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Abstract

Conditioning is an important task for updating and revising uncertain
information when new information, often considered reliable, is added.
This paper deals with the so-called Fagin and Halpern (FH-)conditioning
within the framework of possibility theory. We discuss in particular the
computation of FH-conditioning when it is applied to weighted knowledge
bases. We also compare FH-conditioning with the two forms of standard
possibilistic conditioning (min-based conditioning and product-based con-
ditioning).

Keywords: Conditioning, Possibility Theory, Weighted Knowledge
Bases

1 Introduction

Belief revision [12] is a fundamental problem in knowledge representation. It
consists in revising a set of beliefs of an agent in the light of new information,
considered completely reliable. This problem has been widely studied in the
literature both from the rational postulates point of view and from a compu-
tational point of view. A large number of belief revision operators have been
proposed; in particular within the framework of propositional logic (and its ex-
tensions).
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Within the frameworks of uncertainty theories, the process of belief revi-
sion is realized through the concept of conditioning. A large number of con-
ditioning operators have been defined: Bayesian conditioning (in probability
theory), Dempster’s rule of conditioning (in belief functions theory [13]), min-
based and product-based possibilistic conditioning (in possibility theory [7]),
different forms of conditioning in ordinal conditional functions (OCF) [14], etc.
These ”standard” conditioning modes have been extensively studied in the lit-
erature from a semantic point of view but also from a computational point of
view; in particular for the propagation of the uncertainty of beliefs in the pres-
ence of new observations.

This paper focuses on Fagin and Halpern conditioning (denoted by FH-
conditioning), initially defined within the framework of belief function theory
in [10]. This conditioning was proposed in order to have a better characteriza-
tion of belief functions in terms of particular families of probability distributions
(see [10] for more details). We are interested in the study of FH-conditioning
within the framework of possibility theory; a particular framework of belief
function theory. The possibilistic counterpart of FH-conditioning has already
been discussed only from a semantic point of view [6]. This paper is interested
in the revision of the weighted belief bases which is in full agreement with the
possibilistic FH-conditioning. A weighted belief base is represented by a set of
pairs (¢;, ;) where ¢; is a propositional logic formula, and «; is a degree of
certainty (a degree of necessity) attached to the formula ¢;.

The rest of the paper is organized as follows. We first recall the basic ele-
ments of possibility theory. Next, we summarize the syntactic computation of
FH-conditioning of the weighted knowledge bases that we recently developed in
[9]. Section 4 briefly positions the computation of possibilistic FH-conditioning
in relation to the two standard forms of possibilistic conditioning (min-based
and product-based possibilistic conditioning). Section 5 concludes the paper.

2 Weighted Knowledge Bases and Possibility Dis-
tributions

We place ourselves within the framework of propositional logic. We will de-
note L the set of propositional logic formulas and €2 the set of interpretations.
A possibility distribution 7 is a mapping from the set of propositional logic
interpretations € to the unit interval [0,1]. m(w) represents the degree of com-
patibility or consistency of the interpretation w with respect to the set available
knowledge. A possibility distribution is said to be normalized if there exists an
interpretation w which is fully possible (i.e., 7(w) = 1).

Given a possibility distribution 7, we can define two measures over the set
of formulas:

e The degree of consistency (or possibility):



II(¢) = max{m(w)lw = ¢}
which evaluates to what extend the propositional logic formula ¢ is con-
sistent with the available knowledge expressed by 7.

e The degree of certainty (or of necessity):
N(¢) =1-1(~¢)
which is measures to what extent a proposition the propositional logic for-
mula ¢ is entailed by the knowledge expressed by .

A possibilistic weighted knowledge base is a finite set of weighted formulas,
denoted as ¥ = {(¢i,;),i = 1,...,n}, where «; €]0,1] serves as the weight
assigned to each formula. This weight is treated as a lower bound for the degree
of necessity N(¢;).

