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Abstract: In a previous paper, we solved the partial differential equation of Mullins’ problem in the
case of the evaporation–condensation in electronic devices and gave an exact solution relative to
the geometric profile of the grain boundary grooving when materials are submitted to thermal and
mechanical solicitation and fatigue effect. In this new research, new modelling of the grain groove
profile was proposed and new analytical expressions of the groove profile, the derivative and the
groove depth were obtained in the case of diffusion in thin polycrystalline films by the resolution of
the fourth differential equation formulated by Mullins that supposed y′2 � 1. The obtained analytical
solution gave more accurate information on the geometric characteristics of the groove that were
necessary to study the depth and the width of the groove. These new findings will open a new way
to study with more accuracy the problem of the evaporation–condensation combined to the diffusion
phenomenon on the material surfaces with the help of the analytical solutions.

Keywords: fourth-order differential equation; diffusion; evaporation; groove; surface energy; thermal
fatigue; electronic devices

1. Introduction

The thermal fatigue plays an important role during of degradation of interconnection
compartments of power electronic devices. The temperature variations resulting from the
power cycling has as consequences the stresses and plastic deformations that can affect the
microstructure of the materials at the interconnection interfaces of upper metallic parts.
Wires and metallization layers more solicited than silicon layers lead to the distortion of ma-
terial interfaces when the temperature increases, leading to the deformation or degradation
of the material surfaces. This will decrease the composite life and leads to an accelerated
degradation. The arrangement of grains and grain boundaries is key to understanding
the microstructure of metals and composites. When subjected to thermal and mechanical
stresses, the variation in surface energies between adjacent grains, confined by the grain
boundary, can cause the grains to separate. This phenomenon occurs due to the thermal
and mechanical deformation of the grain boundary and the grain groove profile. Such
occurrences are commonly observed in the bonding wires utilized in electronic devices.

Some authors [1–3] have focused on examining the impact of microstructure and
physicochemical properties on degradation processes. In the literature [4–6], three effects
were investigated. The first two effects examined the influence of bonding procedures and
temperature on crack formation and the microstructure of the interconnection zone. Mean-
while, the third effect explored the relationship between material purity, grain size, and
hardness during cycling. The metallization layer, typically around 5 µm thick, deposited
on the chips undergoes significant distortion compared to materials such as silicon when
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exposed to high temperature. This distortion results in substantial tensile and compressive
stresses, leading to notable inelastic strains [7]. It has been reported that thermomechanical
cycling can cause two main types of degradation on the topside of power chips: metalliza-
tion reconstruction and degradation of bonding contacts [7–9]. It is assumed that during
cyclic aging, a progressive effect of condensation–evaporation occurs, leading to structural
degradation and grooving of the film. However, the precise mechanism of this degradation
is not yet fully understood, and further efforts are required to better comprehend the effects
of stress parameters on the degradation of contacts between metallization and bond wire.
This involves finding a mathematical solution to describe the formation of grain boundary
grooving in polycrystalline thin films. Several solutions to this mathematical problem
have been proposed in the literature [10–20]. In 1957, Mullins [10] conducted a study
on the thermal effect on the profile of grain boundary grooving, laying the foundation
for subsequent research on this phenomenon [13–21]. Various studies have focused on
the development of this phenomenon, particularly exploring evaporation–condensation,
surface diffusion, and formulating the mathematical problem that describes the profile of
grain boundary grooving [10–12]. Some authors [21,22] tried to adapt integrable nonlinear
evolution equations related to the well-known linearizable diffusion equation to derive
a new integrable nonlinear equation which models the surface evolution of anisotropic
material accompanying the action of evaporation–condensation and surface diffusion [22].

A multiple integration technique allowing to solve high-order diffusion equations
was proposed by Hristov [23] based on multiple integration procedures by applying the
heat-balance integral method of Goodman and the double integration method of Volkov.
Hristov [24] presented a solution for the linear diffusion models of Mullins’ thermal
grooving [10–12]. Fourth-order diffusion equations are commonly encountered in various
applications, including surface diffusion on solids [10–12,25–28] and thin film theory [27,28].
Unlike second-order diffusion equations, fourth-order equations generally do not satisfy
any known maximum principle. Even with simple time-independent linear boundary
conditions, evolving solutions tend to generate additional extrema from initially smooth
conditions [29]. Broadbridge [30] studied the problem of a surface groove by evaporation–

condensation governed by ∂y
∂t =

∂2y
∂x2

1+
(

∂y
∂x

)2 . The depth of a groove at a grain boundary

was predicted without any approximation [30]. Chugunova and Taranets [31] studied the
initial–boundary value problem associated with the fourth-order Mullins equation with
initial data. They considered this problem by assuming that the specific free energy of the
boundary is lower than the surface free energy. The Mullins equation, originally introduced
by Mullins in 1957 [10], is a model used to analyze the evolution of surface grooves at
the grain boundaries of heated polycrystals. Chugunova and Taranets [31] successfully
demonstrated the global existence of weak solutions over time and established that the
energy minimizing steady state serves as the global attractor. Gurtin and Jabbour [32]
developed a regularization theory that incorporates curvature effects, including surface
diffusion and bulk–surface interactions. They investigated two specific cases: (i) the
interface considered as a boundary between bulk phases or grains, and (ii) the interface
between an elastic thin film bonded to a rigid substrate and a vapor phase depositing atoms
on the surface [32].

Huang [33] conducted isothermal stress relaxation tests on electroplated Cu thin films,
considering both passivated and unpassivated films. Based on a kinetic model, Huang [33]
deduced grain-boundary and interface diffusivities and provided numerical and analytical
solutions for the coupled diffusion problems. The study also analyzed the impact of surface
and interface diffusivities on stress relaxation in polycrystalline thin films, comparing the
results to experimental data. Asai and Giga [34] considered the surface diffusion flow
equation under specific boundary conditions. The problem of Mullins (1957) was proposed
to model the formation of surface grooves on the grain boundaries, where the second
boundary condition y′′′ (0) = 0 is replaced by zero slope condition on the curvature of
the graph. Asai and Giga solved the initial–boundary problem with homogeneous initial
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data for construction of a self-similar solution and a solution was proposed by using a
semidivergence structure. Escher et al. [35] demonstrated the existence and uniqueness of
classical solutions for the motion of immersed hypersurfaces driven by surface diffusion.
They focused the surface diffusion proposed by Mullins [10–12] to model surface dynamics
for phase interfaces when the evolution is governed solely by mass diffusion within the
interface. Other studies were devoted to the diffusion problems, grain boundary migration,
and grain dynamics evolution in materials [36–42].

Mullins et al. [43] have linearized the differential equation by assuming a very small
slope at any point of the grain profile. In 1975, Brailsford and Gjostein [44] derived approxi-
mate solutions by studying the influence of surface energy anisotropy on morphological
changes occurring by surface diffusion on simply shaped bodies. Wherever a grain bound-
ary intersects the surface of a polycrystalline material, a groove develops. At the root of
the groove, a balance between grain–boundary tension and surface tension produces an
equilibrium angle [45]. The difference in chemical potential between the curved surface
near the groove’s root and the smoother surface farther away results in material drift.
Tritscher [46] considered the boundary–value problem concerning the formation of a single
groove due to surface diffusion at the junction of a bicrystal, assuming that the grain
boundary remains planar.

Martin [47] extended the original Mullins theory of surface grooving due to a single
interface to multiple interacting grooves formed by closely spaced flat interfaces. Martin
considered two cases: the first involved simplifying Mullins’ analysis using Fourier cosine
transforms instead of Laplace transforms, while the second dealt with an infinite periodic
row of grooves. Martin [40] also solved the problem for two interacting grooves. Analytical
solutions for the fourth partial differential equation governing the groove profile in metals
have not been found in the literature.

In a previous study [48], we addressed the mathematical problem associated with the
second nonlinear partial differential equation in Mullin’s problem. We focused on the case
of the evaporation–condensation and provided an exact solution for the geometric profile
of grain boundary grooving when materials are subjected to thermal and mechanical stress,
as well as fatigue effects.

This paper is devoted to model the grain groove profile governed by the fourth-
order partial differential equation in the case of diffusion in thin polycrystalline films.

An analytical and exact solution to the Mullins approximated problem, ∂y
∂t + B ∂4y

∂x4 = 0,
was given.

2. Mathematical Formulation in the Diffusion Case

In this section, we were interested to the derivation of the differential equation that
describes the evolution of a two-dimensional surface of small slope under capillary driving
forces and surface diffusion transport. Surface properties are assumed to be independent
of orientation. For a point on the surface at which the mean curvature is c, the chemical
potential µ(c) per atom can be written as

µ(c) = µ0 + γωc (1)

where µ0 is the chemical potential of reference for a flat surface (c = 0), γ is the surface
tension of the metal/vapor interface and ω is the atomic volume of the film material. A
gradient of surface curvature will therefore create a gradient of the chemical potential µ,
which will produce a drift of atoms on the surface with an average velocity v given by the
Nernst–Einstein relation.

v = −Ds

kT
∂µ

∂s
(2)

or
v = −Dsγω

kT
∂c
∂s

(3)

where Ds is the surface diffusivity, k is the Boltzmann constant and T the absolute temperature.
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The surface current of atoms JS is defined by the product of the average velocity v by
the atom number NS per unit surface area s, it is given by the following equation:

JS = v NS (4)

JS = −Ds

kT
∂µ

∂s
= −DsγωNS

kT
∂c
∂s

(5)

The evolution of the surface may finally be described by the speed of movement vn, of
the surface element along its normal:

vn = −ω ∇s JS =
Dsγω2NS

kT
∂2c
∂s2 (6)

vn = B
∂2c
∂s2 (7)

Notice that NS is the number of diffusing atoms per unit area, JS the surface current of
atoms and B a rate constant given by the following equation:

B =
Dsγω2NS

kT
(8)

Equation (7) can be written in the general case as:

vn = B ∇2
s c (9)

Equation (9) is the general case for the normal direction velocity, where c is the
curvature defined by Equation (10), and y is the coordinate of a point at the surface along
the axis normal to the initial flat surface. The calculations (see Appendix A) led to the
following general diffusion equation (Equation (11)) with the boundary conditions given
by Equation (12).

c = −
∂2y
∂x2[

1 +
(

∂y
∂x

)2
]3/2 (10)

