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Humans’ Spatial Perspective-Taking When Interacting with a Robotic
Arm

Mouad Abrini1, Malika Auvray1 and Mohamed Chetouani1

Abstract— Perceiving the environment from another person’s
perspective, in other words, being in someone else’s shoes
spatially, is not always an easy task. Perspective-taking can
be even more challenging when working with a robot as a
collaborator. The study reported here aims at investigating
humans’ level 2 spatial perspective-taking performance when
interacting with a collaborative robotic arm through a novel in-
person experiment. First, a robotic arm drew ambiguous shapes
on a whiteboard and participants had to answer questions that
require performing spatial perspective-taking. A metric was
used to compute a score based on their responses. Second,
participants completed the PTSOT, a test measuring spatial
orientation and perspective-taking ability. The results revealed
a correlation between the scores computed using our metric
and those obtained in the PTSOT. This suggests the efficiency
of our new setup and associated evaluation metric in assessing
spatial perspective-taking skills in a human-robot interaction
context, as well as the validity of our findings, in line with
prior studies on perspective-taking.

I. INTRODUCTION

Perspective-taking is a multidimensional construct refer-
ring to the ability to perceive a situation from someone else’s
point of view and to understand how our own actions and
behaviors may be perceived by others [1]. It is an essential
skill, that is used, either consciously or unconsciously, by
individuals in their daily interactions [2]. Perspective-taking
is often characterized along three dimensions: affective,
cognitive, and spatial. Affective perspective-taking refers
to the ability to understand the emotions and feelings of
others. It is closely related to empathy and allows individuals
to respond appropriately to the emotional states of other
individuals. Cognitive perspective-taking refers to the ability
to understand and interpret others’ thoughts, behaviors and
beliefs, and it can be referred to as theory of mind. Spatial
perspective-taking corresponds to the ability to imagine how
an object or a scene would appear from a perspective
different from one’s current physical viewpoint [3]. In this
article, we focus on spatial perspective-taking in a human-
robot interaction scenario. The field of Robotics is rapidly
evolving, and robots are often introduced in environments
where they have to interact with humans. This is usually
the case of collaborative robots. One of the necessary com-
ponents for a successful interaction with robots is spatial
perspective-taking. This component has already been tackled
by pioneering research [4] which showed that humans prefer
the robot to take their perspective and act accordingly in case
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of spatial ambiguity. This brings an important question: What
do we mean by spatial ambiguity? In the scenario of [4], the
participant could only see one of the two objects, while the
robot could see the two of them. If the participant asks the
robot to go towards the visible object, this creates a spatial
ambiguity. Our study focuses on shape spatial ambiguity
and in particular on 2D drawn shapes that can be perceived
differently depending on the observer’s point of view. This
task is coined as ambiguous grapheme perception, such as
6/9, b, d, p, q, whose perception varies as a function of
the perspective that is adopted on the stimulus. To date,
there are no studies evaluating human’s spatial perspective-
taking abilities when interacting on-line with a robot. It is
of utmost importance to develop such methods, since robots
need to be able to adjust their perception and movements
based on humans’ abilities. In the study reported here,
a new task is proposed through which we can evaluate
level 2 spatial perspective-taking abilities in a human-robot
interaction context. In this task, a robotic arm draws an
ambiguous 2D shape on a whiteboard. Then, the participants
are required to answer questions on a tablet while performing
spatial perspective-taking. The main aim of this study is to
investigate the validity of this experimental method through
which we can evaluate level 2 spatial perspective-taking
in a human-robot interaction context. This method might
prove useful to personalize human-robot interactions based
on individual abilities.

II. RELATED WORK
A. Humans’ spatial perspective-taking

According to previous findings in psychology, there are
two levels of spatial perspective-taking [5], [6]. Level 1
spatial perspective-taking refers to the ability to understand
that an object may be visible from a specific perspective
but not from another one. This is usually referred to as a
”I know what you see” situation [7]. This ability is usually
explored through experiments where two individuals engage
in interaction within a setting where certain objects are
visible to one person and not to the other. For example,
previous studies used a dot task where the participant has
to count the number of dots that an avatar facing a wall can
see or not [8], [9].

