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Abstract—Driver fatigue is a major cause of traffic accidents.
Electroencephalogram (EEG) is considered one of the most
reliable predictors of fatigue. This paper proposes a novel,
simple and fast method for driver fatigue detection that can be
implemented in real-time by using a single-channel on the scalp.
The study has two objectives. The first consists of determining
the single most relevant EEG channel to monitor fatigue. This is
done using maximum covariance analysis. The second objective
consists in developing a deep learning method to detect fatigue
from this single channel. For this purpose, spectral features of
the signal are first extracted. The sequence of features is used to
train a Long Short Term Memory (LSTM), deep learning model,
to detect fatigue states. Experiments with 12 EEG signals were
conducted to discriminate the fatigue stage from the alert stage.
Results showed that TP7 was the most significant channel, which
is located in the left tempo-parietal region. A zone associated with
spatial awareness, visual-spatial navigation, and the cautiousness
faculty. In addition, despite the small dataset, the proposed
method predicts fatigue with 75% accuracy and a 1.4-second
delay. These promising results provide new insights into relevant
data for monitoring driver fatigue.

Index Terms—Fatigue, EEG, Robust analysis, biLSTM.

I. INTRODUCTION

The EEG is a recording of the brain’s electrical activ-
ity, detected by electrodes placed on the scalp. Variations
in the brain waves traced by the EEG are correlated with
neurological conditions, physiological states, and level of
consciousness. Driver fatigue is a major cause of road ac-
cidents, related to 20% of the total cases [1]. They often
result in more driver mortality and morbidity than other
types of accidents because of the greater speed on impact
[2]. To prevent this kind of accident from happening, real-
time driver fatigue detection is of great importance. It would
allow the development of effective devices capable of warning
drivers showing signs of fatigue, especially when driving in
monotonous conditions. According to Lal and Craig [3], EEG
may be one of the most reliable predictors of driver fatigue.
Numerous researchers have, hence, studied various fatigue
detection methods based on EEG signals analysis [4]–[6].
In [3], EEG signals were analyzed in the brain rhythm.
Their results reported that delta (δ) and theta (θ) magni-
tude increased by 22% and 26%, respectively, during the
transition to the fatigue state and that alpha (α) and beta
(β) activity increased only by 9% and 5%, respectively.

Based on these results, Lal and Craig [7] developed a re-
liable fatigue-detection algorithm that categorizes the men-
tioned frequency bands into four phases: alert, transition
to fatigue, transitional-post-transitional, and post-transitional.
Jap et al. [8] assessed these four states during monotonous
driving. They showed an increase in the ratio of slow-wave
to fast-wave EEG activities, with (θ+ α)/β showing a larger
increase. Wei et al. [9] also transformed the collected EEG data
into bands (θ, α, and β) and determined the optimal indicator
of driver fatigue out of twelve types of energy parameters.
Using Kernel Principal Component Analysis (KPCA), they
selected FP1 and O1 electrodes as the significant electrodes.
They evaluated their model and reported an accuracy of
92.3%. Simon et al. [10] studied the alpha spindles, which
are short (0.5-2 s) bursts of high-frequency alpha activity
[11]. They compared them to the band power measures as
a fatigue indicator and found that alpha spindle parameters
increase the sensitivity and specificity of fatigue detection.
Entropy methods have been studied by many authors to
detect driver fatigue using EEG signals. Hu [12] employed
four types of entropy measures (spectral entropy, approxi-
mate entropy, sample entropy, and fuzzy entropy) to extract
features from a single EEG channel and compared them
using ten classifiers. The optimal performance was achieved
with a random forest classifier when combining channel CP4
and fuzzy entropy, with an accuracy of 96.6%. Mu et al.
[13] combined the above-mentioned four types of entropy
measures to extract features from EEG signals (recorded in
both alert and fatigue states. In terms of fatigue detection,
results showed that combined entropy has superior perfor-
mance compared to single entropy, with the average recog-
nition accuracy being 98.75%. Electrodes performance was
also assessed and results showed that T5, TP7, TP8, and
FP1 performed better. Min et al. [14] proposed a multiple
entropy fusion analysis to detect driver fatigue in an EEG-
based system and achieved an accuracy of 98.3%, a sensi-
tivity of 98.3%, and a specificity of 98.2%. The study of
electrode performance concluded that the significant electrodes
were T6, P3, TP7, O1, Oz, T4, T5, FCz, FC3, and CP3.
There exists a wide range of methods to accurately de-
tect driver states in EEG signals. Most of these meth-
ods are based on supervised machine learning techniques,



