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Photon Bose–Einstein Condensation and Lasing in
Semiconductor Cavities

Aurelian Loirette-Pelous and Jean-Jacques Greffet*

Photon Bose–Einstein condensation and photon thermalisation have been
largely studied with molecular gain media in optical cavities. However, their
observation with semiconductors has remained elusive despite a large body of
experimental results and very well established theoretical models. In this
work, these models are used to build a new theoretical framework that
enables revisiting lasing to compare with photon Bose–Einstein condensation
in the driven-dissipative regime. The thermalisation figures of merit and the
different experimental procedures to asses thermalization are discussed.
Finally, the fluctuations of the system and their relation to the different
regimes are explored.

1. Introduction

In 2010, experiments by Klaers et al.[1,2] identified and demon-
strated Bose–Einstein condensation of photons, a new light
emission regime. While this regime share with lasing the
macroscopic occupation of one mode, cavity photons are in near-
thermodynamic equilibrium. As a direct consequence, cavity
modes occupation follow a Bose–Einstein (BE) distribution and
condensation is forced in the lowest energy cavity mode.
At first glance, Bose–Einstein condensation (BEC) with pho-

tons seems to be impossible. On the one hand, lasers are usually
thought to operate far from equilibrium. On the other hand, in
the so-called blackbody radiation, equilibrium between photons
is reached due to walls acting as a reservoir, but the null chemical
potential precludes condensation. Actually, a suitable gain mate-
rial such as pumped dyes molecules or semiconductors can act
as a reservoir providing a photon chemical potential.[3] Thermal-
ization of the photon gas with such a reservoir is made possible
with a high-Q cavity, when the number of absorption-emission
cycles made by a photon before leaving the cavity becomes large.
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Furthermore, the cavity introduces a
band gap in the photon dispersion rela-
tion so that a lowest energy state can be
defined for a given band. These ingredi-
ents are sufficient to ensure BE conden-
sation of photons at room temperature in
the weak coupling regime.[2]

In the last decade, the pioneering
experiments[1,2] in a dye-filled microcav-
ity triggered a large amount of works
in similar devices in order to under-
stand further this new regime and its
properties. An important issue has been
to clarify the similarities and differ-
ences with the lasing regime. While the

overall crossover from the standard out-of-equilibrium lasing
phase to the BEC one has been shown to be quite smooth,[4] some
features of BEC have appeared. At equilibrium, the emission
spectrum follows a BE distribution, and condensation occurs
into the lowest energy cavitymodes.When thermalization breaks
down, major spectral alterations have been observed, ranging
from deformation of the thermal tail[1] to lasing in excited modes
and multimode lasing.[5–7] Early experiments investigating the
second-order coherence in the BEC regime evidenced large fluc-
tuations g(2)(0) = 2 even far above the condensation threshold.[8]

This thermal behavior suggests a closest resemblance of a pho-
ton BEC to a pumped blackbody than to a standard laser. As a
consequence, first order temporal coherence is also delayed to
above-threshold excitation.[9] In recent years, the question about
the difference between BEC and lasing has been renewed due to
the emergence of nanostructured cavity mirrors enabling to real-
ize complex potentials for light.[10–14] Indeed, in these systems,
controlling the thermalization enables, for example, the study
of vortices formation and annihilation,[15–17] or to envision ana-
log simulation with synchronized arrays of out-of-equilibrium
condensates.[18–20] Still, in the quest for these new applications,
we observe that several aspects of the problem have been over-
looked so far. We list several of them in the next paragraphs.
We first note that BE condensation of photons has been ob-

served in dye-filled microcavities[2,6,21] and plasmonic nanoparti-
cles arrays,[22] and erbium–ytterbium co-doped fiber cavities.[23]

Alternatively, semiconductors have received much less atten-
tion up to now, in spite of being a very common and versa-
tile active medium. In particular, photon BEC in semiconductor-
based devices is not fully recognized yet. This is surprising in
many respects. On the experimental one, spectral signatures
hinting at thermalization and BEC of photons has been ob-
served early in a VCSEL designed for polariton physics.[24,25]

More recently, similar features have been observed in a large-
area VCSEL,[26] suggesting that BEC (or near-equilibrium BEC)
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of photons could be more common than it is usually thought. A
high absorption/emission cycles number before cavity loss has
also been reported in a quantum-well photonic crystal laser,[27]

while not interpreted as BEC. On the theoretical side, the pos-
sibility of a chemical potential for photons has been histori-
cally demonstrated on a semiconductor example.[3] Furthermore,
simple and accurate models of gain and lasing in semiconduc-
tors are available so that this system is a very good playground
to explore the physics of photon Bose–Einstein condensation
and lasing.
Second, finding a clear signature of photon thermalization is

not an obvious task. On the experimental side, the analysis of
emission spectra is often compared with a Bose–Einstein func-
tion. On the theoretical side, a dimensionless number quantify-
ing the degree of thermalization has been introduced theoreti-
cally by some authors. A simple connection between these two
approaches is still lacking.
Third, the connection between lasing and condensation is not

fully understood. While a clear threshold is observed in both
cases, its exact positions differs. This may impact the interpreta-
tion of the observed phenomena. Hence, there is a need to com-
pare the definitions of thresholds from laser and from equilib-
rium BE condensates physics.
Fourth, intensity correlations are often used to distinguish co-

herent light from stochastic light. It is interesting to study if las-
ing and condensation can be distinguished by studying fluctu-
ations. While many results have been reported, the role of the
degree of thermalization and the role of the 𝛽-factor of the cav-
ity have not been fully discussed so that it is difficult to draw fi-
nal conclusions.
In this paper, we take advantage of the well-developed formal-

ism to describe gain in semiconductors to analyse all these is-
sues. In the next section, we present a simple unified theory
of equilibrium and non-equilibrium condensation of photons in
a semiconductor-based cavity. While similar to the pioneering
model by Kirton and Keeling[28,29] for dye-filled microcavities,
we show that our model provides a straightforward interpreta-
tion of the photons chemical potential. We then derive a gener-
alized BE distribution in the driven-dissipative regime and ex-
hibit a dimensionless number that characterizes quantitatively
the degree of thermalization. We discuss some of its properties
and clarify the connection with other dimensionless numbers
such as cooperativity, Knudsen number and optical thickness. In
this new framework, we show how to revisit some lasing features
such as gain clamping and inversion, and discuss the selection
of the lasing mode. An extended definition of the equilibrium
condensation threshold is also introduced for non-equilibrium
systems, and compared to the standard lasing threshold
definition.
In Section 3, we discuss several observables to evaluate to

which extent a device is thermalized. Equipped with the explicit
form of the degree of thermalization introduced in the previous
section, we can revisit the typical experimental situations. In par-
ticular, we show that the most common practice, consisting in
studying the emission spectrum, should be used with caution.
We finally focus on the second-order coherence in Section 4.

