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LIFTING STAR-AUTONOMOUS STRUCTURES ∗

CÉDRIC DE LACROIX, GREGORY CHICHERY, AND LUIGI SANTOCANALE

Abstract. For a functor Q from a category C to the category Pos of ordered

sets and order-preserving functions, we study liftings of various kind of struc-
tures from the base category C to the total (or Grothendieck) category

∫
Q.

That lifting a monoidal structure corresponds to giving some lax natural trans-

formation making Q almost monoidal, might be part of folklore in category
theory. We rely on and generalize the tools supporting this correspondence

so to provide exact conditions for lifting symmetric monoidal closed and star-
autonomous structures.

A corollary of these characterizations is that, if Q factors as a monoidal

functor through SLatt, the category SLatt of complete lattices and sup-preserving
functions, then

∫
Q is always symmetric monoidal closed. In this case, we also

provide a method, based on the double negation nucleus from quantale theory,

to turn
∫
Q into a star-autonomous category. The theory developed, originally

motivated from the categories P -Set of Schalk and de Paiva, yields a wide gen-

eralization of Hyland and Schalk construction of star-autonomous categories

by means of orthogonality structures.

Keywords. Grothendieck construction, total category, op-fibration, ∗-autonomous
category, dualizing object, Girard quantale, double negation nucleus.

1. Introduction

Categorical models of proofs of multiplicative classical linear logic are ∗-autonomous
categories [4]. Many of these categories are built from a given ∗-autonomous cate-
gory, usually a degenerate one such as the category of sets and relations, by attach-
ing to each object a structure and by requiring the maps to be compatible with the
structures. The new category is usually better behaved, at least, for the semantics
of proofs. Most often, the collection of all the structures that we can attach to an
object is a poset. This is the case, for example, of Schalk and de Paiva categories
PF -Set [29] and of Hyland and Schalk orthogonality categories [14, 11].

From a categorical perspective, attaching to each object a structure amounts
to considering the total category (or Grothendieck category)

∫
Q of a (monoidal)

functor Q : C −−−→ Pos, where C is some symmetric monoidal category and Pos
is the category of posets and order-preserving functions. This construction yields
the canonical (op-)fibration π :

∫
Q −−−→ C which strictly preserves the monoidal

structure. The theory of monoidal fibrations was firstly developed in [30] and
later, from a different perspective more relevant here, in [21]. Roughly speaking,
we investigate in this paper variants of the following questions: given a monoidal
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2 C. DE LACROIX, G. CHICHERY, AND L. SANTOCANALE

functor Q : C −−−→ Pos (so that we are ensured that the total category
∫
Q is

monoidal), when is
∫
Q a closed category, and when is it ∗-autonomous?

More precisely, we give exact answers (and characterizations) to the following
questions: given a monoidal functor Q : C −−−→ Pos, where C is monoidal with
some additional structure, when has

∫
Q this structure in a such way that the

canonical op-fibration π strictly preserves it? We call this the lifting problem for
a structure. The structures considered here are being closed, being ∗-autonomous,
and having terminal coalgebras (and initial algebras) of functors. Yet the tools
developed in this paper can, in principle, be used to lift other kind of structures, if
not all the structures.

When the monoidal functor Q takes values in the category SLatt of complete
lattices and sup-preserving functions, our characterizations yield remarkable con-
sequences. In this case,

∫
Q turns out to always be closed. Moreover, assuming

that C is ∗-autonomous with dualizing object 0, it is possible to turn
∫
Q into a

∗-autonomous category by choosing an element ω ∈ Q(0), which might be thought
of as a sort of global falsity, and by considering a double negation quotient of

∫
Q.

While this construction yields a generalization of focused orthogonality categories
[14, 11], the way we discovered it was through the analogy with quantales, that
is, provability models of intuitioninistic linear logic, see [23]. In order to turn a
quantale into a model of classical linear logic, a so called Girard quantale, see [22],
it suffices to choose a candidate falsity (a candidate dualizing element) and consider
the fixed points of the double negation nucleus it gives rise.

This research was partly motivated by recent research on the algebraic and cat-
egorical semantics of linear logic with fixed points [8, 6, 15, 11] extending to linear
logic previous work by one of authors on the categorical semantics of fixed-point
logics and circular proof systems [27, 26, 25, 12]. An important model of proofs
of linear logic with fixed points, that has been considered in those works, is the
category Nuts of non uniform totality spaces, which indeed arises as

∫
Q for a func-

tor Q : Rel −−−→ Pos. Besides considering models of proofs of linear logic, many
other reasons have triggered us to this research. Persuaded that ordered structures
are pervasive and essential both in logic and computation, we started investigating
Frobenius quantales as Frobenius monoids in the ∗-autonomous category SLatt and,
later, Frobenius monoids in arbitrary ∗-autonomous categories. We could prove in
[7] the equivalence between an object X being nuclear and the monoid X ( X be-
ing Frobenius under the hypothesis that the tensor unit embeds into X as a retract.
To argue that this hypothesis is necessary, we built a counterexample by resorting
to Schalk and de Paiva categories P -Set [29] for a well-chosen Girard quantale P .
These categories, also of the form

∫
Q for a functor Q : Rel −−−→ Pos, turned out

to be extremely interesting for other reasons. For example—also considering the
possible generalizations of these categories that we hint to in this paper—they can
accommodate in a uniform way many categories of fuzzy sets and/or relations that
have been considered in the literature, see e.g. [31, 13, 20]. These categories rely
on the unit interval [0, 1] and on some of its quantale structures (the  Lukasiewicz
quantale, its Heyting algebra structure, the Lawvere quantale, see e.g. [2]). The
categories of the form P -Set deeply exemplify an interplay between quantales, that
is, provability models of linear logic, and symmetric monoidal closed category, the
models of proofs of the same logic. For intuitionistic logic, this interplay is well
known, the connections between Heyting algebras, Cartesian closed categories, and
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topoi being the object of several monographs. Whether this interplay is still rele-
vant for linear logic is, in our opinion, unclear. The results presented in this paper
can be understood as providing evidence and suggesting a positive answer to this
question.

This paper is organised as follows. We give in Section 2 some background on
posets, complete lattices, and monoidal categories; by doing so, we also settle the
notation. We also define in this section the total category

∫
Q and recall some of

its properties. In Section 3 we characterise how to lift a functor of several variables,
some contravariants and some covariants, from C to

∫
Q. Section 4, relying on the

tools developed in the previous section, develops a methodology to devise exact
conditions for lifting structures; the methodology is illustrated with the symmetric
monoidal structure. The following Section 5 gives incremental conditions for lifting
the closed structure, and Section 6 gives the conditions for lifting a dualizing object,
thus the ∗-autonomous structure. In Section 7 we consider the case of a monoidal
functor Q into SLatt, for which the results in the previous sections ensure that∫
Q is symmetric monoidal closed; we exhibit then a double negation construction,

similar to the one in quantale theory, by which Q is transformed into a functor Q
ω

such that
∫
Q

ω

is ∗-autonomous. We also give a representation theorem for those
monoidal functors Q into SLatt for which

∫
Q is ∗-autonomous via a sort of phase

semantics. In Section 8 we study the categories of algebras and coalgebras (as well
as their initial or terminal objects) of an endofunctor F of

∫
Q that is the lifting

of an endofunctor F of C. Section 9 exemplifies the scope of the theory, while the
last Section 10 gives concluding remarks and hints for future research. Due to the
page limit, we present the proofs in the appendix.

2. Background, and the Grothendieck construction

Pos shall denote the category of partially ordered sets (posets) and order-preserving
(or monotone) maps. The category SLatt has complete lattices as objects and sup-
preserving maps as arrows. It is a subcategory of Pos. We refer the reader to stan-
dard monographs, for example [5] and [9], for an introduction to posets and com-
plete lattices. A monotone map f : X −−−→ Y between posets has g : Y −−−→ X
as a right adjoint adjoint if and only if, for each x ∈ X and y ∈ Y , f(x) ≤ y is
equivalent to x ≤ g(y). Such a map f can have at most one right adjoint for which
we shall use the notation f∗. If f has a right adjoint, then f is sup-preserving
and f∗ inf-preserving. If X and Y are complete lattices, then f has a right ad-
joint if and only if it is sup-preserving. An explicit formula for f∗ is given by
f∗(y) =

∨
{x ∈ X | f(x) ≤ y }. If f : X −−−→ Y is a map in SLatt, that is, if f is

sup-preserving and X,Y are complete lattices, then we can see its right adjoint as a
sup-preserving map f∗ : Y op −−−→ Xop. A closure operator on a complete lattice
L is an order-preserving map  : L −−−→ L such that x ≤ (x) and ((x)) = (x),
for all x ∈ L. A quantale (Q, e, ∗) is an ordered monoid whose underlying poset is
complete and whose multiplication is sup-preserving in each variable. Said other-
wise, it is monoid in the monoidal category SLatt, or a complete posetal symmetric
monoidal closed category, see [9]. We assume that the reader is familiar with ele-
mentary category theory as exposed, for example, in the monograph [19]. We will
mainly focus on symmetric monoidal categories (C,⊗, I, α, λ, ρ, σ), where I is the
unit of the tensor ⊗, α is the associator, λ and ρ are respectively the left and right
unitors, and σ is the symmetry. Moreover, if C is symmetric monoidal closed, then
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we will denote by −( − : Cop×C −−−→ C its internal hom. Given an object 0 we
define a contravariant functor (−)

∗
:= −( 0 and C is a ∗-autonomous category if

the canonical arrow jX : X −−−→ X∗∗ is invertible for every object X.

In this paper we shall consider functors of the form Q : C −−−→ Pos.

Definition 1. The Grothendieck (or total) category of Q, noted
∫
Q, is defined as

follows:

• an object is a pair (X,α) with X an object of C and α ∈ Q(X),
• an arrow (X,α) −−−→ (Y, β) is an arrow f : X −−−→ Y such that
Q(f)(α) ≤ β.

The following lemma has an easy proof, that we skip:

Lemma 2. A morphism f : (X,α) −−−−→ (Y, β) is invertible if and only if f :
X −−−−→ Y is invertible and Q(f)(α) = β.

The first projection (X,α) 7→ X yields a functor

π :

∫
Q −−−→ C

which is the usual example of an op-fibration. We avoid defining here this notion
which, while pervasive in many cases, tuns out to be peripheral in our development.

