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A mixture of ellipsoidal densities for 3D data modelling

Denis Brazey*, Antoine Godichon-Baggioni†and Bruno Portier ‡

Abstract

In this paper, we propose a new ellipsoidal mixture model. This model is based a new
probability density function belonging to the family of elliptical distributions and designed to model
points spread around an ellipsoidal surface. Then, we consider a mixture model based on this
density, whose parameters are estimated with the help of an EM algorithm. The properties of
the estimates are studied theoretically and empirically. The algorithm is compared to a state of
the art ellipse fitting method and experimented on 3D data.

Keywords: Ellipsoidal mixture model; Elliptical distribution; EM algorithm.

1 Introduction

Fitting geometric primitives to a set of noisy points holds significant practical relevance across a
multitude of scientific domains, including environmental science [5], agriculture [26], computer-aided
design (CAD) [29], industrial applications [22], robotics [32], autonomous vehicles [7], and LiDAR
applications [33].

In particular, geometric modeling offers a powerful means of representing objects present in
images captured by imaging sensors. These sensors provide 2D or 3D point sets that describe the
external surfaces of objects. Describing these data using simple geometric shapes such as spheres,
cylinders, planes, and ellipsoids enables us to summarize and extract meaningful information. This
high-level representation is crucial for efficient analysis and understanding of image content.

In practice, two fundamental scenarios arise: shape detection and shape fitting. In classical fit-
ting problems, it is assumed that the majority of points belong to the shape of interest. Consequently,
the entire data set is modeled with a single instance of the shape, with some points considered as
outliers. The accuracy of this modeling is inevitably impacted by the noise in the data points [16],
as well as their susceptibility to outliers and high levels of missing data. Typically, these algorithms
are grounded in the principles of least squares, where the minimized distance is usually algebraic
or geometric [14, 13, 1].

Conversely, in shape detection problems, the data may contain a high proportion of outliers that
belong to other objects. The objective here is to extract one or multiple instances of a given shape
without prior knowledge of which observations belong to them. Techniques like RANSAC and Hough
transform are commonly employed to address this challenge. RANSAC randomly selects sets of in-
lier points, fits the primitive shape, and retains those closest to the data [37]. The Hough transform,
on the other hand, employs a voting scheme in a discretized parameter space [34]. However, these
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methods often exhibit sensitivity to parameter tuning. An alternative approach is to first apply a seg-
mentation algorithm, followed by a fitting algorithm on the detected clusters. Recently, deep neural
networks have also been employed for primitive detection, segmenting point clouds into clusters and
predicting classification and membership scores for subsequent fitting steps [27, 15, 31].

Mixture models [19] are statistical tools that can efficiently classify data and estimate a probabilis-
tic model for each component. They find applications in various image processing tasks, including
background subtraction [42], image segmentation [39], head detection [4], and ellipsoid fitting [41].

In this work, our focus lies in modeling a 3D point cloud using a mixture of ellipsoidal shapes.
The primary challenge is selecting the component density within the mixture. We propose employing
a parametric density of the form:

fθ(x) = C exp
(
−

d2
θ(x)
2σ2

)
, x ∈ Rd

where C represents the normalization constant, dθ(x) quantifies the signed distance between point
x ∈ Rd and the surface S defined by the parameter vector θ, and σ controls the noise level. This
distribution characterizes points distributed around the surface S of the considered shape with fluc-
tuations in the normal direction. The surface is defined by the zero level line of the distance function
dθ, where the density f reaches its maximum value.

To fit an ellipsoid with a center µ ∈ Rd and shape matrix Σ ∈ Rd×d, we propose using the
following signed distance:

dθ(x) =
√
(x− µ)T Σ−1 (x− µ)− 1,

resulting in a new pdf and leading to a new mixture model based on this density. Let us note that
for the choice dµ(x) = ‖x− µ‖, where ‖·‖ denotes the Euclidian norm in Rd, then S = {µ} and
the density f reduces to the usual Gaussian density of parameters µ and σ. When considering
d(µ,r)(x) = ‖x− µ‖ − r, then S is the sphere of center µ ∈ Rd and radius r > 0 and we obtain the
density introduced in [4].

The primary objectives of this study are twofold: first, to develop efficient methods for parameter
estimation of this new density, providing direct estimates and their convergence rates; second, to
propose iterative estimation methods with improved behavior, particularly relevant for estimating the
parameters of the mixture model. Finally, we estimate the parameters of this mixture model using
the EM algorithm [6], where the maximization step is obtained thanks to the aforementioned iterative
estimates. Finally, this approach seems to be confirmed by experiments on real and simulated data.

The structure of the paper is as follows: Section 2 introduces the ellipsoidal mixture model,
while Section 3 delves into the estimation of model parameters. Section 4 presents results obtained
from simulated data, and Section 5 discusses experiments conducted on real data. The proofs and
additional results are deferred to the Appendix.

