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Abstract: Under environmental action, reinforced concrete (RC) structures might suffer from 

reinforcement corrosion caused by the surrounding environment, dramatically reducing 

structural reliability and threatening social development. However, most of the existing 

reliability assessment methods for RC structures only focused on the structural performance at 

the design stage given the original unchanged environment, ignoring the effects of realistic 

exposure conditions and inspection results on reliability evaluation. Thus, this paper develops 

a general reliability assessment framework based on a Mixed Bayesian network (MBN), 

incorporating three modules, i.e., durability assessment, load-bearing capacity analysis, and 

time-dependent reliability analysis. In MBN, separate sub-BNs are built based on different 

modules and connected by pinch point variables where probabilistic information is 

transmitted via soft evidence. Besides, this framework considers time-dependent 

environmental parameters and two-dimensional chloride transport and their effects on 

reliability. Meanwhile, adjustment coefficients are applied to improve the results of the 

analytical mechanical model with respect to different limit states through the finite element 

model (FEM). The proposed MBN framework is illustrated for a corroded RC beam under a 

marine atmospheric environment to investigate the effects of environmental modeling, 

chloride transport patterns, and concrete crack inspection on reliability assessment. The 

results indicate that under the assumed conditions in the case study, early inspection of large 

cracks may significantly overestimate the failure probability by about 500%. Besides, failure 

probability might be underestimated by about 95%, ignoring the time-variant environment 

and two-dimensional chloride transport. 
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1. Introduction 

During the service life of reinforced concrete (RC) structures, their mechanical performances 

deteriorate over time due to long-term environmental impacts (e.g., chloride ingress and 

concrete carbonation etc.) [1–3]. According to ASCE 2021 report card for America's 

infrastructure [4], there are 46,154 bridges representing 7.5% of the overall bridges in the 

USA, with structural deficiencies. The costs for overcoming the detrimental impacts of 

structural deficiencies are enormous and intractable. In 2022, a study by the financial 

accountability office of Ontario estimated that $10.1 billion should be annually spent to keep 

a safe state in the existing local portfolio of public buildings and facilities [5]. Therefore, this 

deterioration of structural performance could produce severe direct and indirect social impacts 

– e.g., delays, unavailability of structure assets, etc.  

Various studies indicated that RC structural performance is mainly caused by chloride or 

carbonation-induced reinforcement corrosion [3,6]. Consequently, many efforts have been 

made to assess the reliability of corroded RC structures over time. In 1997, Frangopol et al. [7] 

proposed a reliability assessment method for RC girders subject to chloride ingress and 

implemented reliability-based life-cycle cost evaluation. Furthermore, considering the pitting 

corrosion and its spatial effects on RC structures, Stewart and his collaborators [8–11] 

conducted a series of research relating to Monte Carlo simulation (MCS) based reliability 

analysis. Similarly, Val [12] investigated the time-dependent reliability of corroded RC beams 

subject to different failure modes, including flexural and shear failure. Guo et al. [13] 

developed a two-step translation method to perform the time-dependent reliability analysis for 

corroded RC structures efficiently. However, these studies focused on a fixed environment, 

while realistic environmental conditions combine time dependency, nonlinearity, and 

uncertainty. Therefore, Bastidas-Arteaga et al. [14] proposed a reliability assessment method 

for RC structures with respect to the effects of carbon emissions-induced climate change on 

structural performance. In addition, the existing studies associated with the reliability 

assessment of RC structures usually applied analytical models and lacked experimental 

validation [15]. Thus, Zhang et al. [16] used Finite Element Modeling (FEM) and X-ray 

photographs integrated with experimental validation and MCS to achieve the reliability 

analysis of corroded RC beams. Guo et al. [17] also employed experimental validation, FEM, 

and polynomial chaos expansions to develop a general framework of global sensitivity and 

probabilistic analysis for failure analysis of corroded RC structures. However, these studies 

focused on their reliability assessment at the design stage, which ignores actual exposure 

conditions and inspection results, and might misestimate the capacity and reliability of RC 

structures. Therefore, it is still necessary to consider the above-mentioned aspects to improve 

the reliability assessment/updating of RC structures. 

Bayesian methods have been commonly utilized to perform probabilistic inference by 

updating the data collected from monitoring systems or in-situ inspections [18]. Since many 

parameters (environmental, material, etc.) are involved in practical engineering systems, it 

might be challenging to use traditional Bayesian methods for parameter updating and 

inference. To this end, a graphical model called Bayesian Network (BN) has been widely 

applied to update the reliability assessment of RC structures through probabilistic inspection 

data [19,20]. For instance, considering carbonation-induced reinforcement corrosion, 



3 

Tesfamariam and Martín-Pérez [21] built a BN model to investigate the effects of exposure 

conditions on the carbonation rate and the corrosion probability. Deby et al. [22,23] applied 

BN to implement reliability analysis for RC structures subject to chloride ingress. Tran et al. 

[24–26] conducted a series of studies to identify the uncertainties of parameters and corrosion 

initiation probability for deteriorating RC structures under chloride ingress. However, those 

studies usually adopted static Bayesian Networks (SBN), which did not consider the time-

dependency of some parameters involved in the problem – e.g., concrete aging, surface 

chloride concentration, loading, etc. Therefore, to handle BN updating and inferences under 

multiple time slices, Dynamic Bayesian Network (DBN) has been proposed [27,28]. For 

instance, Guo and Dong [2] developed a general DBN framework for the durability 

assessment of RC structures with respect to the marine atmospheric environment. Considering 

the uncertainties in climate change and chloride transport, such a framework could investigate 

the effects of inspected concrete cracks on the durability of RC structures. However, such a 

DBN framework only concerns the durability assessment of RC structures rather than their 

mechanical properties. Therefore, the study cannot be directly applied to the time-dependent 

reliability assessment of RC structures under environmental actions when focusing on 

ultimate limit states. 

In order to perform a BN-based life-cycle reliability analysis for corroded RC structures, 

it is imperative to consider the effects of environmental-induced reinforcement corrosion on 

the performance of RC structures. For example, Ma et al. [29] established a BN integrating 

with in-situ loading tests to predict the performance deterioration and structural response of 

existing corroded RC bridges. However, due to the absence of DBN, this study might be 

inappropriate for the time-dependent reliability analysis of RC structures. Thus, Hackl and 

Kohler [30] proposed a DBN framework for the reliability assessment of corroded RC 

structures subject to chloride transport by integrating parameters associated with the 

deterioration process. Although this study considers time dependencies using DBN, many 

issues still need to be addressed. For instance, such an existing DBN framework did not 

consider climate change and applied a simplified one-dimensional Fick's law for chloride 

transport prediction, which might lead to errors on the durability performance and reliability 

assessments under realistic exposure conditions and two-dimensional chloride ingress (RC 

beams and columns) [1,31,32]. In addition, the existing DBN framework still adopted 

analytical mechanical models and ignored the corrosion-induced spatial effects, which might 

misestimate the mechanical performance and reliability level of RC structures. These issues 

could be solved by considering comprehensive deterioration models such as those in 

[14,17,33]. However, the computational cost for the BN modeling and inference would grow 

exponentially for this type of model that requires several input parameters [19,20]. Therefore, 

there is still a need to propose a novel BN framework for RC structural reliability 

assessment/updating, doing a trade-off between model complexity and efficiency. 

This study proposes a comprehensive BN framework for the life-cycle reliability 

assessment of RC structures under the marine atmospheric environment. The framework 

incorporates several physical models for the durability and reliability assessment/updating of 

RC structures, including a two-dimensional chloride transport model and analytical and finite 

element methods for RC structural performance analysis (Section 3). In order to reduce the 
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difficulty in BN modeling involving many parameters, this paper establishes a new Mixed 

Bayesian Network (MBN) (Section 4). Finally, the proposed MBN framework is illustrated 

with a time-dependent reliability analysis of RC beams placed in a marine atmospheric 

environment. In this case study, we examine the effects of environmental models, patterns of 

chloride transport, and inspection results on reliability assessment/updating. 

2. Principal concepts of the proposed framework 

As illustrated in Fig. 1, the proposed framework for the reliability assessment of RC structures 

subject to marine atmospheric environment comprises three main stages: durability 

assessment, mechanical evaluation, and reliability assessment. In the first stage, the boundary 

conditions of the structure (external temperature, relative humidity, and chloride concentration) 

are obtained via environmental modeling. A chloride transport model is used to determine the 

corrosion initiation time. When corrosion initiates, the corrosion rate icorr and the radius 

reduction of reinforcement ∆r could be evaluated. The numerical model for this first stage has 

been developed in a previous study [2]. The main results of stage 1 (icorr and ∆r) are 

transferred to the next stage (mechanical evaluation) to assess flexural and shear capacity 

(PMu and PVu) and to carry out FEM analysis. In the last stage, reliability assessment and 

failure mode analysis are performed in terms of the results of the mechanical assessment in 

the second stage. The mechanical evaluation and reliability computation models are detailed 

in Section 3.  

