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ABSTRACT – The cost of energy and climate change due to
the emission of greenhouse gases have yielded a large penetration
of renewable energy sources in the grid and new types of loads
(electric vehicles, . . .). The increasing variability and uncertainty in
sources and demand lead to significant impacts on small electrical
distribution networks. Thus, a stable, and reliable operation
in local areas becomes more difficult to achieve. Adapted grid
control according to the observed or expected variability in
power flows and in model parameters of the electrical system, is
required while maintaining the costs and CO2 emissions to low
levels. This paper presents a state of the art on adaptive tech-
niques and new self-learning methods for achieving grid balancing.

Keywords – Power system operation, artificial intelligence, power
reserves, grid control, machine learning, distribution grids, review.

1. INTRODUCTION

In conventional power systems with synchronous generators,
balance between power generation and demand is indicated by
the grid frequency. The frequency value is the same everywhere
on the grid, and is imposed by the angular speed of connec-
ted synchronous alternators. To achieve a power balance and
maintain the frequency, the frequency deviation is sensed and
mitigated by a hierarchical power system control composed of
primary, secondary, and tertiary control.

To minimize operating costs, controllable generators’ set
points are planned one day ahead with renewable generation and
load demand predictions, in addition to the required operating
power reserves (PR) for compensating unexpected events and
forecast errors. In conventional power systems, PR is provided
by large synchronous generators. PR are usually sized to provide
the capacity of the largest connected generator and/or a fragment
of the load. For the management and use of the available PR,
required contingency reserves are classed into three types ac-
cording to prescribed time responses for the power system ope-
ration (see Fig.1) : Primary or spinning reserves are provided
by fast power sources (within 30 seconds) to stop the frequency
drop following an event (connection of a large load, fault, etc.).
Secondary or supplementary reserves’ full power are provided
within 15 minutes to bring the frequency into margins, hence sa-
tisfying the balance between generation and load demand. Ter-
tiary or replacement reserves are provided within 30 minutes to
share the required additional power among slow synchronous
generators (cheaper to operate) by modifying their setpoints.

Nonetheless, the planned retirement of thermal power plants
and the large penetration of renewable energy sources (RES)
require a larger capacity of PR due to the intermittent nature
of the newly introduced sources in local areas. A part of PR
must compensate the unexpected variations of the RES-based
production affected by weather conditions and solve frequency
stability issues [1].

In section 2, challenges facing power systems are descri-
bed. Section 3, presents a classification of advanced techniques
for grid balancing. The use of these techniques for direct fre-
quency regulation, PID controller tuning and distributed control

architectures are discussed in section 4, 5 and 6, respectively.
To conclude, a table of the limitations, communication require-
ments, and computation time of the proposed methods is derived
in section 7.

FIG. 1. Power reserve operation for active power balance.

2. CHALLENGES

2.1. Stochastic operational planning of power sources

PR must be properly sized and allocated to minimize eco-
nomic operating costs while maintaining a satisfactory level
of security. Traditional deterministic operational planning ap-
proaches are being replaced by stochastic ones due to the va-
riability of RES-based generation. These sources are highly va-
riable but predictable with residual uncertainties [2]. However,
even with the best forecasting tools, unexpected events might
occur such as a passing cloud. Hence, the availability of PR du-
ring the next hour of the day is harder to predict. As a result,
calculating the exact setpoints for each generator to meet the
demand becomes challenging.

2.2. Adapted output power of power electronics grid connec-
ted converters in AC grids

Power electronics (PE) converters between RES with or wi-
thout battery energy storage system (BESS) and the grid have
very fast response times, because of their high frequency swit-
ching operation. In AC grids, the increased integration of RES
leads to a reduced inertia and large frequency deviations. Thus,
conventional PR with a least share of synchronous genera-
tors will not be efficient in future power systems with a large
amount of grid connected PE converters. Additionally, a gro-
wing amount of grid codes require that RES with or without sto-
rage devices must participate in inertia response and frequency
control to adapt their output power to achieve the grid balance
[3].