2 The ellipsoidal mixture model

In this section, we introduce the new ellipsoidal density and establish some usefull properties and
results which will be used in the rest of the paper.
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2.1 The new ellipsoidal density

In order to model points spread around an ellipsoidal surface, we propose to use a parametric
density of the form

fθ(x) = C exp
(
−

d2
θ(x)
2σ2

)
, x ∈ Rd (2.1)

where C is the normalization constant, dθ(x) quantify the signed distance between the point x ∈ Rd

and the surface S of parameter vector θ and σ controls the level of noise.
Let us discuss the choice of the distance function. A d-dimensional ellipsoid is characterized

by a center µ ∈ Rd and a shape matrix Σ ∈ Rd×d symetric and positive definite. The ellipsoidal
surface S is defined as follows

S =
{

x ∈ Rd, (x− µ)T Σ−1 (x− µ) = 1
}

. (2.2)

The center µ, defining the location of the ellipsoid, is the intersection between the d axes of the
ellipsoid. The shape matrix Σ defines the shape and the orientation of the surface. More precisely,
we can consider the decomposition Σ = P D P−1, where D is the diagonal matrix of eigenvalues
(λ1, . . . , λd) of Σ such that 0 < λ1 = λmin(Σ) ≤ . . . ≤ λd = λmax(Σ) and P is the orthogonal
matrix whose colums are the associated eigenvectors (v1, . . . , vd). Principal axes of the ellipsoid

are given by (vi)
d
i=1 and their lengths by

(
2
√

λi
)d

i=1. Since the Euclidian distance is difficult to write
analytically in the case of the ellipsoid, we decide to use the Mahalanobis distance defined as

dm (x, µ, Σ) =
√
(x− µ)T Σ−1 (x− µ), (2.3)

where x ∈ Rd is the considered point and θ = (µ, Σ) is the parameter of the ellipsoid. From (2.2),
the ellipsoid is defined by the contour line of value one. Note that in the particular case where
Σ = Id, the Mahalanobis distance coincides with the Euclidian distance. Finally, the general density
(2.1) rewrites

f (x) = Cd exp

(
− 1

2 σ2

(√
(x− µ)T Σ−1 (x− µ)− 1

)2
)

, (2.4)

where µ ∈ Rd, Σ ∈ Rd×d is symetric and positive definite and σ2 > 0. The parameter σ controlls
the dispersion of the observations around the surface. The normalization constant Cd equals to

Cd =
Γ(d/2)

2 πd/2 |Σ |1/2 Jd−1(σ)
,

where Γ denotes the Gamma function, and for q ∈N and α > 0,

Jq(α) =
∫ ∞

0
tq exp

(
− (t− 1)2

2 α2

)
dt.

The detailed calculus are given in Appendix B. As this distribution is designed to model points
spread around an ellipsoid, we only consider the case where σ is small enough. More precisely, we
suppose that the value of σ is largely smaller than the length of the smallest half-axis of the ellipsoid,
namely

√
λmin(Σ). This assumption means that fluctuations do not interact with the other side of the

surface. On top of that, if this condition is not verified, the density will model points located near the
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center of the ellipsoid, which is not our objective. The ellipsoidal density of parameters µ = (0, 0)T,

Σ =

(
4 0
0 1

)
and σ2 = 0.1 is represented Figure 1(a) and a sample from the distribution is given

Figure 1(b). The sample illustrates that fluctuations are gaussians oriented in the normal direction
of the surface.

(a) (b)

Figure 1: In (a) the ellipsoidal density in the case d = 2 and in (b) a sample of size n = 1000 from the
distribution.

We now give some useful properties and results concerning the new distribution. Let us remark
that in the case d ≥ 2, our ellipsoidal distribution belongs to the family of elliptical distributions.
Indeed, if we consider the function

gα(t) =
Γ(d/2)

2πd/2 Jd−1(α)
exp

−
(√

t− 1
)2

2α2

 ,

then the density f rewrites

f (x) = |Σ |−1/2 gσ

(
(x− µ)T Σ−1 (x− µ)

)
,

which means from Definition 1.5.2 from [21] that f is an elliptical pdf. Consequently, considering
a random vector X of density f and Y = Σ−1/2 (X− µ), then Y has density gσ(yT y) and can be
written under the form Y = W U, where W and U are independent, U is uniformly distributed on
the d-dimensional unit sphere and W has the density

ϕ(t) =
2πd/2

Γ(d/2)
td−1, gσ(t2) =

td−1

Jd−1(σ)
exp

(
− (t− 1)2

2σ2

)
1t≥0.

The random vector X can therefore be written

X = µ + Σ1/2 W U.

Let us now focus on the first moments of X and some other results which will be usefull to prove
some estimators properties in Section 3.

Lemma 2.1. Let X be a random vector of Rd (with d ≥ 2) of pdf f introduced in (2.4). For q ≥ 1,
we set Jq = Jq(σ). Then,

E [X] = µ and V [X] = E
[
(X− µ) (X− µ)T

]
=

Jd+1

d Jd−1
Σ = d−1Σ∗
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where we set Σ∗ =
Jd+1

Jd−1
Σ. In addition,

V

[√
(X− µ)T Σ−1

∗ (X− µ)

]
=

Jd+1 Jd−1 − J2
d

Jd+1 Jd−1
= σ̃2.

The proof is given in Section A.1.

Remark 2.1. In the rest of the paper, we suppose that σ ≤ 0.02, which is a reasonable value
for our experimental settings (cf Appendix C). Results of the lemma are formulated for any
dimension d ≥ 2 and for any value of σ. In the particular case where d = 3 and σ is small
enough, we can approximate J2 by C

(
1 + σ2), J3 by C

(
1 + 3σ2) and J4 by C

(
1 + 6σ2 + 3σ4),

where C = σ
√

2π.
Consequently, one can approximate Σ∗ = (1 + 6σ2 + 3σ4) (1 + σ2)−1 Σ and σ̃2 = (1 +

3σ4) (1 + 7σ2 + 9σ4 + 3σ6)−1 σ2. Finally, as σ is assumed sufficently small, we deduce that
Σ∗ ' Σ and σ̃2 ' σ2 (cf. Appendix B and Appendix C) .

The following lemma gives results that will improve the estimation of parameter µ via a Back-
Fitting (BF for short) type algorithm.