[1] and [10] have shown that the underlying mechanism
of level 1 perspective-taking in humans works by imagining
a line-of-sight between the object and the individual. The
object is assumed to be occluded if the line-of-sight is
interrupted by an interposed obstacle. It appears that children
are able to develop level 1 perspective-taking abilities by



the time they reach the age of 2 [11].

Level 2 spatial perspective-taking on the other hand cor-
responds to the ability to understand and imagine a physical
scene from a different viewpoint. This level of perspective-
taking requires one to perform a virtual embodied rotation in
order to move themselves to another position or viewpoint
within the same environment and imagine what they would
see from that new perspective. This would be a ”I can
see the world through your eyes” situation [7]. This level
of perspective-taking can be investigated through multiple
experimental setups. [12] for example, study level 2 spatial
perspective-taking by asking participants how a number
appears from the perspective of a human avatar. Level 2
spatial perspective-taking is considered to be more advanced
than level 1. In fact, it seems to be developed between the
years of 4 and 5 [13]. In addition, level 2 perspective-taking
abilities has been shown to be dependent on sensory factors
such as visual [14] and proprioceptive [15] deficits and on
individual factors such as social intelligence and attachment
style [16].

B. Spatial perspective-taking during human-robot interac-
tions

Level 1 spatial perspective-taking was investigated by
[17] in the context of human-robot interaction. In order
to handle ambiguous situations, such as when a human
requests a tool from a robot and the human can only
see one tool while the robot can see two tools (including
the one that is occluded from the human’s perspective),
the authors used a framework referred to as Polyscheme
[18], [19], which helps resolve such scenarios. Polyscheme
is a cognitive architecture used to model how humans
use multiple methods of representation, reasoning and
problem-solving. For example, in the context of [17], when
two cones are available, the robot chooses the one visible
by both agents respecting the principles of the least effort
and joint salience [20].
Level 1 spatial perspective-taking was also investigated by
[21] and [22] in a human-robot interaction context. The
authors used a line-of-sight tracing (as presented in II-A)
approach in order to infer if an object is visible or not. The
only difference between [21] and [22] is that the former
uses motion capture for the objects and human perception,
and the latter presented a method that does not require the
environment to be known.

Level 2 spatial perspective-taking was previously investi-
gated by [23], in a human-robot interaction context where
the humanoid robots used were the NAO robot and the
Baxter. The robots had to reach or look at an ambiguous
shape (6/9). The results revealed that humans adopted the
robot’s perspective more frequently in the reaching scenario
than in the looking condition. In addition, robot’s appearance
influenced participants’ performance, and perspective-taking
abilities increased when the robot had a human-like appear-
ance.

Some research works aims at granting robots with the
ability to adopt human agents’ perspective. This is done
by attempts to equip robots with spatial perspective-taking
ability. For example, in [24] referring expressions are gener-
ated while human agent’s perspective is taken into account.
Humans moved during the interaction, which changed their
perspective on the objects. To allow updates on the perspec-
tive, the authors created a perspective-taking module that
relies on users’ coordinates (center of gravity) and viewpoints
collected beforehand. The latter was recorded in the form of
an image and coordinates in space. In [24], 8 viewpoints
were collected. Then, to find the closest viewpoint to the
participant, the authors calculated the Euclidean distance
between the coordinates of the human (center of gravity)
and the coordinates of the stored perspectives. The closest
viewpoint is the one that minimizes that distance. The center
of gravity was obtained using a pre-trained Mask-RCNN
model [25].
A more robust method was developed by [22] that works un-
der unconstrained and markless environments. First, the en-
vironment was mapped using Real-Time Appearance-Based
Mapping (RTAB-MAP) [26]. Real-time object recognition
was performed using deep learning algorithms. Then, to
estimate what would the world look like to the human agent,
the 3D point cloud map was transformed to the frame of the
user that is estimated using head pose and gaze estimation
algorithms.

