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Pesticide-free agricultural strategies need new tools for diseases prevention. Better than early detection of disease,
detection of conditions favorable to their appearance can be a progress. In the case of fungal diseases, the presence
of water on the plant surface is necessary. In order to detect remotely this presence early and at the scale of a crop
field, we propose a low-cost solution based on laser reflection. Here, experimental results in a controlled environment
are presented on both hydrophobic and hydrophilic leaves (respectively rapeseed Brassica Napus and grapevine Vitis
Vinifera). We first assess the water detection on leaf surface by recreating the dew formation process. We next evaluate
the influence of the scanning measurement and leaves inclination on the detection to get closer to in-field conditions.
Results show that this method is very sensitive on both types of leaves. Water detection is possible from a low surface
coverage with a high temporal precision at 1 m. In the hydrophobic case, water on leaf surface leads to an increase of
the detected signal up to three times compared to a dry leaf. The corresponding minimum surface coverage detectable
at 1 m is evaluated at 1.6% thanks to 2D ray-tracing numerical simulations. In the hydrophilic case, on the contrary,
water on leaf surface leads to a decrease of the detected signal by almost half. For both types, the dew detection delay
is contained under five minutes and can be improved. Finally, the presented results pave the way to a field application.

I. INTRODUCTION

In agriculture, fungal diseases cause losses both in quantity
and quality. They are annually accountable for the destruction
of one third of the food production1. The impact of crop dis-
eases is widespread, affecting even the most commonly cul-
tivated species such as wheat (Triticum æstivum)2,3. One ex-
ample is the spread of septoria, which is caused by the fungus
Zymoseptoria tritici and can lead to severe epidemics result-
ing in yield losses of up to 50%4. In vineyards, diseases like
mildew or grey rot diminish yield by one fourth5. They also
reduce the production of desirable aroma compounds while
inducing undesirable aroma compounds and taste such as pro-
nounced viscous mouthfeel character5,6. Fungal diseases pro-
liferate on both hydrophilic and hydrophobic leaves such as
respectively grapevine (Vitis vinifera) and rapeseed (Brassica
napus) leaves7. In this case, fungal infections lead to a de-
creased oil yield (up to 30%) but have less influence on oil
quality8,9. On a more general context, this issue is described
as underestimated10. A common response is the use of fungi-
cides. This solution is more and more reassessed with the
evidence accumulation of health issues11–13, environmental
issues14,15 and even efficiency issues16,17. Hence, reduction
strategies are needed. Methods for detecting directly diseases
on leaves already exist18,19 but at this stage, infection has al-
ready occurred, which might be considered as too late. There-
fore, early plant disease detection is promising for reducing
pesticide utilization20,21. Going further, the early detection
of the necessary conditions for disease development is even
better. Cryptogamic diseases usually need water to contami-
nate. Thus, a tool for wetness monitoring can help farmers to
get ahead of diseases and avoid their propagation when events
like dew or rain happen. Moreover, knowing the length of
the wet period is crucial to evaluate contamination risk. De-
spite the availability of sensors that measure wetness through

changes in resistivity or relative permittivity, they only of-
fer punctual measurements22,23. Though, it should be noted
that these sensors must be placed in the foliage and their mea-
surement area is limited to that of a single leaf. As a result,
they may not provide a representative view of what is happen-
ing across a field unless a large number of sensors are pur-
chased. Others are based on computer vision24 or on differ-
ential spectroscopy in the infrared allowing the discrimination
between internal and external water. Nonetheless, it is not al-
ways possible to achieve this discrimination25. Alternatively,
as for geometrical sensing based on LIDAR (LIght Detection
And Ranging), a laser-based device could allow fast and low-
cost remote measurements thanks to its intense and collimated
beam. Nicolayev et al.26 developed the idea that dew can be
measured by its diffraction pattern using a laser source. In
this way, surface coverage and average droplet radius can be
retrieved. However, their approach requires a transparent sub-
strate for the deposited drops and is therefore not suitable for
a field application. Different laser-based techniques are al-
ready applied in remote sensing, such as light depolarization
by water droplet27 or interferometric speckle28,29 to directly
probe surfaces. In this framework, the present study focuses
on a new and simple laser-based method to detect dew on both
hydrophobic and hydrophilic leaf surfaces based on the light
reflection and in particular Heiligenschein phenomenon. It es-
sentially intends to evaluate the sensitivity of such a method,
in terms of surface coverage and delay of detection, in con-
trolled lab conditions mimicking the generation of dew. In the
ultimate vision of using our set-up in real open-field condi-
tions, scanning over large surfaces and different configuration
of leaves, we estimate the impact of a scanning measurement
as well as of the angle of incidence of the probe beam on the
surface.
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II. METHODS

When light reaches the surface of water, it undergoes sev-
eral processes simultaneously, including reflection, refraction,
absorption, and scattering. Under particular circumstances
(e.g. when the surface is hydrophobic), light can be strongly
reflected because water forms spherical droplets at the sur-
face of the material. This is called the Heiligenschein phe-
nomenon.

A. Heiligenschein phenomenon

Heiligenschein is a phenomenon visible when light strikes
a droplet-covered hydrophobic surface. Light is reflected to-
wards its source thanks to refraction inside droplets and reflec-
tion onto the underlying surface (see Fig. 1). This results in
a bright light seen if the object illuminated is observed from
nearby the light source axis. A pioneer study30 has isolated
four parameters influencing the amount of light returning to
the source : the intensity of the incident source, the sphericity
of the drops, the surface reflectivity and the apparent surface
coverage. A maximum of intensity for an incident angle of
about 60° with respect to the normal to the surface was also
predicted with a smooth surface with no rising leaf hairs. This
phenomenon occurs on hydrophobic surfaces such as Brassica
napus leaves and is not expected on hydrophilic surfaces like
Vitis vinifera leaves (contact angle θc respectively of 113.55°
± 2.79°31 and 62° ± 14°32).