Lemma 2.2. Let X be a random vector of Rd (with d ≥ 2) of pdf f introduced in (2.4). Denoting

X∗ := X− (X− µ)√
(X− µ)T Σ−1

∗ (X− µ)
,

then

E [X∗] = µ and V (X∗) = E

[(
W −

√
E [W2]

)2
]

Σ
d

,

and ‖V[X∗]‖ < ‖V [X]‖.

The proof is given in Section A.1. Lemma 2.1 and 2.2 combined with Remark 2.1 will be par-
ticularly usefull for the estimation of the parameters of the distribution from a sample (see Section
3).

2.2 The finite mixture model

A finite mixture model is a probabilistic model characterised by a density function h of the form

h(x|Θ) =
K

∑
k=1

πk f (x|θk),

where f belongs to a parametric density family, K is the number of components of the mixture, (πk)
are the mixing weights satisfying πk ≥ 0 and ∑K

k=1 πk = 1 and Θ = (π1, . . . , πK, θ1, . . . , θK) is the
vector containing all the parameters of the mixture.

The choice of the common density f depends on the data set. In many applications, Gaussian
or Poisson densities have been used. In our case, since our data are 3-dimensional points spread
around ellipsoidal surfaces, the pdf f is set to the new density introduced in (2.4) and the parameter
vector θk is then defined as θk =

(
µk, Σk, σ2

k

)
.
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3 Parameters estimation

This section concerns the estimation of the unknown parameters of the model from a sample in the
case d = 3 which is the major concern of the paper. Let us note that the estimation of the model
in the case d = 2 is straightforward. For shake of clarity, sections 3.1 and 3.2 are dedicated to the
estimation of the parameters of the ellipsoidal density f while section 3.3 deals with the estimation
of the ellipsoidal mixture model of density h.

3.1 Direct estimation of the parameters

Let X1, . . . , Xn be a sample of independent and identically distributed random vectors of R3 with
density f introduced in (2.4) with d = 3 and under the assumption that σ �

√
λmin(Σ). The

objective is to estimate the parameters µ, Σ and σ2 characterizing the distribution.
Let us start with the estimation of the center µ. To this aim, we consider the empirical mean of

the sample

Xn =
1
n

n

∑
i=1

Xi.

It is clear from Theorem 2.1 that Xn is an unbiased estimator of µ and its rate of convergence derived
from the law of the iterated logarithm, is given in Theorem 3.1. We now consider the estimation of
the shape matrix Σ. We recall for this purpose the usual covariance matrix estimator

Sn =
1
n

n

∑
i=1

(Xi − µ) (Xi − µ)T .

Thanks to the results of Theorem 2.1 and the strong law of large numbers, we can easily show that
Sn is an unbiased and convergent estimator of J4(σ)Σ/(3 J2(σ)). When σ is sufficiently small, the
ratio J4 J−1

2 is close to 1 (see Remark 2.1) and in that case a reasonable estimator of Σ is Σn = 3 Sn.
However, the parameter µ being unknown, it is estimated by Xn and we finaly propose to estimate
Σ by

Σ̂n =
3
n

n

∑
i=1

(
Xi − Xn

) (
Xi − Xn

)T .

By using the decomposition

Σ̂n = Σn − 3
(
Xn − µ

) (
Xn − µ

)T ,

we can show that Σ̂n converges almost surely towards Σ∗ = J4(σ) J−1
2 (σ)Σ with rate (see Theorem

3.1) and consequently when σ is small, Σ̂n is a reasonable estimator of Σ.
We now focus on the estimation of parameter σ2. In order to estimate this parameter, we intro-

duce the estimator

σ2
n =

1
n

n

∑
j=1

(
ξ j −E

[
ξ j
])2

where for j = 1, . . . , n, ξ j =
√(

Xj − µ
)T

(Σ∗)−1
(
Xj − µ

)
. From the strong law of large numbers

and from results of Theorem 2.1, we can deduce that σ2
n converges almost surely towards σ̃2 '
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σ2 when σ is sufficiently small (Remark 2.1). However, this estimator depends on the unknown
parameters µ and Σ∗. We therefore propose to estimate σ2 by

σ̂2
n =

1
n

n

∑
j=1

ξ̂2
j −

(
1
n

n

∑
j=1

ξ̂ j

)2

where for j = 1, . . . , n, ξ̂ j =
√(

Xj − Xn
)T Σ̂−1

n
(
Xj − Xn

)
. Convergence results are given in the

following theorem.

Theorem 3.1. Let X1, . . . , Xn be a sample of independent and identically distributed random vectors
of R3 with pdf f . Then, we have

‖Xn − µ‖ = O (an) ,
∥∥∥Σ̂n − Σ∗

∥∥∥ = O (an) and
∣∣σ̂2

n − σ̃2∣∣ = O(an) a.s.

where an =
√
(loglog n)/n.

The proof is given in Appendix A.2.

3.2 Iterative estimation of the parameters

In this section, we propose a more efficient estimation strategy, which will be of particular interest
for estimating the parameters of mixture models. The estimate Xn is an unbiased and convergent
estimator of µ. However, this estimator has a much larger variance than another unbiased and
convergent estimator of µ denoted as X∗n and defined by

X∗n = Xn −
1
n

n

∑
i=1

(Xi − µ)√
(Xi − µ)T Σ−1

∗ (Xi − µ)
.