III. EXPERIMENT SETUP AND METHODS

A. Participants

39 participants were recruited via the local information
relay on cognitive sciences, which is a volunteer platform for
experiments. The participants received 10 euros as compen-
sation for the experiment that took on average 20 minutes to
complete. The participants’ ages ranged from 19 to 42 years
(M = 29.3, SD = 6.6; 24 females, 15 males).

Ethics approval for the study was obtained from Sorbonne
University Ethics Committee (Protocol CER-2022-068). Par-
ticipants were informed about the experiment and were asked
to provide their consent by signing a form before the study
started. The experiment was performed in accordance with
the ethical standards laid down in the Declaration of Helsinki
(1991). Data collection was conducted anonymously. The
participants were involved in two blocks of the experiment,
as presented in sections III-B and III-C.

B. Block 1 of the experiment

Figure 1a shows the configuration that was adopted in
this block. The participants sat in front of the robotic arm
(Franka Emika Panda), outside the robot’s workspace, in
order to ensure safety. Hence, it is impossible for the robot
to reach the participants. The participant interacts with the
robot through the Wacom Cintiq pro 16 tablet.

The participants were asked to draw one of the three
ambiguous shapes: ”p”,”q” or ”6”. The robot then randomly
reproduced the shape, either from its perspective or from the
participants’ one. These trials were repeated 60 times with



(a) (b)

(c) (d)

Fig. 1: The configuration of the setup - (a): Participant sitting in front of Franka Emika robot, (b): The drawing zone as
a subcomponent of the user interface, and the result of the drawing performed by the robotic arm, (c): Representation of
the virtual positions defined in table I, (d): The user interface representing the multiple-choice question and the red arrow
indicating the decentred left direction

the different ambiguous trajectories to ensure consistency of
results. In addition, the participants’ response times (RTs)
were measured. RTs provide an additional performance in-
dicator, as longer time taken to provide a correct answer
might indicate that the participants are less comfortable with
this condition.

1) User interface: The interaction between the partici-
pants and the robotic arm was done via a Web Interface.
This interface contains an area for drawing trajectories, a
3D visualization of the robot in real time developed with
ros3djs 1 (Figures 1c and 1d), as well as the area in which the
user will be asked to respond. The web interface represents
the front-end of the application. A Web server was also
developed. It manages the logic of the Web application and
the communication between the front-end and the robot.
The interface was developed using the Javascript framework
VueJs. Figures 1b and 1d show a preview of the two main
screens of the interface. The source code is available on

13d visualization library for use with the ros javascript libraries,
http://wiki.ros.org/ros3djs.

Github2.
In the example shown in figure 1b, the participant is asked

to draw a ”9”. The result of the drawing by the robot is shown
on the same figure. In fact, once the trajectory is drawn by the
participant, the robot reproduces it on the whiteboard, either
from its own egocentric perspective or from the perspective
of the user. For the next step, the screen shown in figure 1d
is presented to the participant.

A red arrow appears in the 3D visualization area. The
participant is then asked to choose the trajectory that they
would see if they were standing in the same direction as the
arrow. The participant is not allowed to move away from
their position. This means that they cannot stand up or move
around the table to complete the perspective-taking task. In
the example, the correct answer is 1 (Figure 1d).
The other choices are misleading random 90°, 180° and 270°
rotations of the original trajectory. It also includes mirror
inversions. In total, there are 4 possible positions of the red
arrow. These are represented in figure 1c and denoted in table
I.

2https://github.com/MouadAbrini/Perspective-Taking-Assessment-
Franka-Robot



Fig. 2: Virtual representation of the environment (egocentric
view)

Designation in figure 1c Name Abbreviation
0 Egocentric PEGO

1 Decentred right PDR

2 Decentred opposite PDO

3 Decentred left PDL

TABLE I: The four possible perspectives (see figure 1c)

2) Parameters definition: For the entire experiment, the
participant had to answer N + 1 = 60 questions (excluding
the example). For each question, there was only one possible
correct answer. To quantify that, a binary score was given
and denoted si (i ∈ [[0;N ]] is the question number).

si =

{
1, if the answer is correct.
0, otherwise.

(1)

The response time (i.e the time taken by the participant to
answer at each step i) is denoted Tri.