B. Experimental set-up

Figure 2 details the experimental set-up. A laser diode is
a good choice as a low-cost source thanks to its intense and
collimated beam characteristics. In the present case, we have
chosen as a source, a 633nm CPS635R laser diode from Thor-
Labs with a 1.2 mW optical power. A beam of 1 cm in di-
ameter at 1 m working distance is achieved by using a lens.
Source fluctuations are monitored by a PM16-121 photodi-
ode from ThorLabs coupled with a beam splitter to the source
output. In our controlled experimental conditions, these fluc-
tuations are negligible (<0.5%). Hence, the power monitor-
ing has not systematically been done in order to simplify the
analyses. For the detector, a 20 Mpx monochromatic CMOS
camera manufactured by Basler has been chosen along with
a V5024-MPZ (50mm objective) manufactured by Computar.
This camera has a 8-bit depth. In the visible range (400-650
nm), the camera quantum efficiency is between 50% and 80
%. A 90° mirror is added in order to stack the camera field
of view with the laser beam. Source and detector are assem-
bled following a biaxial configuration and bound together us-
ing stainless steel rods. Distance between the laser beam cen-
ter and the nearest point of the mirror is equal to 1 cm ± 1
mm. Equally, the distance from the laser beam center to the
farthest point of the mirror is equal to 3 cm ± 1 mm. This cor-
responds to an angular deviation respectively equal to 0.57° ±

(a)

(b)

FIG. 1: a) Lambertian scattering by a leaf b) Heiligenschein
phenomenon. Collimated light beam coming from the left
(beam edges in semi transparent dash lines), is focused by
the drop (in blue) and scattered by the leaf surface (in green)
and re-focused by the drop. Scattered rays are in orange. This
results in a very concentrated beam going back towards the
source. The distance between the drop and the leaf has been
chosen in order to have a strong Heiligenschein effect for the
sake of clarity.

0.06° and 1.71° ± 0.06° at 1 m. Hence, conditions of Heili-
genschein are respected using this configuration. Finally, a
controlled-mirror using two ZST206 stepper motors and two
KST101 controllers manufactured by Thorlabs allow chang-
ing the beam position on the leaf below the optical set-up.

FIG. 2: Scheme of the experimental set-up. In red : Light
forward path. In blue : Light backward path. 1 : Laser. 2 :
CMOS sensor. 3 : Objective. 4 : Beam splitter. 5 : Power
meter. 6 : Controlled mirror. 7 : Leaf. 8 : Cooling/heating
Peltier module.
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FIG. 3: Example of sequence of position in the scanning ex-
periment. The laser beam is moved from P(0,0) to P(Nx,Ny)
where Nx and Ny are the number of nodes in both directions.

The intensity received is the main signal to measure. In our
case, using a monochromatic camera, the signal corresponds
to the average of the intensity measured by each pixel.

Of prime importance in our protocol was the ability to gen-
erate dew on the leaf. For that purpose, the leaf was cooled
down to the temperature required for water vapor conden-
sation, depending on the ambient hygrometry using a cool-
ing/heating Peltier module. The leaf to be cooled was placed
horizontally on this plate. Weights were placed on different
parts of the leaf to ensure a uniform contact with the plate for
uniform cooling. The cooling temperature and the tempera-
ture ramp at the very surface of the leaf were controlled after
a calibration linking the cooling plate temperature to the leaf
temperature (see Supplementary Discussion). Air tempera-
ture and hygrometry were monitored using a weather station
(± 1°C for the temperature, ± 3% for the relative humidity,
RH). A measure was done every five minutes by the station. In
order to reduce uncertainties, a 5-points moving average of the
weather station measurements has been used based on the fact
that the experiment is performed in a temperature-controlled
room. Thus, dew point temperature could be computed in or-
der to know the moment where dew formation had started.
To confirm the accuracy of the measurements obtained in a
temperature-controlled room, additional measurements were
conducted in a climatic chamber where both the humidity and
temperature were regulated (see Supplementary Discussion).
The laser was kept turned on during the experiment in or-
der to have the most intensity-stabilized beam while the room
was in the dark. Hydrophobic and hydrophilic species used
during experiment were respectively grapevine (Vitis vinifera)
and rapeseed (Brassica napus) leaves.

Once the experiment started, images were captured by the
camera during Tacquisition = 10 µs every Tmeasure = 5 s. Mean-
while, the cooling plate was turned on after a predefined delay
so that the first acquisition could serve as a reference back-
ground signal. During every image acquisition, plate tempera-
ture and laser intensity were measured. The time needed to do

these tasks was estimated at 200 ms ± 10 ms. Besides, a com-
mercial wetness sensor PHYTOS 31 commercialised by ME-
TER group coupled to a data logger from Weenat was added
to the cooling plate. Measurements by this sensor are done
based on relative permittivity modifications. Retrieved values
are between 0 and 100% in steps of 10% corresponding to
respectively a dry leaf surface (i.e. without water on its sur-
face) and a water-saturated leaf surface. The sensor returned
a value every hour. Data collected were used in order to have
a reference with measurements made with our method. The
temperature decrease was performed at two different speeds
(6°C/min and 0.3°C/min). These two speeds are called re-
spectively "fast" and "slow" in next sections. These values are
discussed in section IV. The temperature decrease continued
until the leaf temperature reached 8 °C ± 0.2 °C. When appli-
cable, temperature returned to its initial value in order to have
dew evaporation using the same temperature ramp.

C. Scanning and inclination influence set-up

To be closer to field conditions, some variables must be
taken into account. First, in field, leaves have various ori-
entations unlike our first set-up where the leaf was always or-
thogonal to incident laser beam. Second, if one wants to get
local information at different locations, it is necessary to be
able to scan an entire field with the laser beam. For that pur-
pose, a controlled mirror was used to change the measurement
area. This last point could allow our method to map an area in
a field which would be a clear benefit compared to punctual
leaf wetness sensors.