such as Support Vector Machine, k-Nearest Neighbor,
and random forest, with a variety of feature vectors.
A complete state-of-the-art about machine learning tech-
niques for driving behavior analysis can be found in [15].
The Long Short-Term Memory network (LSTM) is a type
of recurrent neural network (RNN) capable of learning
long-term dependencies in time series through their mem-
ory gates [16]. The bidirectional variant of LSTM (biL-
STM) is very efficient for processing data of fixed length
[17]. Its two hidden layers, both connected to the in-
put and output, allow information to flow in two direc-
tions through the layers. A number of researchers stud-
ied this technique for EEG signal processing [18]–[21].
Multivariate and univariate analysis are statistical methods
used to analyze correlation in data. Among these, robust
analysis techniques are those having properties such as re-
sistance to outliers and applicability to non-normality. As
an example, the classic mean and covariance methods are
robust to non-normality, but not to outliers [22]. Robust
analysis has been applied to EEG signal processing in a
number of works [23]–[26]. In addition, EEG signals are
reasonably assumed to have Gaussian distribution [27] al-
lowing the application of optimal statistical methods [28].
In neuroscience, multivariate analysis of EEG signals is
often employed to study simultaneously states and inter-
actions of brain regions, while univariate methods concen-
trate on the characterization of single brain regions [29].
This study proposes a novel, simple, and fast method to
detect driver fatigue in EEG signals using a single-channel on
the scalp, with the ultimate aim of real-time implementation.
The study composes of two stages. First, the most relevant
EEG channel is selected using the maximum covariance ro-
bust analysis. Second, a biLSTM neural network is devel-
oped to differentiate fatigue and alert stages using spectral
features extracted from the time-series data of the selected
channel [16], [17]. Precisely, we transform the time-series
data into a sequence of features fed to an LSTM network.
In this work, we analyzed a fatigue dataset consisting of 32-
channel EEG signals from 12 subjects provided by Jiangxi
University of Technology [14]. When assessing the most
relevant EEG region for detecting fatigue, we found the single
channel (TP7), located at the left tempo-parietal region, the
most significant, see Fig. 2. This brain region involves spatial
awareness and visual-spatial navigation directly related to
driving, therefore relevant to analyzing the effect of fatigue.
Next, we developed a biLSTM neural network to detect fatigue
alerts during long driving times. The techniques used in
this study are all well-known. However, to the best of our
knowledge, they have never been used in a structured method
to study fatigue in EEG.
The remainder of this paper is organized as follows. Section
II presents the proposed method in three stages: description of
the data (Section II-A), selection the relevant channel (section
II-A), spectral transformation of the data (Section II-B), and
the predictive model (Section II-C). In Section III, we analyse
and discuss the results. Finally, conclusions and perspectives

are in Section IV.

II. PROPOSED METHOD

A standard data science process, made of four stages, has
been implemented for this study, as shown in Fig.1. First, a
data search and acquisition were conducted. This was followed
by dimension reduction and data transformation in stages two
and three. More precisely, the second stage processed the
data to extract the most relevant channel using a statistical
method. Whereas, the third stage transformed the data from
the temporal to the spectral domain by extracting two spectral
features. Then, the third stage used the temporal sequence
of spectral features to learn a predictive model for detecting
fatigue. These stages are described in more detail in the next
sections.