 

 

Fig. 1 Modular reliability assessment framework for corroding RC structures 

 

The direct implementation of the proposed framework using traditional Bayesian 

Networks (BNs) poses significant computational challenges [2,30,34]. Firstly, the large 

number of time-slices or links and nodes in the network requires substantial physical memory 

to store critical information, such as conditional probability tables (CPTs), resulting in longer 

computation times for probabilistic inference. Secondly, to achieve accurate inference, all 

continuous nodes must be discretized into discrete nodes, leading to exponential growth in 

physical memory requirements as the number of discrete node states increases. Lastly, 

constructing a comprehensive DBN demands a large number of data samples to generate 

precise node CPTs for subsequent probabilistic inference tasks. 

To address these challenges, this study proposes a novel approach called Multiple 

Bayesian Networks (MBN). In this study, MBN is constructed and updated at each stage by 

integrating diverse models and analysis methods, with the pinch-point variables (icorr, ∆r, PMu, 

and PVu) serving as bridges between the different sub-BNs. This innovative MBN method is 

detailed in Section 4, providing an effective solution to handle the complexities of 
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information updating and probabilistic inference without resorting to a large and complex BN. 

 

3. Performance assessment models of RC structures 

3.1.Durability assessment of RC structures 

In this section, the basic models employed in the durability assessment, including 

environmental modeling, chloride transport prediction, and corrosion degree and concrete 

crack evaluations, are briefly reviewed from previous studies [2,35]. Due to limited 

experimental and theoretical studies on the spatial correlation of other parameters (i.e., 

chloride diffusion coefficients and rebar corrosion rates) [36,37], the effect of spatial 

correlation on durability assessment is not directly considered in this section. Instead, the 

corrosion non-uniformity factor R is adopted to indirectly address the issues related to spatial 

correlation (Section 3.2) [2,13,38]. 

 

3.1.1. Environmental modeling and chloride ingress 

Realistic modeling of environmental parameters, e.g., temperature, relative humidity (RH), 

and chloride deposition, is essential for the durability assessment of RC structures. Therefore, 

an environmental model is employed to account for various factors, including the 

characteristic value of exposure conditions ec (representing the average temperature rise from 

1970 to 2090 [39]), the seasonal variations fsea(t) and daily variations fdai (t), an increasing 

tendency finc, and a white noise ξ. These factors are described by Eqs.(1)-(4) [1,39]. Given the 

parameters in Eqs.(1)-(4) and ec, temperature, relative humidity (RH), and chloride deposition 

at any time instant could be calculated. 

        sea d a i in c
, ,f ec t f t f t f ec t       (1) 

      se a 1 1 re f 1 2 1 re f 2 0
s in 3 6 5 s in 2 3 6 5f t a w t t b a w t t b a  

            (2) 

          d a i 0 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1
 co s  s in co s 2 s in 2f t a a w t b w t a w t b w t      (3) 

      
0 .3 5 9 0 .3 3 3

3 2 2 2

in c re f
,  5 .0 4 1 0 3 .5 7 1 0 6 .4 9 1 0 / 3 6 5

e c

f e c t e c e c t t


  
          (4) 

where t and tref are current and reference time (day); a0 is the baseline average mean annual 

value; a1, a2, b1, b2, w1, and w2 are the parameters of fsea(t); and a01, a11, a21, b11, b21 and w11 

are the parameters of fdai(t). In section 5, an example of this model is presented. 

Existing studies have consistently shown that chloride ingression is the primary threat to 

RC structures exposed to marine atmospheric environments [38,40]. Consequently, chloride 

ingression is specifically considered in this study. Given the boundary conditions provided by 

Eqs.(1)-(4), the chloride ingress process into concrete could be simulated by the following 

three steps [1]:  

(1) Solve the heat transfer equation, i.e., Eq. (5) [41] 

 

2 2

2 2c q

T T T
c T

t x y
  

   
     

   

  (5) 

where T is the current temperature (K); x and y are the horizontal and vertical coordinates (m) 
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of cross-sections; ρc, cq, and λ are denoted as concrete density, heat capacity, and thermal 

conductivity, respectively. 

(2) Solve the moisture diffusion equation, i.e., Eq. (6) [31];  

 
e R H R H R H

h 2 2

R H

w h h h
D

h t x y

    
  

    
  (6) 

where hRH is the relative humidity (RH) inside the concrete, and Dh is the coefficient of 

humidity diffusion (m
2
/s) related to T, t, and RH [42]. 

(3) Solve the chloride transport equation, i.e., Eq. (7) [31]. 

 

2 2

* *fc fc fc R H R H

fc fc2 2c h

C C C h h
D D C C

t x y x x y y

          
        

            

 (7) 

where Cfc is free chloride content (kg/m
3
 of pore solution); and Dc

*
 and Dh

*
 are the apparent 

diffusion coefficients of chlorides and moisture (m
2
/s), respectively. The alternating-direction 

implicit-based finite difference method is employed to solve Eqs. (5)-(7) [43] due to its high 

nonlinearity and two-dimensional formulation. 

 

3.1.2. Reinforcement corrosion and concrete cracking 

The simulation of chloride transport in Section 3.1.1 provides the chloride content on the 

reinforcement surface cbar. The reinforcement corrosion would start once cbar is beyond critical 

value ccr. After corrosion initiation, the corrosion rate of reinforcement is evaluated by Liu's 

model [44]: 

 
 c o rr b a r

0 .2 1 5

c o rr

ln 1 .0 8 7 .8 9 0 .7 7 7 1 ln (1 .6 9 )

3 0 0 6 0 .0 0 0 1 1 6 2 .2 4
c o nc o n

i t c

T R t 


    

    

 (8) 

where icorr(t) is the corrosion current density (μA/cm
2
); Tcon and Rcon (Ohms) are the 

temperature and resistance within the concrete; tcorr (year) is the time after corrosion initiation; 

and ϑ denotes a white noise following N(0, 0.3312) [39]. 

According to Faraday's law, the average reduction of reinforcement radius ∆r(t), the 

cross-sectional area ΔAs(t), and average corrosion degree ηave(t) are respectively expressed by 

Eqs. (9), (10) and (11). 

    c o rr
0

0 .0 1 1 6 d
t

r t i t t    (9) 

      
2

2 2

0 0 0
2

s a v e
A t d A t d d r t             (10) 

      
2

a v e 0
1

a v e
t A t d      (11) 

where d0 is the initial steel bar diameter; and Aave(t) is the average residual cross-sectional 

area of the corroded steel bar.  

For the sake of simplicity, this paper evaluates the corrosion-induced crack width ω (mm) 

through an empirical model [45] based on the average reduction of cross-sectional area: 
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   

  

0

2
2 3

0 0 0 t 0
1

0 ,

1 / 7 .5 3 9 .3 2

.0 5 5

/ 1 0

7
s s

s

t A t A

A d d c d



 


      

     
 

  (12) 

where ΔAs0 represents the average reduction of the cross-sectional area once concrete cracks, 

ct (mm) is the concrete cover of RC structures, and α is the pit concentration factor (α=2 for 

homogeneous corrosion but 4<α<8 for localized corrosion) [45,46]. Uncertainty in crack 

widths associated with corrosion degree can be taken into account by considering the 

probability distribution of the factor α in Eq.(12). 

Furthermore, considering the influence of corrosion-induced cracks on the durability 

performance of RC structures, the diffusion coefficients of chloride Dc
  and humidity Dh

  for 

cracked concrete are evaluated by Eqs.(13) [47] and (14) [48], respectively. 

      
* 2

1 1
, 3 1 .6 1 4 .7 3 1, 0 .1

c c
D f D t f m m



 
            (13) 

      
* 3

2
, 1

h h h h h
D f D t f k s




         (14) 

where kh is an environmental parameter (10
5
 mm

-2
 [48]); and sh is the mean crack which is 

assumed to be 250 mm in this study [48]. 

 

3.2.Mechanical capacity of a corroded RC beam 

This study investigated the mechanical behavior of a simply supported corroded RC beam 

with a rectangular cross-section (Fig. 2). The total and effective length, concrete cover, and 

stirrup spacing of the beam are l, left, c, and sv, respectively, and the cross-sectional width, 

total height, and effective height are denoted as b, h, and h0, respectively. Existing studies 

proved that chloride attack generally induced non-uniform reinforcement corrosion, which 

further causes spatial variability in the mechanical capacities of corroded RC beams. 