To study the influence of leaf orientation, the experimen-
tal method detailed previously was used again. However, the
cooling plate was replaced by a 2-axis rotation stage manufac-
tured by Stranda (see SF. 1 in Supplementary Figures). Here,
the experiment aimed at quantifying how the leaf orientation
affects the signal received by the camera when the leaf surface
is wet or dry. Yet, the complexity of combining the cooling
plate and the 2-axis rotation stage prevented their utilization at
the same time. Hence, dew formation by cooling was replaced
by water spraying to reproduce dew presence when the surface
coverage was maximum. The deposited leaf could be oriented
around θ and φ . These two angles varied between ± 45° in
both directions with a 2° and 10° resolution for acquisitions
respectively on dry and wet leaf. To reduce water evaporation
during the experiment, wet leaves that were not temperature-
controlled had limited angular resolution and acquisition time.
The case where the leaf was horizontal corresponded to our
origin (0°,0°) in the two directions with an orthogonal inci-
dent laser beam. A first acquisition was realized on the dry
leaf by modifying the angle value by increments. Then, water
was sprayed on the leaf until the maximum surface coverage
ε2 was approximately reached for the contact angle θc corre-
sponding to the studied leaf (Eq. 133) and finally a second
acquisition was done. These steps were repeated ten times so
variations due to leaf surface roughness were averaged out.
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ε2 ≈ 1− θc

180
(1)

For the scanning experiment, the measurement area was
changed using the controlled mirror (mirror 6 in Fig. 2) fol-
lowing predefined positions. Changing the measured area lim-
its leaf surface roughness effects (i.e. leaf veins) and avoids
delaying the detection of dew formation due to heterogeneity
resulting from the leaf surface roughness. The mirror mount
allowed a ± 6° range which corresponds to a ± 10 cm at a
distance of 1 m with a maximum resolution of 150 µm.

Positions were defined by dividing the two dimensional
travel distance in the leaf plane by the number of nodes
wanted. Positions were traveled sequentially during all the
acquisition time (Fig. 3). To ensure acquisition periodicity,
a variable buffer time was added, which was adjusted at each
increment based on the necessary time spent moving the mea-
surement area during the previous increment, due to differ-
ences in distance between positions (such as when the mirror
returns to the first position). Here, the beam went by nine
equidistant positions arranged on a three-by-three grid. The
distance between each position was 3 cm.

D. 2D ray-tracing simulations

In order to specify which parameter the signal is sensitive
to, numerical Monte-Carlo simulations of ray tracing were
performed. These simulations reproduced the dew formation
process on a leaf associated with the incidence of light rays
from a laser source. Details on the simulations are available
in Supplementary Discussion. In the case of hydrophobic sur-
face (i.e. the simulated drops are spherical), the minimum ra-
dius of the simulated drops must measure at least 1 µm when
using a 633nm laser in order to be in the geometrical optics
regime34. Also, for the sake of simplicity, we assume that we
were in the case of geometric optics for hydrophilic surfaces.
Therefore, this condition gave us the lower bound for our sim-
ulation in terms of object size. Moreover, by considering, as a
first approximation, the optical properties of leaves and water
as homogeneous and isotropic, the experimental conditions
can be reduced to a two-dimensional system. We started by
defining a scene including one or more of these objects: laser,
camera and leaf. The ambient temperature T , the temperature
at which the leaf was cooled Tlea f and the relative humidity
RH can also be defined. Thus, the condensation rate per unit
area ḣ was computed according to Eq. 233. We set a constant ḣ
for the whole experiment. The set of parameters defining each
of these objects as well as the constants used are described in
Supplementary Tables.

ḣ(T,Tlea f ,RH) =
(pw(T,RH)− ps(Tlea f ))aw(T,RH)

ρw
(2)

with pw the partial pressure of water vapor, ps the saturation
vapor pressure of water and ρw the density of water. Similarly,
aw the transfer coefficient of water vapor is defined by Eq. 3 :

aw =
raρa(T )D

rvζ pm(T,RH)
(3)

With ra the specific constant of dry air, rv the specific
constant of water vapor, ρa the density of air, D the mutual
air/water diffusion coefficient, ζ the thickness of the diffusion
boundary layer and pm the atmospheric pressure.

Thus, dew drop formation and growth were simulated at the
surface of the defined leaf by computing Ri(t) the radius of the
drop at time t. In order to be as close as possible to the real
conditions, the growth of the drops followed the growth law
of an isolated drop (i.e. proportional to t1/3, Eq. 4) and then
changed once coalescence events occurred (i.e. proportional
to t, Eq. 5)33.

Ri(t) =
[

ḣ
π f (θc)

⟨d⟩2
]1/3

t1/3 (4)

With ⟨d⟩ the average distance between the drops. In the
same way, in the coalescence regime,

Ri(t) =
ḣ

ε2 f (θc)
t (5)

With ε2 the water surface coverage of the leaf and where,

f (θc) =
2−3cos(θc)+ cos3(θc)

3sin3(θc)
(6)

With θc the contact angle of the drop with the leaf.
Simulations were conducted independently of experiments

using fixed parameters. They were then compared to the ex-
perimental results by normalizing the simulation result to the
lowest and highest experimental values.

III. RESULTS

A. Single-point static measurement

1. Hydrophobic leaf

Figure 4 shows the moving average of the pixel average
value based on 20 points (i.e 100 s of measurement), during a
fast cooling of a rapeseed leaf with a static measurement area.
The moving standard deviation at ±2σ of the measurements
is represented by curves in light gray. The pixel average value
is normalized to the first value displayed for analysis and clar-
ity purposes. For the same reason, the moment when the leaf
temperature drops below the dew point temperature is sym-
bolized by the vertical blue line. The uncertainty related to
this threshold is symbolized by the vertical blue dotted lines
in Fig. 4b. The signal can be divided into three parts : a sta-
ble first part, then an ascending part that reaches in the final
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part a constant M∞,rapeseed, f ast value corresponding to a pixel
value higher than in the first part. The first part corresponds to
the time period where the leaf is still mostly dry. Indeed, the
temperature of the leaf decreases after 10 minutes and reaches
the dew point, approximately 3 minutes later, actually in the
uncertainty range of [12.82 min; 13.50 min]. During all this
time, the value of the average pixel remains stable. Once
the leaf temperature has passed under the dew temperature
threshold, the pixel average value increases sharply and then
reaches a plateau corresponding to an increase of the mea-
sured reflected light intensity of about 39% larger than the
initial signal. The signal value remained within the interval
[1.37; 1.40]. The presence of water is confirmed by the wet-
ness sensor.

To get more insight into the possible mechanism respon-
sible for the signal increase, we have performed ESEM (En-
vironmental Scanning Electron Microscopy) experiments on
leaves (Pictures 1,2 and 3 in Fig. 4c). These pictures are
chosen at three distinct phases of the dew formation process.
These phases are different from the three parts invoked pre-
viously. Complete movies of condensation with ESEM are
available in Supplementary Videos. During water condensa-
tion, the drops remain spherical and their contact angle on the
hydrophobic leaf remains constant. Also, there are progres-
sively less and less drops but with increasing radii. These
observations are consistent with the nucleation and growth
process of dew formation. The presence of spherical drops
is also consistent with the Heiligenschein phenomenon ex-
plaining the reflected intensity increase observed in our ex-
periment. Besides, the uncertainty increases in the presence
of water compared to the dry leaf. Therefore, the moving stan-
dard deviation could also be used to determine accurately the
timing of water appearance.