Data acquisition Data selection Data transformation Data modeling

Fig. 1. Block-diagram illustrating the stages of the proposed method.

A. Data

A database with 12 unipolar fatigue EEG signals and
12 unipolar alert EEG signals was used from [14]. In this
experiment, twelve university male students between the ages
of 19 and 24 years were asked to drive a static car through
a driving simulator in a software-controlled environment. For
each subject, two EEG signals were recorded: one correspond-
ing to alert driving and the other one corresponding to fatigue
driving. The alert driving EEG signal was recorded after the
subject had been driving for 15 minutes. The fatigue driving
EEG signal was acquired once the subject showed signs of
fatigue according to Lee’s subjective fatigue scale [30] and
Borg’s CR-10 scale [31], after driving for 60-120 minutes.
Both signals consist of a 32-channel EEG, of 5 minutes
duration, digitized at fs = 1000 Hz. See Fig 2.
{Selection of the relevant electrode Let X ∈ RM×N denote

the multivariate matrix gathering M EEG signals xm ∈ R1×N

measured simultaneously on different channels and at N time
instants. Applying the MCD (Minimum covariance determi-
nant) algorithm [32], we estimate the parameters (µ̂, Σ̂) of the
elliptically symmetric unimodal distribution of our multivariate
data X . These parameters are given by their expressions

µ̂ =

∑
i=1 W (d2i )xi∑
i=1 W (d2i )

(1)

Σ̂ = c0
1

N

∑
i=1

W (d2i )(xi − µ̂)∗(xi − µ̂)T (2)

where di = d(x, µ̂, Σ̂) is the Mahalanobis distance,
W (.) = I(. ≤

√
χ2
M,0.975) is a weight function with I as

the indicator function, ∗ denotes the complex conjugate, µX

is the mean. The parameter c0 called the consistency factor is
given by α/Fχ2

M+2
(qα), where qα is the α-quantile of the χ2

M

distribution, with α = limn→∞ h(n)/n, and h taken such as
[(n+ p+ 1)/2] ≤ h ≤ n.



Fig. 2. Position and nomenclature of the electrodes showing underlying lobes,
(T) temporal lobe, (P) parietal lobe, (O) occipital lobe and (F) frontal lobe

In order to estimate the most significant channel xp, the
maximum covariance was calculated into 2-second time seg-
ments using a rectangular sliding window with 0.5-second time
overlap by solving

xp = max
[X]T

Σ̂

See [28], [32], [33] for more details about the maximum
covariance analysis method.

B. Spectral transformation

Our preliminary investigation showed that using data in
the temporal domain does not allow characterizing fatigue.
Therefore, we resorted to the spectral domain. For each state of
alert and fatigue, the signal xp has been divided into segments
xp(t) with a rectangular sliding window without overlap.
For each segment t, we estimated two spectral parameters,
namely the instantaneous frequency f(t) and the instantaneous
spectral entropy H(t), as follows.
Let S(t, f) = |Xp(t, f)|2 be the spectrogram of the signal
segment, xp(t) with Xp(t, f) being the discrete Fourier trans-
form of xp(t). The probability distribution of the spectrogram
at instant t is given by

P (t,m) =
S(t,m)∑
f S(t, f)

We can hence compute the instantaneous frequency of the
signal using the short term Fourier transform [34], [35]

f(t) =

∑
m mP (t,m)∑
m p(t,m)

Moreover, we calculate the instantaneous spectral entropy
following [36]

H(t) = −
∑
m

P (t,m)log2P (t,m)

The result is a transformation of the signal in the rele-
vant channel to a sequence of pairs of spectral parameters
{(f(t), H(t))} , 1 ≤ t ≤ T . This sequence is considered to
learn a predictive model to classify EEG segments into alter
or fatigue states.