3) Robot control: The robot was controlled using ROS
(Robot Operating System) [27]. Two machines on which
ROS noetic was installed were used for the control.

• Computer 1: A workstation with Ubuntu 20.04 LTS
(CPU: Intel® Xeon® Silver 4214 2.2 GHz / GPU:
Nvidia Geforce RTX 2080 Super)

• Computer 2: A desktop Ubuntu 20.04 LTS (CPU:
Intel® Core™ i5-8400 2.8 GHz / GPU: Intel® UHD
Graphics 630) and a patched kernel to add the real-
time support required for the low-level control of the
robotic arm.

The robot drawing was performed using an impedance
control method with force constraint along the Z axis (see
Figure 2). In fact, to ensure continuous contact with the
whiteboard, we forgo the ability to move along the Z axis
with translational compliance. This was necessary because
the whiteboard is not a perfectly flat surface. It contains
irregularities that prevent the end-effector from being always
in contact with it. Hence, a force constraint has been imposed
in order to compensate for these irregularities.
The Cartesian translational and rotational stiffnesses were

Fig. 3: The performance metric as a function of the response
time and the experiment steps, i.e., the number of completed
questions

fixed on a high enough value to ensure a low error position
for an accurate drawing. The control was done using the
library frankx for collaborative robots3.

4) Drawing speed: In order to draw the trajectory using
impedance control, a set of (X,Y) pixel coordinates were
collected from the user interface. These coordinates were
then adapted to fit the robot’s workspace. After the re-
scaling of the coordinates, these were looped through and
the equilibrium position of the end-effector was updated
accordingly. To avoid abrupt motions of the robot, and hence
to enhance the safety of the interaction, a minimum number
of points was fixed under which the drawing was considered
too fast. Under this threshold, the participant was asked to
redraw the trajectory.

5) Metric: Previous research revealed that humans’ re-
sponse time decreases as they become more familiar with
tasks that involve spatial perspective-taking [28]. Taking this
result into consideration, we developed a metric that factors
participants’ response times for each question, the progress
in the experiment (step number) and their answer to each
question (false or correct). The metric is used to assign a
score S to each participant, the score is computed following
equation 2. It is calculated by averaging the values obtained
from the metric at each step.

S =
1

N + 1

N∑
i=0

sie
− Tri

(N−i+1) (2)

with Tri and si the response time and the binary score
respectively for each step i, N +1 the number of questions,
as defined in section III-B.2. The score S is a numerical value
ranging between 0 and 1.

3GitHub - pantor/frankx: High-Level Motion Library for Collaborative
Robots — github.com, https://github.com/pantor/frankx



The more we advance in the experiment, the more the
response time will be penalized. The participant answers
60 questions (number of steps). The figure 3 illustrates the
metric for N=59.

Notice the more the participant answers the questions, the
steeper the curve is. So a higher response time towards the
end of the trials will decrease the score significantly. But
at the beginning of the experiment, the deduction for the
response time is more lenient.

C. Perspective-taking and spatial orientation test (Block 2)

In this second block, the participants took the Perspective-
Taking/Spatial Orientation Test (PTSOT) [29], [30]. A com-
puterized version 4 of the test was used. The test was
originally in English, but was translated into French as the
participants in our study were French. The participants had
5 minutes to answer 11 questions (example excluded). The
participants were provided with a reference object (flower),
a direction facing another object (tree), and they were asked
to point to another object (cat) as depicted in the example
(Figure 4).

Fig. 4: Example of the PTSOT test [29]

Because the arrow’s direction is always perpendicular to
the horizontal plane, the participants had to perform spatial
perspective-taking in order to find the correct answer, in this
case the correct angle. An average angle error score across
the 11 questions was obtained at the end of the test. It is
worth noting that a lower angle error score indicates better
performance in spatial perspective-taking.