∂y
∂t

= −B
∂

∂x

[(
1 + y′2

)−1/2 ∂

∂x

[
y′′

(1 + y′2)3/2

]]
(11)



y(x, 0) = 0

y(0, t) = − m (Bt)
1
4√

2Γ(5/4)

y′(0, t) = tan θ =m

lim
x→∞

y′(x, t) = 0

lim
x→∞

y′′ (x, t) = 0

y′′′ (0, t) = 0

(12)

3. New Study of Mullins’s Case

By adopting a change in variables and defining a new function g, as shown by Equa-
tion (13), one obtains the equation for the diffusion case. If we suppose a second order
approximation of the derivative, y′2 � 1, it is easy to deduce the approximated differential
equation of Mullins’s case given by Equation (14) (see Appendix A for the full derivation).
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y(x, t) = m (Bt)1/4 g

[
x

(Bt)1/4

]
u(x, t) = x

(Bt)1/4

y(u, t) = m (Bt)1/4 g(u)

(13)

g
′′′′ − 1

4
ug′ +

1
4

g = 0 (14)

With the new boundary conditions:

g(u, 0) = 0
g(0, t) = − 1√

2Γ(5/4)
lim

u→∞
g′(u, t) = 0

lim
u→∞

g′′ (u, t) = 0

g′′′ (0, t) = 0

(15)

3.1. Exact Resolution of Mullins’ Problem

In order to give the exact solution of Mullin’s problem we propose a new method in
which a function r is introduced given by Equations (16) and (17).

r4 − 1
4

u r +
1
4
= 0 (16)

r4 − 1
4

u r +
1
4
=
(

r2 + λ
)2
−
(

8λr2 + u r + 4λ2 − 1
4

)
(17)

The treatment of these equations will lead to the discriminant delta ∆λ and a particular
value for u = u0 = 25/2

33/4 . Two cases arise for (1) ∆λ ≥ 0, u ≥ u0 and (2) ∆λ ≤ 0, u ≤ u0.
After applying the proper boundary conditions for each case and solving for the unknown
problem parameters, these two cases will give us two final analytical expressions for the
function g(u) and the final closed form expression for the profile variation in the grove (see
Appendix B for the detailed derivation).

The analytical solution of the fourth order differential equation (Equations (14) and
(15)) is finally given by Equation (18).

g(u) =

{
g1(u) f or u ≤ 25/2

33/4

g2(u) f or u ≥ 25/2

33/4

(18)

With: {
g1(u) = e−p1(u) (A11cos q1(u) + A21sin q1(u))
g2(u) = e−p2(u)(A12cos q2(u) + A22sin q2(u))

(19)

One proved that all parameters and derivatives for the two functions g1 and g2 are
equal and the continuity of the solution and its derivatives is assured at this point u0 and
consequently at any point of the interval [0, ∞]. The constants of the problem are given by
Equation (20): {

A11 = A12 = − 1√
2×Γ(5/4)

= g0

A21 = A22 = 1√
2×Γ(5/4)

= −g0
(20)

The expressions of the variables p1(u), q1(u), p2(u) and q2(u) are given in Appendix B.
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By using the variables x = (Bt)1/4u(x, t) and y(u, t) = m(Bt)1/4g(u), the analytical
solution y(x, t) can be written as:

y(x, t) =
m (Bt)1/4
√

2× Γ(5/4)
e
−p[ x

(Bt)1/4 ]
[
−cos q

[
x

(Bt)1/4

]
+ sin q

[
x

(Bt)1/4

]]
(21)

3.2. Profile of the Groove Shape in the Diffusion Case

The variations in the profile y(x, t) as a function of the distance x from the symmetric
axis of the groove are plotted on Figure 1.
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Figure 1. Groove profile giving y(x, t) as a function of the distance from the symmetric axis of
the groove.

The study of the solution y(x, t) reveals a damped sinusoidal profile of the groove
with an infinity of maxima, minima, and zeros of the solutions. The oscillations can be
easily observed in our solution. Mullins mentioned that it is questionable, however, that
these oscillations could be observed due to the progressively decreasing amplitude of g.
Here, we proved the superiority of our analytical solution that can predict the oscillations,
their amplitudes, the zero, the maxima and minima of the groove profile.

As example, we gave on Table 1 the 12 first values of the groove shape parameters
and on Table 2 the distance between two consecutive maxima and minima for the first
12 numbers.

We observed that yMax decreases towards zero when x increases to the infinity as
well as the absolute value of ymin (Table 1). This will decrease the distance between two
consecutive maxima and minima when the distance x increases. From the first number of
optima, on observed on Table 2 that a constant value of

∣∣∆lnyMax or min
∣∣ equal to 3.63 was

found for all minima and maxima, whereas the difference ∆xMax or min decreases for the
minima and maxima to tend to zero at the infinity.

Our calculations led to draw the curves of Figure 2:
The results of Table 2 and the curves of Figure 2 allowed to give the interpolating

equations (Table 3):
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Table 1. Values of the coordinates of maxima and minima of the function y(x, t) with the first values
of the groove shape parameters and zeros of y.

Number N xMax in
(Bt)1/4

yMax in
m(Bt)1/4 lnyMax

xmin in
(Bt)1/4

ymin
in m(Bt)1/4 −ln|ymin|

x0in (Bt)1/4

Zeros of y

1 2.4 2.60 × 10−1 −1.35 5.22 −4.02 × 10−2 3.21 1.22

2 7.62 6.44 × 10−3 −5.05 9.66 −1.05 × 10−3 6.86 4.35

3 11.62 1.70 × 10−4 −8.68 13.7 −2.57 × 10−5 10.57 6.78

4 15.26 4.50 × 10−6 −12.31 16.98 −7.33 × 10−7 14.13 9

5 18.62 1.19 × 10−7 −15.94 20.26 −1.95 × 10−8 17.76 11

6 21.82 3.17 × 10−9 −19.57 23.34 −5.17 × 10−10 21.38 12.89

7 24.82 8.42 × 10−11 −23.20 26.3 −1.37 × 10−11 25.01 14.69

8 27.74 2.24 × 10−12 −26.83 29.14 −3.64 × 10−13 28.64 16.44

9 30.54 5.94 × 10−14 −30.45 31.9 −9.67 × 10−15 32.27 18.08

10 33.26 1.58 × 10−15 −34.08 34.58 −2.57 × 10−16 35.90 19.72

11 35.94 4.19 × 10−17 −37.71 37.22 −6.84 × 10−18 39.52 21.27

12 38.5 1.11 × 10−18 −41.34 39.78 −1.82 × 10−19 43.15 22.83

Table 2. Values of the differences between two consecutive maxima and minima.

Number ∆xMax
in (Bt)1/4 |∆lnyMax|

∆xmin
in (Bt)1/4 ∆[−ln|ymin|]

1 - - - -

2 5.22 3.70 4.44 3.65

3 4.00 3.63 4.04 3.71

4 3.64 3.63 3.28 3.56

5 3.36 3.63 3.28 3.63

6 3.20 3.63 3.08 3.63

7 3.00 3.63 2.96 3.63

8 2.92 3.63 2.84 3.63

9 2.80 3.63 2.76 3.63

10 2.72 3.63 2.68 3.63

11 2.68 3.63 2.64 3.63

12 2.56 3.63 2.56 3.63
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Table 3. Equations of interpolation of the various parameters of the groove profile.

Parameters of the Groove Equation of Interpolation Linear Regression
Coefficient R2

xMax in (Bt)1/4 = f (N) xMax = −0.0929 N2 + 4.3906N − 1.1605 0.9991

lnyMax = f (N) lnyMax = 0.0012 N2 − 3.6476N + 2.2688 1.0000

Zeros o f y or x0 in (Bt)1/4 x0 = −0.0579 N2 + 2.6546N − 0.9316 0.9990

xmin in (Bt)1/4 = f (N) xmin = −0.0767 N2 + 4.0748N + 1.6466 0.9996

−ln |ymin| = f (N) −ln |ymin| = −0.0006 N2 + 3.6352N − 0.3982 1.0000

lnyMax = f (xMax) lnyMax= −0.0102 x2
Max−0.7048 xMax + 0.6885 0.9998

x0 = f (xMax) x0= −0.0002 x2
Max+0.6073 xMax − 0.2429 1.0000

−ln |ymin| = f (xmin) −ln |ymin|= 0.0093 x2
min+0.7442 xmin − 1.0789 1.0000

x0 = f (xmin) x0= −0.0012 x2
min+0.6723 xmin − 2.1302 0.9999

Inflexion point xIn f . = f (N) xIn f . = −0.0436 N2 + 2.3829 N + 1.378 0.9996

Equations given in Table 3 showed the properties of damped sinusoidal functions and
the pseudo-periodicity of the various groove parameters and the strong correlations between
them showing at the same time the infinity of the number of these different parameters.

On Table 4, we gave the various results obtained by our analytical solution and the
Mullins’s results.

Table 4. Comparison between the results of our analytical solution and those obtained by Mullins.

Studied Parameter Results Obtained by Using Our Solution Results Obtained by Mullins

Approached equation of the
groove profile

g(x) = −0.1737 x2 + 0.8609x− 0.7958
R2 = 0.9997; f or 0 ≤ x ≤ 2.40

g(x) = −0.288 x2 + x− 0.780
f or 0 ≤ x ≤ 1

First zero of y 1.22 1.14

Coordinates of the principal maximum (2.40; 0.260) (2.30; 0.193)

Coordinates of the first inflexion point (3.475; 0.131) 3.43

Equations of inflexion point
xIn f . = f (N)

xIn f . = −0.0436 N2 + 2.3829N + 1.378
R2 = 0.9996

Not given

Positive inflexion point relation
yIn f .(+)= −0.0134 x2

In f .(+)− 0.6214 xIn f .(+)+ 0.3252

R2 = 0.9999
Not given

Negative inflexion point relation
yIn f .(−)= 0.012 x2

In f .(−)+ 0.6638 xIn f . − 0.6231

R2 = 1
Not given

The parabolic approximation of the groove profile obtained by Mullins was valid
for 0 ≤ x ≤ 1, whereas our approximation more precise is valid for 0 ≤ x ≤ 2.40 (from
the origin until the first maximum of the groove shape). On the other hand, the error
committed by Mullins’ calculations on the abscissa of the first maximum the zero of the
function y and the first inflexion point is about 7%, while that on the ordinate of the profile
maximum exceeds 25%. On Table 4, we were able, on the contrary of Mullins’ results, to
give more information on the various maxima, minima, zeros, and positive and negative
inflexion points of the grove shape profile.