C. Predictive model

In order to differentiate alert and fatigue states, we designed
a bidirectional recurrent network classifier with long-short
term memory (biLSTM). The input to this network is the
sequence of spectral parameters Θt = (f(t), H(t)) obtained
from the previous transformation stage. The parameters were
all normalized according to the z-score approach, by subtrac-
ting the mean and dividing by the standard deviation over all
segments. Following the standard approach, the architecture of
the network consists of three gates: input, output, and forget
[37]. The forget gate is a sigmoid function

Ft = σ(WFΘt + UFht−1 + bF )

where the hyperparameters WF and UF are matrices, and
bF is a biais vector. σ is the sigmoid activation function. As
such, Ft ∈ (0, 1) represents the fraction of the past state to be
forgotten, depending on the previous state ht−1 and the input
Θt at iteration t. Similarly, the input gate is defined by

It = σ(WIΘt + UIht−1 + bI)

with the hyperparameters WI , UI and bI . And the output
gate

Ot = σ(WOΘt + UOht−1 + bO)

with the hyperparameters WO, UO and bO. The update func-
tion updates selectively the internal memory of the network
with

ct = FT ⊛ ct−1 + It ⊛ tanh(WcΘt + Ucht− 1 + bc)

with the hyperparameters Wc, Uc and bc, with
ht = Ot ⊛ tanh(ct). The network sequences of 10520
pairs of parameters. It composes of 100 cells. A bidirectional
layer has been added to take into consideration dependence
with future sequences. A fully connected layer is responsible
for reducing the scale from 100 to two dimensions. The
actual classification of a segment into alert or fatigue states is
finally obtained by the normalised exponential function layer.



III. RESULTS AND DISCUSSION

In this Section, we report the results of our method applied
to the TP7 channel from the dataset described in section II-A.
The proposed methodology uses one channel from each EEG
signal from the database introduced in Section II-A. Fig. 3
shows time-domain plot examples of alert and fatigue signals
from the electrode TP7. In general, due to the high dynamics of
the EEG signals, it is difficult to discriminate between fatigue
and alert by visual inspection.

0 50 100 150 200 250 300

-400

-200

0

200

400

0 50 100 150 200 250 300

-3000

-2000

-1000

0

1000

2000

0 50 100 150 200 250 300

-1500

-1000

-500

0

500

1000

1500

0 50 100 150 200 250 300

-1000

-500

0

500

1000

0 50 100 150 200 250 300

-1000

-500

0

500

1000

0 50 100 150 200 250 300

-1500

-1000

-500

0

500

1000

0 50 100 150 200 250 300

-1500

-1000

-500

0

500

0 50 100 150 200 250 300

-600

-400

-200

0

200

400

600

0 50 100 150 200 250 300

-2000

-1500

-1000

-500

0

500

1000

1500

0 50 100 150 200 250 300

-400

-300

-200

-100

0

100

200

300

0 50 100 150 200 250 300

-600

-400

-200

0

200

400

0 50 100 150 200 250 300

-300

-200

-100

0

100

200

300

400

Fig. 3. Plots of alert (blue) and fatigue (orange) EEG signals correspond
to electrode TP7. We can observe the high dynamic variability in the time
domain of the signals.

The first stage of our study found that TP7 contains
the most relevant information on driving fatigue. This left
tempo-parietal region channel is related to the lobe where
spatial awareness and visual-spatial navigation are shared, see
Fig. 2. Besides, the physical structure of the brain reflects
its mental organization. In general, higher mental processes
occur in the upper regions, while the brain’s lower regions
take care of basic support [38]. Therefore, this finding is
credible since it is related to the cautiousness and affective
faculty [39]. We hypothesize that melatonin is responsible for
the high variability of the temporal waveform of the signal,
see Fig. 3. It is a hormone produced by the pineal gland that
helps regulate the sleep-wake cycle. According to [38], the
suprachiasmatic nucleus (SCN) located in the hypothalamus
plays a key role in sleep-wake cycles. Light levels are sensed
by the retina, and this information is relayed to the SCN,
which then sends a signal to the pineal gland. This triggers
the release of melatonin, the hormone that tells the body
when to sleep. At this point, the brain becomes less alert
and fatigue starts to take over. When melatonin levels fall
in response to increased light, the waking part of the cycle
begins. Based on this result, data from the TP7 channel was
used for the automatic detection of fatigue. Data from all
subjects were processed according to our spectral feature
extraction (Section II-B). The resulting feature-sequences
were organized into 80% for training our biLSTM network
and 20% for testing. It is important to clarify that our data is
balanced, the two classes have identical weights. Therefore,
the classifier does not have minority classes to be overlooked
[40].