IV. RESULTS AND DISCUSSION

Participants’ accuracy corresponded to the proportion of
correct answers on the total number of questions. 85% of
the participants achieved an accuracy rate of 80 % or higher.
The mean accuracy was 85 %. A cutoff accuracy of 70 %
(one standard deviation away from the mean) was established
to filter out the outliers. 4 participants had accuracy scores

4GitHub - TimDomino/ptsot: Electronic version of the ”Perspective
Taking/Spatial Orientation Test by Hegarty, Kozhevnikov and Waller —
github.com, https://github.com/TimDomino/ptsot

Fig. 5: Representation of the participants’ data points based
on their response time at every step

below the threshold. Two additional participants were ex-
cluded due to not following the experiment instructions. For
the sequel, the results of 33 participants were analyzed (M
= 28.3, SD = 6.2; 20 females, 13 males). Ages were still
ranging from 19 to 42 years.
Figure 5 represents the real data based on the participants’
responses, projected on the metric shown in figure 3.

A. Score computation

Figure 6 illustrates that participants’ response times de-
crease on average as they progress in the experiment. This
result is in line with the hypothesis mentioned in section
III-B.5 and with previous studies on perspective-taking [28].
A quadratic least squares polynomial fit was performed to
capture the evolution trend of the mean response time for
each step of the experiment, considering all the participants.
Since response times decrease on average as a function of
the experiment steps, we can safely apply our metric.

Fig. 6: Evolution of the response time as a function of the
experiment steps



B. Correlation between the results of the first and second
blocks of the experiment

The aim of the correlation analysis was to verify if there
was a similar profile of performance between the first block
of the experiment and the second one (the PTSOT test).
This was done by creating a scatter plot and fitting a linear
regression line (Figure 7).

Fig. 7: Correlation between the scores of the first block of
the experiment and the angle errors of the second block

First, Pearson’s correlation [31] was computed to assess
the relationship between scores of the first block and the sec-
ond one. There was a significant, strong negative correlation
between the two variables (r = -0.63, p = 7.55e-05). This
indicates that participants with the highest scores in block
1 of the experiment have lower angle errors in block 2, as
was anticipated. Our concern was that the high correlation
coefficient may have been due to the few points towards
the right of figure 7. In fact, this region contains very few
data points, meaning that among all the participants, only
few have mediocre spatial perspective-taking ability. This
is supported by a study in which a computerized version
of the PTSOT and a paper one were compared [32]. The
angle errors distribution obtained is similar to ours. Since
there was no justified reason to consider those points as
outliers, we used a second correlation method. Spearman’s
rank correlation was computed to assess the relationship
between the two scores. This method was used because it
is known to be more robust to outliers and is a better use
case for non normally distributed data. A moderate negative
correlation between the two variables was found (r = -0.484,
p = 0.003).

C. Comparison between positions

The position PEGO (control condition) is the most intu-
itive one [28], as it does not require any spatial perspective-
taking from the participants. To test whether participants’
response times were faster in the control position than in the
other 3 positions (PDR, PDO, and PDL), three tests were

conducted to compare the average response times between
PEGO (M=4.82s, SD=1.22s) and PDR (M=6.86s, SD=2.9s),
PEGO and PDO (M=6.76s, SD=3.1s) and between PEGO

and PDL (M=6.92s, SD=2.43s). The results of the four
positions is shown in figure 8. To test the normality of the
data for these positions, the Shapiro-Wilk test was used.
The average response times for the control condition were
found to be normally distributed (W=0.97, p=0.6). This
result was confirmed after an examination of the QQ plot.
For the other three conditions, the data was non-normal
(PDR: W=0.82, p=9.54e-05; PDO: W=0.86, p=5.94e-04;
PDL: W=0.88, p=2.43e-03). Therefore, we decided to use a
non-parametric test. Since the data for the four positions were
collected from the same participant, we used the Wilcoxon
signed-rank test. The results revealed a significant difference
between the control condition (PEGO) and the other three
conditions (PEGO-PDR: W=0.0, p=9.3e-10; PEGO-PDO:
W=14, p=1e-07; PEGO-PDL: W=6, p=4.6e-09). This result
shows that it is more difficult to adopt a perspective that does
not correspond to our own egocentric position.

Fig. 8: Box plot representation of the average response
times for each position denoted in table I. Every datapoint
(in black) in the distribution corresponds to the average
response time across the 15 steps for a given participant
and a position.