In Figure 4a is also presented the smoothed signal obtained
from the Monte-Carlo simulation of ray tracing. The maxi-
mum signal is normalized to the maximum experimental sig-
nal. The good agreement between experiment and simula-
tion further confirms that the Heiligenschein effect reproduces
quite well our observations. Both the simulated and observed
signals follow a sigmoid function. This statement goes to
show that our sensor mostly measures the surface coverage.
In the peculiar case of the hydrophobic rapeseed leaf, with a
critical angle of θc = 113.55° ± 2.79°31, the maximum sur-
face coverage predicted by Eq. 1 is about 0.37. If one takes
a close look at the region where dew formation initiates, one
can notice a discrepancy between the experimental and simu-
lated signals (Fig. 4b). This suggests a condensation rate that
fluctuates over time contrary to what was adopted for the sim-
ulations. This could also come from the heat released during
water vapor condensation on the leaf, delaying further con-
densation of water to form more droplets.

Subsequently, the dew point detection threshold is deter-
mined as follows. When the lowest value of the uncertainty
interval of the dew point threshold (i.e. left blue dashed line)
is crossed, the high uncertainty value of the signal becomes
our reference. This reference is the value that the averaged
signal must exceed in order to conclude that dew is forming.
Thus, the delay between the appearance of the dew and its de-
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FIG. 4: a) Evolution of the pixel average value (moving av-
erage) with the fast cooling of a hydrophobic rapeseed leaf
(Brassica napus) and a static measurement area (black). The
moving standard deviation at ±2 σ of the measurements is
represented by the gray curves. The signal obtained by nu-
merical simulation is represented in green. The vertical blue
line and text represent the moment when the leaf temperature
drops below the dew point. The blue dotted lines represent
the uncertainty in determining this instant. The results of the
simulations are plotted in the signal fluctuation interval. The
value of an average pixel is normalized to the first value of
the measurement series for analysis and clarity purposes. The
measurement points of the leaf wetness sensor are represented
by red squares. b) Zoom of graph a). Representation of the
determination of the dew formation detection delay determi-
nation and its uncertainties. c) ESEM observations illustrating
dew formation of graph a).
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FIG. 5: Evolution of the pixel average value (moving aver-
age) with the slow cooling of a hydrophobic rapeseed leaf
(Brassica napus) and a static measurement area (black). The
moving standard deviation at ±2 σ of the measurements is
represented by the gray curves. The signal obtained by nu-
merical simulation is represented in green. The vertical blue
line and text represent the moment when the leaf temperature
drops below the dew point. The blue dotted lines represent
the uncertainty in determining this instant. The results of the
simulations are plotted in the signal fluctuation interval. The
value of an average pixel is normalized to the first value of
the measurement series for analysis and clarity purposes. The
measurement points of the leaf wetness sensor are represented
by the red squares.

tection (or dew formation detection delay) ∆trapeseed, f ast can
be evaluated. In the fast-cooling case (Fig. 4), it is evalu-
ated at 0.5 min in the uncertainty range of [-0.36;2.16]. Based
on the simulation results, this corresponds to a surface cover-
age of about 1.2% [0.7;3.4] and an average droplet radius of
about 11.0 µm in the uncertainty range of [7.8;21.4]. Com-
pared to the leaf wetness sensor, the measurements made by
our method provide more accurate information at a higher fre-
quency.

In the case of a slow cooling, the same trend is found (Fig.
5). However, the maximum Mrapeseed,slow

∞ reaches about 1.25
with an uncertainty interval of [1.24;1.26] after the surface
coverage stabilization. A fluctuation in the value of M∞ ap-
pears as water does not form uniformly over the entire sur-
face of the leaf (c.f. section IV). Similarly, ∆trapeseed,slow is
evaluated. It is estimated at 0.6 min in the uncertainty range
of [-2.93;1.69]. The dew formation detection delay is quite
equivalent compared to ∆trapeseed, f ast . However, the uncer-
tainty related to the determination of this value increases. In-
deed, the uncertainty of the dew temperature being constant,
a slower cooling rate induces a larger uncertainty on the dew
formation detection delay. Using the simulations, the average
droplet radius at ∆trapeseed,slow is about 18.2 µm in the uncer-
tainty range of [10.1;22.2] and the surface coverage is about
2.6% in the uncertainty range of [1.0;3.5].

To ensure that the main variable influencing the signal is
the water coverage on leaf surface, the leaf has been heated
back to its temperature before cooling using the same tem-
perature ramp (Fig. 6). The moment when the temperature
was above the dew temperature, corresponding to the moment
when the dew evaporation started, is indicated by the purple
solid and dashed lines. After this threshold crossing, the signal
decreases and returns to its normalization value as expected.
This return is faster than during the rise to the plateau during
dew formation respectively lasting roughly 50 minutes and 80
minutes in the case of this acquisition. The criterion used to
evaluate the dew formation detection delay ∆trapeseed above
can be applied in order to have the dew evaporation detection
delay ∆trapeseed

ev . These two delays are evaluated at respec-
tively 0.44 min in the uncertainty range of [-3.19;1.44] and
3.71 min in the uncertainty range of [3.05;6.12].

2. Hydrophilic leaf

Three steps in the evolution of the pixel average value are
also present in the case of a hydrophilic surface, as shown
in Figure 7. Here, the experiment shown is performed on a
grapevine leaf with the fast cooling rate. In contrast to the
previous section, the overall evolution of the signal is decreas-
ing and thus the value of Mgrapevine, f ast