Equation (22) gives the expressions of the parameters hMax and hmin representing the
depths of the groove taken from the bottom of the grove, respectively, to its first maximum
and minimum. {

hMax = ε0 + yMax.1
hmin = ε0 + ymin.1

(22)
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Now, knowing that

ε0 =
m(Bt)1/4
√

2× Γ(5/4)

and {
yMax.1 = 0.260×m(Bt)1/4

ymin.1 = −0.040×m(Bt)1/4

One deduced:  hMax =
[

1√
2×Γ(5/4)

+ 0.260
]
m(Bt)1/4

hmin =
[

1√
2×Γ(5/4)

− 0.040
]
m(Bt)1/4 (23)

and {
hMax = 1.040×m(Bt)1/4

hmin = 0.740×m(Bt)1/4 (24)

The separation distance between two consecutive maxima dMax or minima dmin given
in Table 5 proved an important variation in this distance as a function of optima number N.
Table 5 gave their interpolated expressions.

Table 5. Separation distance between two consecutive maxima or minima and their ratios on the
groove depth.

Separation Distance Equation of Interpolation Ratio d/h

Between two consecutive maxima dMax = 6.2355× (Bt)1/4 N−0.365 5.995 N−0.365/m

Between two consecutive minima dmin = 5.3909× (Bt)1/4 N−0.305 7.286 N−0.365/m

Table 5 clearly showed that the ratio d/h is independent from the time but it depends
on the slope m, for example, we can give this ratio for the first maximum (Equation (25)):

dMax
hMax

=
5.02
m

(25)

On Table 6, we presented a comparison between some important parameters obtained
by our analytical solution and that of Mullins.

Table 6. Values of the principal maximum, distance between the two first maxima and their ratios by
using our analytical solution compared to those obtained by Mullins.

Studied Parameter Results from Our Solution Results of Mullins

Depth of the groove
profile, hMax

hMax = 1.040×m(Bt)1/4 hMax = 0.973×m(Bt)1/4

With an error of 6.5%

Separation distance between
the two first maxima dMax = 5.22 (Bt)1/4 dMax = 4.6 (Bt)1/4

With an error of 11.88%

Ratio d/h dMax
hMax

= 5.02
m

dMax
hMax

= 4.73
m

With an error of 5.78%

Table 6 showed a certain deviation of Mullins’ results with respect to those of the
analytical solution proposed in this paper, that can reach 12% in the case of the first
maximum of the groove shape. However, Mullins did not give any additional information
on the other maxima, minima, and zeros of the solution and the various inflexion points,
while our solution gave more complete information on the different parameters of the
groove and also proposed many correlations that can be very useful for the readers.

Here, some information on the coordinates of the positive and negative inflexion
points are given on Table 7.
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Table 7. Coordinates of the positive and negative inflexion points and relations between coordinates.

Number Abscissa of the Positive
Inflexion Point in (Bt)1/4

Ordinate of the Positive Inflexion
Point in m(Bt)1/4

1 3.475 1.310 × 10−1

2 8.295 3.436 × 10−3

3 12.275 9.068 × 10−5

4 15.855 2.410 × 10−6

5 19.185 6.503 × 10−8

6 22.325 1.744 × 10−9

Equation ln yIn f .(+) = −0.0134 x2
In f .(+)

− 0.6214 xIn f .(+)+ 0.3252; R2 = 0.9999

Number Abscissa of the Negative
Inflexion Point

Ordinate of the Negative
Inflexion Point

1 6.055 −2.109 × 10−2

2 10.355 −5.568 × 10−4

3 14.105 −1.487 × 10−5

4 17.545 −4.013 × 10−7

5 20.775 −1.040 × 10−8

6 23.845 −2.823 × 10−10

Equation −ln(−y In f .(−)

)
= 0.012 x2

In f .(−) + 0.6638 xIn f .(−) − 0.6231; R2 = 1.0000

Two expressions between coordinates of the negative and positive inflexions were given on Table 7 showing
parabolic variations with excellent linear regression coefficients equal to 1.0000.

3.3. Competition between Evaporation and Diffusion

When studying the evolution of grain boundary groove profiles in the cases of the
evaporation/condensation and surface diffusion, Mullins [10] assumed that: (1) the surface
diffusivity and the surface energy, γSV , were independent of the crystallographic orienta-
tion of the adjacent grains and (2) the tangent of the groove root angle, γ, is small compared
to unity. Mullins also supposed an isotropic material. The assumption (tanθ << 1) was
used in all papers’ Mullins to simplify the study of the mathematical partial differential
equation. The polycrystalline metal was supposed (3) in quasi-equilibrium with its vapor.
The interface properties do not depend on the orientation relative to the adjacent crystals.
The grooving process was described by Mullins using the macroscopic concepts (4) of
surface curvature and surface free energy. The matter flow (5) is neglected out of the grain
surface boundary.

The mathematical equation governing the evaporation–condensation problem can be
written here as:

∂y
∂t

= C(T)
y′′ (x)(

1 + y′(x)2
) (26)

where C(T) a constant of the problem depending on the temperature T, given by Equation (27).

C(T) = µ
P0(T) γ(T) ω2
√

2πmkT
(27)

where γ is the isotropic surface energy, P0(T) the vapor pressure at temperature T in
equilibrium with the plane surface of the metal characterized by a curvature c = 0, ω
is the atomic volume, m is molecular mass, µ the coefficient of evaporation and k is the
Boltzmann constant.
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We remember here the analytical solution of the evaporation case without any approx-
imation [48] given by

y(x, t) =
∫ x/2

√
Ct

∞

sin θ√
ev2/(2Ct) − sin2θ

dv (28)

and

y(x, t) = −
√

πCt sin θ

[
er f c

(
x

2
√

Ct

)
+ ∑∞

n=1
(2n)!

(n!)222n
√

3n
sin2nθ

(
er f c

(
x
√

3n
2
√

Ct

))]
(29)

By combining the two phenomena of diffusion and evaporation/condensation, one writes:

∂y
∂t

= C
y′′

(1 + y′2)
− B

∂

∂x

[(
1 + y′2

)−1/2 ∂

∂x

[
y′′

(1 + y′2)3/2

]]
(30)

With the approximation postulated by Mullins supposing that y′2 � 1 one can write
Equation (31).

∂y
∂t

= Cy′′ − By
′′′′

(31)

With the constants B and C given by Equation (32). B = Dsγω2 NS
kT

C = µ P0 γ ω2
√

2πm(kT)3/2

(32)

Let us put B the profile area. One can write the rate of change in profile area:

dB
dt

=
∫ +∞

−∞

∂y
∂t

dx = 2
∫ +∞

0

[
Cy′′ − By

′′′′]
dx (33)

One writes Equation (34).

dB
dt

= −2
[
Cy′(0)− By′′′ (0)

]
(34)

In a previous paper [48], we studied the case of evaporation without this approxima-
tion and obtained at the origin Equation (35).{

y′(0, t) = tan θ = m
y′′′ (0, t) = −2 m

(
1 + m2) (35)

In such case, one obtains Equation (35).

dB
dt

= −2m
[
C + 2B

(
1 + m2

)]
(36)

and therefore, the profile area B of as a function of the slope m and the time t (Equation (37)).

B = −2m
[
C + 2B

(
1 + m2

)]
t (37)

Equation (37) provides clear evidence that the rate of change in the profile area is
influenced by both evaporation and diffusion, contrary to Mullin’s prediction which states
that B = −2mC and is independent of surface diffusion.

The profile areaA from below to above the original surface is defined by Equation (38).

A = −
∫ x0

0
y(x)dx = −m(Bt)3/4

∫ u0

0
g(u)du (38)
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The calculations of A, detailed in Appendix C, led Equation (39).

A = 2m(Bt)3/4g′′′ (u0) (39)

By considering σ as a new parameter defining the profile area transferred from below
to above of the original surface by surface diffusion alone divided by the profile area lost
by evaporation, one can write Equation (40).

σ =
A
B =

−2m(Bt)1/2g
′′′
(u0)

2m[C + 2B (1 + m2)]t
(40)

With u0 = 1.22, our solution giving g′′′ (u0) = −0.1543 led us to deduce Equation (41)

σ =
0.1543× B1/2t−1/2

C + 2B (1 + m2)
(41)

If we suppose that the contact angle is small or m2 � 1 (for θ < 18◦) we obtain:

σ =
0.1543× B1/2

C + 2B
t−1/2 (42)

and therefore the final expression of σ:

σ =
0.1543× kT(2πmDsNS)

1/2

ωγ1/2
[
µP0 + 2DsNS(2πmkT)1/2

] t−1/2 (43)

Equation (43) derived from our analytical solution proved that σ depends not only
on the time but also on the temperature, at contrary of the relation obtained by Mullins
(Equation (44))

σ = 0.38
(2πmDsNS)

1/2

ωγ1/2P0
t−1/2 (44)

Indeed, in the Mullins’s relation (Equation (44)), there is no direct effect of the tem-
perature. To compare between the two previous expressions (43) and (44), we calculated
the ratio of the two values σ obtained by our solution (σH) and that of Mullins (σM). One
obtained Equation (45).

σH
σM

= 0.406 (45)

The ratio σH
σM

given by Equation (45) clearly indicated an overestimation of the value
proposed by Mullins compared to the exact solution.

4. Comparison with Experimental Data

In this section, we used the experimental data obtained in the case of two used
common metals such as gold and magnesium. On Table 8, we presented the thermodynamic
parameters of Au and Mg.

In order to compare between our theoretical results and that obtained by Mullins, we
gave on Table 9 the calculated values of B, C, and σ the two methods for Au and Mg metals.

We observed that the profile areas corresponding to Au and Mg are overestimated by
Mullins’ method (about 2.5 times greater than our new values). On the other hand, the
calculated ratio σAu

σMg
of the profile area lost by evaporation of Au and Mg is equal to:

σAu
σMg

= 1.8× 105 (46)
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Equation (46) proved that whatever the time, the evaporation of Au is 1.8× 105 times
more important than that of Mg. However, the diffusion of Mg particles is greater than that
of Au.