Various metrics are commonly used to evaluate the
performance of classifiers. Recently, Elassad et al. [15]
analyzed the performance metrics used in different
studies and found that accuracy, recall, and specificity
were the most popular ones. According to this study,
the accuracy was adopted in 65.85% of the 82 primary
studies published in the decade between 2009 and 2019,
while recall and specificity were used in 35.36% and
32.92% of them, respectively. In order to make our
results comparable to existing methods, we report our
results in terms of accuracy, sensitivity, and specificity.
The testing phase of our biLSTM classifier yielded 75%
accuracy, 67.7% sensitivity, and 86% specificity. The ANOVA
test gave a p-value < 0.01. And the prediction time-delay
was 1.4 seconds. These results were compared with some
classical machine learning (ML) techniques, such as Decision
Trees, Naive Bayes, Support Vector Machines (SVM),
10-Nearest-Neighbor, and Ensemble Boosted Trees. Note
that, the k parameter from k-NN technique was set based
on

√
N , where N is the number of samples in the training

dataset, in our case N = 10, k ≈ 3 [41]. These techniques
showed better accuracy, sensitivity (TPR), and specificity
(TNR), but with a prediction time-delay significantly larger
than the biLSTM network, see Table I. This makes the
proposed method better suited for real-time implementation.

TABLE I
COMPARISON BETWEEN BILSTM NETWORK AND SOME ML TECHNIQUES.
ACCURACY (ACC.), TPR, AND TNR IN %, AND PREDICTION TIME-DELAY

IN SEC.

Techniques Acc. TPR TNR Delay
biLSTM 75.0 67.7 86.0 1.40
Decision tree 84.8 83.0 86.0 6.60
Naive Bayes 85.1 84.0 86.0 19.80
SVM 84.2 80.0 89.0 16.40
10-NN 85.3 85.0 86.0 5.82
Boosted ensemble tree 85.4 84.0 87.0 6.26

Table II reports some examples of channels used in different
works. For example, in [9] the Grey relational analysis (GRA)
and the Kernel Principal Component Analysis (KPCA) were
used in order to extract the most relevant channels (FP1, O1)
and data classified using a linear regression equation (LRE);
only the accuracy has been reported. Hu [12] compared the
effectiveness of four different features combined with ten
different classifiers to detect driver fatigue and concluded that
optimal performance was achieved using fuzzy entropy (FE)
features and a Random Forest (RF) classifier, with an accuracy
of 96.6%. In [13], a combined entropy-based method with
the support vector machine (SVM) classifier gave 98.75%
accuracy, 97.50 % specificity, and 96% sensitivity. Min et al.
[14] proposed a multiple entropy fusion (EF) with a back-
propagation neural network classifier (BPNN) and reported
an accuracy of 98.3%. Yeo et al. [42] used power spectrum
features from 19 channels with an SVM to distinguish between
alert and fatigue EEG signals. The model achieved an accuracy



of 99.3%. In [43], Chen et al. used two features: one from the
functional brain network (FBN), and the second from power
spectrum density. They used an extreme learning machine
(ELM) classifier to detect fatigue and reported an accuracy
of 95%, a sensitivity of 95.71%, and a specificity of 94.29%.
Note that, although these methods have good accuracy, they
have relatively high computational complexity, especially at
the feature extraction stages. Whereas our proposed method
achieves good results with a single channel and with low com-
plexity, allowing low-cost real-time implementation, which is
the ultimate objective of this application.