The main aim of this paper is to describe the conditions for which some structures
on the category C (monoidal, symmetric monoidal closed, ∗-autonomous, . . . ) can
be lifted to

∫
Q in a way that the projection functor strictly preserves the structure.

3. Lifting functors from C to
∫
Q

Let F : (Cop)n × Cm −−−→ C be a functor. A lifting of F to
∫
Q is a functor

F : (
∫
Qop)n×

∫
Qm −−−→

∫
Q such that the following diagram strictly commutes:

(
∫
Qop)n ×

∫
Qm

∫
Q

(Cop)n × Cm C

F

πn×πm π

F

A lax extranatural transformation ψ :
∏
Qn+m −−−→ Q◦F is a collection of order-

preserving maps

ψX,Y :
∏
i

Q(Xi)
op ×

∏
j

Q(Yj) −−−→ Q(F (X,Y ))
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indexed by objects (X,Y ) of Cn×Cm, such that, for each pair of maps f : X −−−→
X ′ in Cn and g : Y −−−→ Y ′ in Cm, the following diagram semi-commutes:∏

iQ(Xi)
op ×

∏
j Q(Yj)

∏
iQ(X ′i)

op ×
∏
j Q(Yj)

∏
iQ(Xi)

op ×
∏
j Q(Y ′j )

Q(F (X ′, Y )) Q(F (X,Y ′))

id×
∏
iQ(gj)

∏
iQ(fi)

op×id

ψX′,Y ψX,Y ′

Q(F (f,g))

(1)
By saying that the diagram above semi-commutes we mean that the lower leg of
the diagram is below the upper leg in the pointwise ordering.

Remark that the notation ψ :
∏
Qn+m −−−→ Q ◦ F is just a matter of conve-

nience, since for
∏
Qn+m : Cn+m −−−→ Pos while Q ◦ F : (Cop)n × Cm −−−→ Pos.

Indeed,
∏

does not make a functor from (Cop)n × Cn −−−→ C.

Theorem 3. There is a bijection beweeen liftings a functor F from C to
∫
Q and

lax extranatural transformations ψ :
∏
Qn+m −−−−→ Q ◦ F .

Proof. Let us first introduce some notation. For X = (X1, . . . , Xk) an object of
Ck, we write Q(X) for the product

∏
i=1,...,kQ(Xi), and then, for x ∈ Q(X) =∏

iQ(Xi), we write (X,x) to denote the object ((X1, x1), . . . , (Xk, xk)) of (
∫
Q)k.

Suppose that we have a lifting F of F . We can build F ((X,x), (Y, y)) = (F (X,Y ), z)
with z ∈ Q(F (X,Y )). Calling then z = ψX,Y (x, y), this defines a map ψX,Y :
Q(X)×Q(Y ) −−−→ Q(F (X,Y )). We claim that ψX,Y is monotone in y ∈ Q(Y ) and
antitone in x ∈ Q(X). For example, if x, x′ ∈ Q(X) and x′ ≤ x, then idX is a map
in (
∫
Q)n from (X,x′) to (X,x); then, by functoriality and since F is contravariant

in X, F (idX , (Y, y)) is a map in
∫
Q from F ((X,x), (Y, y)) to F ((X,x′), (Y, y)),

which amounts to the inequality

ψX,Y (x, y) = Q(F (idX , idY ))(ψX,Y (x, y)) ≤ ψX,Y (x′, y) .

Next, if f = (f1, . . . , fn) : (X,x) −−−→ (X ′, x′) and g = (g1, . . . , gm) : (Y, y) −−−→
(Y ′, y′) are maps in (

∫
Q)n and (

∫
Q)m, then F (f, g) : F ((X ′, x′), (Y, y)) −−−→

F ((X,x), (Y ′, y′)) is a map of
∫
Q. This statement, an entailment, is equivalent to

the statement Q(f)(x) ≤ x′ and Q(g)(y) ≤ y′ implies Q(F (f, g))(ψX′,Y (x′, y)) ≤
ψX,Y ′(x, y

′) for all x, x′, y, y′. Letting x′ = Q(f)(x) and y′ = Q(g)(y) in the last
inequality, we deduce the inclusion

Q(F (f, g))(ψX′,Y (Q(f)(x), y)) ≤ ψX,Y ′(x,Q(g)(y)) ,

which amounts to the semi-commutativity of (1). On the other hand, this inclusion
is sufficient as well: if Q(f)(x) ≤ x′ and Q(g)(y) ≤ y′, then, by the order properties
of ψ, we have

Q(F (f, g))(ψX′,Y (x′, y)) ≤ Q(F (f, g))(ψX,Y (Q(f)(x), y))

≤ ψX,Y ′(x,Q(g)(y)) ≤ ψX,Y ′(x, y′) .
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Consequently, the contruction of ψ from F can be reversed, thus building a lifting
of F to

∫
Q from a collection ψ with the stated properties. �

We shall say that Q factors through SLatt if

(a) each Q(X) is complete lattice,
(b) for f : X −−−→ Y , Q(f) : Q(X) −−−→ Q(Y ) is sup-preserving.

The more advanced reader will have recognised that Q factors through SLatt means
indeed that we can write Q = U ◦ Q0 for a functor Q0 : C −−−→ SLatt, where
U : SLatt −−−→ Pos is the inclusion functor. If Q factors through SLatt, then (lax)
extranaturality can be replaced by (lax) naturality, as stated in the next Lemma.

Lemma 4. Suppose Q factors through SLatt. Then any lax extranatural transfor-
mations ψ :

∏
Qn+m −−−−→ Q ◦ F makes the diagram below semi-commutative.∏

iQ(X ′i)
op ×

∏
j Q(Yj)

∏
iQ(Xi)

op ×
∏
j Q(Y ′j )

Q(F (X ′, Y )) Q(F (X,Y ′))

ψX′,Y

∏
iQ(fi)

∗×
∏
iQ(gj)

ψX,Y ′

Q(F (f,g))

Proof. Just like before, the maps ψX,Y are antitone on the first variable and mono-
tone on the second. If f : (X,x) −−−→ (X ′, x′) is in

∫
Q, then Q(f)(x) ≤ x′

which as Q(f) is a sup-preserving map is equivalent to x ≤ Q(f)
∗
(x′). If more-

over g : (Y, y) −−−→ (Y ′, y′) – ie Q(g)(y) ≤ y′ – then Q(F (f, g))(ψX′,Y (x′, y)) ≤
ψX,Y ′(x, y

′) for all x, x′, y, y′. Again, by instancing this last statement on x =
Q(f)

∗
(x′) and y′ = Q(g)(y) and by the order properties of ψX,Y , we have that

Q(F (f, g))(ψX′,Y (x′, y)) ≤ ψX,Y ′(Q(f)
∗
(x′), Q(g)(y)) . �

Note that the ψX,Y need not be sup-preserving, even when Q factors through SLatt.

4. Lifting the monoidal structure

Theorem 3 immediately tells how to lift the tensor ⊗, as a simple bifunctor, from
C to

∫
Q.

Proposition 5. There is a bijection between the following kind of data:

• a lifting of a bifunctor ⊗ from C to
∫
Q,

• a collection of order-preserving maps

{µX,Y : Q(X)×Q(Y ) −−−−→ Q(X ⊗ Y ) | X,Y ∈ Obj(C) } ,
such that, for f : X −−−−→ X ′ and g : Y −−−−→ Y ′, the following diagram
semi-commutes:

Q(X)×Q(Y ) Q(X ′)×Q(Y ′)

Q(X ⊗ Y ) Q(X ′ ⊗ Y ′)

Q(f)×Q(g)

µX,Y µX′,Y ′

Q(f⊗g)

(2)

Let us remark that the maps µX,Y are natural (i.e. diagram (2) fully commutes)
if and only if the lifted bifunctor preserves op-cartesian arrows, that is the projection
functor

∫
Q −−−→ C is a monoidal op-fibration as defined in [21]. In a similar way,
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lifting the unit (of a tensor structure) as a constant functor yields u ∈ Q(I) or,
equivalently, u : 1 −−−→ Q(I).

Next, lifting the maps (λ, ρ, α, σ) of a symmetric monoidal structure on C simply
amounts to requiring the following inclusions:

Q(λ)(µI,Y (u, y)) ≤ y , Q(ρ)(µX,I(x, u)) ≤ x ,
Q(α)(µX⊗Y,Z(µX,Y (x, y), z)) ≤ µX,Y⊗Z(x, µY,Z(y, z)) ,

Q(σ)(µX,Y (x, y)) ≤ µY,X(y, x) .

Considering that we actually need these lifted maps to be invertible, we require
(by Lemma 2) the above inclusions to be equalities. Thus we have u : 1 −−−→ Q(I)
and µX,Y : Q(X)×Q(Y ) −−−→ Q(X ⊗ Y ), where the latter is lax natural, making
commutative the usual diagrams for a monoidal functor, see Figure 1.

1×Q(X) Q(I)×Q(X)

Q(X) Q(I ⊗X)

λQ

u×id

µ

Q(λ)

Q(X)× 1 Q(X)×Q(I)

Q(X) Q(X ⊗ I)

ρQ

id×u

µ

Q(ρ)

(Q(X)×Q(Y ))×Q(Z) Q(X)× (Q(Y )×Q(Z))

Q(X ⊗ Y )×Q(Z) Q(X)×Q(Y ⊗ Z)

Q((X ⊗ Y )⊗ Z) Q(X ⊗ (Y ⊗ Z))

αQ

µ×id id×µ

µ µ

Q(α)

Q(X)×Q(Y ) Q(Y )×Q(X)

Q(X ⊗ Y ) Q(Y ⊗X)

σQ

µX,Y µY,X

Q(σ)

Figure 1. Coherence diagrams for a monoidal functor.

5. Lifting the closed structure

We suppose next that we have lifted the symmetric monoidal structure from C
to
∫
Q via a lax natural µ as in the previous section, and that C is closed as well.