Table 8. Thermodynamic parameters of Au and Mg.

Molecular mass m 1.7× 10−25 kg

Temperature T (K) 725.15 K

Surface energy γ 1 J/m2

Number of molecules/m2, NS 1.5× 1019molecules/m2

kT 10−20 J

DS 10−7 m2/s

Molecular volume ω 1.7× 10−29 m3

Vapor pressure P0 of Au 1.3× 10−3 Pa

P0 of Mg 2.4× 102 Pa

Table 9. Values of C, B, and profile area of Au and Mg by using our new method compared to the
values of Mullins.

Parameter Our Results Mullins Results

C 2.8× 10−17P0
(
in m2/s

)
3× 10−17P0

(
in m2/s

)
B 4.3× 10−26m4/s 10−26m4/s

σ σ = 1148.48
P0

t−1/2 σ = 2828.40
P0

t−1/2

σAu 8.8× 105t−1/2 2.2× 106t−1/2

σMg 4.8 t−1/2 11.8 t−1/2

The same procedure was extended to other usual metals to determine the values of
the profile area lost by evaporation. The experimental data for several metals (Cu, Al, Sr, Li,
Cs, Ti, Co, Ga, and Tl) were given on Table 10.

Table 10. Values of σt1/2 and thermodynamic parameters of some metals, such as melting point: TMP

(K), temperature of metal: T (K), vapor pressure at T: P0 (Pa), molar mass: M (g/mol), surface energy
of metal: γ (J/m2) and atomic volume: ω (m3).

Metal M (g/mol) γ (J/m2) ω (m3) TMP (K) T (K) P0 (Pa) σt1/2

Cu 63.546 1.808 1.18 × 10−29 1358.2 2200 11,490.38 1.2 × 10−5

Al 26.9815 1.152 2.32 × 10−29 933.5 2000 2956.96 1.9 × 10−5

Ti 47.867 2.045 1.77 × 10−29 1941.2 2370 286.35 2.5 × 10−4

Cs 132.905 0.095 1.18 × 10−28 302.96 530 425.19 2.0 × 10−4

Li 6.941 0.524 2.18 × 10−29 453.7 970 294.34 1.5 × 10−4

Co 58.933 2.536 1.11× 10−29 1768.2 2120 303.04 3.8 × 10−4

Ga 69.723 0.991 1.96 × 10−29 302.96 1570 278.52 4.1 × 10−4

Tl 204.383 0.639 2.86 × 10−29 577.2 1070 318.79 5.2 × 10−4

Sr 87.62 0.415 5.60 × 10−29 1050.2 1030 1008.65 6.9 × 10−5
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These interesting results of Table 10 allowed to classify the various metals by following
the increasing order of the profile area:

Cu < Al < Sr < Li < Cs < Ti < Co < Ga < Tl

On Table 11, we gave the obtained values of the two constants C and B of evaporation
and diffusion for the different metals.

Table 11. Calculated values of evaporation C and diffusion B constants from the experimental data.

Metal C
(
in m2/s

)
B
(
in m4/s

)
(Bt)1/4(in m) for 24 h

Co 5.9 × 10−15 1.6 × 10−26 6.1 × 10−6

Ti 9.6 × 10−15 2.9 × 10−26 7.1 × 10−6

Ga 1.0 × 10−14 2.6 × 10−26 6.9 × 10−6

Li 1.5 × 10−14 2.8 × 10−26 7.0 × 10−6

Tl 2.9 × 10−14 5.3 × 10−26 8.2 × 10−6

Al 1.2 × 10−13 3.4 × 10−26 7.3 × 10−6

Cu 1.7 × 10−13 1.2 × 10−26 5.7 × 10−6

Sr 2.4 × 10−13 1.4 × 10−25 1.0 × 10−5

Cs 2.8 × 10−13 2.7 × 10−25 1.2 × 10−5

The constant of evaporation C decreases from the cobalt element Co to cesium by
respecting the following increasing order:

Co < Ti < Ga < Li < Tl < Al < Cu < Sr < Cs

Whereas, this order changes for the constant of diffusion that increases from Cu to Cs
with the following order:

Cu < Co < Ga < Li < Ti < Al < Tl < Sr < Cs

Another important conclusion concerns the larger value of constant C with respect to
B. It is shown that the value of C is about 1012 times greater that of B. This led to conclude
that the diffusion can be in general neglected relative to evaporation.

4.1. Consequence of Theoretical Results on the Depth of the Groove

In many experiments, it was proved that the depth groove can vary from 0.1 mm to
several 10 mm in the case of diffusion depending on the metal thermal properties and
on the width of the groove. In order to understand the thermal behavior of diffusion of
the various elements, let us take the typical example where m = 0.20 and calculate the
corresponding depth hMax of the groove for metals. The obtained results were given on
Table 12.

The results of Table 12 allowed to compare between the depth hMax of the groove for
the various metals that can be therefore classified in increasing order of the depth:

Cu < Co < Ga < Li = Ti < Al < Tl < Sr < Cs

This result confirmed that previously obtained by the diffusion constant B.
Knowing that the width wMax of the groove is given by Equation (47)

wMax = 2xMax = 4.8× (Bt)1/4 (47)

One deduced the value of wMax for the different metals presented on Table 13.
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Table 12. Variations in the depth hMax (in m) of the groove in the case of diffusion of different metals
as a function of time.

Metal 1 s 1 min 1 h 1 Half-Day 1 Day 5 Days 10 Days

Co 7.4 × 10−8 2.1 × 10−7 5.7 × 10−7 1.1 × 10−6 1.3 × 10−6 1.9 × 10−6 2.3 × 10−6

Ti 8.6 × 10−8 2.4 × 10−7 6.7 × 10−7 1.2 × 10−6 1.5 × 10−6 2.2 × 10−6 2.6 × 10−6

Ga 8.4 × 10−8 2.3 × 10−7 6.5 × 10−7 1.2 × 10−6 1.4 × 10−6 2.1 × 10−6 2.6 × 10−6

Li 8.5 × 10−8 2.4 × 10−7 6.6 × 10−7 1.2 × 10−6 1.5 × 10−6 2.2 × 10−6 2.6 × 10−6

Tl 1.0 × 10−7 2.8 × 10−7 7.7 × 10−7 1.4 × 10−6 1.7 × 10−6 2.6 × 10−6 3.0 × 10−6

Al 8.9 × 10−8 2.5 × 10−7 6.9 × 10−7 1.3 × 10−6 1.5 × 10−6 2.3 × 10−6 2.7 × 10−6

Cu 6.9 × 10−8 1.9 × 10−7 5.4 × 10−7 1.0 × 10−6 1.2 × 10−6 1.8 × 10−6 2.1 × 10−6

Sr 1.3 × 10−7 3.5 × 10−7 9.8 × 10−7 1.8 × 10−6 2.2 × 10−6 3.2 × 10−6 3.9 × 10−6

Cs 1.5 × 10−7 4.2 × 10−7 1.2 × 10−6 2.2 × 10−6 2.6 × 10−6 3.8 × 10−6 4.6 × 10−6

Table 13. Variations in the width wMax (in m) of the groove in the case of diffusion of different metals
as a function of time.

Metal 1 s 1 min 1 h 1 Half-Day 1 Day 5 Days 10 Days

Co 1.7 × 10−6 4.8 × 10−6 1.3 × 10−5 2.5 × 10−5 2.9 × 10−5 4.4 × 10−5 5.2 × 10−5

Ti 2.0 × 10−6 5.5 × 10−6 1.5 × 10−5 2.9 × 10−5 3.4 × 10−5 5.1 × 10−5 6.1 × 10−5

Ga 1.9 × 10−6 5.4 × 10−6 1.5 × 10−5 2.8 × 10−5 3.3 × 10−5 5.0 × 10−5 5.9 × 10−5

Li 2.0 × 10−6 5.5 × 10−6 1.5 × 10−5 2.8 × 10−5 3.4 × 10−5 5.0 × 10−5 6.0 × 10−5

Tl 2.3 × 10−6 6.4 × 10−6 1.8 × 10−5 3.3 × 10−5 4.0 × 10−5 5.9 × 10−5 7.0 × 10−5

Al 2.1 × 10−6 5.7 × 10−6 1.6 × 10−5 3.0 × 10−5 3.5 × 10−5 5.3 × 10−5 6.3 × 10−5

Cu 1.6 × 10−6 4.5 × 10−6 1.2 × 10−5 2.3 × 10−5 2.7 × 10−5 4.1 × 10−5 4.9 × 10−5

Sr 2.9 × 10−6 8.1 × 10−6 2.3 × 10−5 4.2 × 10−5 5.0 × 10−5 7.5 × 10−5 8.9 × 10−5

Cs 3.5 × 10−6 9.6 × 10−6 2.7 × 10−5 5.0 × 10−5 5.9 × 10−5 8.9 × 10−5 1.1 × 10−4

4.2. Consequences of the New Solution on the Thermodynamic Parameters

The experimental study of the geometric characteristics of the groove for metals can
lead to the determination of the two constants of evaporation and diffusion. Indeed, the
evaporation constant can be obtained by determining experimentally the value of the
profile area B and by considering in first approximation B = −2mCt or C = − B

2mt . By
determining the value of C, it becomes possible to determine the surface energy γ of the
metal using the relation of the evaporation constant, resulting in the following expression:

γ =
C
√

2πm(kT)3/2

P0 ω2 = −

√
π(kT)3

2m
B

P0ω2t
(48)

The evaluation of the width wMax of the groove will give the value of diffusion constant
B by using Equation (47), and therefore:

B = 1.88× 10−3 w4
Max
t

(49)
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Knowing γ and wMax, we will be able to obtain the value of the surface diffusion Ds:

Ds = 2.6× 10−26 Tw4
Max

γω2Nst
(50)

4.3. Validity of the Approximation of y′2 � 1

Let us consider the case of copper metal to test the validity of y′2 � 1 and draw on
Figure 3 the variations in y′2 as a function of the distance x for different contact angles.
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Figure 3. Variations in y′2 as a function of the distance x from the symmetrical axis of the groove at
different contact angles (θ from 1◦ to 70 ◦ and m from 0.017 to 2.75) in the case of copper element.