We tackle the thermalisation issue by calculating analytically the
intensity autocorrelation function g(2)(0) as a function of the 𝛽-
factor and the degree of thermalization.

2. Equilibrium and Non-Equilibrium Condensation
of Photons in a Semiconductor-Based Cavity

In this section, we first summarize basic forms of the emission
and absorption rate in a semiconductor. We then use this for-
malism to recover the equilibrium number of photons per mode
in a lossless cavity. We finally compare this case to the one of a
lossy cavity with gain operating in the so-called driven-dissipative
regime. This approach enables us to discuss in a very simple
framework (i) the thermalization regime, introducing a degree
of thermalization in a very systematic way, (ii) the connection be-
tween condensation and lasing and (iii) the definitions of their
respective threshold.

2.1. Model of Semiconductor Gain Medium in a Cavity

Throughout this paper, we will focus on a piece of semiconductor
placed in a cavity. We assume finite extension of the cavity so that
photonics modes are spectrally discretized. We index them with
l = 0, 1, 2… nc corresponding to increasing energies. The vari-
ous particle exchange pathways between the gain medium, the
modes and the environment are shown on Figure 1a. In the cav-
ity, photons in the l-th mode can be created or annihilated by the
gain medium at the rates Rl

em for spontaneous emission, Rl
emN

l

for stimulated emission and Rl
absN

l for absorption, where Nl is
the number of photons in the mode l. Alternatively, radiative cav-
ity losses occurs at the rate 𝜅 lNl. In the semiconductor, excited
electrons are created at the rateRin through pumping (indistinctly
electrical or optical). Conversely, relaxation can occur through the
above-depicted emission in the cavity modes, through sponta-
neous emission into vacuum modes at the rate Rvac

em , or through
non-radiative relaxation pathways (for example Auger effect) at
the rateRnr . All in all, these various exchange pathways dictate the
dynamical evolution of the modes population through the equa-
tions:

dNl

dt
= −𝜅 lNl + [Rl

em(Ne) − Rl
abs(Ne)]N

l + Rl
em(Ne) (1)

for any cavity mode l, where Ne(t) is the number of excited elec-
trons in the gain medium, whose time evolution is given by:

dNe

dt
= Rin −

∑
l

[Rl
em(Ne) − Rl

abs(Ne)]N
l − Rvac

em (Ne) − Rnr(Ne) (2)

We now focus on the absorption and emission rates. In con-
trast with dye molecules, explicit forms of Rl

em and R
l
abs can be de-

rived for semiconductors. Here, we consider an intrinsic direct
bandgap semiconductor, indifferently 2D/3D, and follow usual
approximations.[30] As sketched on Figure 1b, the conduction and
heavy-hole valence band[31] are described by the isotropic disper-
sion Ec(k) and Ev(k), respectively, were k stands for the wavevec-
tor modulus. Assuming that only vertical interband transitions
are possible, a transition involving a photon in the mode l with
energy El requires an electron and a hole with the same wavevec-
tor k⃗l so that Ec(k

l) − Ev(k
l) = El. We also assume that the ground

cavity mode energy is higher than the gap energy E0 > Egap.
Interestingly, conduction electrons and valence holes close to

the gap edges can be well described as free particles with an
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Figure 1. Scheme of the system and notations. Panel a): flux of particles
between the gainmedium, the cavity, and the environment. Panel b): semi-
conductor band structure as a function of the wavevector modulus (left)
and distribution of the electrons in each band (right). See the main text for
a detailed description.

effective mass m∗
c∕v, which leads to the simple parabolic

band model Ec∕v(k) = E0c∕v ±
ℏ2k2

2m∗
c∕v

with E0c∕v the energy mini-

mum/maximum of the conduction/valence band and ℏ the
Planck constant. Analytical expressions for El(kl) can be derived,
as well as for the density of states in each band 𝜌c∕v(k) and the
joint density of state 𝜌J(k) associated to the vertical transitions.

[30]

Next, we assume that the bands are in local thermodynamic
equilibrium characterized by a Fermi–Dirac distribution with a
common temperature T and local chemical potentials 𝜇c and 𝜇v,
the so-called quasi-Fermi levels. In an intrinsic semiconductor
gain medium, both quasi-Fermi levels are uniquely related to the
excited electron number:

Ne = ∫ 𝜌c∕v(k)fFD(Ec∕v(k), T,𝜇c∕v)d
3k⃗ (3)

where fFD(E, T,𝜇) = 1∕[exp ( E−𝜇
kBT

) + 1] is the Fermi–Dirac distribu-

tion with E the electron energy, kB the Boltzmann constant and
𝜇 a quasi-Fermi level. These relations enable to switch between
Ne and 𝜇c,𝜇v as needed to use the most relevant variable. In the

case of electrical pumping, we have 𝜇c − 𝜇v = eV where V is the
applied voltage. As the voltage increases, 𝜇c increases (resp. 𝜇v
decreases) from the Fermi-level, so that their difference 𝜇c − 𝜇v
is controlled. It is also possible to define quasi-Fermi levels under
optical pumping.
In this context, the one-photon emission and absorption rates

for the mode l can be written respectively as[30]:

Rl
em = glfFD(Ec(k

l), T,𝜇c)[1 − fFD(Ev(k
l), T,𝜇v)] (4)

and

Rl
abs = glfFD(Ev(k

l), T,𝜇v)[1 − fFD(Ec(k
l), T,𝜇c)] (5)

where gl is a pumping-independent transition rate. The micro-
scopic expression of gl is given in Supporting Information A. The
right hand side of Equation (4) expresses that emission is propor-
tional to the probability of finding an electron at the right energy
in the conduction band and a corresponding hole in the valence
band, and conversely for absorption in Equation (5).
Finally, we define the fraction of spontaneous emission into

the mode l through the generalized 𝛽-factor:

𝛽 l =
Rl
em

Rvac
em +

∑
j R

j
em

(6)

In a single cavity mode context, this dimensionless number
characterizes the emission regime. A macroscopic laser corre-
sponds to 𝛽 → 0 while a nanolaser corresponds to 𝛽 → 1. Indeed
due to large (resp. small) mode volume, a macroscopic (resp.
nano-) laser is characterized by a low (resp. high) Purcell factor,
so that spontaneous emission into the numerous vacuummodes
(the mode l) is dominant. Reducing the volume further tends
to reduce the cavity mode number. Still the cavity modes spac-
ing and number can also be adjusted, for example, through en-
gineering of the mirrors curvature for Fabry–Perot-like cavities.
Hence the quantities Rvac

em and
∑

l R
l
em can be partially tuned inde-

pendently.