Therefore, failure could occur in other positions than span mid-point [49,50]. To account for 

the spatial variability, the beams are separated into m zones concerning the spatial effects of 

corrosion non-uniformity on the mechanical performance of RC beams, as shown in Fig. 2.  

 

Fig. 2 Geometry schematic of a simply-supported RC beam 

 

Moreover, within each zone, the non-uniform reinforcement corrosion is quantified using 

the corrosion non-uniformity factor [49], denoted as Rk,j, to consider the corrosion non-

uniformity of the j-th steel bar in the k-th zone. 

      , ave m in , ,k j k j
R t A t A t  (15) 

where Amin,k,j(t) represents the minimum cross-sectional area of the j-th tension bar in the k-th 

zone at time t. Similar approaches have been observed in previous studies [9,10,12]. 

b

hh
0

(a) Layout of RC beam (b) Cross-section of RC beam

δ left

h

k=1 k=2 k=m
sv

δs δs

l
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Furthermore, by employing Eq.(15), the maximum corrosion degree ηmax(t) of steel bars 

varies with longitudinal and transverse directions. 

Existing study shows that factor R(t) follows a Gumbel distribution whose distribution 

parameters μ and σ could be computed by Eqs. (16) and (17), respectively [1,49]. For the sake 

of simplicity, the factor R and the minimum cross-sectional area of each zone are supposed to 

be independent of the others [13,49].  

        a v e c o rr a v e
3 .3 5 e x p 0 .2 3 6 0 .1 2 1 .0 1t t i t t         

 (16) 

    ave
0 .3 3 7 1 0 .0 0 0 6t t    (17) 

Based on the autocorrelation analysis results from previous studies [49,51], it has been 

observed that the correlation coefficient decreases significantly for analysis lengths greater 

than 50 mm. Thus, the RC beam can be divided into multiple zones of not less than 50 mm in 

length, and treat the factor R of each zone and each bar as independent random variables 

[2,13,38]. This approach allows for the consideration of spatial correlation in the corrosion 

distribution. 

 

3.2.1. Analytical mechanical models of RC beam 

For the analytical models, the time-dependent bending and shear capacities of RC beams are 

computed separately based on several assumptions. For instance, supposing RC beams with 

planar sections are well-anchored and completely bonded during their service lives, their 

flexural capacities Mu,k(t) at each zone can be calculated by Eq.(18) [13,49]. 

  , , 0 , c
( ) ( ) 0 .5 ( )

u k y k y k
M t F t h F t b f    

 
 (18) 

where fc is the concrete compressive strength (MPa); and Fy,k (t) (N) is the capacity of 

corroded tension rebars of the k-th zone at time t, which could be expressed by Eq.(19).  

  y, y0
( )

t

k k
F t f A t   (19) 

where fy0 is the yield strength of uncorroded tension bars; A
t
k(t) is the equivalent cross-

sectional area of tension bars in the k-th zone.  

Considering the effects of corrosion on the ductility of corroded steel bars, A
t
k(t) is 

computed by Eq.(20). 

 

    

  

t

t

m in , , 1- c r ,
1

1

m in , , c r ,

1 1

m a x ( ) 1 [ ]

( ) [ ]

t

t

t

nn

t t

k k n j k j
j

j

nn

t

k j k j

j j

A t j A t H R R t

A t H R R t






 

 
       

 

  



 

 (20) 

where nt is the number of tension bars; [R]cr is the critical value of corrosion non-uniformity 

factor 1.3 [49]; A
t
min,k,j(t) is the minimum cross-sectional area (mm

2
) of the j-th tension bar in 

ascending order in the k-th zone (A
t
min,k,1(t) < A

t
min,k,2 (t) <∙∙∙< A

t
min,k,nt(t)); and H(x) is the 

Heaviside function that equals 1 when the value inside parentheses ≥ 0 and 0 otherwise. 

In addition, according to the classical truss models with a crack inclination angle of 45°, 

the shear bearing capacity Vk(t) of any zone in the beam is given by Eq.(21) [11,12]. 
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      
v ,

c s , t 0 0 v
1 .7 5 1 ( )

k
k k s A

V t V V t f b h F t h s        (21) 

where Vc and Vs,k are denoted as the contributions of concrete and stirrup components on 

shear capacity, respectively; ft is the concrete tensile strength; λs is the shear-to-span ratio; 

FAv,k(t) is the vertical tensile capacity of stirrup bars under the k-th zone at time t. 

Since only the vertical parts of the stirrup bars are considered for computing the shear 

capacity of RC beams, FAv,k(t) can be calculated by summing the tensile capacities of the 

vertical parts of all stirrups legs, as shown in Eq.(22). 

  
sv

,
yv 0 yv 0 ,

1

( ) ( )
v k

n

s s

A k k w

w

F t f A t f A t



   m i n ,
 (22) 

in which fyv0 is the yield strength of uncorroded stirrup bars; nsv is the number of stirrup legs; 

A
t
k(t) is the equivalent cross-sectional area sum of stirrup bars in the k-th zone; and 

,
( )

s

k w
A t

m i n ,
 (k=1, 2, ..., m; w= 1,2, ..., nsv) is the minimum cross-sectional area (mm

2
) of the w-

th stirrup bar of the k-th zone. 

Eqs.(18)-(22) are directly applied to calculate Mu,k, and Vu,k for each zone by the 

mechanical properties of the reinforcement and concrete and the cross-sectional areas of steel 

bars.  

 

3.2.2. Finite element model of RC structures 

Although the models presented in Section 3.2.1 offer an estimation of the mechanical capacity 

of RC beams over time, it is essential to acknowledge that such predictions might be prone to 

inaccuracies and require adjustments in the performance assessment. This is primarily 

because the models may not adequately account for the complex interaction between the 

mechanical properties of steel and concrete. Additionally, it is worth noting that the analytical 

models described in Section 3.2.1 do not consider the combined effects of bending and shear, 

which can result in limitations in accurately predicting the failure mode of RC beams. 

To address the above issues, a FEM for corroded RC beams is employed to address such 

a concern, which could comprehensively consider realistic geometry and mechanical 

properties [17]. The total strain-based crack model is used for the concrete constitutive model 

[52]. As illustrated in Fig. 3a, the tensile concrete stress increases linearly before reaching the 

ultimate tensile strength and then drops following a tension-softening model developed by 

Hordijk [53]. The compressive concrete stress increases/decreases following parabolic curves 

[54]. In addition, as shown in Fig. 3b, a corrosion degree-based trilinear constitutive model of 

corroded steel bars is adopted [55], where the elastic modulus Es0, actual yield strength fy0, 

and ultimate strength of corroded steel bar fu0 remain unchanged [56,57]. Besides, hardened 

strain εsh and ultimate strain εsu decrease with the maximum corrosion degree ηmax, which 

could be expressed by Eqs. (23) and (24) [58–60]. 

 
   y0 s0 sh 0 y0 s0 s s ,c r m a x c r

sh

sy y0 s0 m a x c r

1 ,

,

f E f E

f E

    


  

    
 

 

  (23) 

  su m ax su 0
ex p 2 .5 0 1      (24) 
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where ηcr is the critical corrosion degree [12,61]; and εsh0 and εsu0 are the hardened strain and 

ultimate strain of non-corroded steel bars.  

 

 

Fig. 3 Schematics of constitutive models for different materials: (a) concrete; (b) 

reinforcement; and (c) bond-slip 

 

Moreover, different from the analytical models in Section 3.2.1, the bond-slip 

constitutive model is considered in FEM by directly assigning it to the interface between steel 

bar and concrete, as shown in Fig. 3c. The bond stress τ of corroded steel bars versus slip s 

could be written as [62] 

 

 

     

     

 

   

0 .3

1 1 0

0 1 0 m a x m a x 0 1

1 1 2 m a x m a x 1 2

1 / 0 .30 .5

1 0 m a x 1

1 m a x 1 1 m a x

0

0

/ , 0

1 0 .7 0 .7 , ,

1 0 .3 ,

2 .5 7 , ,

e x p (1 / 0 .3 ) l 0

0 .1 5

0 . n ( / ) .4 l1 /5 n

c b o n d

s l s s

s s s s s s s

s s s s s s s

s

c

c

f s



  

 

   

   

  


         


       



 

 

 (25) 

where c0 is the rib spacing; s2 is 0.35c0, respectively; and  max is the maximum bond strength 

of RC beams, which could be evaluated by an empirical model [63]: 

ft

fc

εtu

Gft/hel

Gfc/hel

εcu ε

ηmax

σsc

εsc

εsu0εsh0

εsy0

εsu
εsh

εsy

fu0

fy0

(a) (b)

s0 s1 s2 s

 

 max

 1

(c)
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      m a x 1 2 a v e
0 .5 5 0 .2 4 / 0 .1 9 1

t c s v y v t
k k c d f A f s d        

 (26) 

where c is the concrete cover; dt is the diameter of the tension bar; Asv is the cross-sectional 

area of stirrup bars; and k1 and k2 are the factors of the reduced contribution of concrete 

towards bond strength [64].  