2.3. Balancing DC grids

DC grids present a hot topic due to the better efficiency in
power flows between sources of the same DC nature such as
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photovoltaic (PV) panels, light emitting diodes (LED), electrical
vehicles (EVs), etc. without reactive power. However, DC grids
with zero frequency cannot be balanced with the frequency si-
gnal, but with the voltage as a power balance indicator. Energy
management and balancing of DC grids clusters rely extensively
on communication networks, which presents information secu-
rity and latency challenges among others [4]. Since communica-
tion failure problems are inevitable, alternative techniques with
local implementation and without communication are manda-
tory.

2.4. Requirements

With all that in mind, the resilience and robustness of modern
power systems are being questioned. The use of a frequency
droop controller seems to be limited to some operating range
and dynamic scenarios in the context of synchronous genera-
tors or emulated ones by grid connected PE converters. New
external inputs such as solar irradiation, wind speed, forecasting
errors, and others have large effects on the system’s operation.
These inputs can be used in new control techniques to increase
the controllability and maintain a good performance. The linea-
rity and stationarity of these inputs with the electrical quantities
are still to be studied. Moreover, to ensure the energy demand
at the lowest cost with less complexities, one solution is to or-
ganize a local regulating area (local energy communities) that
achieves a local balancing. To implement this method, available
flexibilities such as electric vehicles, distributed storage systems
and others must be managed in real-time by advanced control
techniques.

Due to nonlinearities, increasing variabilities and uncertain-
ties, the mathematical model of such electrical systems is ex-
tremely complex and includes non-stationary parameters. Ba-
sed on this complex model (supposedly known), the design of
the control system must include nonlinear dynamic responses. It
should also be able to change according to external and internal
uncertain excitatory influences. This adaptability is classically
implemented with an adjustment of various parameters (in the
control law) such that a deviation error from an objective func-
tion is minimized. This is the principle of a learning algorithm,
which is fed in real-time with updated data in this changing en-
vironment.

The increased amount of data in power systems due to advan-
ced measurement and communication systems (smart meters,
etc.) has led to a greater focus on data driven methods (espe-
cially artificial intelligence) in power system operation. Moreo-
ver, the enhanced computational capacity allowed for powerful
and real-time applications. Artificial intelligence (AI) is defined
as an information-processing system that learns from the envi-
ronment and adapts. It is a field comprising various techniques
and methods that allow a machine to perform intelligent tasks
like those performed by human intelligence.

3. CLASSIFICATION OF ADVANCED TECHNIQUES FOR GRID
BALANCING

The mostly applied AI methods to power systems can be di-
vided into three main categories : rule-based, metaheuristic, and
machine learning methods [5]. In this section, a classification of
AI methods adapted to power systems with examples is propo-
sed.

3.1. Rule-based methods

Rule-based methods or expert systems require a set of if-then
rules predefined by human knowledge, and thus the system can
make decisions.

To implement the interface with the analog world, fuzzy lo-
gic is often used. It involves three steps : fuzzification to convert
a crisp input value to a fuzzy value representing a membership
value to an input set, inference to apply rules and generate the

decision and/or the belonging index of an output set, and defuz-
zification to convert the obtained fuzzy quantity to a precious
value. In most grid balancing applications, fuzzy logic is used
to solve multi-input problems such as frequency deviation and
its derivative. It is then combined with neural networks (NN) to
create an adaptive neuro-fuzzy controller whose parameters are
trained via an adaptive neuro-fuzzy inference system [6].

3.2. Metaheuristic methods

Metaheuristic methods are defined as algorithms able to solve
complex optimization problems. They rely on a general set
of rules rather than mathematical approaches, and can be ei-
ther population-based or trajectory-based. Population-based me-
thods maintain a population of possible solutions and try to im-
prove them iteratively. Trajectory-based methods try to improve
a single possible solution by small adjustments and evaluation
of resulting solution. In power systems, they are mostly used to
tune parameters of models or controllers.

3.3. Machine learning algorithms

Machine learning techniques include supervised, unsupervi-
sed, and reinforcement learning.