2.2. Photon BEC in a Lossless Cavity with Gain

Bose–Einstein condensation is a property of an ensemble of
bosons in thermodynamic equilibrium. Quantitatively, thermo-
dynamic equilibrium means that a state at energy E is occupied
according to a Bose–Einstein distribution 1∕[exp( E−𝜇

kBT
) − 1] where

𝜇 is the chemical potential. Condensation may occur when the
chemical potential approaches the ground state energy 𝜇 → E0.
In the blackbody radiation, photons reach a thermodynamic

equilibrium due to walls acting as a reservoir. This equilibrium
is characterized by a null photon chemical potential. Remarkably,
Würfel showed that it is possible to introduce a photon chemi-
cal potential when dealing with stationary systems with gain.[3]

We reproduce here the reasoning for clarity. We start by assum-
ing a perfectly lossless cavity, that is, 𝜅 l = 0. In the steady-state
regime, Equation (1) yields the balance between the spontaneous
and stimulated emission processes and the absorption in the l-th
photonic mode:

Rl
em + Rl

emN
l = Rl

absN
l (7)

Laser Photonics Rev. 2023, 2300366 2300366 (3 of 11) © 2023 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
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where Nl is the number of photons in the l-th mode. It is readily
seen that the photon number only depends on the ratio between
the absorption rate and the emission rate Rl

abs∕R
l
em. Given Equa-

tions (4) and (5) which assumes that the gain medium is in local
thermodynamic equilibrium, simple algebra allows to recover the
Van Roosbroeck–Shockley relation[32]:

Rl
abs

Rl
em

= exp
(
El − 𝜇

kBT

)
(8)

where 𝜇 = 𝜇c − 𝜇v. From Equations (7) and (8), it follows that the
photon number in the mode l is given by:

Nl = 1

exp
(

El−𝜇
kBT

)
− 1

(9)

namely a Bose–Einstein distribution with temperature T and a
chemical potential defined as the quasi-Fermi levels splitting. In
the absence of pumping, the chemical potential is null and we
recover the blackbody radiation distributionwith the temperature
of the semiconductor at equilibrium.
Finally, beyond the semiconductor model used here, we em-

phasize the key role of local thermodynamic equilibrium in each
band under pumping to derive this result. Indeed, this appears
as a sufficient condition on the gain medium to reach photons
BEC. In particular, this explains why Equation (8) can be written
similarly for dyes molecules in terms of emission and absorp-
tion cross sections, a formula known as the Kennard–Stepanov
relation[33–35] (sometimes also called the Neporent–McCumber
relation, see Ref. [36] and references therein). To summarize,
the number of photons in a non-lossy cavity filled with a gain
medium in local thermodynamic equilibrium can be described
by a Bose–Einstein distribution with a non-zero chemical poten-
tial.

2.3. The Driven-Dissipative Regime of a Lossy Cavity with Gain:
Lasing or BEC ?

Wenow consider a cavity coupled to the environment through the
loss rates 𝜅 l > 0. Such a system composed of a gain medium and
a cavity with radiative losses is usually considered to be a laser.
A natural question then arises: what is the difference between
Bose–Einstein condensation and lasing ?
We repeat the analysis of the previous section using the same

assumptions and notations, now accounting for cavity losses so
that the system is in the driven-dissipative regime. According to
Equation (1), the balance Equation (7) becomes Rl

em + Rl
emN

l =
(Rl

abs + 𝜅 l)Nl. The steady-state photon number in the mode l can
then be cast in the form [30]:

Nl =
Rl
em

𝜅 l − (Rl
em − Rl

abs)
(10)

In this last equation, the quantity Rl
em − Rl

abs is better known as
the net gain rate of the mode l. Hence, this simple model recov-
ers that the mode l starts to lase as the net gain compensates the
radiative losses. So far, we have isolated amode and computed its

occupation number by expressing the balance between gain and
losses. This approach is at first glance at odds with the study of
the population of different modes in an equilibrium system. Nev-
ertheless, we now cast this laser equation in a form that mimicks
Equation (9). Upon factorization byRl

em and inserting the relation
(8) in Equation (10), we find the alternative form [37]:

Nl = 1

exp
(

El−𝜇
kBT

)
[1 + Kl

n(T,𝜇)] − 1
(11)

where

Kl
n(T,𝜇) =

𝜅 l

Rl
abs(T,𝜇)

(12)

is a dimensionless number often called Knudsen number in the
context of transport phenomena and Boltzmann equation. The
Knudsen number is given by the ratio of the absorption time
1∕Rl

abs by a characteristic time of the cavity, the residence time
of a photon in the mode 1∕𝜅 l. Hence, in the regime where a pho-
ton undergoes a large number of absorption and emission cycles
during the residence time, the Knudsen number is small and the
distribution (11) approaches the BE distribution of a non-lossy
cavity. In other words, the large number of absorption and emis-
sion events enables the photons to thermalize with the semicon-
ductor acting as a reservoir. The Knudsen number appears to be
the natural quantity that quantifies how thermalized is a mode.
Importantly, note that a Knudsen number is associated to each
mode, it is not a global quantity. We stress that some modes may
be thermalized while others are not.
Alternatively, Equation (11) can be written in a form closer to

an equilibrium BE distribution[37]:

Nl = 1

exp
(

El−𝜇l
eff
(T,𝜇)

kBT

)
− 1

(13)

where we have introduced the mode-dependent effective chemi-
cal potential:

𝜇l
eff (T,𝜇) = 𝜇 − kBT log[1 + Kl

n(T,𝜇)] (14)

Interestingly, the effective chemical potential is explicitly com-
posed of a term 𝜇 which accounts for the gain and a term
−kBT log[1 + Kl

n] which accounts for the losses. This highlights
the driven-dissipative nature of this generalization of the BE dis-
tribution.
As a conclusion of this section, it is clear from the equality

between Equations (10), (11), and (13) that Bose–Einstein con-
densation of photons is a particular regime of lasing, in which (i)
Equation (8) is satisfied for the gain medium and (ii) the Knud-
sen number is small for all the modes to ensure that they are
all thermalized. In the remaining of this work, we will use “las-
ing” to refer indistinctly to Bose–Einstein condensation or stan-
dard out-of-equilibrium lasing. In addition, Equation (13) pro-
vides an alternative point of view to interpret lasing. Indeed, while
Equation (10) provides a good description of single mode lasing
in a system with significant losses and gain, we anticipate that
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Equation (13) will be more suited to the study of multimode phe-
nomena in the thermalized regime.