∞ is lower than the nor-
malization value. After stabilization at the end of the experi-
ment, the signal reaches 0.538 (uncertainty interval of [0.536-
0.540]) which is almost half of the initial signal. The pres-
ence of water is also confirmed by the wetness sensor. Nu-
merical simulations are still in progress and do not allow us
to conclude on the mechanism involved here. Nonetheless,
preliminary simulation results provide hypothesis presented in
the Discussion section. However, the signal trend shows that
the Heiligenschein effect is non-existent in this configuration.
ESEM grapevine observations (Fig. 7) show that water con-
densation on a hydrophilic leaf leads to a more heterogeneous
situation than for the hydrophobic leaf. Indeed, water films of
complex shape coexist with simple water lenses. In the case of
the hydrophilic grapevine leaf, drops form a water film rather
than spherical drops. Light may be more strongly dispersed
when water is spread on the leaf surface than when it is dry.
The dew detection threshold can still be determined by using
the method applied previously but the signal decay requires
the criterion to be adapted. In the hydrophilic case, it is the
value of the low uncertainty of the signal that is our reference.
In the same way as before, ∆tgrapevine, f ast is evaluated at 0.05
min (or 3s) in the uncertainty range of [-0.51;1.63]. The stan-
dard deviation of the measurements remains relatively con-
stant during the whole experiment, contrary to what was ob-
served for the hydrophobic leaf.
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FIG. 6: Evolution of the pixel average value (moving average) with the slow cooling of a hydrophobic rapeseed leaf (Brassica
napus) and a static measurement area (black) followed by a slow heating using the same temperature ramp. The moving standard
deviation at ±2 σ of the measurements is represented by the gray curves. The vertical blue (or purple) line and text represent
the moment when the leaf temperature goes below (or surpasses) the dew point. The blue (or purple) dotted lines represent the
uncertainty in determining this instant. The value of an average pixel is normalized to the first value of the measurement series
for analysis and clarity purposes. The measurement points of the leaf wetness sensor are represented by the red squares.
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FIG. 7: a) Evolution of the pixel average value (moving av-
erage) with the fast cooling of a hydrophilic grapevine leaf
(Vitis Vinifera) and a static measurement area (black). The
moving standard deviation at ±2 σ of the measurements is
represented by the gray curves. The vertical blue line and text
represent the moment when the leaf temperature drops below
the dew point. The blue dotted lines represent the uncertainty
in determining this instant. The value of an average pixel is
normalized to the first value of the measurement series for
analysis and clarity purposes. The measurement points of the
leaf wetness sensor are represented by the red squares. b)
ESEM observations illustrating dew formation of a).

Figure 8 shows two cases of slow cooling of a hydrophilic
leaf with a static measurement area at two different locations
on the same leaf. The same evolution as in Figure 7 is visible
in the first case (Fig. 8a). Indeed, a decrease of the signal
is visible as soon as the leaf temperature goes under the dew
point. At the end of the experiment, Mgrapevine,slow

∞ is 0.59
in the uncertainty range of [0.604;0.577], which is relatively
close to what was found for Mgrapevine, f ast

∞ . ∆tgrapevine,slow is
evaluated at -24 s in the uncertainty range of [-2.90;1.15].
Here, the delay is negative which is consistent given the un-
certainties but shows the limit of the chosen criterion. On
the other hand, Figure 8b shows that the signal trend can be
totally different depending on the position of the laser beam
on the leaf in the case of slow cooling. This time, five steps
can be distinguished on the graph. In the first part, as in
the case of the hydrophobic leaf, the signal is stable around
the normalization value, corresponding to the dry leaf. The
signal increase before the onset of the dew formation is not
explained (see Discussion). As soon as the leaf temperature
falls below the dew point, the signal increases and reaches
a constant value comparable to what is observed under the
same conditions on the hydrophobic leaf. Finally, the sig-
nal decreases and reaches Mgrapevine,slow,bis

∞ lower than the one
at the beginning of the experiment. The value of this final
constant corresponds to a decrease of 6% (uncertainty range :
[0.931;0.945]).

By analogy with the hydrophobic case, we assume that the
increasing part of the signal is explained by the Heiligen-
schein effect. In this scenario, at this location on the leaf,
mostly spherical drops would form. This is corroborated by
the high intensity areas visible in the comparison between raw
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images extracted from the experiment with the hydrophobic
leaf and this experiment (see SF. 2 in Supplementary Figures).
Then, by analogy with the observations made on the other hy-
drophilic leaves, we find a decrease in the signal, related to
very heterogeneous forms of drops.

0 20 40 60 80 100 120

0.6

0.8

1.0

Time [min]

N
or

m
al

iz
ed

 p
ix

el
 a

ve
ra

ge
 v

al
ue

 (m
ov

in
g 

av
er

ag
e) 30min 5s

0

20

40

60

80

100

 D
ew

 in
te

ns
ity

 [%
]

(a)

0 20 40 60 80
0.9

1.0

1.1

1.2

Time [min]

N
or

m
al

iz
ed

 p
ix

el
 a

ve
ra

ge
 v

al
ue

 (m
ov

in
g 

av
er

ag
e) 30min 35s

0

20

40

60

80

100

 D
ew

 in
te

ns
ity

 [%
]

(b)

FIG. 8: Evolution of the pixel average value (moving aver-
age) with a slow cooling of a hydrophilic grapevine leaf (Vitis
vinifera) and a static measurement area (in black) at two dif-
ferent measurement positions of the same leaf. The moving
standard deviation at ±2σ of the measurements is represented
by the gray curves. The vertical blue line and text represent
the moment when the leaf temperature drops below the dew
point. The value of an average pixel is normalized to the first
value of the measurement series for analysis and clarity pur-
poses. The leaf wetness sensor measurement points are repre-
sented by the red squares.

Therefore, a measurement at two different times can give
the same value while the leaf is in two different states. This is
consistent with the observation of the various forms of the wa-
ter films described before. Finally, ∆tgrapevine,slow,bis is found
and estimated at -1.83 min in the uncertainty range of [-3.15;-
0.75]. Here, the negative value of both uncertainty limits sug-

gests an error in the determination of the leaf temperature or
the criterion invalidity.

In the same way than in the hydrophobic leaf case, the leaf
has been heated back to its initial temperature before cooling
after dew formation and signal stabilization (Fig. 9). Inter-
estingly, the signal rises and returns to its normalization value
with remarkably high chaotic peaks just before stabilization.
This might be related to the peak observed in Figure 8b at the
beginning of the dew formation process and explained above.
The dew formation detection delay ∆tvine and the dew evapo-
ration detection delay ∆tvine

ev are evaluated at respectively 0.12
min (uncertainty range : [-2.91;1.04]) and 2.91 min (uncer-
tainty range : [-2.87;4.16]).