Given the geometric model, boundary conditions, constitutive model, and loading pattern, 

the FEM can be used to capture the comprehensive information (i.e., strains and stress of 

reinforcement and concrete, mid-span deflection, and reaction loads at supports) at each load 

step. Besides, in this study, three limit states are considered including ultimate limit state 

(ULS) and two serviceability limit states (SLS): SLS1 (0.05 mm loading concrete crack [65]) 

and SLS2 (1 mm severe loading concrete crack [66]). The critical external loads at the SLS, 

denoted as PFEM,si (i=1,2), and ULS, denoted as PFEM,u could be calculated according to the 

reaction loads and corresponding mechanical information [17].  

The failure mode Fmod of RC beams can be determined according to the sequence of the 

individual events: stirrup bars breaking, tension bars breaking, and concrete crushing, where 

the first one is regarded as a shear failure Fmod=0 and the latter two are considered to be 

flexural failures Fmod=1[17]. 

 

3.3.Time-dependent reliability analysis 

For time-dependent reliability analysis, the initial step involves establishing the performance 

functions g( , t) for different limit states and their corresponding critical loads, such as Pu, Ps1, 

and Ps2. Taking the ULS as an example, the performance function for Pu could be formulated 

as follows: 

 ( , ) ( , ) ( , )
u u

g t P t S t      (27) 

in which   is the vector containing all input variables; and Pu ( , t) and S ( , t) are the 

ultimate capacities and external load at a given time instant t and  , respectively.  

Accordingly, considering the first passage issue, the time-dependent failure probability 

pf,u(t) could be described as the probability that gu( , t) reaches the critical value within a 

given time interval [0,t], i.e., Eq.(28). 

     ,
( ) P r , 0 , 0 ,

f u u
p t g t     (28)  

Similarly, regarding the two SLSs, their performance function gsi( , t) (i=1 and 2) and 

corresponding time-dependent probability pf,si(t) could be expressed by Eqs. (29) and (30). 

  ( , ) ( , ) ( , ) , 1, 2
s i s i

g t P t S t i       (29) 

       ,
( ) P r , 0 , 0 , , 1, 2

s i s i
p t g t i      (30)  

The essential step of solving pf,u(t) and ps,i(t) is to accurately capture the probabilistic 

distribution information for the critical extern loads via the models in Section 3.2. Although 

FEM is potent in accurately calculating the mechanical information of RC structures, it is not 

as straightforward as analytical models in estimating the capacities of RC structures over time. 

Therefore, inspired by previous studies [29,67], a suboptimal strategy is applied to apply 
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adjustment coefficients (αs1, αs2, and αu) to modify the results of the analytical models based 

on the FEM results.  

              s F E M ,s an a u F E M , u an a
, , , , , , , , 1, 2

i i
t P t P t t P t P t i          (31) 

where PFEM,si is the critical load computed from FEM given the limit state, input variables, 

and time t; and Pana is the ultimate load computed based on the analytical models as  

       a n a
, m in , , ,

u u
M V

P t P t P t    (32) 

where PMu and PVu are the loading capacities of flexural and shear capacities based on the Mu,k, 

and Vu,k (k=1,2…m) and the loading pattern of RC beams. According to Eqs. (31) and (32), 

given the adjustment coefficients, the adjusted loading capacities subject to different limit 

states could be expressed by Eq. (33). 

 ( , ) ( , ) ( , ) , ( , ) ( , ) ( , )
u u a n a s i s i a n a

P t t P t P t t P t           (33) 

 

4. Bayesian network developments 

4.1.Static and Dynamic Bayesian networks 

A BN is applied to represent a joint probability distribution concerning a set of random 

variables (called nodes in BN) 
1:

b n
n

X ={X1, X2,…, 
b n

n
X } (nbn is the number of nodes) and 

consists of two parts: a directed acyclic graph (DAG) with vertices and edges corresponding 

to nodes Xbn and their dependencies; and the probability distribution information of all nodes.  

Generally, two types of BN exist, i.e., static BN (SBN) and dynamic BN (DBN). The 

former contains only a one-time slice for time-independent variables, and the latter is adopted 

to depict the time dependencies among variables, e.g., cbar, icorr, and Pu. DBN contains a series 

of time-slice BNs with a set of random variables 
1:

b n

i

n
X ={X1

i
, X2

i
,…, 

b n

i

n
X } (i=1,2,…, T) at 

different time steps [28]. Within DBNs, the joint probability distribution P( 1

1:
b n

n
X ,…, 

1:
b n

T

n
X ) of 

all nodes over time T is denoted as  
1:

1:
b n

T

n
P X , expressed by Eq.(34) via adopting the Markov 

assumption [30]: 

    
1

1: 1

1: 1: 1:

1

|
b n b n b n

T

T i i

n n n

i

P X P X X







   (34) 

where  
1

1: 1:
|

b n b n

i i

n n
P X X


 denotes the conditional probability distribution at the i+1-th time slice 

given the probability information of nodes at the i-th time slice. Due to Markov's assumption 

and Eq. (34), T time slices of DBN can be built by unrolling the first two time slices of DBN, 

effectively reducing the difficulty of DBN modeling.  

For exact inference, only discrete random variables are concerned. To perform exact 

inference for continuous random variables, discretization is implemented. Besides, the 

conditional probability mass functions (PMF) of all nodes are expressed by the conditional 
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probability table (CPT). The procedure of node discretization and CPT computation are 

outlined in Appendix A1 [2]. Then, supposing a nbn nodes of SBN and given an evidence 

combination y1:n2=(y1, y 2,…, yn2) of inspection nodes Y1,Y2,….,Yn2 (n2 is the number of 

inspection nodes), the joint PMF of residual n1 (i.e., nbn – n2) nodes X1, X2,…,Xn1 could be 

expressed by 

 

 

     

     

1 1 2 2

1 1

1 1 1 1

2 1

,... ,

, . . . . , | , . . . ,

| P a | P a

, 1, .. . , , 1, . . . ,

| P a | P a

n

n n n n

i i j j

i j

i i j j

x x i j

P X x X x Y y Y y

P y y P x x

i n j n

P y y P x x

    

 

 

  

 (35) 

where Pa(yi) is the set of parent nodes of Yi.  

For T time slices of DBN, supposing a set of evidence combinations at all time slices 

{y1:m
1
,…, y1:m

T
}={y1

1
,…, yn2

1
,…, y1

T
,…, yn2

T
}, the joint PMF of residual n1 (i.e., nbn – n2) 

nodes could be written as 

 

 

     

     

1 1 1 1 2 2 2 2

1

1: 1:1 1

1 1 1 1

1: 1: 1: 1: 1: 1: 1: 1:

, ,

, ,,. . . ,

2 1

, . . . . , | , . . . ,

| P a | P a

,

| P a | P a

1, .. . , , 1, . . . , , 1, . . . , , 1, . . . ,

T

n n

T T T T

n n n n n n n n

u u p p

v v q q

u v p q

u u p p

v v q q

u v p qx x

P X x X x Y y Y y

P y y P x x

P y y P x x

u T v n p T q n

    

   

 

  
 (36) 

where Pa(yq
p
) is the set of parent nodes of Yq

p
.  

Evidence that is a series of definite values is called hard evidence. Correspondingly, if 

the evidence obtained for the inspection nodes is a series of distributions, it is called uncertain 

evidence or soft evidence [68,69]. Denoting the inspection status of node Yi and Yv
u
 in SBN 

and DBN as yio and yvo
u
, respectively, P(Yi= yis) and P(Yv

u
= yvs

u
) are the probabilities of the s-

th status of Yi and Yv
u
. Then, Eqs.(35) and (36) could be rewritten to Eqs. (37) and (38), 

respectively. 