TABLE II
EXAMPLES OF CHANNELS USED IN DIFFERENT WORKS. MOST METHODS

HAVE HIGH ACCURACY (ACC.) VARIOUS TECHNIQUES ARE USED TO
SELECT THE CHANNELS: ROBUST ANALYSIS (RUA), GREY RELATIONAL
ANALYSIS (GRA), KERNEL PRINCIPAL COMPONENT ANALYSIS (KPCA).
VARIOUS FEATURES: SAMPLE ENTROPY (SA), SPECTRAL ENTROPY (SE),
APPROXIMATE ENTROPY (AE), FUZZY ENTROPY (FE), ENTROPY FUSION
(EF), POWER SPECTRAL DENSITY (PSD), FUNCTIONAL BRAIN NETWORK

(FBN). AND DIFFERENT CLASSIFIERS: LONG SHORT TERM MEMORY
(LSTM), RANDOM FOREST (RF), SUPPORT VECTOR MACHINE (SVM),
BACK PROPAGATION NEURAL NETWORK (BPNN), EXTREME LEARNING

MACHINE (ELM).

Channels Method Classifier Accuracy Ref.
TP7 RA biLSTM 75.0% our
FP1, O1 GRA+KPCA LRE 92.3% [9]
CP4 SE+FE+AE+PE RF 96.6%

[12]
T5, TP7, TP8, FP1 SE+AE+SE+FE SVM 98.7%

[13]
T6, P3, TP7, O1,
Oz, T4, T5, FCz,
FC3, CP3

EF BP 98.3%
[14]

all 22 PSD SVM 99.3%
[42]

all 22 FBN-PSD ELM 95.0%
[43]

IV. CONCLUSIONS

This work presented a new method to detect driver fa-
tigue events in EEG signals using one single-channel. The
method consists of analyzing data from all channels using
the maximum covariance robust statistical technique. The
analysis led to the identification of the channel TP7 located
at the tempo-parietal region as being the most relevant to
monitor driving fatigue. This region is associated with spa-
tial awareness and visual-spatial makes out finding credible.
The second contribution of the paper consists in trans-
forming the time-domain signal into a sequence of spec-
tral features, which reveals the characteristics of alert and
fatigue states when driving. A bidirectional recurrent net-
work with short long-term memory has been trained with
these spectral sequences. Experimentation was conducted
with a peer-reviewed dataset of 24 real EEG signals from
Jiangxi University of Technology [14]. Results showed an
accuracy of 75% with a prediction time delay of 1.4 sec.
The main advantage of the proposed method is related to
its very good prediction of delay-time which makes it an

affordable solution for real-time implementation. And it is easy
to deploy as it uses a single channel.

The main limitation of this method is the small size of the
dataset. One perspective consists in augmenting the volume of
data by conducting a larger pilot study and using a generative
adversarial network (GAN) to simulate realistic EEG data
[44]. Another perspective consists in integrating the spectral
transformation within the neural network using convolutional
LSTM [45].
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L. Chaari, “Convolutional neural network for drowsiness detection using
eeg signals,” Sensors, vol. 21, no. 5, p. 1734, 2021.

[7] S. K. Lal, A. Craig, P. Boord, L. Kirkup, and H. Nguyen, “Development
of an algorithm for an EEG-based driver fatigue countermeasure,”
Journal of Safety Research, vol. 34, no. 3, pp. 321–328, 2003.

[8] B. T. Jap, S. Lal, P. Fischer, and E. Bekiaris, “Using EEG spectral
components to assess algorithms for detecting fatigue,” Expert Systems
with Applications, vol. 36, no. 2, pp. 2352–2359, 2009.

[9] L. Wei, H. Qi-chang, F. Xiu-min, and F. Zhi-min, “Evaluation of driver
fatigue on two channels of EEG data,” Neuroscience Letters, vol. 506,
no. 2, pp. 235–239, 2012.