B. Scanning and leaf inclination influence

1. Scanning of the hydrophobic leaf

The same observations made during the static experiment
on the rapeseed leaf can be done while scanning the leaf (Fig.
10). Indeed, the three steps are clearly visible. On the other
hand, Mrapeseed,scan

∞ is more than three times higher than the
normalization value used as a reference when the leaf is still
dry (3.52, uncertainty range : [2.99-4.05]). This is in sharp
contrast to the 40% signal increase observed above with the
static measurement area. As with Figures 4 and 5, the hetero-
geneity of water formation on the leaf helps to explain this
higher value. Moreover, it gives an upper limit to the in-
fluence of the Heiligenschein effect on the reflected signal.
The high frequency oscillations that can be observed in the
signal are due to the change of measurement point follow-
ing a scanning loop as explained before. The retrieved val-
ues of ∆trapeseed,scan is 2.22 min in the uncertainty range of
[-3.70;6.97]. Compared to ∆trapeseed,slow determined during
the slow cooling with a static measurement, scanning the leaf
delays the dew detection. The mean radius and surface cov-
erage at ∆trapeseed,scan are evaluated at 13.1 µm in the uncer-
tainty range of [3.3;35.0] and 1.6% in the uncertainty range of
[0.2;6.6] respectively. Overall, the evaluated values of mean
radius and surface coverage are relatively close to the static
measurement. However, the uncertainty in these estimates in-
creases with slower temperature cooling and with the scan-
ning. All values extracted from the data during the experiment
with the rapeseed leaf are grouped in Table I.
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FIG. 9: Evolution of the pixel average value (moving average) with the slow cooling of a hydrophilic vine leaf (Vitis Vinifera) and
a static measurement area (black) followed by a slow heating using the same temperature ramp. The moving standard deviation
at ±2 σ of the measurements is represented by the gray curves. The vertical blue (or purple) line and text represent the moment
when the leaf temperature goes below (or above) the dew point. The blue (or purple) dotted lines represent the uncertainty in
determining this instant. The value of an average pixel is normalized to the first value of the measurement series for analysis and
clarity purposes. The measurement points of the leaf wetness sensor are represented by the red squares.
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FIG. 10: Evolution of the pixel average value (moving av-
erage) with the slow cooling of a hydrophobic rapeseed leaf
(Brassica napus) and a scanning measurement (black). The
moving standard deviation at ±2 σ of the measurements is
represented by the gray curves. The signal smoothing ob-
tained by numerical simulation is represented in green. The
vertical blue line and text represent the moment when the leaf
temperature drops below the dew point. The blue dotted lines
represent the uncertainty in determining this instant. The re-
sults of the simulations are plotted in the signal fluctuation
interval. The value of an average pixel is normalized to the
first value of the measurement series for analysis and clarity
purposes. The measurement points of the leaf wetness sensor
are represented by the red squares.

2. Scanning of the hydrophilic leaf

With the use of a scanning measurement (Fig. 11), the two
cases described in Figure 8 are found. Figure 11a shows a
signal decrease similar to the one observed in Figure 8a. The
value of Mgrapevine,scan

∞ corresponds to a 0.73 times weaker
signal compared to the normalization value. The dispersion
of the data when the hydrophilic leaf is dry is comparable
to that of the hydrophobic leaf (± 10%) (Fig.10). On the
other hand, this dispersion decreases at the beginning of the
dew formation and then increases. In contrast to this case,
Figure 7 showed a constant dispersion over time while water
was present on the leaf surface. This dispersion depends in
part on the measurement area. Consequently, if dew detec-
tion has to be performed scanning across a field, it might be
preferable to use the moving standard deviation as the sensing
signal instead of the moving average signal intensity. Next,
∆tgrapevine,scan is retrieved and evaluated at 19.35 min (uncer-
tainty range : [-3.22; 32.26]). This value confirms the disad-
vantage of the scanning measurement which delays dew de-
tection using our criterion.
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TABLE I: Summary of the values extracted from the experiments on the hydrophobic leaf. The values in square brackets
correspond to the uncertainties determined from the standard deviation at ±2σ of the experimental signals.

Detection delay [min] Minimum average detectable droplet radius [µm] Minimum detectable surface coverage [%]
Fast cooling 0.05 [-0.51;1.63] 11.0 [7.8;21.4] 1.2 [0.7;3.4]
Slow cooling 0.6 [-2.93;1.69] 18.2 [10.1;22.2] 2.6 [1.0;3.5]

Scan 2.22 [-3.70;6.97] 13.1 [3.3;35.0] 1.6 [0.2;6.6]
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(b)

FIG. 11: Evolution of the pixel average value (moving av-
erage) with a slow cooling of a hydrophilic grapevine leaf
(Vitis vinifera) and a scanning measurement (in black) using
two different sequences of measurement positions of the same
leaf. The moving standard deviation at ±2σ of the measure-
ments is represented by the gray curves. The value of an aver-
age pixel is normalized to the first value of the measurement
series for analysis and clarity purposes. The leaf wetness sen-
sor measurement points are represented by the red squares.

Finally, Figure 11b is a good synthesis of the previous fig-
ures. Indeed, the moving average of the signal shows that the
majority of the measurement is similar to the one presented
in Figure 8b characterized by an initial increase of the signal
followed by a decrease. However, the high uncertainty of the
signal goes to show that as the laser beam scans over several

TABLE II: Summary of the values extracted from the experi-
ments on the hydrophilic leaf. The values in square brackets
correspond to the uncertainties determined from the standard
deviation at ±2σ of the experimental signals.

Detection delay [min]
Fast cooling 0.03 [-0.76;1.43]
Slow cooling -0.4 [-2.90;1.15]

Slow cooling bis -1.83 [-3.15;-0.75]
Scan 19.35 [-3.22; 32.26]

Scan bis -

areas, it might encounter different situations, some similar to
the case of Figure 8a and others to Figure 8b. The high un-
certainty is representative of the heterogeneity described in
ESEM observations before. Therefore, we expect the signal
to be a mixture of these two distinct behaviors. Here, the dew
detection criterion is not applicable because of the strong dis-
persion of the signal throughout the experiment. Thus, it is
necessary to revise this criterion or the way it is used in or-
der to cover all possible cases. As before, all values extracted
from the data are grouped in Table II.

3. Leaf inclination influence

Regarding leaf inclination influence, some observations are
evenly visible on both leaves while others are specific to each
leaf. Figure 12 and 13 show the normalized average pixel
value in function of the inclination angles θ and φ and surface
water presence (in blue) or absence (in green). Semi-visible
curves stand for the 2σ standard deviation of experimental
data. They are not shown in Figure 12c and 13c for the sake
of clarity.