Friedman test was conducted to determine whether the
average response time differ between the positions PDR,
PDO and PDL. The results did not show any significant
difference (χ2(2) = 0.0625, p=0.97). We therefore fail to
reject the null hypothesis and conclude that there is no
difference between the average response times of the three
non-egocentric positions.

Even thought the statistical tests show that there was a
significant difference between the average response times of
PEGO and PDO, It is worth noting that the box plot in figure
8 indicates that adopting the decentred opposite perspective
might be easier than the decentred left and right. In fact, the
median of PDO is slightly overlapping with the interquartile
range of the control position (PEGO). It is not the case for
PDR and PDL.



(a) (b)

Fig. 9: Comparison between the mean response time metric and our metric. Every datapoint (in black) in the distribution
corresponds to the average response time or score across the 20 steps for a given participant and a trajectory. (a): Box
plot representation of the mean response times for each trajectory, (b): Box plot representation of the scores computed with
our metric for each trajectory

D. Comparison between trajectories

In the same way as the comparison mentioned in IV-C,
we wanted to evaluate if there was a difference between
the three trajectories ”p”, ”q” and ”6”. To do so, for each
participant, the mean of the response times for each trajectory
was computed. Then the mean of the response times of all the
participants was calculated. The results are shown in figure
9a.

The results show that the response times are similar (Fig-
ure 9a) for ”p” (M=6.3s, SD=2.3s), ”q” (M=6.26s, SD=2.21s)
and ”6” (M=6.3s, SD=2.17s). A Shapiro-Wilk test revealed
that the data was non-normally distributed (”p”: W=0.86,
p=0.00062; ”q”: W=0.9, p=0.004; ”6”: W=0.92, p=0.02).
Therefore, the Friedman test was used to find out if there
was a statistically significant difference between the average
response times of the three trajectories. The results show non-
significant difference (χ2(2) = 0.41, p=0.81). We therefore
fail to reject the null hypothesis and conclude that there is
no significant difference between the average response times
of the three trajectories.
The three trajectories were compared in pairs using response
time and our custom metric through Wilcoxon signed-rank
test. The results showed no significant difference in response
time data for the three possibilities (6-p: W=253, p=0.63;
6-q: W=271, p=0.87; p-q: W=263, p=0.75). The average
scores for each trajectory using our metric were different,
as can be seen in figure 9b. While the response time based
performance measure showed little differences between the
three trajectories (figure 9a), our custom metric clearly
distinguished them (figure 9b). The scores are higher for
trajectory ”6” suggesting that observing the shape ”6” from
decentred perspectives may be easier compared to the other
two trajectories. This is supported by figure 10 that indicates
that the median response time of trajectory ”6” for PDO is
overlapping with the IQR of PEGO for the same trajectory,
which is not the case for ”p” and ”q”.
However, even using our metric, the difference between the

trajectories was not significant (6-p: W=231, p=0.38; 6-q:
W=207, p=0.19; p-q: W=258, p=0.7). But this may have
been due to the lack of a high statistical power required to
detect such a small effect size between the trajectories.

Fig. 10: Box plot representation comparing the mean re-
sponse times for PEGO and PDO across the three trajectories

V. CONCLUSION

Our study highlights the importance of spatial perspective-
taking in human-robot interactions and presents a novel
in-person experiment to evaluate this ability. The results
show that our new setup and evaluation metric are ef-
ficient in assessing perspective-taking skills in a human-
robot interaction context. In addition, its validity is in line
with findings from prior studies on perspective-taking. This
research contributes to the development of methods to eval-
uate perspective-taking abilities in human-robot interactions,
which is essential for the successful integration of robots
into collaborative environments. By improving robots’ ability
to adjust their perception and movements to human agents’



abilities, we can enhance the overall effectiveness of human-
robot teams. However, there are some limitations to this
experiment. In particular, our method is not capable of
evaluating perspective-taking ability in real-time nor adapting
to dynamic changes such as fatigue. Instead, it can only gen-
erate a long-term spatial perspective-taking ability profile for
the human partner. Thus, future research should investigate
further assessment methods involving robots able to quickly
infer humans’ spatial perspective-taking abilities and able to
adapt to changes in real-time.
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