, 7, 7)	389 571	7 444 48 3 384 68 7 236
	classfication of B(2, 4, 7) simply because the number of classes is huge : n(2, 4, 7) =
	118140881980						
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