For the hydrophobic leaf, wet or dry, a symmetry is visible
around the origin (0°,0°) indicating that the leaf is a uniform
scattering surface. This point is chosen as the reference value
for normalization except in Figure 12b where the maximum
is found at the highest angles. Also, the dry hydrophobic leaf
shows a signal decrease around the origin. When wetting the
hydrophobic leaf, this point is a minimum. Yet, this minimum
is 12.3% (in the uncertainty range of [0.98;1.24]) higher than
the corresponding normalization dry-leaf value (see Fig. 12c).
We retrieve there the results shown in the previous section
where a higher signal is found with wet hydrophobic leaves
thanks to the Heiligenschein phenomenon. Besides, as the in-
cident angle increases, the ratio of the wet leaf signal to the
dry leaf signal increases, reaching a record value of 4 for the
largest angles (see Fig. 12c). This is fairly in accordance with
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the Heilingenschein phenomenon that is expected to reach a
maximum around an inclination angle of 60°35. It would be
interesting to extend the angles used in this experiment to
check this hypothesis on an hydrophobic leaf. Even though
the signal generally increases as the incident angle increases,
one may notice that at the orientation (45°,45°), the signal is
actually rather low. This signal decrease at (45°, 45°) does
not seem significant and would rather point to an artefact in
the conduct of the experiment.
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FIG. 12: Pixel average value as a function of θ , φ angles
for a hydrophobic leaf (Brassica napus). The standard de-
viation at ±2σ of the measurements are represented by the
semi-transparent curves. a) Dry hydrophobic leaf. b) Wet hy-
drophobic leaf. c) Combination of a) and b). The intensity is
normalized to the maximum value of the dry leaf experiment.

For the dry hydrophilic grapevine Vitis Vinifera leaf (Fig.
13), whether the leaf is dry or wet, a decrease of the signal
around the origin (0°,0°) is visible. However, when the leaf
is wet, the maximum signal value is roughly 20% (in the un-
certainty range of [0.71;0.89]) lower than the normalization
dry-leaf value. As in section III A 2, we suggest that water
scatters the incident light. The average pixel value for wet
leaf compared to the dry leaf can be 50% smaller for higher
inclination angles. This experiment shows that the observa-
tions done in previous sections could be sensitively amplified
thanks to variation in leaf inclination angles. In a more general
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FIG. 13: Pixel average value as a function of θ , φ angles
for a hydrophilic leaf (Vitis Vinifera). The standard devi-
ation at ±2σ of the measurements are represented by the
semi-transparent curves. a) Dry hydrophilic leaf. b) Wet hy-
drophilic leaf. c) Combination of a) and b). The intensity is
normalized to the maximum value of the dry leaf experiment.

way, increasing the number of iterations of the experiment as
well as controlling the rotation stage temperature where the
leaf is deposited could reduce the uncertainty of these results
while increasing angular resolution for wet leaf experiment.

IV. DISCUSSION

The purpose of this proof of concept is to develop a device
used in agricultural field, more demanding than our indoor
controlled conditions. It is therefore necessary to study the
limitations of our protocol with respect to this final applica-
tion.

The determination of the dew detection threshold as de-
tailed in sections III A 1 and III A 2 could be improved. In fact,
it relies mainly on the calibration made in order to measure the
leaf temperature from the temperature of the cooling plate (see
Supplementary Discussion). The temperature measurement
by the thermal camera varies from one leaf to another but also
between different areas of the same leaf. Heterogeneity in the
composition of the leaf (depending on its age, the area con-
sidered) implies a difference in the local thermal resistance36.
Also, the curvature and leaf imperfections prevent it from be-
ing uniformly in contact with the cooling plate. Consequently,
this calibration could be improved by an average over several
iterations. This would allow a better precision on the deter-
mination of the dew detection threshold. Similarly, the dew
detection criterion in itself could be refined. As a general ob-
servation, it seems to work well with a static measurement
and a fast temperature gradient but could be improved for a
scanning measuring point on a hydrophilic leaf. This comes
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from the higher signal fluctuation induced when using a scan-
ning measurement. The use of the moving standard deviation
variation could improve this criterion and, ultimately, our de-
tection.

We also assess signal variations that may occur at the start
or end of experiments when condensation is not present. The
slight decrease has been reproduced by cooling a grapevine
leaf while keeping it above the dew temperature so that there
is no condensation as corroborated by the commercial wetness
sensor (see SF. 3 in Supplementary Figures). This provides
evidence that the observed effect is specific to the leaf. Hence,
the most likely hypothesis suggests that leaf reflectance is al-
tered by cooling, and that the degree of alteration varies de-
pending on the observed area of the leaf, such as the veins
or the foliar area. Besides, leaf reflectance variation with its
temperature has already been studied and has been used to de-
termine specific plant characteristic37,38. However, additional
experiments are needed to evaluate this hypothesis.

Concerning the leaf wetness sensor, the hourly measure-
ment only indicates the presence or absence of water on the
leaf surface under our experimental conditions. As seen in
the previous figures, the maximum value never reaches 100%
when the sensor is completely covered with water. Indeed,
the sensor needs a few hours before reaching its saturation
value, which is more in line with the real conditions of use.
In the same way, according to the technical documentation, a
measurement between 0% and 20% is in the fluctuation range
of the sensor and is thus not significant. Finally, the mea-
surement cannot be triggered manually with our data logger,
which explains the inconsistency in the the number of mea-
surements from this sensor in our experiments. Our indoor
experiment requires a more precise way to measure leaf wet-
ness in order to calibrate our sensor under development. Re-
garding the technical capabilities of the reference sensor39, the
leaf wetness duration is underestimated by five minutes. Com-
pared to the different dew detection delays found above, our
sensor equals or is well under these five minutes except for the
measurement on the hydrophilic surface with a scanning mea-
surement. In the case of a temperature gradient similar to that
in the field and combined with a better dew temperature deter-
mination, the sensor could also maintain this delay under five
minutes. Finally, our sensor gives, at least, the same amount
of information than a resistivity leaf wetness sensor but with
the added possibility of remote wetness mapping with a single
sensor.