Figure 3 showed that for θ < 30◦, the value of y′2 < 0.2 and can be approximately
neglected behind 1 following Mullins’ approximation. Therefore, for θ > 30◦, the approx-
imated fourth partial differential equation proposed by Mullins cannot be used for the
diffusion case and then it will be necessary to resolve the non-linear partial fourth order
differential equation that cannot be analytically obtained.

4.4. Variations in the Groove Profile y(x) and the Derivative y′(x) as a Function of the Distance x
of Cu

We used the results of our analytical solution to determine the groove profile and its
derivative in the case of copper metal. On Figure 4, we drew the variations in the profile y(x)
and y′(x) in the case of Cu by noting the geometric parameters of the groove such as hMax,
dMax, and wMax. By using our solution, we obtained the following geometric characteristics
of the groove:

hMax = 2.16 µm; dMax = 29.54 µm;
wMax

2
= 13.68 µm

On Figure 5, we plotted the variations in the profile y(x) of the groove of Cu as a
function of the distance x for different values of contact angles.
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Figure 4. Variations in the profile y(x) and y′(x) as a function of the distance x from the symmetrical
axis of the groove when θ = 20◦ (m = 0.364) for copper metal with the geometric characteristics.
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Figure 5. Variations in the profile y(x) as a function of the distance x for different values of m
corresponding to θ = 2.3◦ to 26.6◦ for copper metal.

Figure 5 clearly showed the effect of the contact angle of the grove. The groove depth
increases when m increases. However, the other characteristics such as dMax and wMax
remain the same.

The obtained analytical solution allowed to compare between the groove profiles
among various metals. Figure 6 showed different groove characteristics in different metals.
It can be seen that the groove depth and the distance between two maxima increased from
Cu to Cs (Figure 6).
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Figure 6. Variations in the profile y(x) as a function of the distance x for the different metals at t = 24 h.

Figure 6 also showed the large difference in the behavior of the various metals.
The grove phenomenon is more accentuated for Cs, whereas Cu is less affected by the
surface diffusion.

5. Conclusions

In this study, we derived an exact solution to the partial differential equation
∂y
∂t + By

′′′′
= 0. The obtained solution reveals a damped sinusoidal groove profile in

the case of electronic power devices. We provided expressions of zeros, minima, and max-
ima of the profile as a function of the order number, as well as detailed information about
the groove profile y(x) and its derivatives. A comprehensive comparison with Mullins’ re-
sults was conducted, demonstrating that Mullins’ predictions significantly overestimate the
geometric characteristics of the groove, exceeding the actual values by more than 2.5 times.
Additionally, valuable insights into the diffusion behavior of various metals gained through
this study. The expressions for the evaporation and diffusion constants and coefficients
were also derived, accounting for the groove parameters. New expressions of the profile
area lost by evaporation, the surface energy and the surface diffusion coefficients were also
obtained. The combination between our new analytical solution and the experimental data
of several metals such as Cu, Al, Sr, Li, Cs, Ti, Co, Ga, and Tl gave the geometric parameters
such as the depth hMax and the width wMax of the groove in the case of diffusion in these
metals, and allowed an interesting comparison between the diffusion in metals as a function
of time.
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Appendix A

The evolution of the surface was described by the speed of movement vn, of the surface
element along its normal:

vn = B ∇2
s c (A1)

or (
∂y
∂t

)
[

1 +
(

∂y
∂x

)2
] 1

2
= B ∇2

s c (A2)

with the curvature c:

c = −
∂2y
∂x2[

1 +
(

∂y
∂x

)2
]3/2 (A3)

and its derivative ∂c
∂s :

∂c
∂s

=
∂c
∂x

∂x
∂s

=
1[

1 +
(

∂y
∂x

)2
] 1

2

∂c
∂x

(A4)

one obtains:

∂c
∂s

=
∂c
∂x

∂x
∂s

= −
[

1 +
(

∂y
∂x

)2
]−1/2

∂

∂x


∂2y
∂x2⌊

1 +
(

∂y
∂x

)2
⌋3/2

 (A5)

Using the same method for ∂2c
∂s2 , one obtains:

∂2c
∂s2 =

∂

∂s

(
∂c
∂s

)
=

∂

∂x

(
∂c
∂s

)
∂x
∂s

=

[
1 +

(
∂y
∂x

)2
]−1/2

∂

∂x

(
∂c
∂s

)
(A6)

Therefore:

vn =

(
∂y
∂t

)
[

1 +
(

∂y
∂x

)2
] 1

2

= − B[
1 +

(
∂y
∂x

)2
] 1

2

∂

∂x


[

1 +
(

∂y
∂x

)2
]−1/2

∂

∂x


∂2y
∂x2⌊

1 +
(

∂y
∂x

)2
⌋3/2


 (A7)

With y′ = ∂y
∂x and y′′ = ∂2y

∂x2 , previous equation can be written as:

∂y
∂t

= −B
∂

∂x

[(
1 + y′2

)−1/2 ∂

∂x

[
y′′

(1 + y′2)3/2

]]
(A8)

With the following boundary conditions and knowing that

∂

∂x

[
y′′

(1 + y′2)3/2

]
=

y′′′

(1 + y′2)3/2 − 3
y′y

′′2

(1 + y′2)5/2 (A9)

∂y
∂t

= −B
∂

∂x

[
y′′′

(1 + y′2)2 − 3
y′y

′′2

(1 + y′2)3

]
(A10)
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one obtains:

∂y
∂t

= −B

y
′′′′(

1 + y′2
)2 −

(
y
′′3 + 10y′y′′ y′′′

)(
1 + y′2

)
+ 18y′2y

′′3

(1 + y′2)4

 (A11)

By taking the following variable changes:

y(x, t) = m (Bt)1/4 g

[
x

(Bt)1/4

]
(A12)

u(x, t) =
x

(Bt)1/4 (A13)

y(u, t) = m (Bt)1/4 g(u) (A14)

one obtains the different derivatives of y(x, t) and u(x, t):

∂u
∂x

=
1

(Bt)1/4 (A15)

∂y
∂t

=
1
4

mB

(Bt)3/4 g(u) + m (Bt)1/4 ∂g
∂u

∂u
∂t

(A16)

with
∂u
∂t

= − u
4t

(A17)

y′ =
∂y
∂x

=
∂y
∂u

∂u
∂x

= m
∂g
∂u

(A18)

y′′ =
∂2y
∂x2 =

m

(Bt)1/4
∂2g
∂u2 (A19)

y′′′ =
∂3y
∂x3 =

m

(Bt)2/4
∂3g
∂u3 (A20)

y
′′′′

=
∂4y
∂x4 =

m

(Bt)3/4
∂4g
∂u4 (A21)

Equation (A16) becomes:

∂y
∂t

=
1
4

mB

(Bt)3/4 g(u)− mu
4t

(Bt)1/4 ∂g
∂u

(A22)

or
∂y
∂t

=
1
4

mB

(Bt)3/4

[
g(u)− u

∂g
∂u

]
(A23)

By using the previous equations, one obtains: 1 + y′2 = 1 + m2
(

∂g
∂u

)2

y′y′′ y′′′ = m3

(Bt)3/4
∂g
∂u

∂2g
∂u2

∂3g
∂u3

(A24)


y
′′3 = m3

(Bt)3/4

(
∂2g
∂u2

)3

y′2y
′′3 = m5

(Bt)3/4

(
∂g
∂u

)2( ∂2g
∂u2

)3 (A25)
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and then:

∂y
∂t

= −B

y
′′′′(

1 + y′2
)2 −

(
y
′′3 + 10y′y′′ y′′′

)(
1 + y′2

)
+ 18y′2y

′′3

(1 + y′2)4

 (A26)

One writes:

∂y
∂t

= −B
m

(Bt)3/4

∂4g
∂u4

(
1 + m2

(
∂g
∂u

)2
)2
−m2

( (
∂2g
∂u2

)3
+ 10 ∂g

∂u
∂2g
∂u2

∂3g
∂u3

)(
1 + m2

(
∂g
∂u

)2
)
+ 18m4

(
∂g
∂u

)2( ∂2g
∂u2

)3

(
1 + m2

(
∂g
∂u

)2
)4

Let us put:

g′ =
∂g
∂u

, g′′ =
∂2g
∂u2 , g′′′ =

∂3g
∂u3 , g

′′′′
=

∂4g
∂u4 (A27)

Using Equation (A26), one obtains:

1
4
[
g− ug′

]
= −

(
1 + m2g′2

)2g
′′′′ −m2(1 + m2g′2

)(
g
′′2 + 10 g′g′′ g′′′

)
+ 18 m4 g′2g

′′3

(1 + m2g′2)4 (A28)

Appendix B

By supposing that y′2 � 1, it is easy to deduce the following equation:

g
′′′′ − 1

4
ug′ +

1
4

g = 0 (A29)

The new proposed method to resolve the Equation (A29) used the following equation:

r4 − 1
4

u r +
1
4
= 0 (A30)

and by considering the different solutions r in function of u.
Let us consider the following equation valid for all values of λ:

r4 − 1
4

u r +
1
4
=
(

r2 + λ
)2
−
(

8λr2 + u r + 4λ2 − 1
4

)
(A31)

To resolve Equation (A30), we begin by transforming Equation (A30) into difference
between two perfect squares, therefore, the expression (8λr 2 + u r + 4λ2 − 1

)
will be

transformed into perfect square, if it has a double solution and then his discriminant has to
be cancelled.