Supervised learning (SL) methods require input and output
datasets (labeled data). They calculate parameters of the input-
output model (training phase) and validate it (testing phase). In
the training phase, an optimizer is used to calculate parameters
that minimize the error between the actual and target output va-
lues.

Unsupervised learning (UL) does not require labeled data.
Therefore, the algorithm needs to identify structure and patterns
in provided data to make decisions.

Reinforcement learning (RL) is an incorporation of human-
level control into systems. It is an agent-based method, meaning
that an agent (computational entity) learns to make decisions
by interacting with the environment and trying to maximize its
reward. The main difference between RL and the previous ma-
chine learning approaches, is that the agent does not rely on la-
beled data but on the consequences of the actions it took (see
Fig.2). RL requires a representation of the environment via a
Markov Decision Process (MDP) consisting of a state space, an
action space, the probability of transition, a discounting factor,
the initial distribution over states (probability of being in each
state at the beginning) and the reward. The agent observes the
environment’s state, chooses the action to receive the best re-
ward and transition to a new state. The choice of the action is
defined by a policy . The total expected reward for a given policy
can be estimated by a value function, which is a state-value func-
tion or an action-value function, also known as Q-function [7].
Various RL methods exist, but they can be grouped into value-
based, policy-based, actor-critic or other methods :

1. Value-based methods use value functions to learn an op-
timal policy. They estimate the anticipated value of each
state and/or action through a value function and make de-
cisions that maximize the expected reward. Q-learning,
Deep Q-network, and State-Action-Reward-State-Action
(SARSA) are the most common methods used in power
systems.

2. Policy-based methods learn a policy directly without the
need for the value function. They parameterize the policy
as a function of the state and find the policy parameters via
optimization. These methods are less popular than value-
based methods in energy systems.

3. Actor-critic methods are a combination of both policy-
based methods (actors) and value-based methods (critics).
The critics estimate the value function, and the actors
learn the policy and take actions. The critic network as-
sesses the quality of each state-action combination and
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gives input to the actor network to adjust the policy ac-
cordingly. Deep deterministic policy gradient (DDPG) is
a widely used algorithm in energy systems.

FIG. 2. Reinforcement learning.

4. ADAPTIVE CONTROLLERS OF THE FREQUENCY REGULA-
TOR

Controlling energy systems has become more difficult with
the integration of RES and the limitations of physics-based
models. Therefore, an evolution of traditional energy system
control is necessary to face different arising challenges such as
uncertainties, security, complexity, etc. Due to the non-linearity
of AC microgrids, the knowledge of accurate model parameters
is essential for their control design. To reduce the complexity,
usually a linearization is applied. The obtained model is a sim-
plified representation with modelling errors. Data-driven based
RL approaches are currently being investigated because of their
ability to learn the variable non-linear models or control laws,
and ensure better dynamic performances and robustness of fre-
quency control. These approaches employ an agent that takes
input from the environment and makes decisions accordingly.
Data-driven models are tuned by taking part in the decision-
making procedure and maximizing its overall reward. They have
proven to be successful methods in handling the complexities
and uncertainties of models that cannot be easily managed with
explicit detailed mathematical models.

In [8], a data-driven frequency regulation technique is propo-
sed for an islanded MG without the need for accurate parame-
ters. An improved scheme of adaptive dynamic programming
called distributed dual heuristic dynamic programming algo-
rithm (DDHP) is used. A DDHP controller generates frequency
controller inputs for the generator units to define their parti-
cipation in secondary frequency control. Hence, the frequency
on each MG bus is regulated and the load is optimally shared
among the generators. This is done by sensing frequency de-
viation and active power difference between the MG’s nodes. A
local error for each bus is then formulated and sampled. The er-
ror along with the control action of the generator on the bus are
used to train a model NN (MNN) to approximate the dynamics
of the system. A critic neural network is trained with the output
of the MNN and approximates the value function while an ac-
tor neural network outputs the optimal control input. This input
is integrated and added to the droop control output. Compared
to the distributed averaging PI controller, the DDHP controller
converges faster.