2.4. Knudsen Number, Thermalization Degree, Optical
Thickness, Cooperativity, and Photon Number at Transparency

In the last section, we have introduced the Knudsen number Kl
n

of a mode l as the absorption time divided by the residence time
in the cavity. It takes small values in the thermalized regime.
Its inverse, that we note Dl, was called thermalization degree in
Ref. [6] or thermalization coefficient in Ref. [38]. Its key role in
photon Bose–Einstein condensation had been suggested[1] and
identified[39] in early papers. Here, we have shown how it appears
naturally from laser rates equation in the context of an equilib-
rium distribution perturbed by the introduction of cavity losses.
Let us now discuss alternative physical interpretations of the ther-
malization degree. We first note that it can be viewed as the effec-
tive cavity length Ll = c∕𝜅 l divided by the absorption mean free
path llabs = c∕Rl

abs. With this point of view, which is often used
to discriminate between diffusive regime and ballistic regime in
transport phenomena, we identify the degree of thermalization
with the optical thickness Ll∕llabs = Dl. Second, we remind that
the optical thickness is proportional to the cooperativity C(Na).
This quantity had been initially introduced to characterize the ab-
sorption of a photon by an ensemble of Na atoms in a cavity in
the context of non-linear optics in a cavity.[40] It is currently used
as a measure of the light-matter interaction in cavity quantum
electrodynamics (CQED).[41] Finally, the thermalization degree
has been interpreted historically in laser physics as the photon
number at transparency.[42] Here, this follows from Equation (10)
when Rl

em = Rl
abs. Interestingly, this suggests to reinterpret some

experiments featuring a high photon number at transparency as
Bose–Einstein condensation of photons, see for example Ref. [27]
for a semiconductor laser in a photonic crystal cavity.

2.5. Lasing Mode in the BEC Picture

In the previous sections, we showed that the laser Equation (11)
giving the mode photon number has the structure of a Bose–
Einstein distribution apart from a correction term given by 1 +
Kl
n(T,𝜇). Hence, we can revisit the lasing transition in terms of

Bose–Einstein distribution.
We start with the laser point of view given by Equation (10). In

this framework, lasing in the mode l occurs as the gain rate sat-
urates when it approaches the loss rate (Rl

em − Rl
abs) → 𝜅 l. This

is called gain clamping. In addition, finite losses require pos-
itive gain, that is, population inversion of the corresponding
transition.[43]

We now adopt the point of view of the generalized Bose–
Einstein distribution. According to Equation (13), the usual con-
dition for Bose–Einstein condensation in the mode l is then di-
rectly generalized as:

𝜇l
eff (T,𝜇) → El (15)

Here, the increase of the pump power is interpreted as increas-
ing the quasi-Fermi levels splitting. Therefore, plugging Equa-

tion (14) into Equation (15) yields that 𝜇 converges toward a fixed
value 𝜇clp defined as the solution of the implicit equation:

𝜇clp − kBT log[1 + Kl
n(T,𝜇clp)] = El (16)

This saturation of 𝜇 corresponds to gain clamping in the BEC
point of view. In this last equation, the correction term is always
negative. Hence, the quasi-Fermi levels splitting must exceed the
transition energy El to trigger lasing. This corresponds to popu-
lation inversion. It highlights the importance to distinguish be-
tween the quasi-Fermi levels splitting and the effective chemical
potential, since only the latter can be interpreted as the photon
chemical potential.
We now focus on a multimode system. The usual laser text-

book picture is the following[30,44,45]: the gain curve is taken to be
a bell-shaped function of frequency, while the frequency depen-
dence of the mirrors losses is neglected. Lasing is thus expected
to occur in the cavity mode with largest gain. This picture is at
odds with the one of ideal Bose–Einstein condensation, which is
expected to occur in the ground cavity mode.
We now revisit this issue using the Bose–Einstein picture

given by Equation (16). In the present multimode situation, each
mode l defines a different clamping value of the quasi-Fermi lev-
els splitting, that we note 𝜇l

clp. Single mode lasing takes place in

the mode with the smallest 𝜇l
clp. To gain further insight, we as-

sume Kl
n(𝜇

l
clp) ≈ Kl

n(E
l). The clamped quasi-Fermi levels splitting

of each mode l is simply given by:

𝜇l
clp ≈ El + kBT log[1 + Kl

n(T, E
l)] (17)

Interestingly, this expression is composed of two competing
terms: on one hand, the mode energy favors lasing in low energy
modes; on the other hand, it depends on the Knudsen number
and favors lasing in highly thermalized modes. Therefore,
without the second contribution coming from the cavity losses,
we would recover the usual condensation on the ground mode.
In practice, lasing in a mode above the ground mode is thus the
signature of a system in which the modes have very different
thermalization degrees. This discussion highlights that thermal-
ization is primarily a modal property and not a system property.
Indeed, as explained in Section 2.2, thermalization occurs
between a mode and the reservoir, rather than between modes.
Finally, we note that some authors used lasing in the ground

mode versus an excited mode as a criterion to distinguish
between BE condensation and out-of-equilibrium lasing.[38,46]

While lasing in an excitedmode is indeed a signature of nonequi-
librium operation, Equation (17) shows that condensation in the
ground mode is only the signature of a Knudsen number slowly
varying from one mode to another, regardless of its absolute am-
plitude.