 

 

       

       

1 1 2 2

1: 2

1 1:1 2

1 1 1 1

,... , ,

2 1

, . . . . , | , . . . ,

| P a | P a

,

| P a | P a

1, .. . , , 1, . . . , , 1, 2 , . . . .

n s

n n s

n n o n n o

j j i i

y j i

j j i i

x x y j i

i is

i is

P X x X x Y y Y y

P x x P y y P

P x x P y y P

i n j

Y y

n s

Y y



    

 
 

 
 

 





  

  
 (37) 

 

 

       

       

1 1 1 1 2 2 2 2

1
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2 1
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T

n ss
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
 (38) 
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The above BN inference is achieved by a frontier algorithm, including a smoothing 

strategy for both forward and backward operators to reduce the time complexity of DBN 

inference [28].  

 

4.2.Mixed Bayesian network for reliability analysis of RC structures 

The integration of all physical models and random variables from Section 3 into a giant DBN 

and implementing BN inference pose formidable challenges, primarily due to the increasing 

number of time slices, nodes, and links [19,20]. Existing studies often resort to crude 

simplifications by directly reducing nodes or links within BNs [30,34]. However, such 

simplifications may result in the loss of valuable probabilistic information, lacking the 

necessary physical mechanisms and theoretical support for reliable probabilistic inference and 

reliability analysis. 

To address the limitations of existing DBN analysis methods, this study introduces a 

novel approach called Mixed Bayesian Network (MBN). The fundamental idea behind MBN 

is to build sub-BNs, including both static BNs and dynamic BNs, based on various physical 

and mathematical models. These sub-BNs are then connected using pinch-point variables to 

facilitate reliability analysis under different limit states, as shown in Fig. 4. This innovative 

MBN approach not only enables objective modeling and inference of the original DBN but 

also dramatically simplifies the complexity of the process and improves analysis efficiency. 

Thus, MBN enables a comprehensive reliability analysis of RC beams, involving multiple 

sub-BNs (DBNs and SBNs) for integrated analysis.  

In the MBN, each node represents a sub-BN and its output variables, such as icorr, ∆r, and 

PMu. The 'blue nodes' represent DBNs for durability assessment (e.g., 'icorr' and '∆r'), while the 

'white nodes' represent SBNs for adjustment factors and failure modes of FEM (e.g., 'αx' and 

'Fmod'). These output variables serve as shared nodes between adjacent sub-BNs, acting as 

pinch-point variables to connect them. For instance, the inspection results of corrosion-

induced crack width ω in the DBNs of 'icorr' and '∆r' can update the Probability Mass 

Functions (PMFs) of the pinch-point variables icorr and ∆r. These updated PMFs then work as 

soft evidence for the nodes of icorr and ∆r in the DBNs of 'PMu' and 'PVu', as well as in the 

SBNs of 'αx' and 'Fmod'. Similarly, the updated PMFs of the PMu and PVU nodes in 'PMu' and 

'PVu' can serve as soft evidence for the DBN updating of 'gx'.  

 

 

icorr

PMu PVu αx Fmod

αx=αs1, αs2, αu

gx=gs1, gs2, gu

gx

PMu PVu αx Fmod

gx

Time slice t Time slice t+1

∆r icorr ∆r
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Fig. 4 MBN for reliability assessment of RC beams 

 

The node discretization, CPT computation, and inference process of MBN are consistent 

with SBN and DBN in Section 4.1. The primary merit of MBN is that there is no need to 

oversimplify any sub-BNs in the model deliberately, and the critical physical information of 

each BN is retained as much as possible, making MBN potentially more accurate relative to a 

simplified BN. In addition, due to the modular feature of MBN, the structure of each sub-BN 

and the probabilistic information of the nodes can be conveniently replaced according to the 

requirements. 

According to MBN in Fig. 4 and models in Section 3, other sub-BNs are introduced in 

the following. An SBN based on FEM is built to introduce the information for the variables αx 

and Fmod, as illustrated in Fig. 5. Other critical input variables, such as icorr, ∆r, Ak
t
 (k=1, 

2,…,m), and Ak
s
 (k=1, 2,…,m), are also extracted as nodes for this SBN. Moreover, the parent-

child relationship of these nodes is determined, e.g., Ak
t
 is a child node of icorr and ∆r but a 

parent node of αx, as shown in Fig. 5. Given the updating information of icorr and ∆r at any 

time instant, this SBN could provide the updating information of αx and Fmod accordingly. 

Furthermore, the available studies prove that not every cross-section contributes to the 

mechanical properties of the corroded RC beams [17]. Therefore, for the sake of simplicity, 

the number of Ak
t
 and Ak

s
 investigated in Fig. 5 can be limited based on the sensitivity analysis 

results. 

 

 

Fig. 5 SBN of FEM for corroded RC beams 

 

Besides, other sub-BNs, including durability assessment, analytical capacity calculation, 

and reliability assessment, are established via DBNs, as presented in Fig. 6a, b, and c, where 

arc-shaped dashed arrows indicate the time dependence between adjacent time slices. Also, 

similar to  Fig. 5, the numbers of Ak
t
 and Ak

s
 investigated could be appropriately reduced by 

the sensitivity analysis results. Besides, for the DBN relating to time-dependent reliability 

analysis (Fig. 6c), the probabilistic information of some input variables needs to be captured 

by the SBN of FEM in each time slice.  

 

fcfy0

αx Fmod

icorr ∆r

αx:αs1, αs2, αu

icorr: corrosion rate of steel bars

∆r: radius reduction of reinforcement

Ak
t: equivalent cross-sectional area sum of tenson bars, k=1,…,m

Ak
s: equivalent cross-sectional area sum of stirrup bars, k=1,…,m

fy0, fyv0: yield strengths of tension and stirrup bars

fc: concrete compressive strength

… …A1
t A2
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t A1

s A2
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Fig. 6 DBNs for other models: (a) chloride-induced durability assessment; (b) analytical 

capacities of corroded RC beam; and (c) time-dependent reliability analysis 

 

ω

Time slice t Time slice t+1

ec dc
csurf Dcref

cbar

icorr ∆r

ω

icorr ∆r

cbarccrRc

(a)

… …

Time slice t Time slice t+1

icorr ∆ricorr
∆r

fy/yv fc

A1
t/s A2

t/s A3
t/s Am

t/s

p1
t/s p2

t/s p3
t/s pm

t/

s

peq,2
t/s peq, 3

t/s pMu/Vu

A1
t/s A2

t/s A3
t/s Am

t/s

p1
t/s p2

t/s p3
t/s pm

t/

s

peq,2
t/s peq, 3

t/s pMu/Vu

(b)

Time slice t Time slice t +1

αx

Px

gx

Peq

PMu PVu

q

αx

Px

gx

Peq

PMu PVu

q

αx=αs1, αs2, αu

Px=Ps1, Ps2, Pu

gx=gs1, gs2, gu

(c)



17 

5. Illustrative examples 

5.1.Description 

To illustrate and study the efficiency of the developed framework, a simply supported RC 

beam with a cross-section of 150×300 mm is assumed to be located on the west coast of the 

Yellow Sea since 2010, as displayed in Fig. 2 [1]. The parameters of the geometry and 

reinforcement layout of the beam are listed in Table 1.  

 

Table 1 Geometry parameters and reinforcement of the studied RC beams 
Parameters Value 

Total length l 5400 mm 

Effective section height h0 275 mm 

Section width b 150 mm 

Initial diameter of tension bars dt0 20 mm 

Initial diameter of compression bars dt'0 12 mm 

Initial diameter of stirrup bars dsv0 6 mm 

Effective length left 5000 mm 

Stirrup spacing sv 250 mm 

Number of tension bars nt 3 

Number of compression bars nt' 2 

Number of stirrup bars nsv 2 

Number of zones m 20 

 

Regarding the environmental and durability assessment, the parameters for 

environmental models f(ec, t) were obtained from previous studies [1,70]. Fig. 7 presents an 

example of the variation of environmental parameters, including temperature T, relative 

humidity RH, and chloride deposition Csurf, assuming ec = 2°C. As shown, this example 

accounts for the periodicity, time dependence, and nonlinearity within the variations of 

environmental parameters. In addition, the distribution types and parameters of isolated parent 

nodes in all sub-BNs (Fig. 5 and Fig. 6) are listed in Table 2.  