Indeed, using the results of Theorem 2.2, we can show that X∗n is an unbiased and convergent
estimator of µ satisfying ‖V(X∗n)‖ < ‖V(Xn)‖. Nevertheless, the estimator X∗n depends on un-
known parameters µ and Σ∗ which must be estimated. We therefore propose the following strategy

to improve the estimation of parameters µ, Σ and σ2. First, we estimate µ by µ̂
(0)
n = Xn, then Σ∗ by

Σ̂(0)
n = Σ̂n. Then, we improve the estimation of µ by considering

µ̂
(1)
n = Xn −

1
n

n

∑
i=1

(
Xi − µ̂

(0)
n

)
√(

Xi − µ̂
(0)
n

)T (
Σ̂(0)

n

)−1 (
Xi − µ̂

(0)
n

) (3.1)

and the estimation of Σ∗ by considering

Σ̂(1)
n =

3
n

n

∑
i=1

(
Xi − µ̂

(1)
n

) (
Xi − µ̂

(1)
n

)T
. (3.2)

The rate of convergence of these new estimates can be derived from Theorem 3.1. In addition,
the process (3.1)-(3.2) can be iterated until convergence to improve the estimations of µ and Σ∗.
At the end of each iteration, we update the estimates as follows : µ̂

(0)
n = µ̂

(1)
n and Σ̂(0)

n = Σ̂(1)
n .
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Although we did not succeed in proving that the backfitting estimates are theoretically better, this
seems to be confirmed in practice (see Section 4). Finally, the parameter σ2 can then be estimated
by

σ̂2
n =

1
n

n

∑
j=1

ξ̃2
j −

(
1
n

n

∑
j=1

ξ̃ j

)2

with ξ̃i =

√(
Xi − µ̂

(1)
n

)T (
Σ̂(1)

n

)−1 (
Xi − µ̂

(1)
n

)
.

3.3 Estimation of the mixture model parameters

This section concerns the estimation of a mixture model with K > 1 components where the compo-
nent k is described by the density

f (x | θk) =
(2π)−3/2 |Σk |−1/2

2 σk(1 + σ2
k )

exp

(
− 1

2 σ2
k
(
√
(x− µk)

T Σ−1
k (x− µk)− 1)2

)
where θk = (µk, Σk, σk) and σk is supposed sufficiently small. Let us note that the approximated
version of C3 is used instead of its exact expression.

Let x = (x1, . . . , xn) be a sample of points, where each xi ∈ R3 belongs to one component of
the mixture. Given the sample x, we can estimate the parameter vector Θ of the mixture by using
the Maximum-Likelihood estimator Θ̂ given by

Θ̂ = arg max
Θ

L (x; Θ) (3.3)

where L denotes the log-likelihood function defined as follows

L (x; Θ) =
n

∑
i=1

log h(xi|Θ) =
n

∑
i=1

log

(
K

∑
k=1

πk f (xi | θk)

)
(3.4)

The maximization problem (3.3) is difficult to solve because of the non-linearity of the log-
likelihood L in many parameters. The Expectation-Maximization (EM) algorithm has been introduced
in [6] to solve this problem in the case of incomplete data (some extensions can be found in [20]).

The main idea of EM is to introduce a hidden variable zi = (zi1, . . . , ziK) given the membership
of each xi to the clusters (C1, . . . , CK) . The hidden variable is defined by zik = 1{xi∈Ck} and
each possible value leads to a clustering of data. Data points x are called observed data while
z = (z1, . . . , zn) are called missing data since these values are not observed. We can then introduce
z in (3.4) to obtain the so-called complete log-likelihood

Lc(x, z; Θ) =
n

∑
i=1

K

∑
k=1

zik
(
log (πk) + log ( f (xi | θk)

)
(3.5)

The EM algorithm consists in maximizing the conditional expectation of the complete log-likelihood
(3.5) given the observation x and the current parameters estimate Θ(j) at iteration j. The quantity

ti` = E
[
zi` | x, Θ(j)

]
is called membership probability of point xi to cluster C` and can be estimated

with Bayes rule. Then, the EM algorithm consists of iterating te following two steps until convergence
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• E-step : Compute the membership probabilities ti` given by

ti` =
π
(j)
` f

(
xi | θ

(j)
`

)
∑K

k=1 π
(j)
k f

(
xi | θ

(j)
k

) (3.6)

using the current parameters estimate Θ(j) =
(

π
(j)
1 , . . . , π

(j)
K , θ

(j)
1 , . . . , , θ

(j)
K

)
.

• M-step : Find parameters Θ(j+1) that maximize the conditional expectation of Lc given the
observation x and the current parameters estimate Θ(j)

Q (Θ) =
n

∑
i=1

K

∑
k=1

tik
(
log (πk) + log ( f (xi | θk)

)
(3.7)

To start the iterative algorithm, an initial value Θ̂(0) must be determined, for example using the
K-means clustering algorithm (see [3] for example).
The maximization of Q in the M-step is performed analytically by computing partial derivatives with
respect to each parameter and involves the assumption on parameter σ (for more details, see ap-
pendix D). For each component ` ∈ [1, K] of the mixture, we obtain the following equations defining
the estimators 

µ̂` =
1

∑n
i=1 ti`

[
n

∑
i=1

ti` Xi −
n

∑
i=1

ti` (Xi − µ̂`)

ξi,`

]
Σ̂` =

3
∑n

i=1 ti`

n

∑
i=1

ti`(Xi − µ̂`)(Xi − µ̂`)
T

σ̂2
` =

1
∑n

i=1 ti`

n

∑
i=1

ti`
(
ξi,` − ξ`

)2

π̂` =
1
n

n

∑
i=1

ti`

(3.8)

with

ξi,` =
√
(Xi − µ̂`)

T Σ̂−1
` (Xi − µ̂`) and ξ` =

1
n

n

∑
i=1

ξi,`.