Now, let us consider the equation:

8λr2 + u r + 4λ2 − 1 = 0 (A32)

The discriminant ∆ of this second-degree Equation (A32) function in r can be
written as:

∆ = u2 − 32 λ
(

4λ2 − 1
)

(A33)

Putting ∆ = 0, one has:

λ3 − 1
4

λ− u2

128
= 0 (A34)

Equation (A34) can be written as:

λ3 + pλ + q = 0 (A35)
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with p = − 1
4 and q = − u2

128 .
Putting λ = α + β and taking αβ = − p

3 = 1
12 or α3β3 = 1

123 one obtains α3 + β3 =

−q = u2

128 ; and α3 et β3 will be the two solutions of the following second-degree equation:

X2 + qX− p3

27
= 0 (A36)

or

X2 − u2

128
X +

1
123 = 0 (A37)

The discriminant of Equation (A37):

∆λ =
27q2 + 4p3

27
(A38)

can be calculated as a function of u:

∆λ =
u4

214 −
1

24∗ 33 =
1

214

(
u4 − 210

33

)
(A39)

Two cases have to be distinguished:

Appendix B.1. First Case ∆λ ≥ 0 and u ≥ 25/2

33/4

In this case, the solutions of Equation (A37) will be given by:

α3 =
u2 +

√(
u4 − 210

33

)
28 (A40)

β3 =
u2 −

√(
u4 − 210

33

)
28 (A41)

This leads to the solution of Equation (A35):

λ2 =

u2 +

√(
u4 − 210

33

)
28


1/3

+

u2 −
√(

u4 − 210

33

)
28


1/3

(A42)

This value of λ2 will cancel the discriminant of Equation (A35)(
8λ2r2 + u r + 4λ2

2 − 1
)
= 0 (A43)

Therefore, the solution r is given by:

r = − u
16λ2

and then: (
2λ2r2 +

1
4

u r + λ2
2 − 1

4

)
= 2λ2

(
r +

u
16λ2

)2
(A44)

Consequently, one obtains:

r4 − 1
4

u r +
1
4
=
(

r2 + λ2

)2
− 2λ2

(
r +

u
16λ2

)2
(A45)
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or

r4 − 1
4

u r +
1
4
=

(
r2 +

√
2λ2 r + λ2 +

u
8
√

2λ2

)(
r2 −

√
2λ2 r + λ2 −

u
8
√

2λ2

)
(A46)

The four solutions of Equation (A30) can be then obtained from the solutions of the
two following 2nd degree equations:

r2 +
√

2λ2 r + λ2 +
u

8
√

2λ2
= 0 (A47)

r2 −
√

2λ2 r + λ2 −
u

8
√

2λ2
= 0 (A48)

The discriminants of Equations (A47) and (A48) are given by the respective
following expressions:

∆1 = 2λ2 − 4
(

λ2 +
u

8
√

2λ2

)
(A49)

∆2 = 2λ2 − 4
(

λ2 −
u

8
√

2λ2

)
(A50)

Two cases can be studied:
Solutions of r2 +

√
2λ2r + λ2 +

u
8
√

2λ2
= 0

Knowing that ∆1 = −2λ2 − u
2
√

2λ2
is negative because of the condition u > 25/2

33/4 , one
obtains two conjugate complex solutions:

r1 =
−
√

2λ2 + i
√

2λ2 +
u

2
√

2λ2

2
(A51)

r2 =
−
√

2λ2 − i
√

2λ2 +
u

2
√

2λ2

2
(A52)

Solutions of r2 −
√

2λ2r + λ2 − u
8
√

2λ
= 0

where ∆2 = −2λ2 +
u

2
√

2λ2
Let us prove that ∆2 > 0

∆2 can be written as: ∆2 = λ2

(
−2 + u

(2λ2)
3/2

)
, To obtain the sign of ∆2, we have to

study the sign of 2
(
−1 + u

2(2λ2)
3/2

)
and then to compare between 1 and u

2(2λ)3/2 or between

2λ2 and u2/3

22/3 .

22/3(2λ2)

u2/3 =
1
2


1 +

√
1− 210

33u4

1/3

+

1−

√
1− 210

33u4

1/3
 (A53)

λ2 =

u2 +

√(
u4 − 210

33

)
28


1/3

+

u2 −
√(

u4 − 210

33

)
28


1/3

(A54)

Let us put =
√

1− 210

33u4 , one obtains:

Z =
22/3(2λ2)

u2/3 =
1
2

[
(1 + X)1/3 + (1− X)1/3

]
(A55)
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∂Z
∂X

=
1
6

[
(1 + X)−2/3 − (1− X)−2/3

]
(A56)

Equation (A56) shows that ∂Z
∂X ≤ 0, this implies that Z decreases for all values of X ≥ 0

and Z < 1 for X > 0 and therefore 22/3(2λ2)
u2/3 < 1 or −2λ2 +

u
2
√

2λ2
> 0 and ∆2 > 0.

Therefore, the two other solutions are then given by Equations (A57) and (A58):

r3 =

√
2λ2 +

√
u

2
√

2λ2
− 2λ2

2
(A57)

r4 =

√
2λ2 −

√
u

2
√

2λ2
− 2λ2

2
(A58)

Solution of Equation (38) for u ≥ 25/2

33/4

Now, the final solution, in the case of ≥ 25/2

33/4 , is given by Equation (A59):

g2(u) = e−
√

λ2
2 u
(

A12cos
(√

u
8
√

2λ2
+ λ2

2 u
)
+ A22sin

(√
u

8
√

2λ2
+ λ2

2 u
))

+e
√

λ2
2 u
(

A32Exp
(√

u
8
√

2λ2
− λ2

2 u
)
+ A42Exp

(
−
√

u
8
√

2λ2
− λ2

2 u
)) (A59)

with

λ2 =

u2 +

√(
u4 − 210

33

)
28


1/3

+

u2 −
√(

u4 − 210

33

)
28


1/3

The solution in function of y(x, t) will be written as:

y(x, t) = m (Bt)1/4 g[u(x, t)] and u(x, t) =
x

(Bt)1/4

Boundary conditions
Using of the boundary conditions:

1) lim
u→∞

g(u) = 0

2) lim
u→∞

g′(u) = 0

3) lim
u→∞

g′′ (u) = 0

(A60)

The first condition implies necessary: A3 = A4 = 0 and therefore the solution will be
given by the following form:

g2(u) = e−
√

λ2
2 u

(
A12cos

(√
u

8
√

2λ2
+

λ2

2
u

)
+ A22sin

(√
u

8
√

2λ2
+

λ2

2
u

))
(A61)

This solution can be written as:

g2(u) = ep2(u)(A12cos q2(u) + A22sin q2(u))
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With 

p2(u) = −2−
1
2 λ2(u)

1
2 u

q2(u) =
[
2−

7
2 u λ2(u)

− 1
2 + 2−1λ2(u)

] 1
2
u

λ2 (u) = 2−
8
3

[(
u2 + s(u)

) 1
3 +

(
u2 − s(u)

) 1
3

]
s2(u) =

(
u4 − 210

33

) 1
2

(A62)

Appendix B.2. Second Case ∆λ < 0 and u ≤ 25/2

33/4

In this case, one obtains two conjugate complex solutions α3 and β3:

α3 =
u2 + i

√(
210

33 − u4
)

28 = A eiθ (A63)

β3 =
u2 − i

√(
210

33 − u4
)

28 = A e−iθ (A64)

where A2 =
∣∣α3
∣∣2 =

∣∣β3
∣∣2 =

210

33

216 = 1
26*33 and A = 1

23*33/2 and finally A1/3 = 1
2
√

3
With: 

A cos θ = u2

28

A sin θ =

√(
210
33 −u4

)
28

(A65)

The real solution is given by:

λ1 = A1/3
(

e
iθ
3 + e

− iθ
3
)
= 2 A1/3cos

(
θ

3

)
or

λ1 =
1√
3

cos
(

θ

3

)
This leads to the solution of Equation (A35):

λ = λ1 =
1√
3

cos
(

θ

3

)
(A66)

This value of λ will cancel the discriminant of Equation (A67)(
2λ1r2 +

1
4

u r + λ1
2 − 1

4

)
= 0 (A67)

The solution is given here by: {
r = − u

16 λ1

λ1 = 1√
3

cos
(

θ
3

) (A68)

Remember that:

r4 − 1
4

u r +
1
4
=

(
r2 +

√
2λ1 r + λ1 +

u
8
√

2λ

)(
r2 −

√
2λ1 r + λ1 −

u
8
√

2λ1

)
= 0 (A69)

and therefore:
r2 +

√
2λ1 r + λ1 +

u
8
√

2λ1
= 0 (A70)
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r2 −
√

2λ1 r + λ1 −
u

8
√

2λ1
= 0 (A71)

Their respective discriminants are given below:

∆1 = −2λ1 −
u

2
√

2λ1
(A72)

∆2 = −2λ1 +
u

2
√

2λ1
(A73)

Two cases can be studied for u < 25/2

33/4 :
First case: r2 +

√
2λ1r + λ1 +

u
8
√

2λ1
= 0

Here one has λ1 = 1√
3

cos
(

θ
3

)
where ∆1 = −2λ1 − u

2
√

2λ1
is negative. The two conjugate complex solutions of

Equation (A67) are given below:

r1 =
−
√

2λ1 + i
√

2λ1 +
u

2
√

2λ1

2
(A74)

r2 =
−
√

2λ1 − i
√

2λ1 +
u

2
√

2λ1

2
(A75)

Second case: r2 −
√

2λ1r + λ1 − u
8
√

2λ1
= 0

Here one has λ1 = 1√
3

cos
(

θ
3

)
and ∆2 = −2λ1 +

u
2
√

2λ1
Let us prove that ∆2 is negative

∆2 can be written as: ∆2 = 2λ1

(
u

2(2λ1)
3/2 − 1

)
= 2√

3
cos
(

θ
3

)[
u

2
(

2√
3

cos( θ
3 )
)3/2 − 1

]

∆2 =
2√
3

cos
(

θ

3

) 33/4 u

25/2
(

cos
(

θ
3

))3/2 − 1

 (A76)

Knowing that Acosθ = u2

28 ; u2 = 25cosθ
33/2 or u = 25/2(cosθ)1/2

33/4 , therefore, one obtains:

∆2 =
2√
3

cos
(

θ

3

)
 cos θ(

cos
(

θ
3

))3


1/2

− 1

 (A77)

Now, one writes:
(

cos
(

θ
3

))3
= 3

4 cos
(

θ
3

)
+ cosθ and one obtains:

∆2 =
2√
3

cos
(

θ

3

) 1√
3
4

cos( θ
3 )

cos θ + 1

− 1

 (A78)

It is obvious that

√
3
4

cos( θ
3 )

cosθ + 1 > 1 and then 1√
3
4

cos( θ
3 )

cosθ +1

< 1, therefore ∆2 < 0
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The two other conjugate complex solutions are then given by Equations (A79) and (A80)

r3 =

√
2λ1 + i

√
2λ1 − u

2
√

2λ1

2
(A79)

r4 =

√
2λ1 − i

√
2λ1 − u

2
√

2λ1

2
(A80)