The following sections focus on building MBN and presenting the time-dependent 

reliability analysis by integrating the inspection results. The former is described in Section 5.2, 

and the latter will be presented in Sections 5.3 and 5.4. 
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Fig. 7 Schematics of environmental model: (a) temperature; (b) humidity; and (c) chloride 

deposition 

 

Table 2 Distribution types and values of parent nodes in sub-BNs 

Parameters Distribution μ δ Ref 

Characteristic exposure conditions ec(°C) Uniform 0 3.5 [1] 

A baseline of chloride deposition csurf0 (wt% of cement) Gaussian* 0.65 0.1 [1] 

Reference coefficient of chloride diffusion D0(10-11 m2/s) Lognormal 1.6 0.1 [71] 

Concrete cover c (mm) Gaussian* 25 0.05 [72] 

Critical chloride content ccr (wt% of cement) Lognormal 0.4 0.1 [14] 

Resistance of concrete cover Rc(kΩ) Lognormal 25 0.1 [39] 

Compressive strength of concrete fc (MPa) Gaussian* 25 0.15 [14] 

Elastic modulus of reinforcement (MPa) Gaussian* 2×105 0.02 [73] 

Yield strength of longitudinal bars (MPa) Gaussian* 360 0.05 [74] 

Yield strength of stirrup bars (MPa) Gaussian* 220 0.05 [73] 

Note: μ and δ are the lower and upper bounds for the uniform distribution value, while μ and δ are the mean and coefficient of variation 

(COV) for other distributions; * means that the variable is truncated at 0. 

 

5.2.MBN establishment 

Before building the MBN for the RC beam, some preparations must be completed to obtain a 

priori information on all nodes in MBNs, and their probabilistic information is captured from 

representative samples. To select representative samples, the good-lattice-point-set-partially 

stratified-sampling (GLP-PSS) based method was adopted to generate 610 representative 

samples (following the Fibonacci sequence) based on the distribution information of isolated 

parent nodes as shown in Table 2 [2,75]. Given the values of isolated parent nodes for each 

representative sample, the values of all other nodes could be computed based on the 

deterioration models mentioned in Sections 3.1-3.2.  

To reduce the computational burden, the MBN is simplified by reducing the number of 

time slices, nodes, and links. For the purpose of demonstration and to align with previous 

research [2], a time interval of 3 years and 18 time slices are chosen. This decision is based on 

the knowledge that using smaller time intervals and an excessive number of slices do not 
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yield significant benefits. Moreover, each node is assigned 8 discrete statuses, except for 

certain binary nodes gx (gs1, gs2, and gu). 

On the other hand, considering corrosion non-uniformity, RC beams are divided into m 

zones with a large number of random variables associated with the cross-sectional area of the 

corroded reinforcement (Ak
t
 and Ak

s
, k=1, 2, ..., m) (Section 3.2), which also brings a burden 

on the MBN inferential analysis. Thus, sensitivity analysis is implemented to investigate the 

contributions of each spatial zone to the mechanical performance of RC beams. As illustrated 

in Fig. 8, the probability of ULS occurrence in each spatial zone is calculated based on the 

results of 610 representative samples over 50 years. Fig. 8a and b both indicate that flexural 

failure events are concentrated at the midspan of the RC beam, while shear failure events are 

concentrated near the supports of the RC beam, especially in the analytical models (Fig. 8a). 

Such a phenomenon is consistent with the previous reliability related studies [10,76].  

 

Fig. 8 Probability distribution of ULS occurrence caused by non-uniform corrosion over 50 

years: (a) analytical mechanical model; and (b) FEM 

 

In addition, Fig. 8 also demonstrates that the spatial distribution of the ULS occurrences 

of the analytical model differs from FEM results so that the sub-BNs are simplified in 

different ways. Among the sub-BNs associated with the analytical model (Fig. 6b), the 9th to 

12th zones (i.e., A9
t
 to A12

t
) are of interest for flexural failure, and the 1st and 20th zones (i.e., 

A1
s
 and A20

s
) are of interest for shear failure. Regarding the sub-BNs of the FEM (Fig. 5), the 

8th to 13th zones (i.e., A8
t
 to A13

t
) are of interest for flexural failure; the 1st to 4th zones (i.e., 

A1
s
 to A4

s
) and 17th to 20th zones (i.e., A17

s
 to A20

s
) are of interest for shear failure. However, 

since analytical models lack consideration for the combined effects of bending and shear, Fig. 

8a may potentially be misleading in terms of the failure modes. Therefore, in the formal 

discussion for the failure mode of RC beams, only FEM-based results will be utilized in MBN 

(Section 5.3.4). 

According to Appendix A.1, all nodes in MBNs are discretized into discrete nodes, and 

their CPTs are computed accordingly. Besides, it is worth noting that the pinch-point variables 

in MBN own two CPTs since they simultaneously serve as parent and child nodes in adjacent 

sub-BNs.  

 

5.3.Inference results 

Once the MBN is established, the following task is to infer and evaluate the performance of 

RC beams. Supposing the probability of detection (PoD) equals one, the width ω of 
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corrosion-induced concrete crack could be detected at several inspection instants (i.e., 3, 12, 

21, 30, and 39 years). Additionally, in this scenario, the crack widths inspected at the beam 

surface exhibit a certain statistical range, where potential inspection results of ω (mm) are 

assumed as follows: ω1∈[0, 0.1], ω2∈[0.2, 0.3], and ω3∈[0.5, 0.6] [2]. The MBN was 

applied to infer critical parameters of the structural performance of RC beams subjected to 

different inspections, such as the flexural and shear capacity PMu and PVu, adjustment 

coefficients αx, and limit state variable gx. Since durability assessments such as chloride 

content and corrosion rates cbar and icorr on the steel surface have been explored in detail in a 

previous study [2], these will not be discussed again in this study. 

 

5.3.1. PMF of critical nodes in MBN 

To demonstrate the effectiveness of the proposed framework, some classical scenarios are 

picked up to exhibit a priori and a posteriori PMFs of critical parameters, as illustrated in Fig. 

9. As shown, the 3rd year inspection of  2 affects the PMFs of all parameters over time, while 

the 39th year inspection of  1 essentially has little effect on the PMFs before 39 years. Also, 

compared to no inspection, the earlier inspection results in higher PMFs in the negative axis 

direction for PMu and PVu, while the later inspection increases PMFs in the positive axis 

direction. For instance, in Fig. 9b and c, given the 3rd year inspection of  2, the probability of 

PMu in the range of 20.1 to 21.7 (kN) in 39 years increases by 241.7% compared to no 

inspection, while that in the range of 23.3 to 24.8 decreases by 99%; the probability of PVu in 

the range of 19.2 to 20.6 (kN) increases by 644.0% while that in the range of 23.3 to 24.6 (kN) 

decreases by 99.1%. This result matches common sense, as wider cracks indicate higher 

corrosion and lower load-bearing capacity and vice versa. 

However, the scenario is slightly different for αx. In 3 years, considering the 3rd year 

inspection of  2, the probability of α1 in the range of 0.38 to 0.41 decreases by 32.5%, and 

that in the range of 0.41 to 0.43 increases by 26.1%. In 21 years, the inspection has little effect 

on the PMF of α2. Besides, in 39 years, considering the 3rd year inspection of  2, the 

probability of αu in the range of 0.88 to 0.94 increased by 43.7%, and that in the range of 0.94 

to 0.99 decreased by 30.1% - the vice versa for the 39th year inspection of  1. Thus, the 

effects of inspection results on the adjustment coefficients of SLS might not be as significant 

as ULS. In addition, different from PMu and PVu, the adjustment ratio might not decrease with 

the corrosion degree for SLS. 

In the following, the influence of different test results on the mechanical capacity and the 

probability and mode of failure at different limit states are discussed in further detail. 
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Fig. 9 PMFs of critical nodes in MBN: (a) PMu at 3 years; (b) PMu at 21 years; (c) PMu at 39 

years; (d) PVu at 3 years; (e) PVu at 21 years; (f) PVu at 39 years; (g) αs1 at 3 years; (h) αs2 at 21 

years; (i) αs3 at 39 years; 

 

5.3.2. Effects of inspection results on mechanical capacities 

This subsection investigates the influences of different inspection results on PMu and PVu. To 

facilitate the comparisons of different scenarios, the mean and standard deviation (STD) of 

discrete nodes are used here [2], which are calculated by Eqs. (39) and (40), respectively. 
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in which x is the target node; [d1, d2, …,
1

x
n

d


] is the discretization scheme of x; and Px(k) is 

the PMF of x at its k-th interval. 

Fig. 10 illustrates the mean and STD of PMu and PVu for different inspection results, 

where the mean value of PMu over time is higher than PVu, but the STD of PMu is lower than 

PVu. In Fig. 10a and b, the mean values keep decreasing with time, and those of PMu and PVu 

with the 3rd year inspection of  2 decrease the fastest among all scenarios, with maximum 
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reductions of 8.8% and 8.7% for PMu and PVu compared to no inspection. In addition, for the 

21st-year inspection, the mean values of PMu and PVu decreased much more slowly than in 

other scenarios, with a maximum increase of 6.5% and 5.4% for PMu and PVu compared to no 

inspection. Moreover, compared to other years of inspection, PMu and PVu of the 39th-year 

inspection are closer to no inspection. The above results indicate that early inspection of 

moderate-width cracks significantly reduces the mean value of the load capacity. Also, small 

cracks observed at the middle to late service life dramatically increase the mean value of the 

load capacity because large cracks are expected after 21 years of exposure. 