Each possibilistic weighted knowledge base ¥ induces a unique possibility
distribution [5], denoted by mx, defined by:

1, if V(@,ai) S Z,OJ ): ¢z
mo(w) =< 1 —max{a; : (¢i, ;) € B, w = ¢} (1)
otherwise

3 Syntactic Computation of Possibilistic
FH-Condiotioning

At the semantic level, possibilistic conditioning consists in transforming a pri-
ori possibility distribution 7 and a certain information, represented here by a
propositional logic formula %, into a new possibility distribution (a posteriori)
denoted by 7(.|¢).

Several methods exist to define 7(. | 9) (as discussed in [2]). The two major
definitions of possibilistic conditioning are [8]:

e Min-based conditioning:

(W lm ¢) = 1lif m(w)=1(¢) and w = ¢
m(w) if 7(w) < I(¢) and w = ¢ (2)
0 Otherwise .

e Product-based conditioning (also known as Dempster rule of conditioning
[13]) where we assume that II(¢) > 0:

twl ¢) = FDifwl¢ 3
= 0 otherwise

An alternative to these two definitions of possibilistic conditioning is the
FH-conditioning proposed by Fagin and Halpern[11], which was originally intro-
duced within the context of belief functions. Since possibility theory can be seen



as a special case of belief functions (i.e. can be represented by consonant belief
functions where elements with positive mass are nested), the FH-conditioning
was then adapted to the possibility theory framework as follows [6]:

(¢ A1)
(@ AY)+ N(=pAY)

(6 e ) = (4)

Where N(¢) =1 —TI(—9).

For justifications of FH-conditioning and a discussion of its various interpre-
tations see for example [11, 3, 4].

When we restrict the definitions II(. |y %) to interpretations, we get the
definition of FH-conditioning defined on possibility distributions:

() P
m(w |py ) = {;nax (W(w)’ m)w(@) Z;Z L; Z (5)

The interesting question is how to compute the FH-conditioning, in an equiv-
alent way, from the weighted knowledge bases. More specifically, given the ini-
tial weighted knowledge base ¥ and the fully certain information (3, 1), how to
compute a novel weighted knowledge base, denoted by Xz, such that:

Vw € Qs (W) = (W | pg ). (6)

where 7y .., (resp. 7)) is the possibility distribution associated with ¥z g (resp.
¥) as defined by Equation 1.

In [9], a positive answer was obtained to this question. To compute the
knowledge base Y gy, a reformulation of the semantic definition of FH-conditioning,
as a sequence of three transformation operations of possibility distributions, has
been first proposed. For each of these semantic transformation operations, an
equivalent characterization on the weighted belief bases has been defined. At
the end of the third operation, the following final weighted knowledge base was
obtained (see [9] for more details):

Yrm ={(4,1)} UDs. (7)
with,
2y = {(di, min(a;, 1 — #%))7 (¢i, i) € X}
Example 3.1 Let X be a weighted knowledge base defined as follows:
Y ={(—qVs,0.72),(q V —s,0.65),
(=g V —r,0.03),(qVs,041)}

Assume that the new piece of information is ¢ = qVrVs. Table 1 gives the
possibility distribution ms,(w) obtained from ¥ using FEquation (1). Table 1 also
gives the result of FH-conditioning (m(w |pg ¥)) of ms(w) with 1):



Table 1: Example of a possibility distribution 7s;(w) and the result of its con-
ditioning 7(w |Fp )

g 7[5 [ m@ [ wlra 9w
1 1 1 0.97 0.97

1 1 0 0.28 0.406

1 0 1 1 1

1 0 0 0.28 0.406

0 1 1 0.35 0.460

0 1 0 | 0.59 0.59

0|0 1 0.35 0.460

O[O0 0] 0.59 0

In the possibility distribution ws(w), the interpretation q—rs is the most
preferred one since it is the only one which is consistent with 3. Hence, their
possibility degree is mx(q—rs) = 1. The interpretation qrs gets the possibility
degree ms,(q—rs) = 0.97 because it falsifies the least certain belief in 3; namely
(=g Vv —r,0.03).