[10] M. Simon, E. A. Schmidt, W. E. Kincses, M. Fritzsche, A. Bruns,
C. Aufmuth, M. Bogdan, W. Rosenstiel, and M. Schrauf, “EEG alpha
spindle measures as indicators of driver fatigue under real traffic
conditions,” Clinical Neurophysiology, vol. 122, no. 6, pp. 1168–1178,
2011.

[11] V. Lawhern, S. Kerick, and K. Robbins, “Detecting alpha spindle
events in EEG time series using adaptive autoregressive models,” BMC
Neuroscience, vol. 14, no. 101, pp. 1–9, 2013.

[12] J. Hu, “Comparison of different features and classifiers for driver
fatigue detection based on a single EEG channel,” Computational and
Mathematical Methods in Medicine, vol. 2017, no. 51095, p. 30, 2017.

[13] Z. Mu, J. Hu, and J. Min, “Driver fatigue detection system using
electroencephalography signals based on combined entropy features,”
Applied Sciences, vol. 7, no. 2, pp. 150–167, 2017.

[14] J. Min, P. Wang, and J. Hu, “Driver fatigue detection through multiple
entropy fusion analysis in an EEG-based system,” Plos One, vol. 12,
no. 12, p. e0188756, 2017.

[15] Z. E. A. Elassad, H. Mousannif, H. A. Moatassime, and A. Karkouch,
“The application of machine learning techniques for driving behavior
analysis: A conceptual framework and a systematic literature review,”
Engineering Applications of Artificial Intelligence, vol. 87, no. 10331,
p. 2, 2020.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.



[17] M. Schuster and K. Paliwal, “Bidirectional recurrent neural networks,”
IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681,
1997.

[18] G. Li and J. Jung, “Maximum marginal approach on EEG signal
preprocessing for emotion detection,” Applied Sciences, vol. 10, no.
7677, pp. 1–11, 2020.

[19] Y. Hou, S. Jia, S. Zhang, X. Lun, Y. Shi, Y. Li, H. Yang, R. Zeng, and
J. Lv, “Deep feature mining via attention-based bilstm-gcn for human
motor imagery recognition,” ArXiv, pp. 1–8, 2020, arXiv:2005.00777.

[20] J. Yang, X. Huang, H. Wu, and X. Yang, “EEG-based emotion classifica-
tion based on bidirectional long short-term memory network,” Procedia
Computer Science, vol. 174, pp. 491–504, 2020.

[21] A. Fares, S.-h. Zhong, and J. Jiang, “EEG-based image classification
via a region-level stacked bi-directional deep learning framework,” BMC
medical informatics and decision making, vol. 19, no. 6, pp. 1–11, Dec
2019.

[22] D. J. Olive, D. J. Olive, and Chernyk, Robust Multivariate Analysis.
Springer, 2017.

[23] L. Molinari and G. Dumermuth, “Robust multivariate spectral analysis
of the EEG,” Neuropsychobiology, vol. 15, no. 3-4, pp. 208–218, 1986.

[24] X. Yong, R. K. Ward, and G. E. Birch, “Robust common spatial patterns
for EEG signal preprocessing,” in 30th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society. IEEE, 2008,
pp. 2087–2090.

[25] R. Sameni and E. Seraj, “A robust statistical framework for instantaneous
electroencephalogram phase and frequency estimation and analysis,”
Physiological Measurement, vol. 38, no. 12, pp. 2141–2163, 2017.

[26] T. Uehara, M. Sartori, T. Tanaka, and S. Fiori, “Robust averaging of
covariances for EEG recordings classification in motor imagery brain-
computer interfaces,” Neural Computation, vol. 29, no. 6, pp. 1631–
1666, 2017.