On the other hand, the STD of PMu and PVu (Fig. 10c and d) indicate that STD values 

initially increase and then decrease. The peak of STD depends on the inspection results. For 

instance, given the 21st-year inspection of  2, the STDs of PMu and PVu peak in 6 and 9 years, 

respectively, 4.8% and 0.64% higher than no inspection, while given that of  1, both the 

STDs of PMu and PVu peak in 51 years, 5.7% and 10.2% higher than no inspection. Such 

results indicate that, given the inspection time, the larger concrete crack could advance the 

STD peak of load capacity.  

In addition, given the 3rd year inspection of  2, the STDs of PMu and PVu peak in 3 and 6 

years, 3.7% higher and 1.3% lower than no inspection, while given the 39th year inspection of 

 2, both the STDs of PMu and PVu peak in 33 years, 5.1% and 1.1% lower than no inspection. 

Therefore, given the inspection results for concrete crack width, the earlier the inspection 

occurs, the earlier the STD of load capacity reaches its peak. 

 

 

Fig. 10 Mean and STD of PMu and PVu subject to different inspection results: (a) Mean of PMu; 
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(b) Mean of PVu; (c) STD of PMu; and (d) STD of PVu 

 

 

5.3.3. Effects of inspection results on failure probabilities 

This subsection investigates the influences of inspection results on failure probabilities 

considering different limit states, as illustrated in Fig. 11-Fig. 13. The effects of inspection on 

failure probabilities for SLS (pfs1 and pfs2) are not as pronounced as those for the ULS (pfu) in 

most scenarios. Consequently, only a few scenarios that demonstrate significant differences 

from the no inspection results are presented in Fig. 11 and Fig. 12. For SLS1 (Eq.(30) with 

0.05 mm limit cracks size), pf,s1 ranges from 0.65 to 1 for all scenarios. Meanwhile, Fig. 11 

shows that the differences among different scenarios are limited and decrease rapidly over 

time until it is below 1% after 6 years. Among the displayed scenarios with inspection, the 

highest pf,s1 could be found under the 3rd-year inspection of  2 5.2% higher than no 

inspection, followed by the 12th-year inspection of  3 (4.8% higher than no inspection) and 

the lowest in the 30th-year inspection of  3 (1.4% higher than no inspection). Such a result 

might suggest that the occurrence probability of a 0.05 mm loading crack is relatively high in 

this case and therefore pf,s1 is not sensitive to the inspection results of corrosion-induced 

cracks.  

 

 

Fig. 11 Time-dependent failure probability pf, s1 of the beam under SLS1 and different 

inspection results 

 

Furthermore, for SLS2, Fig. 12 illustrates that given the inspection results of  2, pf,s2 is 

ranging from 10
-3

 to 0.04, and pf,s2 varies nonlinearly over time. For instance, given the 3rd-

year and 12th-year inspection of  2, pf,s2 is initially 12.7% and 5.1% higher, 30.2% and 11.8% 

lower but eventually 19.1% and 9.7% higher than no inspection, respectively. However, for 

the 30th-year inspection of  2, pf,s2 is maximum 13.5% higher than no inspection before 45 

years but 3.7% lower than no inspection until the end of service life. The above results 

indicate that the occurrence probability of a 1 mm loading crack is more sensitive to 

inspection results of corrosion-induced crack than that of a 0.05 mm loading crack. Besides, 

the influences of corrosion-induced cracks on 1 mm loading cracks appear of particular 

nonlinearity and hysteresis.  
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Fig. 12 Time-dependent failure probability pf, s2 of the beam under SLS2 and different 

inspection results 

 

On the other hand, for the ultimate limit state, Fig. 13 shows that pf,u for all scenarios 

ranges from 2×10
-5

 to 0.035 all over the service life, and the effects of inspection results on 

pf,u are dramatic. For instance, given the 3rd year inspection of  2 and 12th year inspecton of 

 3, pf,u is 506% and 530% higher than no inspection. Such a result demonstrates that a high 

width of corrosion-induced crack detected early in service life could significantly impair 

structural safety. In addition, given the inspections of crack width, pf,u decreases with the 

inspection time. For instance, pf,u with a 3rd-year inspection of  1 is maximum 8.2% lower 

than no inspection, and pf,u with a 30th-year inspection of  1 is maximum 63.8% lower than 

no inspection. Besides, pf,u with the 12th-year inspection of  2 is maximum 290% higher than 

no inspection, while pf,u with the 30th-year inspection of  2 is maximum 30.7% higher and 

4.3% lower than no inspection after 51 and 21 years, respectively. Thus, a smaller width of 

corrosion-induced cracks detected when approaching the end of service life implies better 

structural reliability and safety. 
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Fig. 13 Time-dependent failure probability pf,u of the beam considering on ULS and different 

inspection results 

 

5.3.4. Effects of inspection results on failure modes 

In this subsection, the inspection effects on failure modes are further investigated, as 

displayed in Fig. 14. Considering no inspection, the probability of shear failure after 3 years is 

basically the same as that of flexural failure and increases with time, exceeding that of 

flexural failure by 123.8% after 27 years. In addition, given the 12th and 30th-year inspection 

results of  1, the probabilities of flexural and shear failure initially do not change compared to 

no inspection (Fig. 14a). After 27 years, the probability of shear failure decreases by 7.4% and 

25%, respectively, and that of flexural failure increases by 16.6% and 56.8%, respectively 

(Fig. 14b), compared to no inspection. Therefore, the later the inspection occurs, the higher 

the probability of flexural failure, given the inspection results of small crack widths.  

Furthermore, given the 12th and 30th-year inspection results of  3, the probability of 

shear failure increases by 39.0% and 3.1% after 3 years, respectively, while the probability of 

flexural failure decreases by 42.6% and 3.4% after 3 years, compared to no inspection. Also, 

the probability of shear failure dramatically increases by 23.5% and 23.4% after 48 years, 

respectively, while the probability of flexural failure decreases by 81.6% and 81.3% after 48 

years, compared to no inspection. Thus, inspection results for large crack widths lead to a 

significant increase in shear failure probability, which is advanced by when cracks are 

detected during the earlier inspection time. 

 

 
Fig. 14 Failure modes of the corroding RC beam subjected to different inspection results and 

time slices: (a) 3 years; (b) 27 years; and (c) 48 years 
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5.4.Other effects 

In this section, the effects of other factors, e.g., exposure condition ec, and models of the 

environment and chloride transport on reliability estimation, are further discussed. For 

convenience, the probabilities of shear and flexural failure are directly compared. They are 

calculated by multiplying the failure probability of the corresponding limit states by the 

probability of failure mode over time, i.e., Eq.(41). 
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where Pr(Fmod(t)=0|fail) and Pr(Fmod(t)=1|fail) are the probabilities of flexural and shear 

failure, respectively.  

For exposure conditions, two ec (°C): ec1 ∈ [0, 0.6] and ec2 ∈ [2.9,3.5] are considered 

to study the low and high ecs and their effects on reliability estimation for no inspection and 

21-th year inspection of  2, as illustrated in Fig. 15a and b. As shown, both the effects of 

inspection results and ec on pf,M are nonlinear. The pf,M with inspections firstly increases with 

time and then drops in 15 to 21 years but then rises in the rest of service life. Also, the pf,M for 

given ec1 and ec2 gradually exceeds that of no given ec. Supposing the 21-th year inspection 

of  2 and given ec1, the pf,M is about 8.0% higher than no given ec at the end of service life, 

while given ec2, pf,M is about 27.3% higher at the end of service life. Thus, a higher ec results 

in higher growth in flexural failure probability near the end of service life.  

In contrast to pf,M, considering no inspection, pf,V with given ec1 and ec2 is about 1.0% to 

13.2% lower than no given ec at most times. Meanwhile, considering the 21-th year 

inspection of  2 and no given ec, pf,V is 2.4% to 175.6% higher than that without inspection. 