In addition, since estimators µ and Σ depends to each other, estimates of µ and Σ are computed
using the iterative backfitting procedure defined by (3.1)-(3.2). The EM algorithm and the iterative
backfiting procedure have a similar stopping criterion. Algorithms are stopped when the difference
betwen consecutive estimated parameters values is small or when a maximal number of iterations
has been reached. The behaviour of the estimation algorithm will be studied on simulated data in
the following section.

4 Experiments on simulated data

The objective of the experiments carried out in this section is to show that the proposed estimation
methods (backfitting BF and EM) behave as expected in simulations. Parameters of the simulated
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distributions have been chosen such that the assumption on parameter σ is satisfied. Samples of
a random variable X of density f have been simulated in dimensions d = 2 and d = 3 using the
decomposition X = µ + Σ1/2 W U, a rejection sampling method on the random variable W and an
inverse transform method on the random vector U. The case d = 2 has been considered to compare
the estimation method to a standard algorithm. More precisely, the ellipse estimation method BF is
compared to [10] implemented in the open source OpenCV library [25]. Numerical results will be
analyzed in the case of a single ellipsoid in section 4.1 and for a mixture model in section 4.2.

4.1 The case of the single ellipsoid

The first set of experiments deals with the modeling of a single ellipsoid. We first consider random
vectors Xd, with d = 3 with ellipsoidal density f introduced in (2.4). For each experiment, we
simulate N = 200 independant samples of realizations of the random vector Xd. The parameters

are set to µ(2) = (0, 0)T, Σ(2) =

(
1002 0

0 502

)
, σ(2) = 0.01 for d = 2 and µ(3) = (0, 0, 0)T,

Σ(3) =

 1002 0 0
0 502 0
0 0 502

, σ(3) = 0.01 for d = 3.

Figure 2 shows boxplots describing the N estimations of parameters µ(3), Σ(3) and σ(3) obtained
with the BF algorithm for different sample sizes. For the shape matrix, we compute the error E(Σ) =(

∑d
i,j=1

(
Σ̂i,j − Σi,j

)2
)1/2

. We note that the estimated values are close to the expected ones for

a sufficiently high number of observations. It is clear that when the sample size increases, the
accuracy of the results is improved and the variability decreases. Let us note that the same remarks
can be made for the results obtained in the case d = 2.

Figure 2: On the first row, boxplots of estimates of µx, µy and µz. On the second row, boxplots of
E(Σ), estimates of σ and a sample of size n = 1000.
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In section 3.2, we mentionned that the variance of the estimator X∗n is smaller than the variance
of the empirical mean Xn. A comparison between these two estimators is presented on Figure 3 for
d = 3. We observe that the variability of the center estimates is widely smaller with BF than with the
empirical mean.

Figure 3: Boxplot of estimates of parameters µx, µy and µz for different sample sizes n. The BF
method is plotted in blue and the empirical mean in red.

Finally, we compare the proposed estimation method to the ellipse fitting algorithm [10] imple-
mented in the open source OpenCV library [25]. This reference method is widely used in computer
vision to fit an ellipse to a set of image edges. We simulate samples from the density (2.4) with d = 2

and with parameters µ = (0, 0), σ = 0.01 and Σ =

(
1002 502

502 502

)
. Obtained results are plotted

on Figure 4. For the centre estimation, we observe that the proposed method offers estimations
as accurate as the reference one. Moreover, the variability of the estimates is of the same order
of magnitude for the two compared algorithms. For the shape matrix estimation, we note that the
BF algorithm offers slightly better estimates than the reference one. However, the variability of the
estimates computed with the BF method is larger.

4.2 A mixture model with three components

The aim of this second set of experiments is to show that the EM algorithm is able to separate
and model several overlapping ellipsoids. The EM algorithm is initialized with a parameter vector
Θ(0) computed from a classification obtained with the K-means clustering algorithm. We consider
an ellipsoidal mixture model made up of 3 overlapping components E1, E2 and E3. We simulate a
sample of size n = 3000. Parameters of the model are given in Table 1. The three shape matrices

are the same for all the components and set to

 10002 0 0
0 5002 0
0 0 5002

.

Table 1: Exact parameters values.
µx µy µz σ π

E1 0 0 0 0.01 1/3
E2 1800 0 0 0.01 1/3
E3 3600 0 0 0.01 1/3

Results are presented on Figures 5, 6, 7 and 8. We observe that the variability of the estimations
decreases when the sample size increases. We remark an important number of bad estimations

11



Figure 4: On the first row, boxplots of estimates of µx, µy and Σ11. On the second row, estimates of
Σ12 and Σ22. The BF method is plotted in red and the reference method is plotted in blue.

when the sample size is small. The estimation of the shape matrix is more difficult, especially for
E2, because of the intersection of the distributions. Observations located between two ellipsoids
contributes to the estimation of the two component.

Figure 5: Boxplots of estimates of the mixture weights π1, π2 and π3.

Figure 6: A sample of size n = 10000 and the estimated model.
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Figure 7: Estimates of E1 parameters. On the first row, boxplot of estimates of µx, µy and µz. On
the second row, estimates of E(Σ).

Figure 8: Estimates of E2 parameters. On the first row, boxplot of estimates of µx, µy and µz. On
the second row, estimates of E(Σ).