2.6. Condensation versus Lasing Threshold

In the previous section, we showed how to interpret the mode
selected for lasing within a generalized Bose–Einstein conden-
sation approach, stressing that condensation and lasing are
two faces of the same coin. As a next step, it is natural to
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Figure 2. Panel a): schematic input-output laser curve (red line) on a linear
scale. The dashed blue line is a linear fit of the laser curve. Its intersection
with the Nj = 0 axis defines the laser pumping threshold Rin,LAS. The cor-

responding lasing mode photon number at threshold is notedNj
LAS. Panel

b): schematic photon-photon curve of amultimode driven-dissipative BEC
condensing in the mode j (red line) on a linear scale. Ntot =

∑
l N

l is
the total number of photons in the cavity. The dashed blue line is a lin-
ear fit of the BEC curve. Its intersection with the Nj = 0 axis defines the
BEC threshold Ntot

BEC . The corresponding lasing mode photon number at

threshold is noted Nj
BEC . Panel c): comparison of the lasing mode pho-

ton number at laser and BEC thresholds, on input-output curves corre-
sponding to different rates of spontaneous emission into vacuummodes.
A constant cavity modes spacing is assumed so that their energy reads
El = E0(1 + 0.001 × l), with E0 = 1.271 eV. 𝜅 l and gl are assumed constant
over the modes, with a ratio gl∕𝜅 l = 10. This enforces lasing in the ground
mode. Non-radiative losses are neglected Rnr = 0. To help considering the
value of Rvacem (𝜇

j
clp
)∕

∑
l≠j 𝜅 lNl(𝜇j

clp
), the corresponding value of 𝛽0 is given

in the legend. Other parameters are compiled in Experimental Section.

compare the definitions used for lasing threshold and for con-
densation threshold.
We first remind the lasing threshold definition.Many different

criteria can be used to characterize lasing.[47,48] Here, we consider
the widely used condition based on an input/output curve. On
Figure 2a, the number of photons Nj in the cavity is plotted as a
function of the injection rate of excited carriers, that we note Rin.
On a linear scale, Nj turns suddenly from sublinear to linear on
a small pumping range. The threshold is defined as the injection
rate of excited carriers Rin,LAS when the linear slope is continued
down to 0 output rate (see the dashed blue line on Figure 2a). This
injection rate is equal to the value of the losses, evaluated at gain
clamping. Indeed, close to clamping, stimulated emission fun-

nel all additional photons in the lasing mode. The losses are due
to different mechanisms: the leakage through non-lasing cavity
modes with rate

∑
l≠j 𝜅 lNl(𝜇j

clp), the emission into vacuummodes

(Rvac
em (𝜇

j
clp)) and other non-radiative charge carrier relaxation pro-

cesses (Rnr(𝜇j
clp)). The lasing threshold is thus given by:

Rin,LAS = Rnr
(
𝜇
j
clp

)
+ Rvac

em

(
𝜇
j
clp

)
+
∑
l≠j

𝜅 lNl
(
𝜇
j
clp

)
(18)

We now focus on the condensation threshold definition. In
the literature on BEC in thermodynamic equilibrium, the BEC
threshold is defined by the equality between the total number
of particles and the number of particles in the excited states in
the condensed phase.[49] First, note that in photons BEC exper-
iments, the number Nl of photons in a mode l cannot be mea-
sured directly. Still, the driven-dissipative regime enables to de-
rive it from the measured flux 𝜅 lNl and the knowledge of the loss
rate 𝜅 l. Second, note that in essence, this definition relies on the
same idea as for a laser: beyond threshold, all additional photons
will go to the condensed phase. As shown on Figure 2b, the con-
densation threshold is extracted graphically in a similar fashion
as for the laser threshold when plotting the number of photons
in the condensedmode versus the total number of photons in the
cavity. The total number of photons in the cavity at threshold is
then given by the sum of non-condensing modes population at
clamping, namely

∑
l≠j Nl(𝜇j

clp) = Ntot
BEC. Still, this procedure dif-

fers from the lasing threshold definition, as it is based on a num-
ber of photons in a cavity and not on a comparison of fluxes of in-
put carriers and emitted photons. In particular, the non-radiative
losses and the radiative losses into vacuum modes are not taken
into account. Hence, the BEC definition leads to a smaller value
of the threshold for the quasi-Fermi levels splitting than the las-
ing condition. The difference is not very large when the 𝛽 factor
is close to 1 but may be very large when emission into vacuum
modes dominates. This is illustrated in Figure 2c where it is seen
that the thresholds can differ by orders of magnitude (in term of
photons in the lasing mode).
To conclude, the choice of using the BEC or laser threshold has

to be conducted carefully, as they can take very different values.
To guide this choice, one should note that for the lasing thresh-
old, both the input and emitted power must be monitored, while
the emitted power spectrum is sufficient to determine the con-
densation one. As already encountered in the previous sections,
this suggests that other than making a real difference between
BEC and lasing, the “condensation” point of view is a framework
suited to the study of the multimode character of the system,
while the “lasing” one rather focus on its driven-dissipative as-
pect.

3. Experimental Assessment of Thermalization

In the previous section, we made a clear distinction between
BEC and lasing using the thermalization degree of the modes.
However, the thermalization degree cannot bemeasured directly.
Indeed, it is proportional to the absorption rate Rl

abs, but only
the net absorption rate Rl

abs − Rl
em is given by a transmission

measurement. In this section, we aim at finding observable

Laser Photonics Rev. 2023, 2300366 2300366 (6 of 11) © 2023 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
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quantities that depend sharply on the thermalization degree,
enabling its assessment. We first analyze the emission spectrum
under homogenous pumping, which is the most common
experimental practice, and find that this method may not be reli-
able. We then discuss spectral and spatial measurements under
inhomogeneous pumping. We finally discuss the influence of
band-filling on the thermalization degree.

3.1. Spectrum Analysis

In an ideally thermalized system, we saw in Section 2.2
that the mode occupation follows a Bose–Einstein distribu-
tion Nl = 1∕[exp( E

l−𝜇
kBT

) − 1]. At low occupation numbers, the

classical regime is recovered, namely, the BE distribution re-
duces to a Maxwell–Boltzmann distribution Nl ≈ exp(− El−𝜇

kBT
).

Hence, a common practice to prove thermalization consists in
looking for a linear decay on a semi-logarithmic plot of the
spectrum.[24,26,50,51] Here, we compare this approach with the
characterization based on the Knudsen number.
In the classical regime, the generalized BE distribution Equa-

tion (11) becomes:

Nl ≈
exp

(
− El−𝜇

kBT

)
1 + Kl

n

(19)

It is readily seen that an exponential decay of the cavity photons
spectrum is observed in two cases: (i) the Knudsen number of all
the modes is much lower than 1, and (ii) the Knudsen number is
constant over the modes, whatever its value. In the second case,
despite an exponential behavior of the spectrum, the Knudsen
number may take values ≳ 1 indicating a non thermalized sys-
tem.
Beyond the classical regime, it is noteworthy that this issue

persists in the quantum degenerate regime. Indeed, according
to Equation (13), the generalized BE distribution with constant
Knudsen number Kn simplifies in an equilibrium BE distribu-
tion with the effective chemical potential 𝜇eff = 𝜇 − kBT log[1 +
Kn].