Such results suggest that inspection results might significantly affect shear failure probability 

more than ec. 
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Fig. 15 Time-dependent probability of two failure modes subjected to different scenarios: (a) 

flexural failure probability & exposure conditions; (b) shear failure probability & exposure 

conditions;(c) flexural failure probability & environmental models &chloride transport modes; 

and (d) shear failure probability & environmental models & chloride transport modes 

 

On the other hand, Fig. 15c and d present the pf,M and pf,V subject to constant 

environment and one-dimensional (1D) chloride transport. For 1D chloride transport, the pf,M 

with the 21-th year inspection of  2 is 65.5% higher at the end of service life, compared to no 

inspection. In addition, compared to 2D chloride transport, pf,M and pf,V without inspection is 

21.9% to 76.4% lower, while the 21-th year inspection of  2 results in 13.3% to 93.7% 

decrease on pf,M and pf,V. Thus, as illustrated in Fig. 15c and d, considering 1D chloride 

transport underestimates the failure probability drastically.  

In addition, for the constant environment, pf,M and pf,V without inspection are about 22.2% 

to 95.0% lower while considering the 21-th year inspection of  2, pf,M and pf,V are about 88.8% 

and 94.9% lower at the end of service life, compared to the time-varying environment. Thus, 

it can be found that ignoring the time-varying environment could decrease the probabilities of 

shear and flexural failure. Therefore, it could be concluded that 2D chloride transport and the 

time-varying environment affect the effects of inspection results on failure probability 
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assessment. 

 

6. Conclusions 

This study developed an MBN-based framework for the reliability estimation of RC structures 

subject to long-term environmental effects. This framework consists of three modules: 

durability assessment, mechanical assessment, and reliability assessment, achieved by the 

combination of SBN and DBN. The information between adjacent BN is transferred by 

applying pinch points and soft evidence. The time-dependent reliability analysis for RC 

beams under marine atmospheric environment is made as one case to illustrate the 

effectiveness of the proposed framework, and the following conclusion can be drawn: 

(1) Inference results of MBN prove that the proposed framework could use the results of 

inspections to update the probabilistic distribution of time-dependent mechanical capacity, 

FEM adjustment coefficients, and performance functions. The flexural and shear load 

capacity negatively correlate with the corrosion-induced crack width, while the FEM 

adjustment coefficient is nonlinearly related. 

(2) For load capacities, results indicate that early inspection of medium-width cracks 

decreases the mean values of load capacities by about 9% while the small-width cracks 

raise the mean values of load capacities by about 5 to 6%. Also, the earlier inspection time 

and wider cracks could advance the peak of STD for load capacities. 

(3) Failure probabilities subject to different limit states suggest that the effects of inspection 

on the failure probability of serviceability limit states are nonlinearly related to inspection 

results and not as significant as those of the ultimate limit state. Given the inspection of 

corrosion-induced cracks, compared to no inspection, the probability of a 0.05mm loading 

crack is about 1% to 5% higher, and that of a 1 mm loading crack is about 5% to 13% 

higher initially but then about 3% to 30% lower. Regarding ultimate limit states and the 

assumed conditions in the case study, an early inspection of large corrosion-induced 

cracks might dramatically overestimate the failure probability by about 500%, and later 

inspection of small corrosion-induced cracks might underestimate the failure probability 

by about 64%.  

(4) Failure mode analysis gives that the probabilities of shear failure and flexural failure are 

positively and negatively correlated with the inspection results, respectively. Results show 

that a later inspection result of small corrosion-induced cracks might increase the 

probability of flexural failure mode by about 16% to 57% and decrease that of shear 

failure mode by about 7% to 25%. In addition, large corrosion-induced cracks 

significantly increase the probability of shear failure mode by 3% to 39% and decrease 

that of flexural failure mode by about 3% to 81%. 

(5) Sensitivity analysis results show that the effects of exposure conditions on the failure 

probability of different failure modes are different and nonlinear. Given the small 

characteristics value of exposure condition ec1, compared to no given ec, the failure 

probability of flexural failure could increase by 3.6% to 32%, while that of shear failure 

could reduce by about 2% to 12%. Given a large characteristic value of exposure 

condition ec2, the failure probability of flexural failure could increase by 7.2% to 33%, 

while that of shear failure could increase by 1.6% to 10%. Moreover, considering the 
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constant environment and one-dimensional chloride transport could significantly reduce 

the failure probabilities of shear and flexural failure by about 13 to 94% and 22% to 95%, 

respectively. Thus, ignoring the effects of the time-varying environment and two-

dimensional chloride transport underestimate the failure probability and overestimate the 

effects of inspection results on failure probability at the early stage. 

In summary, it is practical to use the proposed MBN framework for the reliability 

assessment of RC structures developed. The proposed approach can integrate the inspection 

data with the life-cycle design and management of RC infrastructure and dramatically 

mitigate the uncertainty in the life-cycle assessment of corroding RC structures. In future 

studies, it is significant to take into account the impact of spatial correlation of stochastic 

parameters in concrete durability assessment. Furthermore, it is critical to incorporate spatial 

variations in corrosion-induced crack by integrating random field theory and mesoscale multi-

physics field modeling. Besides, various inspection techniques, such as half-cell potential 

method, Linear Sweep Voltammetry (LSV), need to be investigated to further enhance the 

MBN based reliability assessment of RC structures subject to marine atmospheric 

environments in future research. The above efforts will contribute to advancing the 

knowledge and applicability of our findings in real-world scenarios. 
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Appendix: 

A1. Algorithms of Node discretization and CPT computation 

The node discretization and CPT computation are implemented based on the methods from 

[2]. Taking a DBN with a set of nodes 
1:

b n

i

n
X ={X1

i
, X2

i
,…, 

b n

i

n
X } (i=1,2,…, T) as one example, 

the procedures of node discretization are presented. For DBN, the node discretization of all 

nodes remains unchanged over time slices. Thus, the corresponding discretization scheme of 

each node Xj (j = 1,…,nbn) could be represented as DXj = [d1, d2,…, 
1

X j
m

d


] with 
j

X
m  equal 

intervals. 

For those isolated parent nodes (time-independent parent nodes) given the distribution 

types and parameters (such as the variables in Table 2), their lower and upper bounds (d1 and 

1
X j

m
d


) could be preset, and their PMFs can be expressed by [77]: 

      1
, 1, ...,

j j j j
X X k X k X

P k F d F d k m


    (42) 

where  
j

X
F   denotes the CDF of Xj.  

For other types of nodes (child nodes or time-dependent parent nodes) without preset 

distribution functions, their lower d1 and upper bounds 
1

X j
m

d


 can be determined by the 

minimum and maximum values of these nodes in the N number of representative samples [2]. 

It is essential to note that in MBN, although the CPTs of the pinch point variables are different 

in the adjacent sub-BNs, their discretization schemes must be consistent for soft evidence 

transfer and update.  

Furthermore, the CPT of other types of nodes comes from the joint distribution of 

investigated nodes and their parent nodes. For the sake of expression, other types of nodes are 

noted as  1: 1 2
, , . . . ,

c c

i i i i

n n
      (nc is the number of nodes, and their CPT could be computed 

through the following steps: 

(1) The discrete number of i

j
  is noted as 

j
Z

m , and parent nodes are marked as a collection set 

c o l
, . . . ,

i i

b e
X X X 

 
 (b and e denote the serial numbers of the parent nodes in topological 

order from the beginning to the end of the sequence). For the first representative sample 

and the first time slice, let k = 1 and i = 1. For other time slices, the 1i

j


  is becomes the 

first parent node of i

j
  and 

c o l
X  is revised as  1

, , . . . ,
i i i

j b e
X X


 
 

; 

(2) Determine the state z
i
j of the k-th sample and the i-th time slice of i

j
  (denoted as  

,

i

j k
Z ) 

based on its discretization scheme DZj; 

(3) Determine the states of all parent nodes in topological order and store these states as xpa= 
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[xpa,b,….xpa,e] for the first time slice and [z
i-1

j, xpa,b,….xpa,e] for other time slices. 

Meanwhile, calculate a state variable xtemp by Eq. (43); 

 

 

   

1

p a , p a ,

1

te m p 1

1

p a , p a ,

1

1 , 1

1 1 , 1

o

j j o

pe

b p X

p b o b

pe

i

j b Z p Z X

p b o b

x x m i

x

z x m x m m i



  





  


   


 


      




 

 

 (43) 

(4) Then, the value of the xtemp-th row and z
i
j -th column of CPT will be incremented by pa,k, 

i.e., Eq. (44); 

    te m p te m p ,
C P T , C P T ,

i i

j j a k
z zx x p   (44) 

(5) For the CPT of the first time slice, if k < N, let k=k+1, and repeat step (2). For the CPT of 

other time slices, if i < T, let i = i+1, and repeat step (2); and 

(6) Once step (5) stops, the final CPT should be normalized. 

More details on the above computational algorithms refer to [2]. 

 