Let us recall that C is closed if, for each object X of C, the functor X⊗− (tensoring
with X) has a right adjoint, noted here X ( −. As from elementary theory, the
right adjoint is made into a bifunctor(: Cop×C −−−→ C. Moreover, for each pair
of objects X and Y of C, we have maps (the units and counits of the adjunction)

ηX,Y : Y −−−→ X ( (X ⊗ Y ) , evX,Y : X ⊗ (X ( Y ) −−−→ Y ,

natural in Y , satisfying the usual pasting diagrams for adjunctions:

(X ( evX,Y ) ◦ ηX,X(Y = idX(Y , evX,X⊗Y ◦ (X ⊗ ηX,Y ) = idX⊗Y . (3)

The following statement, allowing to lift the bifunctor (, is a direct consequence
of Theorem 3.

Proposition 6. There is a bijection between the following kind of data:

• a lifting of a bifunctor(: Cop×C −−−−→ C to a functor (
∫
Q)op×

∫
Q −−−−→∫

Q,
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• a collection of order-preserving maps

{ ιX,Y : Q(X)op ×Q(Y ) −−−−→ Q(X ( Y ) | X,Y ∈ Obj(C) } ,

such that, for f : X −−−−→ X ′ and g : Y −−−−→ Y ′, the following diagram
semi-commutes:

Q(X)op ×Q(Y ) Q(X)op ×Q(Y ′)

Q(X ′)op ×Q(Y )

Q(X ′( Y ) Q(X ( Y ′)

id×Q(g)

Q(f)op×id

ιX,Y ′

ιX′,Y

Q(f(g)

(4)

Once the bifunctor ( has been lifted, in order to lift the adjunction X ⊗ − a
X ( −, we require the unit and counit to be maps of

∫
Q. This is achieved by

requiring the following inequalities to hold, for each pair of objects X,Y of C, each
x ∈ Q(X) and y ∈ Q(Y ):

Q(ηX,Y )(y) ≤ ιX,X⊗Y (x, µX,Y (x, y)) , (5)

Q(evX,Y )(µX,X(Y (x, ιX,Y (x, y)) ≤ y . (6)

Due to its central role in this paper, let us introduce an explicit notation for the
map

〈−, −〉X,Y := Q(evX,Y ) ◦ µX,X(Y : Q(X)×Q(X ( Y ) −−−→ Q(Y ) .

Notice that the inclusion (6) is then written as 〈x, ιX,Y (x, y)〉X,Y ≤ y.

Theorem 7. The following conditions are equivalent:

(i) C and
∫
Q are symmetric monoidal closed and π :

∫
Q −−−−→ C strictly pre-

serves this structure.
(ii) For each pair of objects X,Y of C, and each x ∈ Q(X) and y ∈ Q(Y ), the

equality

µX,Y (x, y) = 〈x, Q(ηX,Y )(y) 〉X,X⊗Y (7)

holds and, for each α ∈ Q(X), the map

〈α, −〉X,Y : Q(X ( Y ) −−−−→ Q(Y ) (8)

has a right adjoint ιX,Y (α, − ).

Proof. Firstly, let us recall that a map ιαY : Q(Y ) −−−→ Q(X ( Y ) is the right
adjoint of 〈α, · 〉X,Y if and only if the usual unit-counit relations

β ≤ ιαY ( 〈α, β〉X,Y ) , 〈α, ιαY (γ) 〉X,Y ≤ γ , (9)

hold, for each β ∈ Q(X ( Y ) and γ ∈ Q(Y ).
Assume (i). Let ιX,Y : Q(X)op × Q(Y ) −−−→ Q(X ( Y ) satisfying (5) and (6)
be given. Let us show first that (7) holds. Recall that Q(X ⊗ ηX,Y )(µX,Y (x, y)) ≤
µX,X((X⊗Y )(x,Q(ηX,Y )(y)). Then

µX,Y (x, y) = Q(evX,X⊗Y )(Q(X ⊗ ηX,Y )(µX,Y (x, y)) )

≤ Q(evX,X⊗Y )(µX,X((X⊗Y )(x,Q(ηX,Y )(y)) ) = 〈x,Q(ηX,Y )(y)〉X,X⊗Y .
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For the opposite inclusion, observe that, using (5) and (6),

〈x, Q(ηX,Y )(y) 〉X,X⊗Y ≤ 〈x, ιX,X⊗Y (x, µX,Y (x, y)) 〉X,X⊗Y ≤ µX,Y (x, y) .

Next, let α ∈ Q(X) and define ιαY (β) as ιX,Y (α, β). Then (6) immediately yields
the counit of (9). For the unit, we argue as follows:

β = (Q(X ( evX,Y ) ◦Q(ηX,X(Y ))(β)

≤ Q(X ( evX,Y )(ιX,X⊗(X(Y )(α, µX,X(Y (α, β))) , using (5),

≤ ιX,Y (α,Q(evX,Y )(µX,X(Y (α, β))) , using (4),

= ιαY (〈α, β〉X,Y ) .

Assume now (ii), so ιαY is given for each α ∈ Q(X). We define ιX,Y (α, β) as ιαY (β)
and verify that (6) and (5) hold. Again, the co-unit in (9) is exactly equation (6).
Thus, we only need to derive (5), which we do as follows:

Q(ηX,Y )(y) ≤ ιαX⊗Y ( 〈α,Q(ηX,Y )(y)〉X,X⊗Y ) ,
letting β = Q(ηX,Y )(y) ∈ Q(X ( (X ⊗ Y )) in the unit of (9),

= ιαX⊗Y (µX,Y (α, y) ) = ιX,X⊗Y (α, µX,Y (α, y)) , using (7). �

We notice that if µ is natural (and not merely lax natural) in its right variable,
then equation (7) automatically holds, as evident from the proof of Theorem 7.

We say that Q monoidally factors through SLatt if Q factors through SLatt and,
moreover, µX,Y : Q(X) × Q(Y ) −−−→ Q(X ⊗ Y ) is natural (and not merely lax
natural) and bilinear, that is, sup-preserving in each variable, separately. That is,
writing Q = U ◦Q0, the extension of µX,Y to the tensor product Q0(X)⊗Q0(Y ) in
SLatt makes Q0 : C −−−→ SLatt into a monoidal functor. Theorem 7 immediately
implies the following statement.

Theorem 8. If Q monoidally factors through SLatt, then
∫
Q is symmetric monoidal

closed and the projection functor π :
∫
Q −−−−→ C strictly preserves this structure.

It can be expected that if µ is natural, then ι has also some kind of naturality.
This is the content of the next lemma and corollary.

Lemma 9. Suppose that µ is natural. Let f : X −−−−→ Y and suppose that
Q(f ( Z) has a right adjoint Q(f ( Z)∗. Then, for α ∈ Q(X) and γ ∈ Q(Z),
the following holds:

ιY,Z(Q(f)(α), γ) = Q(f ( X)∗(ιX,Z(α, γ)) . (10)

Proof. Observe first that the following diagram commutes:

Q(X)×Q(Y ( Z) Q(X)×Q(X ( Z)

Q(Y )×Q(Y ( Z) Q(X ⊗ (Y ( Z)) Q(X ⊗ (X ( Z))

Q(Y ⊗ (Y ( Z)) Q(Z)

Q(f)×Q(Y(Z)

Q(X)×Q(f(Z)

µX,Y(Z µX,X(Z

µY,Y(Z
Q(f⊗(Y(Z))

Q(X⊗(f(Z))

Q(evX,Z)

Q(evY,Z)
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With this in mind, let us compute as follows (with β ∈ Q(Y ( Z)):

β ≤ ιY,Z(Q(f)(α), γ) iff Q(evY,Z)(µ(Q(f)(α), β)) ≤ γ
iff Q(evX,Z)(µ(α,Q(f ( Z)(β))) ≤ γ
iff Q(f ( Z)(β) ≤ ιX,Z(α, γ)

iff β ≤ Q(f ( Z)∗(ιX,Z(α, γ)) . �

Notice that Lemma 9 applies when f : X −−−→ Y is invertible, in which case
Q(f ( X)∗ = Q(f−1( X).

In the following statement, we fix 0 ∈ C and ω ∈ Q(0), let X∗ := X ( 0
and ωX : Q(X) −−−→ Q(X∗)op be defined by ωX(α) := ιX,0(α, ω). We use (−)op :
SLattop −−−→ SLatt to denote the functor sending a complete lattice to its opposite
and a sup-preserving map to its right adjoint. Equation (10) implies commutativity
of the diagram

Q(X) Q(Y )

Q(X∗)op Q(Y ∗)op .

ωX=ιX,0(−,ω)

Q(f)

ωY =ιY,0(−,ω)
Q(f∗)op

Corollary 10. Suppose that Q monoidally factors through SLatt. Then, consider-
ing Q as a functor C −−−−→ SLatt, ωX is a natural transformation from Q(X) to
Q(X∗)op.

6. Lifting dualizing objects

We incrementally assume that
∫
Q and C are symmetric monoidal closed and that

the projection strictly preserves all the structure. We use the notation introduced
before. Namely, for a fixed object 0 of a symmetric monoidal closed category, we
let X∗ := X ( 0. If 0 and X are objects of C and ω ∈ Q(0), ωX : Q(X)op −−−→
Q(X∗) is defined by ωX(α) := ιX,0(α, ω).

Let us recall that an object 0 of a symmetric monoidal closed category V is
dualizing if, for each object X of V, the canonical arrow

jX : X −−−→ X∗∗ ,

arising as the transpose the map evX,0 ◦ σX∗,X : X∗ ⊗ X −−−→ 0, is an isomor-
phism. A symmetric monoidal closed category V is ∗-autonomous if it comes with
a dualizing object 0.

We devise in this section conditions for (0, ω) being a dualizing object of
∫
Q.

Recall from Section 5 that (X,α)
∗

:= (X,α) ( (0, ω) = (X∗, ωX(α)), and notice
that since

∫
Q is closed the canonical arrow j(X,α) is part of this structure and

projects to jX . As this might not be evident, we explicitly record this fact below.