At the syntactic level, using Equation (7), we get:

Yrr = {(qgvrvs,1)}U{(—qVs,0.594), (¢V—s,0.540), (—gV—-r,0.03), (¢Vs,0.41)}.

Finally, one can check that computing the possibility distribution 7, asso-
ciated with the weighted knowledge base Yppr, using Equation (1), gives exactly
the same distribution w(w |pp ) given in the table above when applying the
semantic FH-conditioning with v =qV rV s.

4 Min-based and Product-based Conditioning
vs FH-conditioning

This section compares FH-conditioning with the two standard forms of possi-
bilistic conditioning: min-based conditioning and product-based conditioning.
At the semantic level, FH-conditioning shares the following four properties with
min-based and product-based conditioning (where |, stands for possibilitic con-
ditioning operator):

e (. |o %) is normalized (or consistent).

o Yw e Q, if w1y then n(w |6 ¥) = 0.
This property confirms that the new information ¢ is completely certain
and therefore any countermodel of v is considered impossible after the
conditioning operation.

e Vw e Q, V' € Q such that w E ¥, w’ = 1, we have:
m(w) > 7(Ww) iff T(w o ) > 7(W' | ).
This property means that the conditioning does not alter the relative order
between the models of the new information



o Ywe Qif m(w) =0 then n(wlo ) =0
This property means that a priori impossible conditional interpretations
will remain so after conditioning.

The three possibilistic conditioning (min-based conditioning, product-based
conditioning and FH-conditioning) satisfy the above four properties.

There remains however the following property which is satisfied by two stan-
dard possibilistic conditioning (min-based and product-based conditioning) but
which is not satisfied by the FH-conditioning

o if N()) > 0 then Vw € Q such that w = ¢, we have: m(w) = m(w |o ¥).

This property means that if ¢ is a priori accepted (expressed by N(v) > 0

or by TI(¢)) > TI(—))) then the degrees of possibilities on the models remain un-
changed. This property is not satisfied with possibilistic FH-conditioning where
the possibility degree of a model of ) can be modified, depending on the a priori
degree of beliefs of 1.
Moreover, it is easy to see in the equation 7 that when N (i) = 0 then the
revised base is simply equal to the new information {(¢,1)}. This behavior is
different with min-based conditioning and product-based conditioning which re-
tains part of the initial information even if the new information was not initially
accepted.

At the syntactic level, the computational complexity of performing the FH-
conditioning of a weighted knowledge base is the same as that of the standard
possibilistic conditioning (min-based and product-based possibilistic condition-
ing) given in [1]. For the three possibilistic conditioning operators, the spatial
complexity is linear in with respect to the size of the initial base X. As for
the time complexity, the difficult task when performing the FH conditioning is
to compute the necessity degree of N(v) from the initial weighted knowledge
base. With min-based and product-based possibilistic conditioning, the most
difficult task concerns the computation of inconsistency degrees of a weighted
knowledge base. These two tasks (computing the degree of necessity of ¢ or
computing the degree of inconsistency of a weighted knowledge base) have the
same level of computational complexity. Both tasks need log,(n) calls to the
propositional logic satisfiability test, where n is the number of different degrees
in the weighted knowledge base 3.

5 Conclusions

In this paper, we presented the computation of the FH-conditioning when it
is defined on the weighted knowledge bases. This syntactic computation is in
full agreement with the semantics of FH-conditioning defined at the level of
possibility distributions.

Possibilistic FH-conditioning shares several properties with the two standard



forms of possibilistic conditioning. They also differ on the revision to adopt if
the new information is already accepted or not. The combination of product-
based conditioning with FH-conditioning, to take into account the a priori status
of the new information, will be studied in a future work. We also plan to apply
different forms of conditioning for the revision of geographic information systems
associated with wastewater networks.
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