In the same context, a load frequency controller based on a
goal representation dynamic programming algorithm (GRADP)
in [9] is introduced to control a micro-turbine and EVs of an
islanded smart grid. In fact, the GRADP takes the frequency
deviation and its two previous values as inputs and provides
a supplementary control to the PID controller of each unit for
better achieving a frequency stability. The GRADP method
consists of :

1. A critic network that estimates the cost-to-go function (1),

J [x(i), i] =

∞∑
t=i

γt−iU [x(t), u(t), i] (1)

Where γ represents the discount factor, U the utility func-
tion, x(t) the state vector and u(t) the control action.

2. An action network that tries to minimize the function by
generating the appropriate control policy,

3. A goal network that tries to improve the learning capabi-
lity of the critic.

The GRADP based controller is compared to a particle swarm
optimization (PSO) based fuzzy controller under power distur-
bances and signal transmission delays. The former has shown
better learning abilities and more robust control. The main diffe-
rence between DDHP and GRADP is the representation of their
control objective and the learning of control policy. DDHP le-
verages heuristic functions to solve large-scale MDPs in a dis-
tributed manner, while GRADP focuses on learning a goal re-
presentation to facilitate exploration in high-dimensional state
spaces.

The third method proposed in literature is deep RL (DRL),
which is a subfield of RL that uses deep NN to approximate
the optimal policy or the value function. In other words, it com-
bines the principles of RL with the power of deep NN to al-
low for an efficient learning of complex behaviors and decision-
making processes that cannot be handled by the traditional RL
schemes. Authors in [10] proposed a data driven load frequency
controller based on DRL to minimize frequency deviations in
stochastic power systems. The DRL based controller adjusts the
power references of a power plant to regulate the frequency de-
viations due to load and wind power variations. The DRL ba-
sed controller here is model-free and policy-based. It is offline
trained where the explorations are made continuously. The per-
formance of the controller is then evaluated by an action-value
function and based on DDPG, the policy agent is updated. Since
the input features to the DRL based controller are crucial, a sta-
cked denoising autoencoder method (SDAE) is implemented as
a feature analyzer. SDAE extracts features from data rather than
feeding frequency deviation as an input to the controller like
most common methods.

5. ARTIFICIAL INTELLIGENCE TUNING BASED PID
CONTROLLER

5.1. Metaheuristic population based approach

Optimizing the power flow and variation of distributed gene-
rators as well as minimizing frequency deviation in an islanded
MG, are examined in [11]. Authors applied a PSO algorithm
with a cost function to optimize the PI parameters of the vol-
tage control loop of a grid-support/grid-forming voltage source
inverter. This type of inverter is implemented on the PV and the
BESS due to its flexibility in different MG operation modes.
It regulates the voltage and frequency references based on ac-
tive and reactive power levels in the MG. Three control loops
are implemented (from slowest to fastest) : the droop, voltage,
and current control loops. A virtual impedance control is added
to the voltage control loop to increase the accuracy of the po-
wer sharing among generators. PI controller parameters of the
control loops are determined via the Zeigler Nichols method.
Hence, the overall stability of the control loops is established
and analyzed using the Root Locus method.
Additionally, a power management control strategy is develo-
ped to allow PV units to supply active and reactive power with
regards to the MG’s voltage and frequency. Also, the BESS is
allowed to charge/discharge based on its safe operating range,
PV production and MG’s demand. Consequently, a balance bet-
ween production and demand is achieved despite load and solar
irradiance changes.
The cost function (2) is formulated using an integral of the squa-
red voltage error e and a penalty function p. The former opti-
mizes the voltage error signals of the voltage control loop to
regulate the reference currents and hence ensure optimal active
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and reactive power flow. The latter solves frequency variation
constraints, so it does not exceed ± 0.15 Hz.

cost function =

∫ T

0

e2(t) · dt+ p (2)

The goal of optimizing control parameters and the power flow,
as well as reducing frequency deviation and power variations
of the units is achieved. Compared to a PI based control of the
unit’s inverter, PSO proved better performance.