Lemma 11. For each X object X of C and each α ∈ Q(X), the canonical arrow jX :
X −−−−→ X∗∗ lifts to an arrow j(X,α) : (X,α) −−−−→ (X,α)∗∗ = (X∗∗, ωX∗(ωX(α)))

in
∫
Q. That is, we have the inequality Q(jX)(α) ≤ ωX∗(ωX(α)).
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Proof. Writing jX = (X∗ ( (evX,0 ◦ σ)) ◦ ηX∗,X , that is general formula for
transpose of an adjunction, we have for α ∈ Q(X)

Q(jX)(α) = Q((X∗( (evX,0 ◦ σ)) ◦ ηX∗,X)(α)

≤ Q(X∗( (evX,0 ◦ σ))(ιX∗,X∗⊗X(x, µX∗,X(x, α)))
for all x, by functoriality and the inclusion (5)

≤ ιX∗,0(x,Q(evX,0 ◦ σ)(µX∗,X(x, α))) by diagram (4)

= ιX∗,0(x,Q(evX,0)(µX,X∗(α, x))) by functoriality and figure (1)

≤ ιX∗,0(ιX,0(α, ω), ω) with x = ιX,0(α, ω) and equation (6)

= ωX∗(ωX(α)) . �

We study next under which conditions the maps j(X,α) are isomorphisms. Using
Lemma 2 and assuming that Q(X) 6= ∅, for each object X of C, we infer the
following:

Proposition 12. An object (0, ω) of
∫
Q is dualizing if and only if 0 is a dualizing

object of C and , for each object X of C, the following diagram commutes.

Q(X) Q(X∗)op

Q(X∗∗)

Q(jX)

ωX

ωX∗ (11)

Proof. Asking for the object (0, ω) in
∫
Q to be dualizing means that for each object

X of C and α ∈ Q(X), the arrow j(X,α) : (X,α) −−−→ (X,α)∗∗ is invertible. By
Lemma 2 and since we can always find α ∈ Q(X), this is equivalent to asking jX to
be invertible, for each object X of C, and that Q(jX)(α) = ωX∗(ωX(α)), for each
object X of C and α ∈ Q(X). �

Lemma 13. If (0, ω) is dualizing, then, for each object X of C, ωX : Q(X)op −−−−→
Q(X∗) is an isomorphism.

Proof. In diagram (11), since Q(jX) is invertible, ωX is split mono, and ωX∗ is split
epi, for each object X. Thus, ωX∗ is both split epi and split mono and therefore it
is invertible. It follows that ωX is inverted by Q(jX)−1 ◦ ωX∗ . �

It might be difficult to directly make use of Proposition 12. The following The-
orem 16 yields a more direct way to verify whether some (0, ω) is dualizing by
simply looking at the maps ωX . Recall from Theorem 7 that any map of the form
〈α,−〉X,Y has a right adjoint, namely ιX,Y (α,−). In the case Y = 0, let us simply

write 〈α,−〉X for 〈α,−〉X,0, so to have the equivalence:

〈α, β〉X ≤ ω iff β ≤ ωX(α) , for all β ∈ Q(X∗) .

Suppose now that for each β ∈ Q(X∗) we can find ⊥β ∈ Q(X) such that

α ≤ ⊥β iff 〈α, β〉X ≤ ω , for all α ∈ Q(X) .

This happens, for example, when 〈−, β〉X has a right adjoint and, in particular,
when Q monoidally factors through SLatt. Then, the equivalences

α ≤ ⊥β iff 〈α, β〉X ≤ ω iff β ≤ ωX(α) , for all α ∈ Q(X) and β ∈ Q(X∗) ,
(12)
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hold and exhibit ωX and ⊥(−) as a Galois connection. In particular ⊥β is uniquely
determined.

Lemma 14. If ωX : Q(X)op −−−−→ Q(X∗) is invertible, then ⊥β = ω−1X (β).

Proof. We have 〈α, β〉X ≤ ω if and only if β ≤ ωX(α), if and only if α ≤ ω−1X (β). �

Lemma 15. If µ is natural, then the following relation holds

〈α, β〉X = 〈β,Q(jX)(α)〉X∗ , (13)

for each α ∈ Q(X) and β ∈ Q(X∗). Consequently:

(1) If Q(jX) has a right adjoint Q(jX)∗, then ⊥β = Q(jX)∗(ωX∗(β)).
(2) If jX is invertible, then ⊥β = Q(j−1X )(ωX∗(β)).

Proof. We obtain (13) by diagram chasing:

Q(X)×Q(X∗) Q(X∗)×Q(X) Q(X∗)×Q(X∗∗)

Q(X ⊗X∗) Q(X∗ ⊗X) Q(X∗ ⊗X∗∗)

Q(0)

µX,X∗

σX,X∗

µX∗,X

id×Q(jX)

µX∗,X∗∗

Q(evX,0)

Q(σX,X∗ ) Q(id⊗jX)

Q(evX∗,0)

Using (13), we argue as follows:

〈α, β〉X ≤ ω iff 〈β,Q(jX)(α)〉X ≤ ω
iff Q(jX)(α) ≤ ωX∗(β)

iff α ≤ Q(jX)∗(ωX∗(β)) = Q(j−1X )(ωX∗(β) ) ,

where the equality Q(jX)∗(ωX∗(β)) = Q(j−1X )(ωX∗(β)) holds when jX is invertible.
�

Theorem 16. If µ is natural, then, for each ω ∈ Q(0), (0, ω) is dualizing if and
only if 0 is dualizing in C and, for each object X of C, ωX is invertible.

Proof. We only need to prove the converse of Lemma 13, namely that diagram (11)
commutes.
By Lemmas 14 and 15, we have Q(j−1X )(ωX∗(β)) = ⊥β = ω−1X (β), for each β ∈
Q(X∗), thus Q(j−1X ) ◦ ωX∗ = ω−1X , from which commutativity of (11) follows. �

7. The double negation nucleus

It is well known, see for instance [22, Theorem 1], that given an element ω
of a unital commutative quantale (Q, e, ∗), the map (− ( ω) ( ω is a closure
operator, actually a nucleus. Taking the fixed points of this nucleus yields a quantale
(Qj , j(e), ∗j) in which every element is equal to its double negation. Otherwise said,
(Qj , j(e), ∗j) is a ∗-autonomous complete poset, also called a Girard quantale. In
this section we show how to reproduce this process with the total category in place
of the quantale.

We suppose from now on that C is ∗-autonomous with 0 as dualizing element,
and that Q : C −−−→ SLatt is a monoidal functor, so that, in particular, µ is
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natural. Thus, as stated in Theorem 8,
∫
Q is symmetric monoidal closed. We fix

ω ∈ Q(0).

Proposition 17. Define, for each X ∈ C and α ∈ Q(X), ωX(α) := ⊥(ωX(α)).
Then ωX is a closure operator on Q(X). For X an object of C and f : X −−−−→ Y
an arrow of C, let

Q
ω

(X) := {α ∈ Q(X) | ωX(α) = α } , Q
ω

(f) := ωY ◦Q(f) .

Then Q
ω

: C −−−−→ SLatt is a functor and ωX : Q(X) −−−−→ Q
ω

(X) is a surjective
sup-preserving map, natural in X. If f : X −−−−→ Y is invertible, then Q(f)
restricts to a map from Q

ω

(X) −−−−→ Q
ω

(Y ).

Proof. In view of the relations in (12), ⊥(·) and ωX form a Galois connection and,
by general theory, see e.g. [5, Chapter 7], their composition ωX is a closure opera-

tor on Q(X). Then, Q
ω

(X) is a complete lattice where the supremum of a family
{αi | i ∈ I } is ωX(

∨
i αi) (we shall denote this supremum by

⊔
i∈I αi). Moreover

ωX : Q(X) −−−→ Q
ω

(X) is sup-preserving and surjective.

It is obvious that Q
ω

preserves the identities. The fact that it preserves the com-
position and the naturality of ω are directly induced by the equality

ωY (Q(f)(ωX(α))) = ωY (Q(f)(α)) , (14)

valid for each α ∈ Q(X). This equality is proved by the following argument. By
Corollary 10, for f : X −−−→ Y in C, the following diagram commutes:

Q(X) Q(X∗)op

Q(Y ) Q(Y ∗)op .

Q(f)

ωX

Q(f∗)op

ωY

(15)

Recall now that if a diagram in Pos

A B

C D .

h

f

g

k

commutes and is such that f and k have right adjoints ρ(f) and ρ(k), respectively,
then

h(ρ(f)(b)) ≤ ρ(k)(g(b)) , (16)

holds for each b ∈ B. The Galois connection expressed in (12) can also be un-
derstood by saying that ⊥(−) : Q(X∗)op −−−→ Q(X) is right adjoint to ωX :
Q(X) −−−→ Q(X∗)op.
Thus, applying (16) to diagram (16), we obtain

Q(f)(⊥β) ≤ ⊥(Q(f∗)op(β))

for each β ∈ Q(X∗). And therefore, by the naturality of ω,

Q(f)(ωX(α)) = Q(f)(⊥(ωX(α)))

≤ ⊥((Q(f∗)op)(ωX(α))) = ⊥(ωY (Q(f)(α))) = ωY (Q(f)(α)) . (17)

As ωY is a closure operator, we also obtain that

ωY (Q(f)(α)) ≤ ωY (Q(f)(ωX(α))) ≤ ωY (ωY (Q(f)(α)) = ωY (Q(f)(α)) .
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That is, we have derived (14). This equality also allows us to prove that Q
ω

(f) is
sup-preserving:

Q
ω

(f)(
⊔
i

αi ) = ωY (Q(f)( ωX(
∨
i

αi) ))] = ωY (Q(f)(
∨
i

αi)) = ωY (
∨
i

Q(f)(αi))

≤ ωY (
∨
i

ωY (Q(f)(αi))) =
⊔
i

Q
ω

(f)(αi) ,

where the opposite inclusion follows from monotonicity of Q
ω

(f). Finally, suppose
f : X −−−→ Y invertible. We aim at showing that ωY (Q(f)(α)) ≤ Q(f)(ωX(α))
(which then is an equality by equation (17)). Indeed, we have

Q(f−1)(ωY (Q(f)(α))) ≤ ωX(Q(f−1)(Q(f)(α))) = ωX(α) ,

and we obtain the desired inequality by applying Q(f). �

Before arguing that Q
ω

: C −−−→ SLatt is monoidal, we first give a variant of
Theorem 16, based on closure operators ωX .

Proposition 18. (0, ω) is a dualizing element of
∫
Q if and only if 0 is a dualizing

element of C and, for each object X of C and each α ∈ Q(X), ωX(α) = α.