[37] It eventually means that spectrum analysis with homo-
geneous pumping in order to quantify the thermalization may
not be reliable. In particular, we note in Supporting Informa-
tion B that devices featuring a large, planar and homogeneously
pumped cavity are likely to feature a nearly constant Knud-
sen number. This may explain the BE-like spectra observed in
optically[24,25] and electrically[26] pumped large area VCSELs.

3.2. Inhomogeneous Pumping

As broadly investigated experimentally[1,2,4] and theoreti-
cally,[39,46,52] an interesting signature of thermalization can
be observed when using an inhomogeneous pumping with
a beam or injection area much smaller than the cavity. In-
deed, the pumped part of the gain medium emits photons
isotropically through spontaneous emission. These photons
can be reabsorbed efficiently everywhere in a thermalized
system. As a consequence, the gain is homogeneous in the
cavity despite a localized pumping. To describe this effect,

it is necessary to include additional rate equations describ-
ing locally the gain medium population.[38,39,53] While this
goes far beyond the scope of the present work, we give a
hint of the complexity of this case by writing how the photon
occupation number is modified. The balance Equation (7)
with the losses 𝜅 l for a mode l has to be integrated over the
gain medium volume (also called active volume) Vact, namely
∫Vact

d3 r⃗ [Rl
em(r⃗ ) + Rl

em(r⃗ )N
l] = Nl ∫Vact

d3 r⃗ [Rl
abs(r⃗ ) + 𝜅 l∕Vact] where

the rates are now defined locally. In particular, the local Knudsen
number is Kl

n(r⃗) = 𝜅 l∕[Rl
abs(r⃗ )Vact]. The photon number in the

mode l then becomes:

Nl = 1
exp

(
El

kBT

)
⟨
exp

(
𝜇(r⃗ )
kBT

)⟩l
[
1 +

⟨
Kl
n(r⃗ )

⟩l
]
− 1

(20)

where ⟨A(r⃗ )⟩l = ∫Vact
d3 r⃗ Rl

abs(r⃗ )A(r⃗ )∕ ∫Vact
d3 r⃗ Rl

abs(r⃗ ) is a spatial
average weighted and normalized by the absorption rate. While
the global distribution still appears as a generalized BE distri-
bution, additional complexity is brought by the spatial average.
In particular, the weighting by the local absorption now gives
a modal dependence to the quasi-Fermi levels splitting. An en-
hanced sensitivity to imperfect thermalization is thus expected.
Experimentally, it was reported in Ref. [1] a departure from the
ideal BE distribution of high energy modes occupation, while the
thermalization degree was tuned down. Given the small exten-
sion of the optical pump used compared to the large extension
of these high energy modes, this is in good qualitative agree-
ment with our considerations. A similar observation has also
been made in Ref. [22] for plasmon-polaritons.
Beside spectrum analysis, we eventually mention two other

types of measurements involving inhomogeneous pumping that
efficiently revealed the thermalization of dyes molecules-based
systems. The first consists in measuring the size of the ther-
mal background (light coming from non-lasing cavity modes) as
a function of the size of the pumping beam. When the system
is well thermalized, the thermal background size is invariant,
while it follows the size of the beam in the opposite case. This
type of measurement has been reported[54] and theoretically in-
vestigated in Ref. [39]. Similarly, the position of the pump beam
may influence the spatial transverse position of the condensate
in a spherical Fabry–Perot cavity. As the pump beam is moved
away from the center of the cavity, a lasing beam follows the
pump spot for non-thermalized systems whereas a condensate
stays in the fundamental mode (along the cavity axis) for ther-
malized systems. This measurement has been reported in Refs.
[1, 4] and theoretically analyzed in Ref. [46]. Finally, let us note
that the above discussion assumes that condensation occurs in
well-defined modes. Interestingly, pattern formations have been
observed for lasing systems. To the best of our knowledge, these
spatial structures have only been reported for non-thermalized
systems.[15,55–57] This suggests that thermalization could prevent
pattern formation. This hypothesis requires further investiga-
tion.

3.3. Thermalization and Saturation at High Pumping

In the last subsection, we discussed how the thermalization
of a system can be probed with inhomogeneous pumping.
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Figure 3. Variation of the thermalization degree Dl of a mode l as a func-
tion of the quasi-Fermi levels splitting 𝜇, for various ratio gl∕𝜅 l. The col-
ored dots indicate clamping as defined in Equation (16), at the quasi-Fermi
levels splitting 𝜇clp and the thermalization degree Dl

clp
= Dl(𝜇clp). The ver-

tical dark dashed line indicates transparency, namely 𝜇 = El. The energy of
themode is El = 1.271 eV. Other parameters are compiled in Experimental
Section.

Noteworthy, this has been done as if the thermalization of amode
was a general quantity, independent on the pumping strength.
Here, we discuss how the thermalization evolves as the system is
driven toward the degenerate regime through strong pumping.
The key issue is simple: thermalization is ensured by absorption
and re-emission; if the gain medium is highly pumped and ap-
proaches saturation, absorption is reduced and hence thermal-
ization decreases.
Inserting Equation (5) into Equation (12), the dependence

of the thermalization degree on the quasi-Fermi levels (that is
pumping) reads:

Dl =
gl

𝜅 l
fFD

(
Ev
(
kl
)
, T,𝜇v

)[
1 − fFD(Ec

(
kl
)
, T,𝜇c)

]
(21)

On Figure 3, we show the evolution of the thermalization de-
gree of a mode l as a function of the quasi-Fermi levels splitting
𝜇[58] for various gl∕𝜅 l. At low pumping, filling of the conduction
band (and accordingly depletion of the valence band) is negligible
so that Dl = gl∕𝜅 l. When increasing the quasi-Fermi levels split-
ting, the thermalization degree decreases significantly. At clamp-
ing (colored dot), the fall is about a multiplication factor 1∕5 at
high gl∕𝜅 l, and more than 1∕10 at low gl∕𝜅 l. In the first case, cor-
responding to a well thermalized mode, clamping occurs right
over transparency (dark dashed vertical line). In a two-level sys-
tem, transparency corresponds to an occupation probability of
1∕2 of the upper and lower level, so that the product of the lev-
els occupation is 1∕4. Here, the slightly different value is due to
the asymmetry of the bands of our semiconductor model (see
Experimental section). In the low mode thermalization case, a
large inversion population is needed for lasing, that occurs well
above transparency. The occupation probability of the conduction
band is then much greater than 1∕2, and conversely for the va-
lence band. Hence, the degree of thermalization is significantly
decreased compared to the near-equilibrium case.
In summary, reliable assessments of the system thermaliza-

tion should be made in the degenerate regime due to this depen-
dence of the thermalization degree dependence on pumping.