5.2. Supervised learning approach

Traditionally, the tuning of PI controllers is based on the pri-
mary conditions of a system. However, system conditions can
highly deviate from their nominal values in microgrids where
the inertia is low, and the production is highly variable. Authors
in [12] compared the traditional PI controller to a self-tuning
controller based on Artificial NN (ANN). The intelligent unit
collects response data from a plant, adjusts the ANN weights
via an error back-propagation and proposes a control signal to
tune the PI parameters online. Nonlinear blocks, delays due to
communication and limiters in the model are considered. When
subject to load disturbance, wind and solar power variations, the
proposed controller showed a better frequency control than the
conventional one.

Other authors [13] proposed PID controllers whose parame-
ters are obtained by ANN. Each controller charges/discharges a
BESS or a plug-in hybrid electric vehicle to perform frequency
control due to their fast response compared to the utility grid. In
this work, frequency deviation of a linearized MG is fed as an in-
put to the PID controllers where a multi-layer feedforward NN
fine-tunes the PID parameters. The range of parameter values
is set to reduce the computation time while offering acceptable
performance. In the training phase, random values are chosen
for the inputs (PID parameters) and output of the NN (3).

IAE =

∫ ∞

0

|Pg − Pl| · t · dt (3)

Where IAE represents the integral absolute error, Pg the pro-
duction fluctuations, and Pl the load deviations.
The goal is to minimize the error, so the corresponding inputs
are the optimal parameters. When compared to a PSO based PID
controller, the proposed controller reduces frequency deviations
more effectively. However, it does not consider load deviation
and power variations into dynamic parameter tuning.

5.3. Rule based with Reinforcement learning approach

Frequency regulation of a MG consisting of a tidal power
unit, EV, PV, diesel generators and load is investigated in [14].
Since tidal energy is intermittent, even if it can be predicted in
the long term, spinning reserves are required from energy sto-
rage devices. In this study, a fuzzy logic controller (FLC) is
proposed as the main load frequency controller and a supple-
mentary control is provided by an RL based controller. While
the former ensures basic load frequency controller performance
(stabilize the frequency fluctuations), the latter reinforces the
control by adaptations according to the uncertainties in the MG.
The FLC is type 2 with a single input to provide a better control
because of its fuzzy membership functions. Typically, FLC is
optimized either by heuristic methods or NN that fail to learn
online. Hence, RL can be ideal where an agent learns a policy
and maximizes the reward by interacting with the environment.
Regarding the main controller, a baseline PID controller whose
coefficients are adjusted heuristically, is cascaded with the FLC.
The footprint of uncertainty (FOU) is an important concept in
type 2 fuzzy logic because it indicates how much uncertain the
membership of a value is in a fuzzy set. The greater its area, the

greater the uncertainty is. Hence, fractional gradient descent is
applied to regulate the FOU coefficient to its lowest value.
As for the supplementary controller, a deep deterministic policy
gradient (DDPG) algorithm is applied for its ability to work in
a continuous action space. The method consists of a critic net-
work, and an actor network. The critic network analyzes the qua-
lity of the control signal by considering a state and an action as
inputs, and then generates the Q-value. The frequency deviation
and its derivative are fed as inputs to the actor network which
then generates the control action. To assess the performance of
the controller, a reward is defined as such (4) :

r(s, a) = −

(
t∑

i=t−1

|∆fi|

)
(4)

Where r(s, a) represents the cumulative reward of state s and
action a, and ∆fi the frequency deviation.
When the frequency deviation increases, the reward is reduced
and vice versa. Hence, weights are updated, and the supplemen-
tary controller reduces the effect of MG uncertainties by gene-
rating adaptive control actions.