Proof. Recall that we assume that µ is natural. Thus, we rely on Theorem 16 and
argue that ωX is invertible if and only if Q

ω

(X) = Q(X), for each object X of C.
If ωX is invertible, then it is inverted by its adjoint ⊥−, thus ωX(α) = α for each
α ∈ Q(X).
Conversely, suppose that, for each object X of C, Q

ω

(X) = Q(X). This amounts
to saying that idQ(X) = ωX = Q(j−1X ) ◦ ωX∗ ◦ ωX . Therefore, ωX is split mono,
and ωX∗ is split epi, for each for each object X of C. Therefore ωX∗ is both split
mono and split epi, and therefore it is an an isomorphism. It follows that ωX is an
isomorphism as well. �

Lemma 19. The following relation holds:

〈µX,Y (α, β), γ〉X⊗Y,Z = 〈α, 〈β,Q(ψ)(γ) 〉Y,X(Z 〉X,Z , (18)

for each α ∈ Q(X), β ∈ Q(Y ), and γ ∈ Q((X ⊗ Y )( Z).

Proof. Recall that we assume in this Section that µ is natural. Equation (18) is
argued via the diagram chasing in Figure 2. �

Recall that the double negation closure operator j(−) := (− ( ω) ( ω on
a unital commutative quantale (Q, e, ∗) is a nucleus, meaning that it satisfies the
following inclusion:

j(j(α) ∗ β) ≤ j(α ∗ β) .

The above inclusion is the key property allowing to construct a quantale structure
on the set Qj of fixed point of j. We show that a similar property allows to

transform Q
ω

into a monoidal functor.

Proposition 20. The collection of maps ωX forms a nucleus w.r.t. µ. That is, the
following inequation holds:

µX,Y ( ωX(α), β ) ≤ ωX⊗Y (µX,Y (α, β ) ) , (19)
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Figure 2. Proof of equation (18)
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for each α ∈ Q(X) and β ∈ Q(Y ). Consequently, by defining u
ω

:= ωI (u) and

µ
ω

X,Y := Q
ω

(X)×Q
ω

(Y )
µX,Y−−−→ Q(X ⊗ Y )

ωX⊗Y−−−−→ Q
ω

(X ⊗ Y ) ,

these maps turn Q
ω

: C −−−−→ SLatt into a monoidal functor.

Proof. Assume (19). Then, by symmetry, we also have

µX,Y (α, ωY (β)) ≤ ωX⊗Y (µX,Y (α, β)) .

Moreover, by monotonicity, ωX⊗Y (µX,Y (α, β)) ≤ ωX⊗Y (µX,Y (ωX(α), ωY (β))). Alto-
gether we deduce:

ωX⊗Y (µX,Y (ωX(α), ωY (β))) = ωX⊗Y (µX,Y (α, β)) . (20)

From (20) it immediately follows that µ
ω

is bilinear (as we assume that µ is bi-
linear) and that it makes commutative the diagrams required for monoidality, see
Figure (1). Also, (20) yields naturality of µ

ω

:

Q
ω

(f ⊗ g)(µ
ω

X,Y (α, β)) = ωX′⊗Y ′(Q(f ⊗ g)(ωX,Y (µX,Y (α, β))))

= ωX′⊗Y ′(Q(f ⊗ g)(µX,Y (α, β))) , by equation (14),

= ωX′⊗Y ′(µX′,Y ′(Q(f)(α), Q(g)(β))), since µ is natural,

= ωX′⊗Y ′(µX′,Y ′(
ω
X′(Q(f)(α)), ωY ′(Q(g)(β)))) , by (20),

= µ
ω

X′,Y ′(Q
ω (f)(α), Q

ω

(g)(β)) .

Let us tackle the proof of relation (19), which is equivalent to

〈µX,Y (ωX(α), β), ωX(µX,Y (α, β)) 〉X⊗Y ≤ ω .
We derive the latter relation by means of the folllowing computations:

〈µX,Y (ωX(α), β), ωX(µX,Y (α, β)) 〉X⊗Y,0
= 〈ωX(α), 〈β, Q(ψ)(ωX⊗Y (µX,Y (α, β))) 〉Y,X∗〉X,0 ,

by equation (18),

= 〈ωX(α), 〈β, ιY,X∗(β, ωX(α))〉Y,X∗〉X,0 ,
by equation (21), to be argued for,

≤ 〈ωX(α), ωX(α)〉X,0 , by equation (6),

= 〈⊥(ωX(α)), ωX(α)〉X,0 ≤ ω .
To complete the proof, we need to asses the equality

Q(ψ)(ωX⊗Y (µX,Y (α, β))) = ιY,X∗(β, ωX(α)) . (21)

The canonical isomorphism ψ : (X ⊗ Y )( Z −−−→ Y ( (X ( Z) lifts from C to∫
Q, which means that the following diagram commutes:

Q(X)op ×Q(Y )op ×Q(Z) Q(Y )op ×Q(X)op ×Q(Z)

Q(X ⊗ Y )op ×Q(Z) Q(Y )op ×Q(X ( Z)

Q((X ⊗ Y )( Z) Q(Y ( (X ( Z))

µopX,Y ×Q(Z)

σQ(X)op,Q(Y )op×Q(Z)

Q(Y )op×ιX,Z

ιX⊗Y,Z ιY,X(Z

Q(ψ)
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Equation (21) is just an instance of this commutativity, with Z = 0. �

Next, the important feature of the unital commutative quantale Qj is that the
implication in Qj is computed exactly as in Q and, moreover, that ω ∈ Qj . We

collect analogous remarks for the functor Q
ω

.

Lemma 21.

(1) The following inclusion holds:

ωX(Y (ιX,Y (α, β)) ≤ ιX,Y (ωX(α), ωY (β)) . (22)

Consequently, if β ∈ Q
ω

(Y ), then ιX,Y (α, β) ∈ Q
ω

(X ( Y ), for each
α ∈ Q(X).

(2) Every element of the form ωX(α), α ∈ Q(X), belongs to Q
ω

(X∗).
(3) The element ω ∈ Q(0) is a fixed point of ω0 .

Proof. (1) We have

〈ωX(α), ωX(Y (ιX,Y (α, β))〉X,Y = Q(evX,Y )(µX,X(Y (ωX(α), ωX(Y (ιX,Y (α, β))))

≤ Q(evX,Y )(ωX⊗(X(Y )(µX,X(Y (α, ιX,Y (α, β))))

using equation (19)

≤ ωY (Q(evX,Y )(µX,X(Y (α, ιX,Y (α, β))))
by equation (17)

≤ ωY (β) , by equation (6).

From the above inequality, equation (22) follows using adjointness. Next,
assume β ∈ Qω (Y ), let α ∈ Q(X), and observe that

ιX,Y (α, β) ≤ ωX(Y (ιX,Y (α, β))

≤ ιX,Y (ωX(α), ωY (β)) , by (22),

= ιX,Y (ωX(α), β) , since β ∈ Qω (Y ),

≤ ιX,Y (α, β) , since ι reverses the order in its first variable,

and therefore ιX,Y (α, β) = ωX(Y (ιX,Y (α, β)).
(2) By Corollary 10, the following diagram commutes:

Q(X) Q(X∗)op

Q(X∗∗) Q(X∗∗∗)op

Q(jX)

ωX

Q((jX)∗)op =Q((jX)∗)−1 =Q((jX)∗−1)=Q(jX∗ )

ωX∗∗

where the equality (jX)
∗−1 = jX∗ follows from the relation (jX)

∗ ◦ jX∗ =
idX∗ , valid in every symmetric monoidal closed category, and since (jX)

∗
is

invertible whence mono. Using this observation, we can compute as follows:

ωX∗ ◦ ωX = Q(j−1X∗) ◦ ωX∗∗ ◦ ωX∗ ◦ ωX = ωX ◦Q(j−1X ) ◦ ωX∗ ◦ ωX = ωX ◦ ωX = ωX .

(3) Since µ is monoidal, Q(I) is a monoid in SLatt (that is, a quantale) and, for
each object X of C, Q(X) is a Q(I)-module. For q ∈ Q(I) and α ∈ Q(X),
the action is given by q · α = Q(λX)(µI,X(q, α)).

Let λ]0 : 0 −−−→ I ( 0 the transpose of λ0 : I ⊗ 0 −−−→ 0 and recall λ]0 is
an isomorphsm. Commutativity of the following diagram
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Q(I)×Q(0) Q(I)×Q(I ( 0)

Q(I ⊗ (I ( 0))

Q(I ⊗ 0) Q(0)

µI,0

Q(I)×Q(λ]0)

µI,I(0

Q(evI,0)

Q(λ0)

yields the relation

q · α = 〈q,Q(λ]0)(α)〉I,0 .

Let next e be the unit of Q(I) and compute as follows:

Q(λ]0)(ω) = Q(λ]0)(
∨
{β ∈ Q(0) | e · β ≤ ω })

=
∨
{Q(λ]0)(β) | β ∈ Q(0), 〈e,Q(λ]0)(β)〉I,0 ≤ ω }

=
∨
{ γ ∈ Q(I ( 0) | 〈e, γ〉I,0 ≤ ω } = ωI(e) .

It follows that ω = Q((λ]0)−1)(ωI(e)). By item 2, ωI(e) ∈ Q
ω

(I ( 0)
and since morpshims of the form Q(f) with f : X −−−→ Y invertible
restrict to maps from Q

ω

(X) −−−→ Q
ω

(Y ), see Proposition 17, ω =

Q((λ]0)−1)(ωI(e)) ∈ Q
ω

(0). �

The following theorem is a direct consequence of these observations and of Propo-
sition 18.

Theorem 22. Let C be a ∗-autonomous category and Q : C −−−−→ SLatt be a
monoidal functor. Let 0 be a dualizing object of C and pick ω ∈ Q(0). Then (0, ω)
is a dualizing object of

∫
Q

ω

.

Proof. As we are dealing with two monoidal functors, Q and Q
ω

, we shall dis-
tinguish the structures making

∫
Q and

∫
Q

ω

by adding ω in superscript. For

example, we have the following characetrisation if 〈−,−〉
ω

X,Y :

〈α, β〉
ω

X,Y = Q
ω

(evX,Y )(µ
ω

(α, β) )

= ωY (Q(evX,Y )(ωX⊗(X(Y )(µX,X(Y (α, β))) )

= ωY (Q(evX,Y )(µX,X(Y (α, β))) by equation (14)

= ωY (〈α, β〉X,Y ) .