4. Intensity Fluctuations: Are they a BEC
Signature?

In the previous part, we showed that the spectrum is a quan-
tity that can reveal the thermalization of the system, but which
needs to be analyzed and probed with care. In this section, we
investigate the intensity fluctuations as an alternative observ-
able to distinguish between the BEC and the out-of-equilibrium
laser regimes.

4.1. Context

In the textbook picture of out-of-equilibrium lasing, coherence
sets up right at the lasing threshold.[30] Above threshold, the in-
tensity fluctuations are ruled by Poissonian statistics resulting in
a second order correlation function at zero-time delay g(2)(0) = 1.
On the contrary, earlier works on intensity fluctuations in the
BEC regime predicted[59] and thenmeasured[8] super-Poissonian
statistics for light well-above condensation threshold. This ther-
mal regime, characterized by g(2)(0) = 2, was found to extend
deeply in the condensed phase, before the crossover to the usual
Poissonian light was recovered. This ask the question whether
large fluctuations are a signature of BEC.
While the picture described in the last paragraph suggests

studying the fluctuations according to the thermalization degree,
other parameter have to be taken into account. In Refs. [8, 59], it
has been pointed out that the reservoir size has an important in-
fluence on fluctuations. For large reservoirs, the gain medium
can be loosely thought as an infinite reservoir, recovering grand-
canonical ensemble conditions. The large condensed mode pho-
ton number fluctuations, comparable to its mean value even
above condensation threshold, are then identified to the so-called
grand-canonical fluctuation catastrophe.[60] On the contrary, fluc-
tuations become limited when the reservoir excitations number
is smaller than the mean photon number.
Besides the role of the volume, it has been shown that the 𝛽-

factor has a strong influence on the fluctuations for micro- and
nano-lasers.[61,62] While macroscopic lasers with low 𝛽−factor
show the usual steep crossover between thermal and Poissonian
light at lasing threshold, in high-𝛽 devices the crossover is slow
and occurs well above threshold. Knowing that the perfect equi-
librium approach of Ref. [59] assumed a 𝛽 = 1 cavity, this rather
suggests that intensity fluctuations could be independent on the
system thermalization, at least in the nanolaser limit.
In summary, assessing the role of thermalization on fluctua-

tions requires to carefully control both the effect of the size of
the reservoir and the 𝛽-factor. With that many degrees of free-
dom, it is a theoretical challenging task. Methods to calculate the
photon number distribution like master equations for the lasing
mode photon number[29,59,63,64] or stochastic rate equations[65–68]

can hardly been solved numerically. In the next subsections, we
proceed to a simpler investigation, focusing only on the second-
order coherence at zero-time delay g(2)(0). We calculate this quan-
tity by studying the small photon number deviations around the
steady state in the Langevin approach. Interestingly, we note that
for this quantity, this approach showed good agreement with a
more rigorous stochastic rate equations model.[65] Thus, this al-
lows to get accurate and analytical insights for an observable eas-
ily accessible experimentally.

Laser Photonics Rev. 2023, 2300366 2300366 (8 of 11) © 2023 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
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4.2. Second-Order Coherence at Zero Delay Time

We base our investigation on the dynamical evolution Equations
(1) and (2). For simplicity, we focus on the lasing mode j and we
neglect the influence of other cavitymodes on the system dynam-
ics, as well as non-radiative losses. Hereafter, we omit the lasing
mode superscript Nj = N. As a consequence, the dynamical evo-
lution equation for N(t) is given by:

dN
dt

= −𝜅N + [Rem(Ne) − Rabs(Ne)]N + Rem(Ne) (22)

where Ne(t) is the number of excited electrons in the gain
medium. In semiconductors gain media, the excited electrons
dynamics is usually commensurable with the one of the cavity
photons.[30] Hence the corresponding evolution equation ofNe(t)
must be taken into account. According to Equation (2) and to the
approximations above, it yields:

dNe

dt
= Rin − [Rem(Ne) − Rabs(Ne)]N −

Rem(Ne)
𝛽

(23)

where we used that Rvac
em = (1∕𝛽 − 1)Rem as follows from Equa-

tion (6). In the following, 𝛽 will be assumed to be independent
on pumping, as usual in laser physics.[30] All in all, these 2-
coupled rate equations correspond to a standard class-B model
broadly used to describe the dynamics of most semiconductor
single mode lasers.[30]

We now note the steady-state solutions of Equations (22) and
(23) as Nss, Ne,ss, respectively. We also introduce the small devi-
ations 𝛿N(t), 𝛿Ne(t), with |𝛿N| ≪ Nss and |𝛿Ne| ≪ Ne,ss. We then
linearize Equations (22) and (23) to first order in these parame-
ters. The noise due to the quantization of the emission, absorp-
tion, pumping and loss process is finally added to each equa-
tion through the respective stochastic terms Fp, Fe. We obtain the
following coupled Langevin equations:

d𝛿N
dt

= −𝛾pp𝛿N + 𝛾pe𝛿Ne + Fp (24)

and

d𝛿Ne

dt
= −𝛾ep𝛿N − 𝛾ee𝛿Ne + Fe (25)

where we have defined the short-hands 𝛾pp = −[Rem(Ne,ss) −
Rabs(Ne,ss)] + 𝜅, 𝛾pe = Nss𝜕Ne

[Rem − Rabs](Ne,ss) + 𝜕Ne
Rem(Ne,ss),

𝛾ep = [Rem(Ne,ss) − Rabs(Ne,ss)], 𝛾ee = Nss𝜕Ne
[Rem − Rabs](Ne,ss) +

(1∕𝛽)𝜕Ne
Rem(Ne,ss). In addition, the stochastic terms verify the

usual correlations properties ⟨Fx(t1)Fy(t2)⟩ = 2Sxy𝛿(t1 − t2) with
x, y ∈ (p, e),[30] where the expressions of the Sxy are given in
Supporting Information C.
In this linearized Langevin approach, the second-order inten-

sity correlation g(2)(0) = ⟨N(0)[N(0) − 1]⟩∕N2
ss is given by:

g(2)(0) = 1 − 1
Nss

+
⟨𝛿N(0)2⟩

N2
ss

. (26)

A detailed expression is then obtained by Fourier transforming
(24),(25), so that the problem can be reformulated into amatricial

form which is easy to invert. The full result, well-known in the
literature,[30,65,69] is given in Supporting Information C (Equation
S4). Simple asymptotic expressions can be written for limiting
values of some parameters, as discussed in the next subsection.