6. DISTRIBUTED CONTROL FOR THE BALANCING

6.1. Centralized learning

Multi-agent RL (MARL) can be used to implement decen-
tralized control. Authors in [15] implemented a load frequency
control as a MARL problem. The controllers of the synchronous
generators are denoted as agents. These agents interact with
each other and the environment to learn optimal policies. The
MARL approach needs a mathematical formalization of the load
frequency control problem. Thus, MDP is used. It consists of a
state space, an action space, a transition function, and a reward
function. The state space includes two states that are the current
control action and the deviation from the synchronous speed of
the generator. The action space is defined by two actions, one
that increases and the other decreases the control action depen-
ding on the states. The transition function determines the envi-
ronment’s dynamics when transitioning between states, by using
a set of equations. The reward function represents the effect of
being present in a state and executing an action. Consequently,
the agent tries to minimize the deviation as much as possible
by maximizing its reward. Therefore, finding the optimal policy
to maximize the reward is defined as the MARL’s goal. Since
the global performance of the agent cannot be assessed via the
reward, an action-value function Qπ is used to determine the ex-
pected reward in the long run. This function is approximated by
Deep Q-learning due to the high number of states and actions.
Solving the MARL problem is done using the multi-agent deep
deterministic policy gradient algorithm. The critics and actors
are modelled by long short-term memory networks :

1. The role of the critics is to teach the actors the behavior
of the other agents and the environment’s dynamics, using
central information. The speed deviation, current and pre-
dicted control action of all agents are fed as input to the
critic network. The network then computes Qπ .

2. The role of the actors is to generate the action based on
local information only as they have already been trained
and know the behavior of other actors. The speed devia-
tion and the current control action of the agent are fed as
inputs to the network. The output is the predicted control
of the agent itself.

The proposed scheme learns in a central way and implements
the control actions in a distributed manner. Hence, communica-
tion infrastructure is no longer needed.

6.2. Distributed learning

Distributed learning [16] is a machine learning approach
where a model is trained using data that are distributed across
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several machines, instead of just one machine. This subfield of
machine learning can solve complex problems and handle large
data sets. Data security and privacy is ensured, while single
point failure is avoided. Hence, distributed learning is interes-
ting for distributed RES applications because it reduces the data
stored and exchanged between sources. In traditional learning,
data are collected and treated in a central way to derive a mo-
del. However, in distributed learning, data provided from a data
center is partitioned with an independent and identical unknown
distribution over several edge devices. Edge devices represent
communication links between nodes. Local training is achieved
in nodes and the gradients are sent to the central server whose
role is to update them. Communication between agents is allo-
wed (see Fig.3).

FIG. 3. Distributed learning [17].

Distributed learning can be applied to deep learning, reinfor-
cement learning, etc. It has been implemented in the energy ma-
nagement of MGs. In a specific application, each MG element’s
controller was supervised by a central server. The dynamic be-
havior of the MG elements was learned by utilizing localized
Hamiltonians that incorporated operational variables, such as
cost and voltage-current relationship. A virtual control element
was responsible for interacting with other elements through an
optimal control process that was subject to constraints. The in-
teraction was repeated multiple times by using a 2-person Pareto
game until an equilibrium in the MG was reached.

Assisted learning is a variant where agents assist each other
through the exchange of non-sensitive data. Here, communica-
tion with the central server is not established. Federated learning
(FL) is another variant of distributed learning where communi-
cation between agents is not allowed. It is the role of the central
server to coordinate the agents in parallel to achieve a specific
outcome. In [18], a self-adaptive PID controller based on FL
fractional order recurrent NN is applied for frequency regula-
tion. To optimize the PID parameters, the neurons send their
updated weights and receive the weights from their neighboring
neurons. The neurons keep updating their weights until they for-
mulate the aggregated model.

In [19], a distributed RL actor-critic NN was developed to
regulate the frequency of several interconnected MGs while
searching for the optimal control scheme. In addition to lo-
cal power plants, distributed energy resources are controlled
to provide frequency regulation. Moreover, tie-line bias control
is implemented to coordinate the active power flow between
MGs.Typically, actor and critic networks are separated. Howe-
ver, to enhance the control performance and establish the rela-
tionship between the two outputs, both networks are integrated
in this study (see Fig.4). Optimizing the short-term performance
and achieving stability requires an approximation of the desired
control output ûd,i by a deterministic learning algorithm. The
desired control output should be able to damp frequency de-
viation exponentially. On the other hand, the long-term perfor-

mance can be enhanced by estimating a strategic utility function
Q̂i that imposes penalties for large control outputs and system
states. The goal is to avoid deteriorating power devices due to
large frequency deviations. Hence, the critic network respon-
sible for the prediction of Q̂i takes as inputs the control output,
the MG’s state vector xi and its neighboring’s state vector xj .
The state vector includes the frequency deviation, the plant’s
power deviation, the main frequency controller output, and the
regional demand of the MG. N ′(i) corresponds to the set of
MGs cyber connected to the MG i. The proposed control scheme
was tested on a power grid of 7 and 12 interconnected MGs, and
proved better performance than conventional methods.