For practical reasons, the dew creation process is faster in
our experiment than in reality. Indeed, the natural process
is around 1°C/h or 0.017°C/min at night in dry weather and
without wind40. This represents a speed more than fifteen
times slower than our "slow" experiment. Under these con-
ditions, the dew point temperature determination could be op-
timized due to the greater number of measurements made by
the weather station. Indeed, averaging over a larger number of
measurements made by the station could induce a reduction of
the uncertainty on the determination of the dew temperature.
In the end, it could lower the uncertainty on the dew formation
detection delay especially for the scanning experiment. Also,
this slower gradient allows an increased number of points in

the moving average on the signal in order to reduce its stan-
dard deviation. This could lead to an even more reduced dew
detection delay.

Furthermore, the cooled leaf is placed horizontally so that it
is cooled as uniformly as possible. Obviously, in the field, the
leaves all have a different inclination. As detailed in section
III B 3, our measurements show that our method is not very
sensitive to this parameter. Hence, this makes us confident in
the application of this sensor.

Also, in order to have a first validation of the measurement
with the least noise possible, some parameters present in real
conditions have been omitted. This includes the presence of
wind that will make the leaves oscillate around their equilib-
rium point as well as the optical path of the beam intercepted
by one or more overlapping leaves. Moreover, taking into ac-
count parasitic light sources would allow our method to be
applicable under different light conditions.

The method detailed here can be compared to other known
methods. For example, the method developed by Heusinkveld
et al. is based on differential spectroscopy using an infrared
source25. In this case, the measurements can also be made
during the day or at night. Moreover, their work highlights
the possibility of discriminating the presence of water inside
and outside the leaf. However, this discrimination is not al-
ways possible. In the current state, our detection is specific to
the detection of water on the leaf surface and is not affected
by the water inside the leaf. Besides, the work presented by
Nikolayev et al.26 allows to find the surface coverage and the
mean radius as long as the drops remain in the size range that
still allows efficient diffraction of light. Outside this range,
only the surface coverage is recovered. Yet, their approach
requires a transparent substrate for the deposited drops and is
therefore not suitable for a field application.

The comparison of our experimental results with results
from a ray-tracing model has established a good correlation
between the experimental signal and the surface coverage.
Nevertheless, we have noticed some minor discrepancies be-
tween the experimental signal and its modelization. These
discrepancies could be reduced using a more sophisticated
model. Two ways of improvement can be contemplated. The
first one would be to consider a wavelength dependant absorp-
tion coefficient for the leaves. The second one would be to
describe the leaf itself as a heterogeneous stratified material
model, as done by Jacquemoud and Ustin41.

Additionally, the signal trends of the results presented in
Section III A 2 can be reproduced by lowering the contact an-
gle θc of each droplet at each time increment. In fact, when
the contact angle is lowered faster than the droplet growth,
the trend in Fig. 7 or 8a are retrieved. On the contrary, when
the droplet growth is faster than the lowering, a trend simi-
lar to Fig. 8b is found. In spite of being a well-documented
hypothesis42–44, further work is required to evaluate its valid-
ity.
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V. CONCLUSION AND OUTLOOKS

In this paper, a new simple method has been proposed to
detect water at the surface of leaves, based on the reflection of
a laser source in a biaxial configuration. This method partly
(for hydrophobic leaves) relies on the Heiligenschein phe-
nomenon, allowing the collection of a significant amount of
light returning in direction of the source after being focused
by water droplets and reflected by a hydrophobic leaf surface.
This light collection is used to assess the average value of all
the pixels of the sensor and thus to estimate the leaf wetness
status. This method has been successfully applied under con-
trolled conditions on both hydrophobic and hydrophilic sur-
faces (respectively Brassica napus and Vitis vinifera) with two
distinct cooling rates, for dew formation speed, and with a
static or scanning measurement method.

We observed that for both types of surface, the reflected sig-
nal is influenced by the presence of water on the leaf surface.
However, this influence was opposite depending on whether
the surface is hydrophobic or hydrophilic. The signal is re-
spectively increased (up to three times) or decreased (up to
half) when dew formation occurs.

When looking specifically at hydrophobic surfaces, the cor-
relation between the received signal and the surface coverage
has been established based on 2D ray-tracing numerical sim-
ulations. Understandably, the Heiligenschein effect increased
the received signal. The dew formation detection delay has
been estimated as well as the minimum detectable radius for
the dew droplets. When dew evaporated, the signal followed
the inverse trend as for dew formation and went back to the
normalization value of a dry leaf.

On the hydrophilic surface, as confirmed by ESEM obser-
vations, we have observed that the dew droplets readily trans-
formed into more elongated and sophisticated structures, ul-
timately forming a water film. This water film may act as a
scattering optical element. Hence, the more dew on the sur-
face, the lower the signal measured. But, in the case of a slow
cooling, a transient Heiligenschein phenomenon can be seen
and is then inhibited by droplet coalescence. This hypothesis
still needs to be confirmed by simulations. The dew formation
detection delay has also been estimated for the hydrophilic
surface. During dew evaporation, hydrophilic leaf surface ex-
hibited high signal peaks before going back to the normaliza-
tion signal.

Similar results were found when using a scanning measure-
ment. This possibly allows mapping wetness at crop scale
using laser but experiments on field are needed to confirm
this. Initial experiments placed the leaf horizontally to achieve
uniform cooling or heating, but this did not accurately reflect
the conditions in actual crops. Therefore, a second experi-
ment, focused on how the leaf orientation would impact the
signal, was conducted to address this issue. For the hydropho-
bic surface, the dry surface resulted in an average pixel value
diminishing radially around the origin (0°,0°). On the con-
trary, when the surface was wet, the signal intensity is risen
at least by 12.3% and increased again with the angle. For the
hydrophilic surface, the average pixel value was 20% lower
when the surface was wet than when it was dry. In both cases,

the intensity diminished with higher angles. Finally, the max-
imum gap between dry and wet surfaces is reached when in-
clination is the highest.

Eventually, when compared to an in situ commercial wet-
ness sensor, our device gave, at least, the same amount of in-
formation with the added possibility of remote wetness map-
ping with a single sensor. Detection could be improved by
using a more precise dew detection criterion.

Based on the results presented, an in-field application can
be considered in the future.

SUPPLEMENTARY INFORMATION

See Supplementary Information for details on the leaf tem-
perature calibration, the similarity between climate chamber
and temperature-controlled room measurements, 2D Monte
Carlo ray tracing simulations and ESEM observations videos.
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