5 Applications

In this section, we experiment our ellipsoidal mixture model on real data. The objective is to model
a person in 3D. Data are acquired with two calibrated depth sensor located on the opposite sides
of a room. The two point clouds are fused thanks to a 3D registration technnique [2]. The data are
then segmented to keep only points belonging to the person. We apply the proposed algorithm with

13



K = 2 and K = 3 components in the mixture model. Results are given in Figure 9. The model
with K = 2 components gives a better representation of the point cloud. The head is modelled
by a nearly spherical shape while the body is modelled by a single ellipsoid. In the case of three
components, the third ellipsoid is not meaningfull.

(a) (b) (c)

Figure 9: On the first column, 3D point clouds representing a standing person. On the second
column, the estimated model with K = 2 components, and on the third column, the estimated model
with K = 3 components.

Conclusion

In this work, we proposed a new ellipsoidal mixture model for 3D data modelling. The mixture
model is based on a new pdf belonging to the family of elliptical distributions and that models points
spread around an ellipsoidal surface. The parameters of the mixture model based on this density
are estimated with an EM based algorithm. The convergence of the method has been established
theoretically. Our algorithm is simple to implement and produces accurate estimations. We obtained
results comparable to a state of the art ellipse fitting method.

Experiments revealed that the analysis of the shape matrix Σ could be a promising way to deter-
mine if a given set of points is a sphere or an ellipsoid. An adequate statistical test could therefore
be set up to classify objects.

A Proofs and technical calculus

A.1 Proofs of Lemma 2.1 and 2.2

Proof of Lemma 2.1. The proof is straightforward using the decomposition X = µ + Σ1/2 W U. The
random vector U is distributed on the d-dimensional unit sphere, which implies that ‖U‖ = 1,
E [U] = 0 and V [U] = d−1 Id. We therefore deduce that E [X] = µ and V [X] = d−1 E

[
W2] Σ =

d−1 Σ∗. We can conclude the first part of the proof by remarking that for q ≥ 0, E [Wq] = Jd+q−1 J−1
d−1.

14



Then, to prove the second part, we set

ξ =
√
(X− µ)TΣ−1

∗ (X− µ),

and we can show that ξ = (E
[
W2])−1/2W, leading to

V

(√
(X− µ)T Σ−1

∗ (X− µ)

)
= E

(
ξ2)− (E [ξ])2 = 1− (E [W])2

E [W2]
,

which closes the proof of the lemma.

Proof of Lemma 2.2. The proof is based on the decomposition X = µ + Σ1/2 W U. The random
vector X∗ can therefore be rewritten as X∗ = µ + Σ1/2 U (W − 1). Then, since random variables
W an U are independant with E [U] = 0, we deduce that that E [X∗] = µ.

This result enables us to compute the variance: V [X∗] = E
[
(X∗ − µ) (X∗ − µ)T

]
. Given that vari-

ables W and U are independent with V [U] = d−1 Id and by remarking that E [Wq] = Jd+q−1 J−1
d−1,

we obtain V [X∗] = d−1 E
[
(W −

√
E [W2])2

]
Σ.

A.2 Proof of Theorem 3.1

Proof of Theorem 3.1. Since E[‖X1‖4] < ∞, using the law of the iterated logarithm of Hartman
and Winters (see [36]), we straight forwardly obtain the first two results. We now focus on the
convergence properties of the estimator σ̂2

n presented in Section 3.1. For this purpose, we first
establish the convergence of Σ̂−1

n towards Σ−1
∗ . The proof is standard and we resume the main

steps of the proof proposed by N’Guyen and Saracco in [23].
From the Riccati equation for matrix inversion given for example in [8] (page 96), we can write

the following decomposition

Σ̂−1
n = Σ−1

∗ − Σ−1
∗

(
Σ̂n − Σ∗

)
Σ−1
∗ + Rn,

where Rn is given by
Rn = Σ−1

∗

(
Σ∗ − Σ̂n

)
Σ̂−1

n

(
Σ∗ − Σ̂n

)
Σ−1
∗ .

Then, we immediately deduce that∥∥∥Σ̂−1
n − Σ−1

∗

∥∥∥ ≤ λ2
max(Σ

−1
∗ )

∥∥∥Σ̂n − Σ∗
∥∥∥ + ‖Rn‖

and

‖Rn‖ ≤ λmax (Σ̂−1
n ) λ2

max(Σ
−1
∗ )

∥∥∥Σ∗ − Σ̂n

∥∥∥2
.

Let us recall that for any square matrix A positive definite, we have λmax(A−1) = (λmin(A))−1.
Consequently, since λmin(Σ) > 0 then λmin(Σ∗) > 0. In addition, since Σ̂n converges almost
surely towards Σ∗, then λmin(Σ̂n) > 0. We therefore have

‖Rn‖ = O
(∥∥∥Σ∗ − Σ̂n

∥∥∥2
)

a.s. (A.1)
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Thanks to the upper bound
∥∥∥Σ̂n − Σ∗

∥∥∥ = O(an), with an =
√
(log log n)/n, established in Section

3.1, we can write ∥∥∥Σ̂−1
n − Σ−1

∗

∥∥∥ = O (an) a.s. (A.2)

Let us now study the convergence of σ̂2
n that can be rewritten under the form An − B2

n with

An =
1
n

n

∑
j=1

ξ̂2
j and Bn =

1
n

n

∑
j=1

ξ̂ j,

where we recall that ξ̂ j =
√
(Xj − Xn)TΣ̂−1

n (Xj − Xn). In order to study the convergence of An, it
is rewritten under the form

An = A1,n + A2,n − (Xn − µ)TΣ−1
∗ (Xn − µ) (A.3)

with

A1,n =
1
n

n

∑
j=1

(Xj − Xn)
T
(

Σ̂−1
n − Σ−1

∗

)
(Xj − Xn)

A2,n =
1
n

n

∑
j=1

(Xj − µ)TΣ−1
∗ (Xj − µ).