FIG. 4. Integrated actor-critic network [19].

7. CONCLUSION

Modern power systems are facing challenges due to the inte-
gration of RES into the power grid and the planned retirement of
thermal power plants. The variability and uncertainty in power
production and consumption have made stable and reliable ope-
ration of small electrical distribution networks more difficult to
achieve. Stochastic operational planning is required to account
for the variability of renewable generation, while the implemen-
tation of power electronics converters, and the management of
DC grids introduce new complexities.

The resilience and robustness of modern power systems are
being questioned due to external inputs such as solar irradia-
tion, wind speed, and forecasting errors, which can signifi-
cantly impact system operation. To address these challenges,
new control techniques incorporating these inputs are being ex-
plored to achieve grid balancing while minimizing costs and
CO2 emissions. Additionally, the concept of local energy com-
munities can help achieve local balancing by managing flexibi-
lities such as EVs and distributed storage systems in real-time.

The complexity of electrical systems, non-stationary parame-
ters, and increasing uncertainties call for the application of adap-
tive techniques and machine learning methods. Artificial intelli-
gence, with its ability to learn from the environment, offers pro-
mising solutions for power system operation. Data-driven ap-
proaches, enabled by advanced measurement and communica-
tion systems, have gained prominence, leveraging the computa-
tional power for real-time applications. Continued research and
development in these areas are essential to address the evolving
needs of modern power systems.

This review of some self-learning and adaptive techniques for
grid balancing groups them into three major methods : adap-
tive controllers of frequency regulators, AI tuning based PID
controllers, and distributed control. Limitations, communication
requirements, and computation time of the methods discussed in
this article are presented in table 1.
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TABLE 1 – Limitations, communication requirements, and computation time of presented articles.

Article Limitations Communication requirements Computation time
[8] Tradeoff between computational efficiency and algorithm per-

formance.
Small number of neurons to reduce the convergence time.

Frequency, droop coefficient, and injec-
ted power of each node is communicated
with its neighbors.

Time complexity O(nodes × sample
size × iterations).

[9] Need for coordination strategy between PID controllers.
Need for effective methods to represent signal transmission
delays.

Sensors for each generation unit and
load is required to communicate data
with the local smart grid dispatch sys-
tem.

When the PID controllers are coordina-
ted, the computation time increases.

[10] Lack of adaptability and inability to capture real-time dyna-
mics.
Limited application for a single plant.

No communication required. SDAE uses SL and UL which is time-
consuming.
Trial and error method is computatio-
nally expensive.

[11] Actual values of PI controller parameters are needed to extend
the level of search boundaries.
The selection of swarm size and number of iterations is not
justified.

No communication required. Method requires time to converge.

[12] Need for a large dataset.
The selection of number of neurons and hidden layers is not
justified.

No communication required. Computation time depends on the size
of the dataset, network architecture, etc.

[13] The parameters of the PID controller are not adaptively fine-
tuned.
No continuous learning or updates to the model.

No communication required. If the range of PID parameters is limi-
ted, the computation time is reduced.

[14] The self-tuned FLC requires more time to stabilize the fre-
quency.
The supplementary controller does not provide a great enhan-
cement.

Centralized control requires communi-
cation.

The adaptation of RL is time-
consuming.

[15] Limited application to synchronous generators.
Scalability challenges when the number of agents increases.

No communication between agents re-
quired.

Curse of dimensionality due to the num-
ber of agents.

[19] Coordination and synchronization challenges between agents.
Scalability challenges when the number of agents increases.

Communication protocols and delays
between MGs are not detailed or consi-
dered.

Curse of dimensionality due to the num-
ber of agents.
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