Now, the final solution in this case when ∆λ is negative or when u < 25/2

33/4 is given by:

g1(u) = e−
√

λ1
2 u
(

A11cos
(√

λ1
2 + u

8
√

2λ1
u
)
+ A21sin

(√
λ1
2 + u

8
√

2λ
u
))

+e
√

λ1
2 u
(

A31cos
(√

λ1
2 −

u
8
√

2λ1
u
)
+ A41sin

(√
λ1
2 −

u
8
√

2λ1
u
)) (A81)

One obtains:

g1(u) = e−p1(u) (A11cos q1(u) + A21sin q(u)) +ep1(u)(A31cos s1(u) + A41sin s1(u)) (A82)

where: 

p1(u) = 2−
1
2 λ1(u)

1
2 u

q1(u) =
[

2−1λ1(u) + 2−
7
2 u λ1(u)

− 1
2

] 1
2
u

s1(u) =
[

2−1λ1(u)− 2−
7
2 u λ1(u)

− 1
2

] 1
2
u

λ1 = 1√
3

cos
(

θ
3

)
; cos θ = 33/2

25 u2 ; sin θ =

√(
1− 33

210 u4
)

(A83)

The continuity and derivability of the solution g(u) and its derivatives imposed that

A31 = A41 = 0

Because the function
√

λ1
2 −

u
8
√

2λ1
u is not derivable in point u = 25/2

33/4 and then,
one writes:

g1(u) = e−p1(u) (A11cos q1(u) + A21sin q(u))

In conclusion, one obtains the solutions of the fourth differential Equation (A29):

g(u) =

{
g1(u) f or u ≤ 25/2

33/4

g2(u) f or u ≥ 25/2

33/4

For u ≤ 25/2

33/4 :

g1(u) = e−
√

λ1
2 u

(
A11cos

(√
u

8
√

2λ1
+

λ1

2
u

)
+ A21sin

(√
u

8
√

2λ1
+

λ1

2
u

))

For u ≥ 25/2

33/4 :

g2(u) = e−
√

λ2
2 u

(
A12cos

(√
u

8
√

2λ2
+

λ2

2
u

)
+ A22sin

(√
u

8
√

2λ2
+

λ2

2
u

))
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With

p1(u) = 2−
1
2 λ1(u)

1
2 u ; p2(u) = 2−

1
2 λ2(u)

1
2 u

q1(u) =
[

2−1λ1(u) + 2−
7
2 u λ1(u)

− 1
2

] 1
2
u ; q2(u) =

[
2−1λ2(u) + 2−

7
2 u λ2(u)

− 1
2
] 1

2
u

λ2 (u) = 2−
8
3

[(
u2 + s(u)

) 1
3 +

(
u2 − s(u)

) 1
3

]
; s2(u) =

(
u4 − 210

33

) 1
2

λ1 = 1√
3

cos
(

θ
3

)
; cos θ = 33/2

25 u2 ; sin θ =

√(
1− 33

210 u4
)

Determination of the problem parameters of the solution for u ≤ 25/2

33/4

g1(u) = e−p1 (A11cos q1 + A21sin q1)

With the boundary conditions and knowing that for u = 0, = π
2 ; λ1 = 1/2 and one

obtains:
g1(0) = A11 = − ε

m(Bt)
1
4
= g0 = − 1√

2Γ(5/4)

where ε is the groove depth.
Condition on the first derivative g1

′

The calculation of the first derivative gave:

g1
′(u) = −p1

′ (A11cos q1 + A21sin q1)e−p1+q1
′ (A21cos q1 − A11sin q1)e−p1

with

p1
′ = 2−

1
2

[
λ1

1
2 + 2−1uλ1

′ λ1
− 1

2

]

q1
′ =

[
2−1λ1 + 2

− 7
2 u λ1

− 1
2

] 1
2
+ 2−1u

[
2−

7
2 u λ1

− 1
2 + 2−1λ1

]− 1
2
[
2−

7
2

(
λ1
− 1

2 − 2−1uλ1
′λ1
− 3

2

)
+ 2−1λ1

′
]

Knowing that λ1 = 1√
3

cos
(

θ
3

)
; cosθ = 2−5.33/2u2 and sinθ =

√
(1− 2−10.33u4), one

obtains: λ1
′(u) = dλ1

du = dλ1
dθ . dθ

du ; dλ1
dθ = − 1

3
√

3
sin
(

θ
3

)
; dθ

du = − 2−4.3
3
2

sinθ u and then the first

derivative λ1
′(u):

λ1
′(u) = − 1

3
√

3
sin
(

θ

3

) (
−3

3
2

24

)
u

sin θ
= 2−4

sin
(

θ
3

)
sin θ

u

At u = 0, θ = 0; θ = π
2 ; sin

(
θ
3

)
= 1

2 ; cos
(

θ
3

)
=
√

3
2 , one obtains λ1(0) = 1

2 , λ1
′(0) = 0

and then p1(0) = 0; q1(0) = 0;p1
′(0) = 1

2 and q1
′(0) = 1

2 .
The use of the above parameters led to:

g′(0) = −1
2
(A11 − A21)

The second derivative g1
′′

One had the second derivative:

g1
′′ (u) =

(
p1
′2 − q1

′2 − p1
′′
)
(A11cos q1 + A21sin q1)e−p1 +

(
q1
′′ −2 p1

′q1
′) (A21cos q1 − A11sin q1)e−p1

To determine the values of p1
′′ and q1

′′ , one needs to determine the second derivative
λ1
′′ (u).
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The second derivative λ1
′′

λ1
′(u) = 2−4

sin
(

θ
3

)
sin θ

u ; let′s put v(θ) =

 sin
(

θ
3

)
sin θ

 ; therefore, λ1
′′ (u) = v + u

dv
du

λ1
′′ (u) = v + u

dv
dθ

dθ

du
;

dv
du

=
dv
dθ

dθ

du
=

 d
dθ

 sin
(

θ
3

)
sin θ

×
(
−2−4 × 3

3
2

)
sin θ

u

Knowing that: d
dθ

(
sin( θ

3 )
sinθ

)
= 3−1 sinθcos( θ

3 )−3cosθsin( θ
3 )

sin2θ
, one obtains:

dv
du

= 3−1
sin θ cos

(
θ
3

)
− 3cos θ sin

(
θ
3

)
sin2 θ

×

(
−2−4×33/2

)
sin θ

u

λ1
′′ (u) = 2−4

sin
(

θ
3

)
sin θ

+ 2−4 × 3−1u
sin θ cos

(
θ
3

)
− 3cos θ sin

(
θ
3

)
sin2 θ

×

(
−2−4 × 33/2

)
sin θ

u

λ1
′′ (u) = 2−4

 sin
(

θ
3

)
sin θ

− 2−4×3
1
2 u2

sin θ cos
(

θ
3

)
− 3 sin

(
θ
3

)
cos θ

sin3 θ


By using nacosb = sin (a+b)+sin(a−b)

2 , one obtains:
sinθcos( θ

3 )−3sin( θ
3 )cosθ

sin3θ
=

2sin( 2θ
3 )−sin( 4θ

3 )
sin3θ

and therefore:

λ1
′′ (u) = 2−4

 sin
(

θ
3

)
sin θ

− 2−4×3
1
2 u2

2sin
(

2θ
3

)
− sin

(
4θ
3

)
sin3 θ


The other second derivatives are given below:

p1
′′ = 2−

1
2

[
λ1
′λ1
− 1

2 + 2−1uλ1
′′ λ1

− 1
2 − 2−2uλ1

′2 λ1
− 3

2
]

q1
′′ =

[
2−

7
2 u λ1

− 1
2 + 2−1λ1

]− 1
2
[
2−

7
2

(
λ1
− 1

2 − 2−1uλ1
′λ1
− 3

2

)
+ 2−1λ1

′
]

−2−2u
[
2−

7
2 u λ1

− 1
2 + 2−1λ1

]− 3
2
[
2−

7
2

(
λ1
− 1

2 − 2−1uλ1
′λ1
− 3

2

)
+ 2−1λ1

′
]2

+2−1u
[
2−

7
2 u λ1

− 1
2 + 2−1λ1

]− 1
2
[
2−

7
2

(
−λ1

′λ1
− 3

2 − 2−1uλ1
′′λ1

− 3
2 + 2−2. 3 uλ1

′2λ1
− 5

2

)
+ 2−1λ1

′′
]

By calculating the values of the second derivatives at point u = 0: λ1
′′ (0) = 2−5;

p1
′′ (0) = 0; q1

′′ (0) = 2−4; one obtains the following equation:

g1
′′ (0) = −2−2 × (A21)

and then:
g′′ (0) = −1

4
A21

Condition on the second derivative g1
′′′

The calculation of the third derivative led to:

g1
′′′ (u) =

(
3p1
′p′′ − 3q1

′q1
′′ − p1

′′′−p1
′3 +3 p1

′q1
′2
)
(A11cos q1 + A21sin q1)e−p1

+
(

3p1
′2q1

′ − q1
′3 − 3p1

′′ q1
′ + q1

′′′ − 3p1
′q1
′′
)
(A21cos q1 − A11sin q1)e−p1
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Let us calculate the third derivative λ1
′′′ (u):

λ1
′′′ (u) = 2−4 dv

du − 2−7×3
1
2 × u

2sin( 2θ
3 )−sin( 4θ

3 )
sin3 θ

−2−8×3
1
2 × u2 ×

[
d
dθ

(
2sin( 2θ

3 )−sin( 4θ
3 )

sin3 θ

)]
×

(
−2−43

3
2

)
sin θ × u

Using dv
du = −2−4 × 31/2 × u× 2sin( 2θ

3 )−sin( 4θ
3 )

sin3θ
, one obtains:

λ1
′′′ (u) = −2−8 × 3

1
2 × u× 2sin( 2θ

3 )−sin( 4θ
3 )

sin3 θ

−2−7×31/2 × u× 2sin( 2θ
3 )−sin( 4θ

3 )
sin3 θ

− 2−8×3
1
2 u2

[
d
dθ

(
2sin( 2θ

3 )−sin( 4θ
3 )

sin3 θ

)]
×

(
−2−43

3
2

)
sin θ u

λ1
′′′ (u) = −2−8 × 3

3
2 × u×

2sin
(

2θ
3

)
− sin

(
4θ
3

)
sin3 θ

+ 2−12×32 × u3

sin θ
×

 d
dθ

2sin
(

2θ
3

)
− sin

(
4θ
3

)
sin3 θ


d
dθ

(
2sin( 2θ

3 )−sin( 4θ
3 )

sin3 θ

)
=

4
3×sin θ cos( 2θ

3 )−
4
3×sin θ cos( 4θ

3 )−6 sin( 2θ
3 )cos θ+3sin( 4θ

3 )cos θ

sin4 θ

= 1
3 ×

4 sin θ cos( 2θ
3 )−4 sin θ cos( 4θ

3 )−18 sin( 2θ
3 )cos θ+9 sin( 4θ

3 )cos θ

sin4 θ

By using relation: nacosb = sin (a+b)+sin(a−b)
2 , one obtains:

d
dθ

 2sin
(

2θ
3

)
− sin

(
4θ
3

)
sin3 θ

 =
1
3
×

2 sin
(

5θ
3

)
+ 2 sin

(
θ
3

)
− 2 sin

(
7θ
3

)
+ 2 sin

(
θ
3

)
− 9 sin

(
5θ
3

)
+ 9 sin

(
θ
3

)
+ 9

2 sin
(

7θ
3

)
+ 9

2 sin
(

θ
3

)
sin4 θ

d
dθ

2sin
(

2θ
3

)
− sin

(
4θ
3

)
sin3 θ

 =
1
6
×

35 sin
(

θ
3

)
− 14 sin

(
5θ
3

)
+ 5 sin

(
7θ
3

)
sin4 θ

and finally, one obtains the third derivative λ1
′′′ (u):

λ1
′′′ (u) = −2−8 × 3

3
2 × u×

2sin
(

2θ
3

)
− sin

(
4θ
3

)
sin3 θ

+ 2−13 × 3× u3 ×

35 sin
(

θ
3

)
− 14 sin

(
5θ
3

)
+ 5 sin

(
7θ
3

)
sin5 θ


One also calculated the other derivatives:

p1
′′′ = 2−

1
2

[
2−1 × 3× λ

′′
1 λ1

− 1
2 − 2−2 × 3× λ1

′2λ1
− 3

2
+ 2−1uλ1

′′′λ1
− 1

2 − 2−2 × 3uλ′1λ1
′′λ1

− 3
2 +2−3 × 3 uλ′

3
λ
− 5

2
]

q1
′′′ = −2−2 × 3×

[
2−

7
2 u λ1

− 1
2 + 2−1λ1

]− 3
2
[
2−

7
2

(
λ1
− 1

2 − 2−1uλ1
′λ1
− 3

2

)
+ 2−1λ1

′
]2

+ 2−1 × 3
[
2−

7
2 u λ1

− 1
2 + 2−1λ1

]− 1
2×

[
2−

7
2

(
−λ1

′λ1
− 3

2 − 2−1uλ1
′′λ1

− 3
2 + 2−2 × 3 uλ1

′2λ1
− 5

2

)
+ 2−1λ

′′
1

]
+2−3 × 3u×

[
2−

7
2 u λ1

− 1
2 +

2−1λ1
]− 5

2
[
2−

7
2

(
λ1
− 1

2 − 2−1uλ1
′λ1
− 3

2

)
+ 2−1λ1

′
]3
− 2−2 × 3u

[
2−

7
2 u λ1

− 1
2 + 2−1λ1

]− 3
2
[
2−

7
2

(
λ1
− 1

2−

2−1uλ1
′λ1
− 3

2

)
+ 2−1λ1

′
]
×
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[
2−

7
2

(
−λ1

′λ1
− 3

2 − 2−1uλ1
′′λ1

− 3
2 + 2−2 × 3 uλ1

′2λ1
− 5

2

)
+ 2−1λ1

′′
]
+ 2−1u

[
2−

7
2 u λ1

− 1
2 + 2−1λ1

]− 1
2
[
2−

7
2
(
−2−1×

3λ1
′′λ1

− 3
2 + 2−2 × 32 λ1

′2λ1
− 5

2 − 2−1uλ1
′′′λ1

− 3
2 + 2−2 × 32uλ1

′λ1
′′λ1

− 5
2 − 2−3 × 3× 5 uλ1

′3λ1
− 7

2

)
+ 2−1λ1

′′′
]

And

s1
′′′ = −2−2 × 3×

[
−2−

7
2 u λ1

− 1
2 + 2−1λ1

]− 3
2
[
−2−

7
2

(
λ1
− 1

2 − 2−1uλ1
′λ1
− 3

2

)
+ 2−1λ1

′
]2

+ 2−1×

3
[
−2−

7
2 u λ1

− 1
2 + 2−1λ1

]− 1
2×

[
−2−

7
2

(
−λ1

′λ1
− 3

2 − 2−1uλ1
′′λ1

− 3
2 + 2−2 × 3 uλ1

′2λ1
− 5

2

)
+
∣∣∣2−1λ

′′
1

]
+2−3 × 3u×

[
−2−

7
2 u λ1

− 1
2 +

2−1λ1
]− 5

2
[
−2−

7
2

(
λ1
− 1

2 − 2−1uλ1
′λ1
− 3

2

)
+ 2−1λ1

′
]3
− 2−2 × 3u

[
−2−

7
2 u λ1

− 1
2 + 2−1λ1

]− 3
2
[
−2−

7
2

(
λ1
− 1

2−

2−1uλ1
′λ1
− 3

2

)
+ 2−1λ1

′
]
×

[
−2−

7
2

(
−λ1

′λ1
− 3

2 − 2−1uλ1
′′λ1

− 3
2 + 2−2 × 3 uλ1

′2λ1
− 5

2

)
+ 2−1λ1

′′
]
+ 2−1u

[
−2−

7
2 u λ1

− 1
2 +

2−1λ1
]− 1

2
[
−2−

7
2

(
−2−1 × 3λ1

′′λ1
− 3

2 + 2−2 × 32 λ1
′2λ1

− 5
2 − 2−1uλ1

′′′λ1
− 3

2 + 2−2 × 32uλ1
′λ1

′′λ1
− 5

2 −

2−3 × 3× 5 uλ1
′3λ1

− 7
2

)
+ 2−1λ1

′′′
]

Knowing that the fourth boundary condition g′′′ (0) = 0 and the values of the third
derivatives at point u = 0: λ1

′′′ (0) = 0; p1
′′′ (0) = 2−6 × 3; q1

′′′ (0) = −2−6 × 3; s1
′′′ (0) =

−2−6 × 3; one obtains the following equation:
g1
′′′ (0) = 11

64 (A11 + A21) = 0, therefore:

g1
′′′ (0) =

11
64

(A11 + A21) = 0

Consequently, the use of the boundary conditions gave the following linear system
composed by four equations with four unknown parameters:{

A11 = − 1√
2×Γ(5/4)

= g0

A21 = 1√
2×Γ(5/4)

= −g0

and the function g and its different derivatives are given at point 0:

g(0) = − 1√
2×Γ(5/4)

g′(0) = 1√
2×Γ(5/4)

g′′ (0) = − 1
4
√

2×Γ(5/4)

g′′′ (0) = 0

Therefore, the solution for u < 25/2

33/4 is completely defined by all above parameters:

g1(u) = e−p1(u) (A11cos q1(u) + A21sin q(u))
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The values of the different parameters and their derivatives at point (u0; g1(u0))
were calculated:

λ1(u0) =
1√
3

; λ1
′(u0) =

1
6×
√

2×33/4 ; λ1
′′ (u0) =

11
1296 ; λ1

′′′ (u0) = − 13
972×

√
2×31/4

p1(u0) =
4
3 ; p′1(u0) =

5×
√

2
9×31/4 ; p1

′′ (u0) =
31

324×
√

3
; p1

′′′ (u0) = − 1
486×

√
2×33/4

q1(u0) =
4
√

2
3 ; q1

′(u0) =
23

18×31/4 ; q1
′′ (u0) =

431
1296×

√
6
; q1

′′′ (u0) = − 4667
62208×33/4

Determination of the problem constants of the solution for u ≥ 25/2

33/4

In this case, on has g(u) = g2(u), with g2(u) given by:

g2(u) = e−p2(u)(A12cos q2(u) + A22sin q2(u))
p2(u) =

√
λ2
2 u

q2(u) =
√

u
8
√

2λ2
+ λ2

2 u

λ2 (u) = 1
4×22/3

[(
u2 +

√
u4 − 210

33

) 1
3
+

(
u2 −

√
u4 − 210

33

) 1
3
]

The values of the different parameters of the solution g2 and their derivatives at point
(u0; g2(u0)) are given below:

λ2(u0) =
1√
3

; λ2
′(u0) =

1
6×
√

2×33/4 ; λ2
′′ (u0) =

11
1296 ; λ2

′′′ (u0) = − 13
972×

√
2×31/4

p2(u0) =
4
3 ; p2

′(u0) =
5×
√

2
9×31/4 ; p2 ′′ (u0) =

31
324×

√
3

; p2 ′′′ (u0) = − 1
486×

√
2×33/4

q2(u0) =
4
√

2
3 ; q2

′(u0) =
23

18×31/4 ; q2 ′′ (u0) =
431

1296×
√

6
; q2 ′′′ (u0) = − 4667

62208×33/4

Appendix C.

Calculation of the profile area A from below to above the original surface

A = −
∫ x0

0
y(x)dx = −m(Bt)3/4

∫ u0

0
g(u)du

By using the differential equation:

g
′′′′ − 1

4
ug′ +

1
4

g = 0

One writes:
A = −m(Bt)1/2

∫ u0

0

[
4g
′′′′
(u)− ug′(u)

]
du

where u0 is the first zero of the function g.

.
∫ u0

0
4g
′′′′
(u)du = 4[g′′′ (u)]u=u0

u=0 = 4g′′′ (u0) (g′′′ (0) = 0.)

.
∫ u0

0
−ug′(u)du = −[[ug(u)]u=u0

u=0 −
∫ u0

0
g(u)du] =

∫ u0

0
g(u)du (g(u0) = 0.)

Therefore:∫ u0

0
g(u)du = −

∫ u0

0

[
4g
′′′′
(u)− ug′(u)

]
du = −4g′′′ (u0)−

∫ u0

0
g(u)du

and:
A = −m(Bt)1/2

∫ u0

0
g(u)du = 2m(Bt)3/4g′′′ (u0)
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