[27] A. Quintero-Rincón, M. Pereyra, C. D’Giano, M. Risk, and H. Batatia,
“Fast statistical model-based classification of epileptic EEG signals,”
Biocybernetics and Biomedical Engineering, vol. 38, no. 4, pp. 877–
889, 2018.

[28] R. A. Maronna, R. D. Martin, V. J. Yohai, and M. Salibián-Barrera,
Robust statistics Theory and methods with R. Wiley, 2019.

[29] A. Quintero-Rincón, J. Prendes, M. Pereyra, H. Batatia, and M. Risk,
“Multivariate bayesian classification of epilepsy EEG signals,” in 2016
IEEE 12th Image, Video, and Multidimensional Signal Processing Work-
shop (IVMSP). IEEE, 2016, pp. 1–5.

[30] K. A. Lee, G. Hicks, and G. Nino-Murcia, “Validity and reliability of a
scale to assess fatigue,” Psychiatry Research, vol. 36, no. 3, pp. 291–298,
1991.

[31] G. Borg, “Psychophysical scaling with applications in physical work
and the perception of exertion,” Scandinavian Journal of Work, vol. 16,
no. 1, pp. 55–58, 1990.

[32] P. J. Rousseeuw and K. V. Driessen, “A fast algorithm for the minimum
covariance determinant estimator,” Technometrics, vol. 41, no. 3, pp.
212–223, 1999.

[33] M. Hubert and M. Debruyne, “Minimum covariance determinant,” Wiley
Interdisciplinary Reviews: Computational statistics, vol. 2, no. 1, pp.
36–43, 2010.

[34] B. Boashash, “Estimating and interpreting the instantaneous frequency
of a signal-part 1: Fundamentals,” Proceedings of the IEEE, vol. 80, pp.
520–538, 1992.

[35] ——, “Estimating and interpreting the instantaneous frequency of a
signal-part 2:algorithms and applications,” Proceedings of the IEEE,
vol. 80, no. 4, pp. 540–568, 1992.

[36] Y. Pan, J. Chen, and X. Li, “Spectral entropy: a complementary
index for rolling element bearing performance degradation assessment,”
Proceedings of the Institution of Mechanical Engineering Science, Part
C: Journal of Mechanical Engineering Science, vol. 223, no. 5, pp.
1223–1231, 2009.

[37] O. Calin, Deep learning architectures. A mathematical approach.
Springer, 2020.

[38] R. Carter, The Human Brain Book: An illustrated guide to its structure,
function, and disorders. Penguin, 2019.

[39] B. R. Postle, Essentials of Cognitive Neuroscience. John Wiley & Sons,
2020.

[40] A. Fernández, S. Garcı́a, M. Galar, R. C. Prati, B. Krawczyk, and
F. Herrera, Learning from Imbalanced Data Sets. Springer, 2018,
vol. 11.

[41] A. Quintero-Rincón, C. D’Giano, and H. Batatia, “Statistical model-
based classification to detect patient-specific spike-and-wave in EEG
signals,” Computers, vol. 9, no. 4, pp. 1–14, 2020.

[42] M. V. M. Yeo, X. Li, K. Shen, and E. P. V. Wilder-Smith, “Can svm be
used for automatic EEG detection of drowsiness during car driving?”
Safety Science, vol. 47, no. 1, pp. 715–728, 2018.

[43] J. Chen, H. Wang, C. Hua, and E. P. V. Wilder-Smith, “Electroen-
cephalography based fatigue detection using a novel feature fusion and
extreme learning machine,” Cognitive Systems Research, vol. 52, pp.
115–124, 2009.

[44] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” in
4th International Conference on Learning Representations, Y. Bengio
and Y. LeCun, Eds., May 2016.

[45] A. M. Abdelhameed, H. G. Daoud, and M. Bayoumi, “Deep convolu-
tional bidirectional lstm recurrent neural network for epileptic seizure
detection,” in 2018 16th IEEE International New Circuits and Systems
Conference (NEWCAS). IEEE, 2018, pp. 139–143.