Using this, we see that the right adjoint to 〈α, ·〉ω is ιX,Y (α, ·). Indeed, for α ∈
Q

ω

(X), β ∈ Qω (X ( Y ), and γ ∈ Qω (Y ), we have ιX,Y (α, γ) ∈ Qω (Y ) and

〈α, β〉
ω

X,Y = ωY (〈α, β〉X,Y ) ≤ γ iff 〈α, β〉X,Y ≤ γ iff β ≤ ιX,Y (α, γ) .

Since ω ∈ Qω (0), then ω
ω

X (α) = ιX,0(α, ω) = ωX(α). We also have ⊥
ω

β = ⊥β. In-

deed, β ∈ Qω (X∗), since ⊥β = Q(j−1X )(ωX∗(β)) ∈ Qω (X) by Lemma 15, ωX∗(β) ∈
Q

ω

(X∗∗) by item 2 of Lemma 21, Q(j−1X ) restricts to a map Q
ω

(X∗∗) −−−→
Q

ω

(X) by Proposition 17.

Thus ⊥
ω

(ω
ω

X (α)) = ⊥(ωX(α)) = ωX(α) = α, for every object X of C and every

α ∈ Qω (X), and therefore
∫
Q

ω

is ∗-autonomous, using Proposition 18. �
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We end this section by giving a representation theorem analogous to the well-
known representation theorem for Girard quantales that yields the completeness of
phase semantics of linear logic. The theorem is also meant to illustrate how our
construction relate to the focused orthogonality categories introduced in [14] and
further studied in [11], see also Example 30.

Theorem 23. Let Q : C −−−−→ SLatt be a monoidal functor and suppose that
(0, ω) is a dualizing element of

∫
Q. Consider the functor P ◦ UQ, where UQ is

the composition C
Q−→ SLatt

U−→ Set of Q and the forgetful functor to Set, and where
P : Set −−−−→ SLatt is the covariant powerset functor (free complete sup-lattice
functor). Define

⊥⊥ := {x ∈ Q(0) | x ≤ ω } .
Then, the maps sending x ∈ Q(X) to ↓X(x) := {x′ ∈ Q(X) | x′ ≤ x } ⊆ Q(X) form

a natural isomorphism between the functors Q : C −−−−→ SLatt and (P ◦ UQ)
⊥⊥

:
C −−−−→ SLatt.

Proof. Let us argue that a set A ⊆ Q(X) belongs to (P ◦ UQ)
⊥⊥

(X) if and only
if it is of the form ↓X (α) for some α ∈ Q(X). To this goal, observe that, for
B ∈ (P ◦ UQ)(X∗),

⊥B = {α ∈ Q(X) | 〈α, β〉 ≤ ω, for all β ∈ B } .

Moreover, by general theory of Galois connections, all the elements of (P◦UQ)
⊥⊥

(X)
are of this form. Now, it is immediate that if α ∈ ⊥B and α′ ≤ α, then α′ ∈
⊥B. Moreover, since 〈−, β〉X is sup-preserving,

∨
(⊥B) ∈ ⊥B. Thus, if A ∈

(P ◦ UQ)
⊥⊥

(X), then A = ↓X(
∨
A).

Next, for α ∈ Q(X), ↓X(α) ∈ (P ◦ UQ)
⊥⊥

(X), since

⊥{ωX(α) } = {α′ ∈ Q(X) | 〈α′, ωX(α)〉X ≤ ω } = ↓X(ωX(α)) = ↓X(α) ,

since we are assume that Q(X) = Q
ω

(X). Thus, (P ◦ UQ)
⊥⊥

(X) is the set of all

the principal downsets of Q(X) and ↓X (−) : Q(X) −−−→ (P ◦ UQ)
⊥⊥

(X) is an
order isomorphism, thus an isomorphism in SLatt.
For any closure operator j on a complete lattice L, j(x) is the least element of
{ y ∈ L | j(y) = y }. It follows then that

⊥⊥X(A) = ↓X(
∨
A) , for each A ⊆ Q(X).

For f : X −−−→ Y in C, we have

(P ◦ UQ)
⊥⊥

(f)( ↓X(α)) = ↓Y (
∨
{Q(f)(α′) | α′ ≤ α })

= ↓Y (Q(f)(
∨
{α′ | α′ ≤ α }) = ↓Y (Q(f)(α)) ,

showing that the maps sending α ∈ Q(X) to ↓X(α) ∈ (P ◦ UQ)
⊥⊥

(X) are natural
in X. �

8. Lifting fixed points of functors

This research was also motivated by ongoing research on the algebraic and cate-
gorical semantics of linear logic with fixed points [8, 6, 15]. In these works, several
questions about initial and terminal (co)algebras of endofunctors of the category
Nuts were raised. We shall argue in Example 29 that this category also arises as
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Q for some functor Q into SLatt. This was realised in [11] where these questions

were also settled. Nonetheless, we believe pertinent to pinpoint here how this kind
of results relate to the general theory developed in Section 3.

Recall that, given a category C and an endofunctor F : C −−−→ C, an F -algebra
(resp. F -coalgebra) is an object X together with a morphism (called structure)
γ : F (X) −−−→ X (resp. γ : X −−−→ F (X)). A morphism of algebras (resp.
coalgebras) (X, γ) −−−→ (Y, δ) is simply a morphism f : X −−−→ Y such that the
following diagram commutes (respectively):

F (X) F (Y ) F (X) F (Y )

X Y X Y

F (f)

γ δ

F (f)

f

γ

f

δ

Algebras (resp. coalgebras) and their morphisms form a category AlgC(F ) (resp.
CoAlgC(F )). Notice that we have CoAlgC(F ) = AlgCop(F op)

op
, where F op :

Cop −−−→ Cop is the same functor as F , just considered as an endofunctor of
Cop.

An initial algebra (resp. terminal coalgebra) is an initial (resp. terminal) object
of AlgC(F ) (CoAlgC(F )). It is well-known that the structure of an initial alge-
bra (terminal coalgebra) is invertible [18]. For this reason, initial and terminal
(co)algebras of functors have been used to give semantics (of proofs) to logics with
least and greatest fixed point-operators.

Let Q : C −−−→ Pos and F : C −−−→ C be functors and suppose that there
is a lifting F :

∫
Q −−−→

∫
Q. Denote by ψ : Q −−−→ QF the lax natural

transformation corresponding to F , as given in Theorem 3.

Proposition 24. For an F-coalgebra (X, γ), define

Qν(X, γ) := {α ∈ Q(X) | Q(γ)(α) ≤ ψX(α) } .
Then, for f : (X, γ) −−−−→ (Y, δ) a coalgebra morphism, Q(f) restricts from
Qν(X, γ) to Qν(Y, δ). Thus Qν is a functor CoAlgC(F ) −−−−→ Pos and we have an
isomorphism

CoAlg∫
Q(F ) '

∫
Qν . (23)

Proof. Let f : (X, γ) −−−→ (Y, δ) be a coalgebra morphism and assume Q(γ)(α) ≤
ψX(α). Verification that Q(δ)(Q(f)(α)) ≤ ψY (Q(f)(α) is achieved as follows:

Q(δ)(Q(f)(α)) = Q(Ff)(Q(γ)(α)) , since f is a coalgebra morphism,

≤ Q(Ff)(ψX(α)) , by assumption on α,

≤ (ψY (Q(Ff)(α)) , by lax-naturality of ψ.

For (X,α) ∈
∫
Q, recall that F (X,α) = (F (X), ψX(α)). Therefore, an F -coalgebra

((X,α), γ) is given by an F -coalgebra (X, γ) such that

Q(γ)(α) ≤ ψX(α) .

A morphism of F -coalgebras f : ((X,α), γ) −−−→ ((Y, β), δ) is just a morphism of
F -coalgebra f : X −−−→ Y in C such that Q(f)(α) ≤ β.
Then, the mapping sending an object ((X,α), γ) of CoAlg∫

Q(F ) to the object
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((X, γ), α) of
∫
Qν (and a map f to itself) is the desired isomorphism CoAlg∫

Q(F ) '∫
Qν . �

We can give a similar result for algebras if we assume that ψ : Q −−−→ Q ◦ F is
natural or thatQ factors through SLatt. For the latter case, we need to develop some
tools, illustrating the intrinsic dualities of the category SLatt. Suppose therefore
that Q factors through SLatt, so Q(X) is a complete lattice and Q(f) has a right
adjoint Q(f)∗. Denote by Q∗ : Cop −−−→ Pos the functor such that Q∗(X) :=
Q(X)op and Q∗(f) := Q(f)

∗
. Obviously, also Q∗ factors through SLatt.

Lemma 25. If Q factors through SLatt, then the following statements hold:

(1) The functor Qν factors through SLatt.

(2) We have (
∫
Q)op =

∫
Q∗ and the functor F

op
is a lifting of F op to

∫
Q∗.

Proof. (1) First, observe that for (bi)i ⊂ Qν(B, β)—that is bi ∈ Q(B) is such
that Q(β)(bi) ≤ ψB(bi), for each i—we have

Q(β)(
∨
i

bi) ≤
∨
i

Q(β)(bi) ≤
∨
i

ψB(bi) ≤ ψB(
∨
bi)

because Q(β) is sup-preserving and ψB is order-preserving. This shows
that Qν(B, β) is a subset of Q(B) closed under suprema. Necessarily, for a
coalgebra morphism f : (B, δ) −−−→ (A, γ), the restriction Q(f) to Q(B, δ)
preserves these suprema. So Qν(B, β) is a complete lattice and Qν is func-
tor because it is the restriction of Q for morphism.

(2) Objects of
∫
Q∗ are of the form (X,α) where X ∈ C and α ∈ Q(X)op, where

we can simply write α ∈ Q(X). Morphisms (X,α) −−−→ (Y, β) are maps f :
Y −−−→ X in C such that Q(f)

∗
(α) ≤ β in Q(Y )op, that is, β ≤ Q(f)

∗
(α)

in Q(Y ). Under the adjunction, this is equivalent to Q(f)(β) ≤ α in Q(X).
Let us spell out what is (

∫
Q)op. Objects of (

∫
Q)op are pairs (X,α) where

X ∈ C and α ∈ Q(X). A morphism (X,α) −−−→ (Y, β) in (
∫
Q)op is

a morphism f : Y −−−→ X in C such that Q(f)(β) ≤ α. Moreover the
following diagram commutes, thus showing the very last statement:∫

Q∗
∫
Q∗

Cop Cop

F
op

π π

F op

�

Proposition 26. Assume that ψ : Q −−−−→ Q ◦ F is natural or that Q factors
through SLatt. For an F -algebra (X, γ), define

Qµ(X, γ) := {α ∈ Q(X) | Q(γ)(ψX(α)) ≤ α } .