We can easily show that ∑n
j=1
∥∥Xj − Xn

∥∥2
= O(n) a.s., and by using (A.2), we obtain |A1,n| =

O(an) a.s. On the other hand, we have

A2,n =
1
n

n

∑
j=1

J2(σ)

J4(σ)
W2

j
a.s.−→

n→∞
1

and since the (Wj) have a finite moment of order 4, the law of the iterated logarithm of Hartman and
Winters [36] can be applied, leading to |A2,n − 1| = O(an) a.s.

Finally, as
∥∥Xn − µ

∥∥ = O(an) a.s., we get from (A.3) the almost sure convergence of An towards
1 and the upper bound

|An − 1| = O(an) a.s. (A.4)

Let us now study the convergence of Bn. To this aim, Bn is rewritten under the form

Bn = B1,n + B2,n + B3,n (A.5)

with

B1,n =
1
n

n

∑
j=1

ξ j

B2,n =
1
n

n

∑
j=1

(√
(Xj − µ)TΣ̂−1

n (Xj − µ)− ξ j

)

B3,n =
1
n

n

∑
j=1

(
ξ̂ j −

√
(Xj − µ)TΣ̂−1

n (Xj − µ)

)
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where we recall that ξ j =
√
(Xj − µ)TΣ−1

∗ (Xj − µ). We immediately deduce that for any 1 ≤ j ≤ n,

(λmin(Σ−1
∗ ))1/2 ∥∥Xj − µ

∥∥ ≤ ξ j ≤ (λmax(Σ−1
∗ ))1/2 ∥∥Xj − µ

∥∥ .

In addition, by remarking that ξ j can be written ξ j =
(
E
[
W2])−1/2 Wj, we deduce that

B1,n
a.s.−→

n→∞

E[W]

(E [W2])1/2 and

∣∣∣∣∣B1,n −
E[W]

(E [W2])1/2

∣∣∣∣∣ = O (an) a.s. (A.6)

By using the equality
√

a−
√

b = (a− b)(
√

a +
√

b)−1, we easily obtain

|B2,n| ≤
1
n

n

∑
j=1

∣∣∣(Xj − µ)TΣ̂−1
n (Xj − µ)− ξ2

j

∣∣∣√
(Xj − µ)TΣ̂−1

n (Xj − µ) + ξ j

≤ 1
n

n

∑
j=1

∣∣∣(Xj − µ)T
(

Σ̂−1
n − Σ−1

∗

)
(Xj − µ)

∣∣∣
ξ j

.

Since ξ j ≥ (λmin(Σ−1
∗ ))1/2

∥∥Xj − µ
∥∥, we deduce that

|B2,n| ≤ (λmax(Σ∗))1/2
∥∥∥Σ̂−1

n − Σ−1
∗

∥∥∥ 1
n

n

∑
j=1

∥∥Xj − µ
∥∥ .

Finally, as ∑n
j=1
∥∥Xj − µ

∥∥ = O(n) a.s., we have

|B2,n| = O (an) a.s. (A.7)

Thanks to the triangular inequality (derived from the Mahanobis distance), we get

|B3,n| ≤
1
n

n

∑
j=1

√
(Xn − µ)TΣ̂−1

n (Xn − µ) ≤
√

λmax(Σ̂−1
n )

∥∥Xn − µ
∥∥ .

Finally, since on the one hand
∥∥Xn − µ

∥∥ = O (an) a.s. and on the other hand, Σ̂−1
n convergerges

almost surely towards Σ−1
∗ with λmin(Σ∗) > 0, we deduce that

|B3,n| = O (an) a.s. (A.8)

By combining (A.6), (A.7) and (A.8) with (A.5), we get

Bn
a.s.−→

n→∞

E[W]

(E[W2])1/2 and
∣∣∣∣Bn −

E[W]

(E[W2])1/2

∣∣∣∣ = O (an) a.s. (A.9)

The result on the convergence of σ̂2
n = An− B2

n is obtained by combining the results (A.4) and (A.9).
Indeed, we first obtain

σ̂2
n

a.s.−→
n→∞

1− (E(W))2

E(W2)
= 1− J2

3
J2 J4

= σ̃2.

Then, by considering the decomposition

σ̂2
n − σ̃2 = (An − 1)− (Bn − γ) (Bn + γ) ,

where we set γ = (E[W2])−1/2E[W], and by using the upper bound |Bn + γ| = O(1) a.s., we
deduce that ∣∣σ̂2

n − σ̃2∣∣ = O (an) a.s.

which closes the proof of the convergence of σ̂2
n.
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B Some important results on the normalization constant of the ellip-
soidal density

This appendix deals with the computation of the normalization constant Cd of the new ellipsoidal
density f introduced in (2.4). We first establish the following technical lemma which is usefull to
simplify computations.

Lemma B.1. Let us set for q ∈N and α > 0,

Jq(α) =
∫ ∞

0
tq exp

(
−(t− 1)2/

(
2α2))dt. (B.1)

Then J0(α) = α
√

2π (1−Φ(−1/α)), J1(α) = J0(α) + α2 exp
(
−1/

(
2α2)), and for q ≥ 2,

Jq(α) = Jq−1(α) + (q− 1)α2 Jq−2(α) (B.2)

where Φ denotes the gaussian cumulative distribution function.