4.3. Results

We first focus on the usual macroscopic laser limit 𝛽 → 0. From
the full expression in Supporting Information C (Equation S4),
simple algebra show that the second-order coherence at zero de-
lay time reduces to:

g(2)(0) = 1 + 1

1 +
(

Nss

NLAS

)2 (27)

where NLAS is the photon number at lasing threshold. The co-
herence threshold is defined at g(2)(0) = 1.5 corresponding to
N = NLAS. Going straight to the point, this equality between the
coherence and laser thresholds does not allow for a distinction
between standard laser and photons BEC in this limit. Indeed,
here the crossover from thermal to Poissonian statistics always
occurs at lasing threshold, regardless of the thermalization degree.
We now focus on the opposite, “nanolaser” limit 𝛽 → 1, where

most of the spontaneous emission goes into the single cavity
mode. The second-order coherence at zero delay time now fol-
lows the asymptotic behavior[59,61,62,67,69]:

g(2)(0) = 1 + 1

1 +
(

Nss

NCO

)2 (28)

where the coherence threshold is now given by NCO ≈
[ Rem(Nss=∞)

𝜕Ne [Rem−Rabs ](Nss=∞)
]1∕2. It is seen that NCO presents no explicit depen-

dence on the thermalization degree. Coming back to our initial ques-
tion, we conclude that the study of intensity fluctuations through
the second-order coherence at zero delay time does not provide
a mean to distinguish between the out-of-equilibrium laser and
the BE condensation regimes.
Finally, we discuss the consequence of this conclusion on the

grand canonical fluctuation catastrophe. In the nanolaser limit,
the coherence threshold is not given by the laser nor the BEC
threshold. In particular, for realistic parameter values, the co-
herence threshold is shifted to much stronger pumping values
than the laser threshold[61,62,69] and the BEC threshold.[59] Hence,
there is a lasing/BEC regime with large fluctuations between
these two thresholds. It is possible to attribute this regime to
grand canonical fluctuations. Indeed, it has been shown[8] that
the coherence threshold square N2

CO corresponds to an effective
number of excited carriers in the gain medium. Therefore, in
the range between the condensation and the coherence thresh-
olds, the gain medium is large compared to the photon gas and
can be considered to be an infinite reservoir. Remarkably, we
find that the concept of grand canonical fluctuations is not re-
stricted to equilibrium BE condensation but can be extended to
non-equilibrium systems.

Laser Photonics Rev. 2023, 2300366 2300366 (9 of 11) © 2023 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
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5. Conclusion

To summarize, we have explored the photon Bose–Einstein con-
densate regime for semiconductors in a cavity. Owing to the ex-
plicit form of the gain for semiconductors and the extensive body
of knowledge for semiconductors lasers, this system is a very con-
venient playground which provides a theoretical framework to
discuss both lasing and condensation.
Starting from the usual expression of the photon number in a

mode from laser physics, we have shown that theVanRoosbroek–
Schockley relation enables to derive a generalized BE distribution
in the driven-dissipative regime. This is the central result of our
work. It provides a new framework to interpret lasing and related
features such as gain clamping, population inversion or the las-
ing mode selection. This point of view also suggest a new lasing
threshold definition based on the equilibrium BE distribution,
that we compare to the usual definition of the lasing threshold
based on input–output curves.
Remarkably, this framework evidences that photon Bose–

Einstein condensation is a particular case of the lasing regime,
in which all the modes are strongly thermalized. This state-
ment is made obvious in our theory as the thermalization of
a mode is quantitatively characterized by a Knudsen number
that emerges naturally from the analysis. We have discussed
the close connection of the Knudsen number with other quan-
tities introduced in different contexts such as thermalisation de-
gree, optical thickness, cooperativity or the transparence point.
Equipped with this theoretical figure of merit to quantify ther-
malization, we have studied different experimental procedures
to assess thermalization and put forward their strengths and
limitations. This analysis will guide the demonstration of Bose–
Einstein condensation of photons in semiconductor platforms.
Finally, we have explored the connection between the intensity
fluctuations and the thermalization regime. Large fluctuations
are a priori expected to be a signature of the grand canonical
regime typical of the equilibrium condensation. However, using
a Langevin analytical model of the fluctuations in the driven-
dissipative regime, we showed that the coherence threshold does
not depend on the thermalization degree, both for large and small
𝛽-factors.
In this paper, we have explored the stationary regime of a sin-

gle BEC. The semiconductor platform appears to be a very fruitful
playground to study BEC physics. An interesting direction for fu-
ture work is to revisit in the BEC regime recent results obtained
with semiconductor cavities such as topological lasers[70–72] or
chiral emission.[73] The platform is also well suited to further ex-
plore the dynamical behavior of BEC.[74] In particular, as large-
aspect-ratio semiconductor lasers are known to exhibit pattern
formation due to the dynamical instability of uniform intensity
distributions,[55,56] it would be interesting to study the interplay of
such effects with the gain homogenization observed in the ther-
malized regime. Finally, the analysis of the fluctuations has re-
vealed an interesting regime for micro and nanolasers above the
lasing threshold and below the coherence threshold which can be
viewed as grand-canonical fluctuations in non-equilibrium sys-
tems. This calls for more detailed studies of this phenomenon
in the framework of open systems. It may provide new exper-
imental platforms for the study of nonequilibrium statistical
phenomena.

6. Experimental Section
Parameters Values used in Figures: The parameter values used in this

work are representative of the VCSEL studied in Ref. [26]. The semiconduc-
tor gain medium consists of InGaAs quantum wells. Egap = 1.215 eV was
taken, as well as m∗

c = 0.059 ×me, m
∗
v = 0.37 ×me where me is the elec-

tron mass.[30] The hole mass corresponds to the valence band heavy-hole
mass. Contribution of transitions with other valence bands was neglected.
Room temperature operation was assumed to be T = 300 K.
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Le Gratiet, O. Bleu, D. Solnyshkov, G. Malpuech, I. Sagnes, S. Ravets,
A. Amo, J. Bloch, Nat. Photonics 2019, 13, 283.

[74] V. N. Gladilin, M. Wouters, Phys. Rev. A 2020, 101, 043814.

Laser Photonics Rev. 2023, 2300366 2300366 (11 of 11) © 2023 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH

 18638899, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/lpor.202300366 by C

ochrane France, W
iley O

nline L
ibrary on [18/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.lpr-journal.org