If ψ is natural, then, for f : (X, γ) −−−−→ (Y, δ) an algebra morphism, Q(f) restricts
to a map from Qµ(X, γ) to Qµ(Y, δ). If Q factors through SLatt, then Qµ is extended
to a functor so to have Qµ = Q∗ν∗. In both cases, Qµ is made into a functor
AlgC(F ) −−−−→ Pos and we have an isomorphism

Alg∫
Q(F ) '

∫
Qµ . (24)
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Proof. Suppose that ψ is natural, let f : (X, γ) −−−→ (Y, δ) be an algebra morphism
and assume Q(γ)(ψX(α)) ≤ α. Verification that Q(f)(α) ∈ Qµ(Y, δ), that is,
Q(δ)(ψY (Q(f)(α))) ≤ Q(f)(α), is achieved as follows:

Q(δ)(ψY (Q(f)(α))) = Q(δ)(Q(Ff)(ψX(α))) , by naturality of ψ,

= Q(f)(Q(γ)(ψX(α))) , since f is an algebra morphism,

≤ Q(f)(α) , by assumption on α.

An F -algebra ((X,α), γ) is given by an F -algebra (X, γ) such that

Q(γ)(ψX(α)) ≤ α .

A morphism of F -algebras f : ((X,α), γ) −−−→ ((Y, β), δ) is just a morphism of
F -algebras f : (X, γ) −−−→ (Y, δ) in C such that Q(f)(α) ≤ β. Then, the mapping
sending an object ((X,α), γ) of Alg∫

Q(F ) to the object ((X, γ), α) of
∫
Qµ (and a

map f to itself) is the desired isomorphism Alg∫
Q(F ) '

∫
Qµ.

Next, suppose that Q factors through SLatt. As we no more assume that ψ is
natural, for an algebra morphism f : (X, γ) −−−→ (Y, δ) and α ∈ Qµ(X, γ), Q(f)(α)
might not belong to Qµ(Y, δ). Yet, since Qµ(Y, δ) is a subset of Q(Y ) closed under
infima, we can define

Qµ(f)(α) :=
∧
{β ∈ Qµ(Y, δ) | Q(f)(α) ≤ β } . (25)

The definition in (25) doesn’t make explicit that Qµ is a functor. We claim that
this is the case, since we actually have the equality

Qµ = Q∗ν∗ . (26)

Assuming this equality, and recalling we can describe algebras in term of coalgebras,
we obtain

Alg∫
Q(F ) =

[
CoAlg(

∫
Q)op(F

op
)
]op

=
[
CoAlg∫

Q∗(F
op)
]op

'
[∫

Q∗ν
]op

=

∫
Q∗ν∗ =

∫
Qµ ,

where we have used, in the order, Lemma 25, Proposition 24, again Lemma 25, and
then (26).

Next, let us show that Qµ = Q∗ν∗. We have Q∗ν : CoAlgCop(F op) −−−→ Pos, so
Q∗ν∗ : [CoAlgCop(F op)]

op
= AlgC(F ) −−−→ Pos. Let (X, γ) ∈ AlgC(F ), we have

Q∗ν∗(X, γ) = Q∗ν(X, γ)op and

Q∗ν(X, γ) = {α ∈ Q(X)op | Q∗(γ)(α) ≤ ψX(α) in QF (X)op } .

Because the order of this poset is the one from Q(X)op, the order of the opposite
poset is the one from Q(X). Also the inequality condition above is equivalent, by
transposition, to Q(γ)(ψX(α)) ≤ α. Then

Q∗ν∗(X, γ) = Q∗ν(X, γ)op = {α ∈ Q(X) | Q(γ)(ψX(α)) ≤ α in Q(X) } = Qµ(X, γ) .

That is, the equality (26) holds on objects.

For morphisms, consider that f : (X, γ) −−−→ (Y, δ) in AlgC(F ). Recall that, as a
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morphism of CoAlgCop(F op), f is typed the opposite way, f : (Y, δ) −−−→ (X, γ).
Let α ∈ Qµ(X, γ), β ∈ Qµ(Y, δ), and observe the following chain of equivalences:

Qµ(f)(α) ≤ β in Qµ(Y, δ) iff Q(f)(α) ≤ β in Q(Y ) ,
by definition of Qµ(f)(α),

iff α ≤ Q(f)∗(β) in Q(X)

iff Q∗(f)(β) = Q(f)∗(β) ≤ α in Q∗(X) = Q(X)op

iff Q∗ν(f)(β) ≤ α in Q∗ν(X, γ)
since α, β ∈ Q∗ν(X) = Qµ(X, γ)op and Q∗(f) restricts from Q∗ to Q∗ν

iff β ≤ Q∗ν(f)∗(β) in Q∗ν(Y, δ)

iff Q∗ν∗(f)(α) = Q∗ν(f)∗(α) ≤ β

where the last inequality is taken in Q∗ν(Y, δ)op = Q∗ν∗(Y, δ) = Qµ(Y, δ). From
these equivalences we obtain the equality Qµ(f)(α) = Q∗ν∗(f)(α), for each α ∈
Qµ(X, γ), as aimed. �

The isomorphisms in (23) and (24) allow to reduce the existence (or lifting) of a
terminal coalgebra (initial algebra) to the existence of a terminal (initial) object in
a generic op-fibration

∫
Q −−−→ C. It is straightforward that if 1 a terminal object

of C and >1 is the supremum of Q(1), then (1,>1) is a terminal object of
∫
Q.

Similarly, if 0 is an initial object of C, ⊥0 is the least element of Q(0), and for each
object X, the map Q(!X) : Q(0) −−−→ Q(X) sends ⊥0 to a least element of Q(X),
then (0,⊥0) is an initial object of

∫
Q. Thus we have the following proposition, that

for convenience we state directly for functors Q factoring through SLatt, leaving the
possible generalizations to the reader.

Proposition 27. Let Q : C −−−−→ SLatt and suppose that an endofunctor F of C
has a lifting F to

∫
Q.

(1) If F has a terminal F -coalgebra (ν.F, χ), then the object (ν.F, χ, ν.φ) of∫
Qν ' CoAlg∫

Q(F ) is terminal, where ν.φ is the greatest fixed point of the

map φ defined as the composition Q(ν.F )
ψν.F−−−→ Q(F (ν.F ))

Q(χ−1)−−−−−→ Q(ν.F ).
(2) Suppose that ψ : Q −−−−→ Q◦F is natural and that F has an initial algebra

(µ.F, χ). For each F -algebra (X, γ), let µ.φX denote the least fixed point of

the map φX defined as the composition Q(X)
ψX−−→ Q(F (X))

Q(γ)−−−→ Q(X).
Then the object (µ.F, χ, µ.φµ.F ) of

∫
Qµ ' Alg∫

Q(F ) is initial.

Notice that, in the second item of the above statement, the maps φX need
not be sup-preserving, since we do not require the maps ψX to be sup-preserving.
Therefore, the least fixed point of φµ.F might not coincide with the least element
of Q(µ.F ).

Proof. For the first statement, consider that the structure χ : ν.F −−−→ F (ν.F )
is invertible, so elements in Qν(ν.F, χ) are exaclty post-fixed points of the map φ.
The statement is then an obvious application of the sufficient condition given for
the extisence of a terminal object in

∫
Q

The second statement is also an application of the sufficient condition given for the
existence of an initial object in

∫
Q. For this, we need to argue that least fixed

points of the maps φX : Q(X) −−−→ Q(X) are preserved by maps of the form
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Q(f) with f and algebra morphism. This is a standard consequence in fixed poiont
theory of commutativity of the following diagram:

Q(X) Q(F (X)) Q(X)

Q(Y ) Q(F (Y )) Q(Y )

φX

Q(f)

ψX

Q(F (f))

Q(γ)

Q(f)

φY

ψY Q(δ)

and of the fact that Q(f) has a right adjoint. �

9. Examples

Example 28. Categories of poset-valued sets. A main reason for developing
this research was to understand the structure of categories of the form Q-Set intro-
duced in [29] and, possibly, to devise generalization of this kind of constructions.

For Q = (Q, e, ∗) a unital commutative quantale, the category Q-Set is defined
as follows:

• An object is a pair (X,α) with X a set and α : X −−−→ Q a function.
• An arrow R : (X,α) −−−→ (Y, β) is a relation R : X −−−→ Y such that,

for all x ∈ X and y ∈ Y , xRy implies α(x) ≤ β(y).

Let Q(X) := QX be the set of functions from X to Q, pointwise ordered and, for
a relation R : X −−−→ Y , let Q(R) : QX −−−→ QY be defined by

Q(R)(α)(y) :=
∨
xRy

α(x) , for each α ∈ QX and y ∈ Y .

It is easily verified that Q(X) is a complete lattice, that Q(R) is sup-preserving, and
that Q is a functor Rel −−−→ Pos factoring through SLatt. Clearly, Q-Set arises as
the total category

∫
Q. While, for each set X, Q(X) is a quantale (with the product

structure), for a relation R : X −−−→ Y , only the inclusions Q(R)(1) ≤ 1 and
Q(R)(α∗β) ≤ Q(R)(α)∗Q(R)(β) hold—that is, Q(R) is comonoidal. Nonetheless,
and recalling that Q({ ∗ }) can be identified with Q, if we define

u := e ∈ Q({ ∗ }) , µX,Y (α, β)(x, y) := α(x) ∗ β(y) ,

then µX,Y is natural (and not merely lax-natural), u and µ make Q into a monoidal
functor, and µX,Y is bilinear. Thus Q monoidally factors though SLatt. The
monoidal structure of Q-Set exhibited in [29] is the one induced by µX,Y . Recall
that Rel is, w.r.t. the monoidal structure given by × and { ∗ }, compact closed
category, that is, we have X ( Y = X × Y . It is verified that

ιX,Y (α, β)(x, y) = α(x)( β(y) , thus, for ω ∈ Q ωX(α)(x) = α(x)( ω . (27)

In [29] this construction was also generalized as follows. Let F : Rel −−−→
Rel be a 2-functor (equivalently, the relation lifiting of weak-pullback preserving
endofunctor of Set, see [17]) that is comonoidal and whose natural arrows νX,Y :
F (X × Y ) −−−→ F (X) × F (Y ) are functional. An object of QF -Set is a pair
(X,α) with α ∈ Q(F (X))(= QF (X)). An arrow in Q-Set from (X,α) to (Y, β)
is a relation R : X −−−→ Y such that, for each x ∈ F (X) and y ∈ F (Y ), if
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xF (R)y, then α(x) ≤ β(y). Let c : Rel −−−→ Relop be the converse functor,
identity on objects and picking the converse of a given relation. Given F as above,
νcX,Y : F (X) × F (Y ) −−−→ F (X × Y ) makes F into a monoidal functor. Recall
next that if F : Rel −−−→ Rel and Q : Rel −−−→ Pos are monoidal, then their
composition Q ◦ F is monoidal as well, with natural transformation

µQ◦FX,Y = Q(µFX,Y ) ◦ µQF (X),F (Y ) : Q(F (X))×Q(F (Y )) −−−→ Q(F (X × Y )) .