Proof. Let us set v(t) = −(t− 1)2/
(
2α2). Then, v′(t) = −(t− 1)/α2 and we can rewrite (B.1)

under the form

Jq(α) =
∫ ∞

0

(
tq − tq−1

)
exp (v(t))dt + Jd−1(α)

= −α2
∫ ∞

0
tq−1v′(t) exp (v(t))dt + Jq−1(α) (B.3)

Finally, (B.2) immediately follows using an integration by parts. To close the proof, it is clear that
J0(α) = α

√
2π (1−Φ(−1/α)) and we get J1(α) using (B.3) with d = 1.

Let us now consider the constant Cd which satisfies

I = Cd

∫
Rd

exp

(
− 1

2σ2

(√
(x− µ)T Σ−1 (x− µ)− 1

)2
)

dx = 1.

The substitution y := Σ−1/2 (x− µ) leads to

Cd

∫
Rd
|Σ1/2 | exp

(
− 1

2σ2 (‖y‖ − 1)2
)

dy = 1.

Then, a polar coordinates substitution leads to

I = Cd |Σ |1/2 2πd/2

Γ (d/2)

∫ +∞

0
ρd−1 exp

(
− (ρ− 1)2

2σ2

)
dρ

= Cd |Σ |1/2 2πd/2

Γ (d/2)
Jd−1 (σ) = 1.

The expression of the normalization constant is

Cd =
Γ (d/2)

2πd/2 | Σ |1/2 Jd−1 (σ)
.
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For the first values of d, the expressions of the constant are given by

C1 =
1

2σ
√

2π |Σ |1/2 [1−Φ (−1/σ)]

C2 =
1

(2π)3/2 |Σ |1/2 σ [1−Φ (−1/σ)]

C3 =
1

2(2π)3/2 |Σ |1/2 σ(1 + σ2)

[
1−Φ (−1/σ) +

σ exp
(
−1/(2σ2)

)
(1 + σ2)

√
2π

]
where Φ denotes the gaussian cumulative distribution function.

We observe that the parameter σ plays a particular role in these expressions. Indeed, under
the assumption that the parameter σ is small enough, terms Φ(−1/σ) and t√

2π(1+σ2)
e(−1/(2σ2)) can

be ignored (cf Appendix C). In that case, we can approximate the normalization constant and thus
obtain

C1 =
1

2σ
√

2π |Σ |1/2

C2 =
1

(2π)3/2 |Σ |1/2 σ

C3 =
1

2(2π)3/2 |Σ |1/2 σ(1 + σ2)
.

C Influence of parameter σ2

This appendix concerns the influence of parameter σ2 on several quantities.
Figure 10 represents the values of terms Φ(−1/σ) and t√

2π(1+σ2)
e(−1/(2σ2)) with respect to σ.

We observe that these quantities are close to zero for small values of σ.

Figure 11 shows the values of terms
1 + 6σ2 + 3σ4

1 + σ2 ,
1 + 3σ4

1 + 7σ2 + 9σ4 + 3σ6 and
1 + 3σ2

1 + σ2 with

respect to σ. We can therefore quantify the difference between the given terms and the value 1.

D Justification of the M-step in the EM algorithm

In this appendix, we justify the choice of the estimators used in the M-step of the EM algorithm
described in Section 3.3. To maximize the conditional expectation of the completed log-likelihood of
parameters Θ = (π1, . . . , πK, θ1, . . . , θK) with θk = (µk, Σk, σk), we compute partial derivatives with
respect to each parameter of the quantity

Q (Θ) =
n

∑
i=1

K

∑
k=1

tik (log (πk) + log ( f (xi, θk)) ,

where

f (x | θk) =
(2π)−3/2 |Σk |−1/2

2 σk(1 + σ2
k )

exp

(
− 1

2σ2
k

(√
(x− µk)

T Σ−1
k (x− µk)− 1

)2
)
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Figure 10: Values of terms Φ(−1/σ) (blue) and t√
2π(1+σ2)

e(−1/(2σ2)) (red) with respect to σ.

Figure 11: Values of terms
1 + 6σ2 + 3σ4

1 + σ2 (blue),
1 + 3σ4

1 + 7σ2 + 9σ4 + 3σ6 (green) and
1 + 3σ2

1 + σ2 (red)

with respect to σ.

and with σ sufficiently small. The partial derivative of Q with respect to µk is

∂Q
∂µk

=
Σ−1

k
σ2

k

n

∑
i=1

tik (xi − µk)

1− 1√
(xi − µk)

T Σ−1
k (xi − µk)

 .
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The partial derivative of Q with respect to Σ−1
k is

∂Q
∂Σ−1

k

= σ2 Σk −
1
n

n

∑
i=1

tik (xi − µk)(xi − µk)
T

1− 1√
(xi − µk)

T Σ−1
k (xi − µk)

 .

The partial derivative of Q with respect to σ2
k is

∂Q
∂σk

= −n
(1 + 3 σ2

k )

σk(1 + σ2
k )

+
1
σ3

k

n

∑
i=1

tik

(√
(x− µk)

T Σ−1
k (x− µk)− 1

)2

. (D.1)

The maximization problem cannot be solved analytically. Under the assumption that σk is small
enough, we can write (1 + 3 σ2

k ) / (1 + σ2
k ) ' 1 and the partial derivative (D.1) can be simplified.

However, for shake of simplicity, we prefer estimate the shape matrix Σk by the usual estimator
n−1 ∑n

i=1(xi − µk)(xi − µk)
T. This choice is also motivated by our experiments.

We can easily show that the mixture weights {wik}k=1..K
i=1..n can be estimated using the classical

estimators employed for gaussian mixture models. Finally, these computations lead to the estimators
presented in Section 3.3.
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