Clealry Q ◦F monoidally factors through SLatt and the equality QF -Set =
∫
Q ◦F

holds. The monoidal structure described in [29] is the one arising from the monoidal
µQ◦F .

A wide generalization of the category Q-Set arises if we replace Rel with Rel(Q),
the category of relations or matrices over Q. An object of the category of Rel(Q)
is a set, while an arrow X −−−→ Y is a map ψ : X × Y −−−→ Q. Identity is the
Kronecker δ, while composition of ψ : X −−−→ Y and χ : Y −−−→ Z is defined as
follows:

(ψ · χ)(x, z) :=
∨
y∈Y

ψ(x, y) ∗ χ(y, z) .

The category Rel(Q) is compact closed [16, 24], with X⊗Y = X ( Y = X×Y , I =
0 = { ∗ }, and X∗ = X on objects. Rel(Q) is also a quantaloid, that is, a category
enriched over SLatt. From this it follows that Rel(Q)({ ∗ },−) is a monoidal functor
from Rel(Q) to SLatt. Thus,

∫
Rel(Q)({ ∗ }, (−)) is monoidal closed. Since formulas

as in (27) still hold in this wider setting, then dualizing objects of
∫
Rel(Q)({ ∗ },−)

correspond to dualizing elements in Rel(Q)({ ∗ }, { ∗ }) ' Q.
Recall that a fuzzy set is a map α : X −−−→ [0, 1]. The unit interval [0, 1] has

several quantale structures, for example, it is a complete Heyting algebra. A norm
on [0, 1] is indeed a continuous multiplication making [0, 1] into a quantale. Fuzzy
sets have been organised in several categories of fuzzy relations, see e.g. [31, 13, 20].
For Q = [0, 1] (with a norm), the category

∫
Rel(Q)({ ∗ },−) accommodates most

of these constructions.

Example 29. Non-uniform totality spaces. Let us recall some definitions from
[15, §1.2.2]. A totality space is a pair (X,α) with α is an upward closed (w.r.t. in
containement) collection of susbets X. For a relation R ⊆ X × Y and A ⊆ X, let
us define R](A) := { y ∈ Y | ∃x ∈ A s.t. xRy }. A morphism of totality spaces
from (X,α) to (Y, β) is a relation R ⊆ X×Y such that, for each A ∈ α, R](A) ∈ β,
see [15, Lemma 33].

Let UP(X) be the set of upsets of P(X) (so, in particular, UP(X) is a complete
lattice). We extend UP to a functor from Rel to SLatt as follows: for R ⊆ X × Y
and α ∈ UP(X), we let

UP(R)(α) := ↑ ∃R](α) , (28)

that is, UP(R) is the upward closure of the direct image of R]. Notice that

↑ ∃R](α) ⊆ β iff α ⊆ (R])−1(β) , (29)

so UP(R), having a right adjoint, is sup-preserving. Let us consider the category∫
UP. It is easily seen that the equivalent conditions in (29) amount to the state-

ment that R](A) ∈ β, for each A ∈ α. That is, Nuts arises as the total category of
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the functor UP. The monoidal structure of Nuts =
∫
UP is obtained by means of

{ { ∗ } } ∈ UP({ ∗ }) and µX,Y (α, β) = ↑ { a× b | a ∈ α, b ∈ β } ,
where the latter is natural and bilinear.

Example 30: Focused orthogonality categories. The category Nuts is an
example of ∗-autonomous category O⊥⊥(C) arising from a focused orthogonality
structure [14]. It was recently recognised [11] that these categories arise as total
categories of some functor. Let us reconsider these categories with the help of the
theory we have developed.

For a monoidal category C, the hom functor C(I,−) : C −−−→ Set is monoidal,

since we can associate to x : I −−−→ X and y : I −−−→ Y , the arrow x • y := I
'−→

I ⊗ I x⊗y−−−→ X ⊗ Y . The powerset functor P : Set −−−→ SLatt is also monoidal. By
composing these functors, we obtain the functor P (C(I,−)) : C −−−→ SLatt whose
monoidal structure is given by

µX,Y (α, β) = {x • y | x ∈ α, y ∈ β } .
Next, if C is ∗-autonomous, then there is a natural isomorphism ] : C(X, 0) −−−→
C(I,X∗) with the property that, for x : I −−−→ X and y : X −−−→ 0, y ◦ x =
evX,0 ◦ (x • y]). Let now ⊥⊥⊆ C(I, 0). Using the notation of [11], for α ⊆ C(I,X),
we have

P (])(α⊥) = { y] | y ∈ C(0, X), y ◦ x ∈⊥⊥, for all x ∈ α }
= { y ∈ C(I,X∗) | evX,0 ◦ (x • y) ∈⊥⊥, for all x ∈ α }

=
⋃
{ y ∈ C(I,X∗) | P (C(I, evX,0))(µX,X∗(α, { y })) ⊆⊥⊥}

=
⋃
{β ⊆ C(I,X∗) | P (C(I, evX,0))(µX,X∗(α, β)) ⊆⊥⊥} = ιX,0(α,⊥⊥) .

That is, the Galois connection described in [14, 11] is, up to the isomorphism
P (]) : P (C(X, 0)) ' P (C(I,X∗)), the one we describe in Section 7. The category
O⊥⊥(C) is, therefore, a special case of the given construction

∫
Q

ω

, where Q has
been instantiated with P (C(I,−)) and ω =⊥⊥∈ P (C(I, 0)).

10. Conclusions

We have given exact conditions that allow to lift a functor from C to
∫
Q. In

particular, lifting the monoidal structure of C is almost equivalent to Q being a
monoidal functor, as naturality of the arrows µX,Y : Q(X)×Q(Y ) −−−→ Q(X⊗Y )
is replaced by lax naturality. Similarly, lifting the internal hom to

∫
Q was argued

to be equivalent to giving a lax extranatural transformation with components ιX,Y :
Q(X)op × Q(Y ) −−−→ Q(X ( Y ) making the unit and counit of the adjunction
in C maps in

∫
Q. These conditions were found to be equivalent to the fact that

the maps 〈α,−〉X,Y have a right adjoint and that µ may be defined in terms of
these maps. We argued that these conditions are automatically satisfied when Q is
actually a monoidal functor into SLatt—thus, in this case,

∫
Q is always symmetric

monoidal closed. We investigated then dualizing objects in
∫
Q. We proved that,

when Q is monoidal, a necessary and sufficient condition for (0, ω) to be dualizing is
that C is ∗-autonomous and that the maps ιX,0(−, ω) are invertible. One of our most

fascinating result was to construct a functor Q
ω

in an analogous way of the double
negation construction in quantale theory. This gives another total category

∫
Q

ω

where (0, ω) is a dualizing object. Moreover, we gave a representation theorem for
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monoidal functors Q into SLatt such that
∫
Q is ∗-autonomous, thus giving a sort

of phase semantics of proofs, and a completeness theorem for this semantics. We
ended by studying lifting of intial algebras and terminal coalgebras, that is, of fixed
points of endofunctors. We gave a useful description of categories of algebras and
coalgebras in terms of other total categories. In particular, we argued that we can
always lift initial algebras and terminal coalgebras when Q is a functor having SLatt
as codomain.

We focused in this paper on lifting structures—the symmetric monoidal closed
one, being star-autonomous, initial and terminal coalgebras of functors—that arise
in the semantics of proofs for fragments of linear logic augmented with least and
greatest fixed points. The categorical machinery developed in Section 3 and exem-
plified all along this paper can be applied for lifting different kind of categorical
structures. For example, one might wish to lift products from C. It is then verified
that a product is lifted from C to

∫
Q via µ if and only if µX,Y : Q(X)×Q(Y ) −−−→

Q(X×Y ) is right adjoint to the canonical map Q(X×Y ) −−−→ Q(X)×Q(Y ). This
observation is implicit in the literature, see for example [28, 1, 10]. Notice that, in
principle, the methodology applies for all kind of categorical structures and, due
to its generality, can be instantiated to several concrete categories. Categories of
generalized metric spaces, which can be seen as fibrations over Set, are an example.
The problem of lifting set theoretic functors to these categories is also investigated
in [3].

The research developed here also raises many natural mathematical questions
that we aim to answer in a close future. For example, it can be shown that if C
is ∗-autonomous with the tensor unit I being dualizing, and if (I, ω) is a dualizing
object of

∫
Q, then ω is a dualizing element of the quantale Q(I). Whether the

converse hold, we do not know yet. We expect the representation Theorem 23 to
yield hints on this problem. Last but not least, we have emphasized throughout
this paper the analogy of a monoidal functor Q : C −−−→ SLatt with a quantale.
Such a monoidal functor is naturally enriched over SLatt, and the convolution prod-
uct makes monoidal the category [C,SLatt] of functors enriched over SLatt. It is
not difficult to observe that if C is ∗-autonomous, then so is [C,SLatt]. Monoidal
functors into SLatt are actually monoids in [C,SLatt]. We studied in [7] Frobenius
monoids in arbitrary ∗-autonomous categories. A natural conjecture is that the
structure described in Sections 6 and 7, making

∫
Q into a ∗-autonomous category,

is the one of a Frobenius monoid in [C,SLatt].
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